[89] (with C. Ciliberto, and with an appendix by J. Caro and J. Duque-Rosero), The general ternary form can be recovered by its Hessian, arXiv:2406.05382.
[88] Effective methods for plane quartics, their theta characteristics and the Scorza map, Ann. Univ. Ferrara Sez. VII Sci. Mat. 70 (2024), no. 3, 1115-1153 (Edge volume), pdf, arXiv:2403.19599.
[87] Vector bundles without intermediate cohomology and the trichotomy result, on the occasion of Arrondo 60th, arXiv:2402.07254.
[86] ( with E. Texeira Turatti) Generalized identifiability of sums of squares, to appear in J. of Algebra, arXiv:2402.05189.
[85] ( with A. Conca, S. Naldi, B. Sturmfels) Taylor Polynomials of Rational Functions, Acta Math. Vietnamica 49 (2024), no. 1, 19-37. pdf, arXiv:2304.00712.
[84] ( with A. Ferguson, M. Safey El Din, E. Teixeira Turatti) On the degree of varieties of sum of squares, J. Pure Appl. Algebra 228 (2024), no. 7, Paper No. 107638, 15 pp. pdf, arXiv:2206.07473.
[83] The critical space for orthogonally invariant varieties, arXiv:2104.14998, Vietnam J. Math., vol. 50, 615-622 (2022), on the occasion of Sturmfels 60th, https://doi.org/10.1007/s10013-021-00547-y
[82] ( with L. Chiantini) A footnote to a footnote to a paper of B. Segre, in: The art of doing algebraic geometry, Ciliberto 70th volume, Trends Math., Springer (2023), pp. 93-117 arXiv:2103.04659
[81] ( with Z. Shahidi) Tensors with eigenvectors in a given subspace, Rend. Circ. Mat. Palermo, series 2, 71 (2022), 73-84, open access, DOI:10.1007/s12215-021-00600-2, , arXiv:2010.03843.
[80] ( with L. Sodomaco, E. Ventura) Asymptotics of degrees and ED degrees of Segre products, open access, arXiv:2008.11670, Advances in Applied Mathematics, 130 (2021), 102242
[79] ( with C. Ciliberto) The Hessian map, Int. Math. Res. Notices, 8 (2022), 5781–5817, free access, doi:10.1093/imrn/rnaa288, arXiv:2006.07213.
[78] ( with P. Reichenbach) Tensor Rank and Complexity, arXiv:2004.01492.
[77] ( with M. Gharahi, S. Mancini,) Fine-Structure Classification of Multiqubit Entanglement by Algebraic Geometry, Physical Review Research 2, 043003 (2020), DOI 10.1103/PhysRevResearch.2.043003, arXiv:1910.09665.
[76] ( with L. Sodomaco) The Distance Function from a Real Algebraic Variety, Comput. Aided Geom. Design, 2020, 82, 101927, DOI 10.1016/j.cagd.2020.101927 arXiv:1807.10390.
[75] ( with J. Draisma, A. Tocino) Best rank k approximation for tensors, generalizing Eckart-Young, Res. Math. Sci. (2018) 5:27, open access https://doi.org/10.1007/s40687-018-0145-1 arXiv:1711.06443,
[74] ( with A. Tocino) Best rank k approximation for binary forms, arXiv:1707.04696, Collectanea Mathematica, 69(1) (2018), 163-171 DOI 10.1007/s13348-017-0206-6
[73] ( with L. Chiantini, J. Hauenstein, C. Ikenmeyer, J.M. Landsberg) Polynomials and the exponent of matrix multiplication, Bull. London Math. Soc., 50(3) (2018), 369-389 arXiv:1706.05074 , doi:10.1112/blms.12147
[72] ( with L. Chiantini, C. Ikenmeyer, J.M. Landsberg) The geometry of rank decompositions of matrix multiplication I: 2x2 matrices, Experimental Mathematics, 28 (2019), no. 3, 322-327, DOI 10.1080/10586458.2017.1403981, arXiv:1610.08364
[71] ( with L. Chiantini, N. Vannieuwenhoven) Effective criteria for specific identifiability of tensors and forms, SIAM Journal on Matrix Analysis and Applications, 38 (2017), 656-681, DOI 10.1137/16M1090132 arXiv:1609.00123
[70] ( with G. Fløystad, J. Kileel) The Chow form of the essential variety in computer vision, Journal of Symbolic Computation, 86 (2018), 97-119, DOI 10.1016/j.jsc.2017.03.010 arXiv:1604.04372
[69] ( with D. Drusvyatskiy, H.-L. Lee, R. Thomas) The Euclidean Distance Degree of Orthogonally Invariant Matrix Varieties, Israel J. Math, 221 (2017), 291-316 DOI 10.1007/s11856-017-1545-4 arXiv:1601.07210
[68] ( with E. Angelini, F. Galuppi, M. Mella) On the number of Waring decompositions for a generic polynomial vector, Journal of Pure and Applied Algebra, 222 (2018), 950-965, DOI 10.1016/j.jpaa.2017.05.016 https://doi.org/10.1016/j.jpaa.2017.05.016 arXiv:1601.01869
[67] ( with A. Bernardi, G. Blekherman) On real typical ranks, Bollettino dell'Unione Matematica Italiana, 11(3), (2018), 293-307, DOI 10.1007/s40574-017-0134-0 http://link.springer.com/article/10.1007/s40574-017-0134-0 arXiv:1512.01853
[66] ( with L. Chiantini, N. Vannieuwenhoven) On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369 (2017), 4021-4042, arXiv:1504.00547
[65] ( with R. Paoletti) A Geometric Perspective on the Singular Value Decomposition, arXiv:1503.07054 , Rend. Matem. Trieste 47 (2015), 107-125
[64] ( with J. Hauenstein, L. Oeding, A. Sommese) Homotopy techniques for tensor decomposition and perfect identifiability, J. Reine Angew. Math. 753 (2019), 1-22 arXiv:1501.00090
[63] ( with L. Chiantini, N. Vannieuwenhoven) An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis and Applications, 35 (4), (2014), 1265–1287, arXiv:1403.4157
[62] ( with P.J. Spaenlehauer, B. Sturmfels) Exact solutions in structured low-rank approximation, SIAM Journal on Matrix Analysis and Applications, 35 (4) (2014), 1521-1542, arXiv:1311.2376
[61] ( with J. Draisma, E. Horobet, B. Sturmfels, R. Thomas) The Euclidean distance degree of an algebraic variety, arXiv:1309.0049 , Foundations of Computational Mathematics, 16 (2016), no. 1, 99–149.
[60] Five Lectures on projective Invariants, lecture notes for Trento school, September 2012, Rendiconti del Seminario Matematico Univ. Politec. Torino, vol. 71, 1 (2013), 119-194, arXiv:1305.2749
[59] ( with L. Chiantini, M. Mella) One example of general unidentifiable tensors, Journal of Algebraic Statistics, 5 (1), (2014), 64-71, DOI 10.18409/jas.v5i1.25 arXiv:1303.6914
[58] ( with C. Bocci, L. Chiantini) Refined methods for the identifiability of tensors, Annali di Matematica Pura e Applicata, 193, (6) (2014), 1691-1702, DOI:10.1007/s10231-013-0352-8 arXiv:1303.6915
[57] An introduction to the hyperdeterminant and to the rank of multidimensional matrices, arXiv:1301.0472 , in I. Peeva (ed.), Commutative Algebra, Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday, 609-638, Springer, New York 2013
[56] ( with S. Friedland)
The number of singular vector tuples and uniqueness of best rank one
approximation of tensors,
arXiv:1210.8316 , Foundations of Computational Mathematics,
(2014) 14, 1209–1242, DOI:10.1007/s10208-014-9194-z
The number of singular vector tuples in the cubic case appears as sequence
A271905 in OEIS,
see the front by D. Zeilberger and Shalosh B. Ekhad
and the related article, arXiv:1605.00172, with the amazing asymptotics.
[55] A computational approach to Lüroth quartics, Rendiconti del Circolo Matematico di Palermo (2)62 (2013), no.1, 165-177 arXiv:1208.1372
[54] ( with J.M. Landsberg), New lower bounds for the border rank of matrix multiplication, arXiv:1112.6007 , Theory of Computing, 11 (2015), 285-298
[52] ( with E. Mezzetti, Rosa M. Miró-Roig), Laplace Equations and the Weak Lefschetz Property, Canadian J. of Math., 65 (3), (2013), 634-654
[51] ( with L. Chiantini), On generic identifiability of 3-tensors of small rank, SIAM Journal on Matrix Analysis and Applications, 33 (3), (2012), 1018-1037
[50] ( with L. Oeding), Eigenvectors of tensors and algorithms for Waring decomposition, Journal of Symbolic Computation, 54 (2013), 9–35, highly cited paper, arXiv:1103.0203
[49] ( with B. Sturmfels), Matrices with Eigenvectors in a Given Subspace, Proc. AMS 141 (2013), no. 4, 1219-1232, arXiv:1012.1016
[48] ( with J.M. Landsberg), Equations for secant varieties of Veronese and other varieties, Annali di Matematica Pura e Applicata, 192 (2013), 569-606, arXiv:1111.4567
[47] ( with E. Sernesi), On singular Lüroth quartics, Science China Mathematics Vol. 54 No. 8: 1757–1766, 2011, (Catanese 60th volume)
[46] ( with P. Comon), On the typical rank of real binary forms, arXiv:0909.4865 , Linear and Multilinear Algebra, 60 (6) (2012), 657-667
[45] ( with E. Sernesi), On the hypersurface of Lüroth quartics, Michigan Math. J. 59 (2010), 365–394
[44] ( with H. Abo, C. Peterson), Non-Defectivity of Grassmannians of planes, J. of Alg. Geom., 21, 1-20 (2012) arXiv:0901.2601
[43] An invariant regarding Waring's problem for cubic polynomials, arXiv:0712.2527 , Nagoya Math. J., 193 (2009). 95-110
[42] ( with C. Brambilla), On partial polynomial interpolation, Linear Algebra and Applications 435, 1415-1445 (2011)
[41] Symplectic bundles on the plane, secant varieties and Lueroth quartics revisited, math.AG/0702151, in Quaderni di Matematica, vol. 21 (eds. G. Casnati, F. Catanese, R. Notari), Vector bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, Aracne, 2008.
[40] ( with C. Brambilla), On the Alexander-Hirschowitz Theorem, J. Pure Appl. Algebra, 212 (2008), 1229-1251 , doi:10.1016/j.jpaa.2007.09.014
[39] ( with H. Abo, C. Peterson), Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009) 767-792.
[38bis] From a homogeneous bundle to the quiver representation. Examples of tensor products. Informal note, November 2004
[38] ( with E. Rubei), Quivers and the cohomology of homogeneous vector bundles, Duke Math. J. 132, 3, 459-508 (2006)
[37] ( with E. Rubei), Resolutions of homogeneous bundles on P^2, math.AG/0401405, Ann. Inst. Fourier 55 (2005), 973-1015
[36] ( with C. Dionisi) The Binet-Cauchy Theorem for the Hyperdeterminant of boundary format multidimensional Matrices, math.AG/0104281 , Journal of Algebra, 259 (2003), 87-94
[35] ( with L. Costa) Group action on instanton bundles over P3, Math. Nachr. 246-247 (2002), 31-46, math.AG/0103076
[34] ( with L. Costa) Nondegenerate multidimensional matrices and instanton bundles, Trans. Amer. Math. Soc. 355 (2003), 49-55. math.AG/0103078,
[33] ( with P. Katsylo) Regularity of the moduli space of instanton bundles MI P3(5), Transformation Groups, vol. 8, n.2, 2003, 147-158, math.AG/9911184 latest version
[32] ( with V. Ancona) Unstable hyperplanes for Steiner bundles and multidimensional matrices, Advances in Geometry, 1 (2001), 165-192 math.AG/9910046
[31] ( with A. Alzati and E. Ballico) The theorem of Mather on generic projections for singular varieties, Geom. Dedicata 85, 113-117 (2001) math.AG/0006072
[30] ( with R. Paoletti) Syzygies of Veronese embeddings, math.AG/9811131, Compositio Math. 125, 31-37 (2001)
[29] Real and complex 'tHooft instanton bundles over P2n+1, Rend. Sem. Mat. e Fis. di Milano, 66(1996), 169-199
[28] ( with L. Fania) Boundedness for codimension two subvarieties in quadrics, Collectanea Mathematica 49, 2-3 (1998), 293-315 abstract and file
[27] Mathematical instanton bundles on projective spaces : an algorithmic approach ( with V.Ancona, G. Anzidei, P. Breglia, A. Pizzotti), Colloque "Opérateurs différentiels et Physique Mathématique" Textos Mat. Ser. B, 24, 2000 J. Vaillant, J. Carvalho e Silva (ed.) p. 143-159
[26] ( with V. Ancona) On the irreducible components of the moduli space of instanton bundles on P5 , Seminari di Geometria 1998-99, Bologna 2000, ed. S. Coen.
[25] ( with V. Ancona) On singularities of M P3 (c1,c2) , International J. of Math., 9, (1998), 407-419
[24] Notes Varietà proiettive di codimensione piccola, Quad. INDAM, Aracne, Roma 1995
[23] ( with G. Trautmann) The tangent space at a special symplectic instanton bundle, Manuscr. Math. 85 (1994), 97-107
[22] ( with V. Ancona) The Horrocks bundles of rank 3 on P5, Journal reine angew. Math. 460 (1995), 69-92, preliminary version, 3-bundles on P5 (appeared as Quaderni Dip. Mat. U. Dini, Firenze, 4 (1994), it contains a few details more and some tables in the appendix with computed dimension of moduli spaces).
[21] ( with V. Ancona) On moduli of instanton bundles on P2n+1, Pacific J. Math. 171 (1995), 343-351
[20] ( with R. Braun, M. Schneider, F.O. Schreyer), Classification of conic bundles in P5, Annali Sc. Norm. Sup. Pisa 23 (1996), 69-97
[19] ( with A. Alzati) A vanishing theorem for the ideal sheaf of codimension two subvarieties of Pn, Rend. Matem. Trieste 22 (1992), 136-139
[18] ( with M. Szurek, N. Manolache), On moduli of stable 2-bundles with small Chern classes on Q3, Annali di Matem. 167 (1994), 191-241
[17] On 3-folds in P5 which are scrolls, Annali Sc. Norm. Sup. Pisa 19, 451-471 (1992)
[16] ( with R. Braun, M. Schneider, F.O. Schreyer), Boundedness for non-general type 3-folds in P5 , in "Complex Analysis and Geometry", ed. V.Ancona, A.Silva, 311-338, Plenum Press, New York 1993
[15] ( with V. Ancona) Canonical resolutions of sheaves on Schubert and Brieskorn varieties, Proc. Int. Workshop "Complex Analysis" dedicated to H. Grauert, Wuppertal 1990, 14-19
[14] ( with V. Ancona), On the stability of special instanton bundles on P2n+1, Trans. AMS 341 (1994), 677-693
[13] (english)
(italiano)(with F. Ghione) A tribute to
Corrado Segre, in Complex Projective Geometry, London Math. Soc.
Lect. Notes Series 179, 175-188, Cambridge 1992
This historical paper contains Segre's approach to the result that every vector bundle on the projective line
splits as a sum of line bundles, which is commonly quoted as Grothendieck Theorem, proved by Segre in 1884.
[12] ( with A. Alzati), On the 3 and 4-normality of codimension two subvarieties of Pn, Archiv der Math. 55 (1990), 610-618
[11] ( with V. Ancona), An introduction to the derived categories and the theorem of Beilinson, Atti Accad. Pelor. cl. I, 67 (1989), 99-110
[10] ( with V. Ancona), Some applications of Beilinson theorem to projective spaces and quadrics, Forum Math. 3 (1991), 157-176
[9] ( with A. Alzati), The theorem of Mather on generic projections in the setting of algebraic geometry , Manuscr. Math. 74 (1992), 391-412
[8] On Cayley bundles on the five-dimensional quadric, Boll. UMI 4-A (1990), 87-100
[7] ( with A. Alzati), A linear bound on the t-normality of codimension two subvarieties of Pn, Journal reine angew. Math. 409 (1990), 35-40
[6] Some extensions of Horrocks criterion to vector bundles on grassmannians and quadrics, Annali di Matem. 155 (1989), 317-341
[5] Spinor bundles on quadrics, Trans. AMS 307 (1988), 301-316
[4] ( with A. Alzati), Small codimension subvarieties of Pn, Boll. UMI 2-A (1988), 81-89
[3] Critères de scindage pour les fibrès vectoriels sur les grassmanniens et les quadriques, C.R. Acad. Sci. 305 (1987), 257-260
[2] A class of n-bundles on Gr(k,n), Journal reine angew. Math. 379 (1987), 182-208
[1] Alcune proprietà dei 2-fibrati su P2, Boll. UMI Alg. e Geom. 3-D (1984), 5-18
[1] Introduzione alle varietà algebriche: un punto di vista costruttivo
[2] Rational Homogeneous
Varieties, SMI course in Algebraic Geometry, Cortona (Italy) 1995. .ps,
These notes contains a proof of the Borel-Weil-Bott Theorem (following Demazure) and of the Ramanan Theorem on the stability of
irreducible homogeneous bundles
[3] Appunti di un viaggio da Euclide a Einstein, presentata a "L'arrocco matematico", L'Aquila 1996
[4] Riflessioni sulla geometria e sul suo insegnamento oggi, Atti "Matematica, formazione scientifica e nuove tecnologie", Montevarchi 2001, ed. M. Cerasoli
[5] La formazione dell'insegnante di matematica nell'esperienza della SSIS Toscana: un primo bilancio, DidatticaMente 1, 183-200 (2003)
[6] Introduzione all'iperdeterminante, La Matematica nella Società e nella Cultura-Rivista dell'Unione Matematica Italiana Serie I, Vol.V, Agosto 2012, p.169-195
[7] Ha trent'anni ma non li dimostra, in La gara matematica di Firenze, a cura di P. Gronchi, A. Martinelli, F. Mugelli, G. Papi, Esculapio, Bologna, 2012.
[8] Matematica a distanza, andrà tutto bene ?, intervento su MaddMaths, 2020, dedicato a Carlo Casolo.
[9] The mathematical model of a quantum circuit and the Grover search algorithm, 2023.