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with an appendix by NICOLAE MANOLACHE 

Abstract .  - Let M(Cl, c 2 ) be the moduli space of stable rank-2 vector bundles with Chern classes 
cl , c~. over the smooth quadric Qa c ~4. The main result of the paper consists in a description 
of M(O, 2) by studying the interplay between the quadrics determined by the jumping lines 
and the null-correlation over the spinor variety FS=Gr(F1, Qs). We describe also 
M(-  1, 2), M( - 1, 3) and M(O, 4). The irreducibility of M(O, 4) relies on the classification of 
cuwes Y c Q3 of degree 6 with wr = Oy(-1), achieved by Manolache in the appendix. 

In the current paper, the moduli spaces of stable holomorphic vector bundles, 
with small Chern numbers on a smooth quadric Qa r F4 are studied. A research on 
such bundles was started in [SSW]. Most of the results has a geometric interpretation 
and as algebraic manifolds the moduli spaces are as follows 

M(0, 2) = F g \ V 4 ,  where V4 is a normal degree-4 hypersurface--moreover, 
there is a locally trivial fibration of M(0, 2) over F 4 \ Q3 with fibre ~ \  Q4; 

- -  M ( -  1,2) is a locally trivial fibration over Q 4 \ Q 3  with fibres ] ~ \ Q 1 ;  

M ( - 1 ,  3) is irreducible, unirationaI and reduced of dimension 12; 

- -  M(0, 4) is irreducible, unirational and reduced of dimension 21. 

For the sake of some completeness, let us point out that M(0, 2k - 1) is empty 
(Schwarzenberger relations) while M ( - 1 ,  1 )=  {S} where S is the spinor bundles, 
see e.g. [AS1]. 

As for bundles over F 3 the (,instanton, condition, i.e., vanishing of H I ( E ( - 2 ) )  
comes out in a natural way when we strive for constructing the moduli of stable bun- 
dles with the given rank and Chern classes. 

(*) Entrata in Redazione fl 3 agosto 1992, versione riveduta il 19 novembre 1992. 
Indirizzo degli AA.: G. OTTAVI~I: Dipartimento di Matematica Applicata, via S. Marta 3, 

50139 Firenze, Italy; M. SZUREK" Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 
02097 Wars~awa, Poland; N. MANOLACHE: Institute of Mathematics of Romanian Academy, 
P.O.Box 1-764, 70700 Bucharest, Romania. 
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We study the action of the automorphism group A u t ( Q )  on M(0, 2) and 
M( - 1, 2). It turns out (Theorem (2.22)) that there is a l-parameter family of non iso- 
morphic bundles in M(0, 2) up to automorphisms of �9 while A u t ( Q )  acts transi- 
tively on M ( - 1 ,  2), see (4.12). 

We study also the configuration of jumping lines of the bundles of M(0, 2) 
and M ( - i ,  2). In particular, every bundle of M(0, 2) is uniquely determined by its 
jumping lines, see (2.13), while in the fibration 7~: M ( - 1 ,  2)-~ ( ~ 4 \ Q  we have that 
the jumping lines of bundles E and E'  are the same if and only if =(E) = r~(E'), see 
(4.10). 

The paper is organized as follows. In the Sections 0 and 1 we collect all necessary 
facts of homological character (dimensions of cohomology groups, monads). 

Section 2 is the core of the paper. Here we study the moduli space M(0, 2) in four 
(not entirely different) ways, namely: 

i) by a ,,geometric- method we show that M(0, 2) is a fibre bundle over ]?4 \ Q 8  
with fibres P 5 \ Q4 and then we give three descriptions of the fibration (Propositions 
(2.1), (2.11) and (2.17)). The fibration is not trivial (6.17); 

2) by examining the appropriate monad (1.2) we show that M(0, 2) is p 9 \ V 4  
where P 9 is viewed at as the space of all 5 • 5 skew-symmetric matrices and V4 is a 
quartic hypersurface with the equation given by the quadratic form of Q evaluated 
on the pfaffians as in (2.14); 

3) by looking at ]?9 as the space of all quadrics in P 3, we explain which quadrics 
belong to V4; this depends on the type of the quadric as well as on its position with re- 
spect to the configuration of lines which are isotropic with respect to the null-correla- 
tion determined on p3 by fLxing an isomorphism between the manifold of lines on Q3 
and Pa (Proposition (2.15)); 

4) replacing the quadrics by symmetric matrices 4 • 4 allows us to utilize an- 
other approach to study the bundles from M(0, 2). Namely, we define an invariant 
~(A) of the ,,skew-characteristic polynomial, of the symmetric matrix A, such that 

the pair 

{rk (A), get (A)/(~ e (A) - 4 det (A))} 

determines the orbit of the bundle from M(0, 2) under the action of Aut (Q3). Now the 
equation of V4 is a discriminant as in (2.21). 

In Sections 3, 4 and 5 we study respectively the moduli spaces M(0, 4), M ( -  1, 2) 
and M ( -  1, 8). 

The methods we start with to have the first description of M(0, 2) and other mod- 
uli consist in studying curves where sections of (an appropriate twist) of the bundles 
vanish and then in reconstructing the bundles from such curves. This is a very natu- 
ral method and was applied e.g. in [H] and [HAS] to study the moduli of rank-2 bun- 
dles on p3. 
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After the preprint of the current paper was distributed, IGNACIO SOLS pointed out 
that he had worked on extending the results from [HAS] to the bundles on quadrics al- 
ready in 1980, but the results were never published. The authors are indebted to Ia- 
NACIO SOLS for this remark and appreciate his work. 

The detailed study of the space M(0, 2) requires some special approach and new 
techniques. For M ( - 1 ,  3) we use also Kapranov's spectral sequence, which is the 
quadric analogue of the Beilinson sequence on projective spaces. It should pointed 
out, however, that the results from the Klein quadric Q4 do not carry over onto Q~ au- 
tomatically here. 

The proof of the irreducibility of M(0, 4) relies heavily on the classification of de- 
gree 6 curves Y with Wy = O(-1) .  This is achieved by MANOLACHE in the long ap- 
pendix, with a detailed study of all possible multiple structures arising in this prob- 
Iem. In particular MANOLACHE shows that every family of bundles coming from such 
curves has dimension <~ 20. 

Another tool we use is the classification of the bundles with no intermediate coho- 
mology on Q~, se e.g. [AS2]. 

Finally, Section 6 is devoted to a study of topology of M(0, 2) and M ( -  1, 2). 

Acknowledgement. The work on this paper was begun when the second named 
author was a guest of the University of Firenze and the University of Roma II in 
June and July 1991, and continued when he was partially supported by a Polish grant 
2/1093/91/01. The first author was supported by funds of MURST. The authors 
thank warmly NICOLAE MANOLACHE per his permission to publish his results in the ap- 
pendix and for the hard work done. 

O. - P r e l i m i n a r i e s .  

(0.1) Basic facts from the geometry of (~. 

The cohomology ring H* (C)s, Z) is generated by the class of a hyperplane section 
H e H2(Q3, Z), a line L e H 4 (Q~, Z) and a point P �9 H 6 ( Q ,  Z) with the following 
relations 

H 2 = 2L, H ' L  = P ,  H 3 = 2P.  

(0.2) Formulas for the Chern classes and the Euler-Poincarg characteristic of bun- 
dles on Qs. 

We identify Chern classes with integers. 
The following formulas can be checked in a standard way 
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For  a coherent sheaf F of rank r on Q3: 

cl (F(k)) = cl + kr; 

c2(F(k))=c2+ 2 k ( r -  1)c1+ 2k2(2) ; 

z(F)  = (2c~ - 3c~c2 + 3cs)/6 + 3(c~ - ee)/2 + 13cl/6 + rk(F), 

hence if F is a bundle with c~ (F) = 0,  then c2 is even. 
We may easily calculate that  for rank-2 bundles on Qs with c~ = 0 there is 

z(E(t)) = 2t3/3 + 2t 2 + (-c2 + 13/8)t  + (2 - 3c2/2) = 

In particular 

~(E) = 2 - 3c2/2,  

z(E( - 1)) = - c2/2,  

while if c~ = - 1, there is 

+ 3 ) - 2 ( t + 2 ) - c 2 ( t + l )  
= 4 (  t 3 2 1 - c 2 / 2 .  

z ( E ( 1 ) )  = 10 - 5 c ~ / 2 ,  

and also x(End (E)) = 4 - 6c2, 

z(E(t)) = 2t3/8 + 2t 2 + ( - c 2  + 7 /3) t  + (1 - c2) = 

4( +2 (t+l) 1 
hence 

z(E) = 1 - c2, z(E(1)) = 6 - 2c2, 

z(E( - 1)) = 0 for every c2 ; also z(End (E)) = 7 - 6c2. 

(0.3) Lines on Qs. 

The n-dimensional quadrics Q~ in F~+l have many lines. The variety which 
parametrizes all lines on a given X is called the Fano variety of X. I t  is well known 
that  the family of lines on Q~ is isomorphic to Fs. One of the best ways to see this is 
the following: consider a linear embedding Q s c Q 4  = Gr(1,  3). Every line l is con- 
tained is exactly one ~-plane and in exactly one E-plane of Gr (1, 3) and each of the two 
families parametrizing linear P2's in Q4 is isomorphic to F< 

Moreover, {F 1 IF 1 r Q3 } = F8 is endowed with a null-correlation N: F 8 --* F 3. 
given by ~"I--->{~:~ll}~IA~'I;~ }. The natural embedding { F ~ I P l c Q 3 } - o  
--. Gr(1,  4"Yc F 9 is the 2-Veronese embedding and the bundle JV corresponding to the 
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null-correlation N is the pullback of the universal 2-bundle on the Grassmannian, see 
e.g. [Ta], Section 6. 

A ruling of a smooth quadric in P 3 describes a conic in Gr (P  1, P 3) - @4 and the 
isotropic lines of the ruling are given by the intersection points of the conic with a hy- 
perplane in P ~. There are three possibilities in a ruling: 

i) two isotropic lines, 

ii) one isotropic line (tangency), 

iii) all lines are isotropic. 

Two rulings of the same smooth quadric correspond to two conics such that  the 
planes that  they span are polar. The conic corresponding to the ruling of a quadric 
cone lies in a plane contained in Q4. An isotropic line in P 3 --- Gr (P  1, O3 ) corresponds 
to the ruling of a cone C r C)3. A pair of antipolar lines in P ~ correspond to the two rul- 
ings of a smooth quadric Q2 r (~3. Such facts about lines on Q have been known for a 
hundred years. 

(0.4) The  s p e c t r u m  o f  a s tab le  2 - b u n d l e  on  (~3. 

In [ES], the notion of a spectrum of a 2-bundle on Q is introduced. The spectrum 
of a stable, rank-2 vector bundle on Q with Cl = 0 is a sequence of integers a l ,  . . . ,  as, 
with s = ce such that  for the bundle PC = cO(a) @ ... @ cO(as) there holds 

h l ( E ( j ) )  = h ~  + 1)) for j ~< - 1. 

The spectrum has the following properties: 

#1)  if k > 0 is in the spectrum, so are 0, 1, . . .k - 1; 

4#2) ff k < 0 is in the spectrum, so are k + 1, . . . ,  - 1 ;  

@3) the sequence a l ,  . . . ,  a s is symmetric with respect to - 1/2; 

#4)  E a i  = - c~/2 .  

Similarly, if cl (E) = - 1, then the spectrum is symmetric with respect to - 1 and 
ai = - c2 + 1. I t  consists of c2 - 1 elements. EIN and SOLS prove in [ES] that  if E is 

stable 2-bundle on Q3, we have 

h ~ ( E ( t ) )  = 0 for t <. - 1 - c 2 / 4  i f  Cl = 0 

and 

h l ( E ( t ) )  = 0 for t ~ - c 2 / 4  i f  cl = - 1 .  

Later  on we will need a lemma on the (non)existence of some spectrum, giving a 
slightly sharper estimate than that  in [ES]. 

(0.5) LEMMA. - The spectrum of a stable, rank-2 bundle on Qs with cl = 0, ce > 2 
does not contain - 1  + c2/2 (and hence starts from d I> 1 -  c~/2) .  
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PROOF. - Assume the contrary. By the property @3) above, the appearance of 
- 1  + c2/2 in the spectrum is equivalent to that  of -c2/2. From properties @ 1), 
~r ~4)  we see easily that  the smallest number - c 2 / 2  does not occur twice, 
i.e., the spectrum begins with { -  c~/2, 1 -  c2/2}. Since c2 I> 4, the dimensions of 
H i ( E ( -  c2/2)) and H 1 ( E ( 1 -  c2/2)) can be calculated from the spectrum and the 
result is h 1 ( E ( -  c2/2)) = 1, h i (E(1 - c2/2)) = 3. By the bilinear lemma [Hal ] ;  Lem- 
ma 5.1, applied to 

H ~ (�9 • H 1 (E( - ce/2)) --, H 1 (E( 1 - c2/2)) 

we see that  x: HI(E( -c2 /2 ) ) - - )HI (E(1 -  c2/2)) has a non-trivial kernel for some 
x eH~ Let  C)2 be the corresponding hyperplane section. From the se- 
quence 

0 --)E(-c2/2) --)E( 1 - ez/2) -~E(1  - ce/2)]Q --) o 

we then obtain h ~ (E(1 - c~/2) ! (~.) >~ 1 and hence for every (not necessarily smooth) 
conic C c Q2 we have also the exact sequence 

0 - ~  E ( 1  - c 2 / 2 ) ]  Q - ,  E ( 2  - c e / 2 )  I Q2 ~ E ( 2  - c2 /2)1  C --) 0 .  

The corresponding cohomology sequence is 

0 -* S ~ (E( 1 - c2/2)I C)2) --) H ~ (E(2 - c2/2)1 Q2 ) --~ H ~ (E(2 - c2/2) I C) 

with h~ 1. Assume h~ = 1. Then the unique 
non-zero section s e H ~ (E(2 - c2/2)1Q2) comes from H ~ (E(1 - c2/2) I Q2), i.e., van- 
ishes on a conic. We may, however, pick a conic different from that  one. Hence we 
have shown that  d i m H ~  ce/2)lQ2)/> 2. The exact sequence 

0 - ~ E ( 1  - c2/2)--->E(2 - c2/2)1 -~E(2  - c2 /2) tQ2-o  0 

then yields a contradiction. 

(0.6) COROLLARY.- For  a bundle as in (0.5), h l (E( j ) )=  0 for j <~ -c2/2.  

It  follows directly from the properties of the spectrum. 

(0.7) Kapranov spectral sequences: 

These sequences are the analogoues of Beillinson's ones for bundles over projec- 
t ire spaces. For  the convenience of the reader we recall here the formulas from [AO1] 
and [Ka]. First ,  sheaves ~i on a smooth quadric Qn are introduced: 6o = (9, ql = 
= t)1(1)l Q .  and for i ~> 2 6~ is the only non-splitting element in the extension 

where t) ~ (i) = is the sheaf of twisted holomorphic/-forms on P~. The main properties 
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of #~ are 

j--~o(~" ) ~ / n  ) rk~i = dimHO(~bi(1) ) = + 1 
' j=O~ j ' 

~ = #n+l = S *2(n§ In particular, on Q8 we have 

~b2 given by 

~1 = ~ I ( 1 ) [ Q ,  

0 ---> t~2 (2) I Q3 ---> ~ --> r ---) 0, 

c~(~) = - i ~ (  n -  1) 
y=o\ j ' 

and ~b3 = S 4. 

The sheaves ~b~ are, together with the spinor bundles, like building blocks, out of 
which all vector bundles on quadrics can be constructed. In terms of the spectral se- 
quences this can be stated as the following: 

THEOREM ([Ka], [AO1]). - Let #be  a coherent sheaf on Q~. The resolution of the di- 
agonal in Qn • Qn gives the spectral sequences with E~ q and 'E~q: 

E pq = H q ( ( ~ n ,  ~(p)) | ~ _p if p > - n 

and 

Hq(Qn, g : | 1 7 4  if n is odd, 

E ~  = (Hq(Q, 5~| S '* ( - n ) )  | S ' )  @ (Hq(Q, 5~@ S"* ( - n ) )  | S") otherwise 

'EPq = H q  (Qn,  ~ |  ~ -p ) | O ( - p )  if p > - n 

and 

{ Hq(Q~, t Y | 1 7 4  if n is odd,  

'E~q = (H a (Q~, 5~| S ) @ S * ( - n)) �9 (H q (Q~, 5~| S") | S"* ( - n)) otherwise. 

For the two sequences there is E~ q = 0 for p + q ~ 0 and @Es p' p is the associated 
graded sheaf of a filtration of ~. 

It is worthwhile to ,,unzip- the above theorem. We will do it over Qs for the first 
spectral sequence. It  then says that any coherent sheaf # o n  Q can be realized as the 
cohomology of a complex involving the (normalized) spinor bundle S. Precisely, we 
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have a complex 

d-3 d-2 d-i do dl de 
O _~ L -~ _~ L -2__> L - I  _.> L -O__~ L1._~ L 2 _.> L S--~ O 

with L k = (~ Xj, where Xj i = ~b~ hi(~(-j)) for j = 0,1,2 and X~ = S eai(~| such 
j+k=i  

that 

kerd  i = { 5  ~ for i = 0 ,  

Imdi_ l  0 for i ~ 0 .  

The bundles L k are constructed by summing up the -NW-SE, diagonals in the 
matrix 

S ~ ~1 0 

S ~2 ~, 0 

S ~2 ~1 0 

S ~2 ~1 0 

where each bundle is taken the number of times corresponding to the same entry in 
the following ,,Kapranov diagram, 

h a (5~| S ( - 2 ) )  

h 2 (5"| S ( - 2 ) )  

h 1 (~ |  S ( - 2 ) )  

h ~ (0'| S( - 2)) 

h3 (5~(-2)) ha (5~(-1)) h3(59 

h2 (~ ( -2 ) )  h2 (5~(-1)) h 2 ( ~  

h 1 ( 5 ~ ( - 2 ) )  hi (5~(-1)) hl(~)  

h~ h~ 1)) h~ 

(0.8) Bundles  wi th  no intermediate  cohomology. 

(0 .8)  T HE OR E M .  - Let E be a bundle on Q, ,  n >I 3. Let E be a bundle with 
H i ( E ( j ) )  = 0 for i = 1, .... n - 1 and al l j  e Z. Then E is a direct sum of line bundles 
and twisted spinor bundles. 

This was proved first in [Kn], see also [So]. In [AO1] it is shown that such a char- 
acterization can be obtained from Kapranov's sequence. The paper [AS2] contains a 
more elementary proof. 

(0.9) The Caste lnuovo-Mumford criterion. 

The well-known criterion for a sheaf to be globally generated ([Mu], Th. 2, p. 41) 
can be translated word for word for the sheaves on quadrics [HeS]. 

Let 5~be a coherent sheaf on Q8 such that H i (5~( - i)) = 0 for i > 0. Then 5~is glob- 
ally generated and H i (5~(- i + j )) = 0 for i > 0, j >~ 0. 

(0.10) Finally, to construct a monad for stable 2-bundles on Q8 we use Horrocks' 
killing technique [Hor]. 
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1. - Bundles with H I ( E ( - 2 ) ) =  0 on Q3- 

Such bundles are similar to instanton bundles on p3. Let us notice that a bundle on 
Q with H I ( E ( - 2 ) ) =  0 is either stable or trivial. The proof can be obtained easily 
from the proof of the analogous property on p3, see [OSS], Sect. 3.4. Furthermore, 
we have 

(1.i) PROPOSITION. - For a rank-2 bundle E with c 1 (E) = 0 on Q3 the following three 
conditions are equivalent 

i) E is stable with a minimal spectrum, i.e. 

{ - 1 ,  - 1  . . . .  , - 1 ,  0, 0 , . . . ,  0 } ,  

ii) E is stable with H I ( E ( - 2 ) ) =  0, 

iii) E is the cohomology of a monad 

(1.2) (9( _ 1 )c2 /2  ~ (0c2 + 2  ~ 0(1)c~/2. 

We prove Proposition (1.1) in several steps. The equivalence i)r ii) is easy: since 
the spectrum of such a bundle is symmetric with respect to - 1/2, any appearance of 
a number c ~< 2 is equivalent to that of a number d I> 1. Any spectrum different from 
the minimal one gives then 

H I ( E ( - 2 ) )  = H~ 1 ) ~  ...) ;~ 0. 

To prove ii)vii i) ,  i.e., to construct the monad we need to know some cohomology. 
First of all, we have immediately 

o o o 0 '1' i 
0 0 ] h~(E(j)) 

0 0 
0 0 0 0 

j = - I  j=O j 

The remaining values of h i (E(j)) for - 3  ~< j ~< 0 can be calculated from the Euler- 
Poincar6 characteristic. We get 

0 0 0 ~i 

b 0 0 I hi(E(J)) 
0 a b 

0 0 0 

2 = - 1  j =0  j 

where a = 3c2/2 - 2, b = c2/2. We then apply Horrocks' killing-H 1 technique. Name- 
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ly, for a suitably chosen extension 

(1.3) 0 --~ E --~ B --) (2~ @ (2(1) b --. 0 

the induced maps 

H~ ~ @ �9 b) --->HI(E), 

H~ ((2( -1)a ~ (2b ) ---) HI (E( -1))  , 

are onto and therefore  B(j)  has no first cohomology for j = - 1, 0. 

CLAIM. - The bundle B has rank 2c~, its first Chern class is cl (B) = b = c2/2 and its 
cohomology is as follows !l' a 0 0 z 

a b 0 h~(B(j)) 
0 0 0 
0 0 0 5b | > 

j = - I  j=O[ j 

P R O O F .  - H 1 (B) being killed, h ~ (B) is equal to h ~ (E) + h ~ ((2a @ (2(1) b ) - h I (E) = 

= 5b. Then h 2 ( B ( - 2 ) )  = h 2 ( E ( - 2 ) )  = b, h2(B(-3) )  = h2(E( -3) )  = a, hS(B(-3) )  = 
= h S ( ( 2 ( - 3 F ~ ) ( 2 ( - 2 )  b) = a and H I ( B ( - 1 ) ) =  0, since it has been just  killed. 

All remaining zeros follow from (1.3) immediately. 
For  B* we have, in an obvious way 

5b 0 0 0 +i 

0 0 0 0 t h~(B*(J)) 
0 0 b a 
0 0 0 a 

>. 

j = - 1  j=O j 

We now kill H I ( B  * ) and H I ( B * ( - 1 ) )  is a similar way as above. For  a suitably 

chosen extension 

(1.4) 0 ---) B * --> F ---~ (2 a @ (2(1)b __~ 0 

we have Hi(F)  = H I ( F ( - 1 ) )  = 0. All other  groups Hi(F( j ) ) ,  i = 1, 2, 3, j = 0, - 1, 

- 2, - 3 vanish, too. Then, by the ,Castelnuovo-Mumford'  cri terion,  [HeS], see also 
(0.9) of the present  paper, applied to F and F* we conclude that  F is a bundle of rank 
4 c 2 -  2 with no intermediate cohomology and with 

h ~  = 4c 2 - 2 ,  

h ~ ( F ( - j  )) = 0 for j < 0,  

h s ( r ( - 1 ) )  = h S ( F ( - 2 ) )  = 0.  
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From the characterization of bundles with no intermediate cohomology on 
quadrics given in (0.8), we then obtain the crucial 

LEMMA. - F = (94c2 - 2. 

CLAIM. - B *  --~ (ga  ( ~  K with K being the kernel of a map v in 

(1.5) 0 -~ K --) (95b - a __~ O(1) b -~ 0.  

PROOF. - Since F is trivial, (1.4) reduces to 

(1.6) 0 --~ B * --> (95~2/2 __) (9( 1)b __~ 0 .  

We have also, by  (1.3), an embedding 0 - * � 9 1 6 9  *. Hence a copy of r 
must factor out of B*. What  remains, is the kernel of an epimorphism v, as s t a t ed .  
Then the sequence (1.3) becomes 

(1.7) O --> E --> K * --> (9 (1) b --> O 

and the monad is as we have claimed. 

Finally, we prove that  condition iii) of Proposition (1.1) implies ii). Le t  K be the 
kernel of the la t ter  morphism in the monad (1.2), i.e., the sequence 

(1 .9)  0 --+ K --+ r c~ + 2 __+ ( 9 ( 1 )  c~/2 --+ 0 

is exact. 

(1.10) CLAIM. - a) K is stable and uniquely determined by E;  

b) when H ~  0, then conversely, E is also uniquely determined by K. 

PROOF OF CLAIM (based on the idea from [A02], 2.8). - Le t  us recall the criterion of 
Hoppe [Ho], (2.6): if for any integer i = 1, . . . ,  r a n k ( E )  - 1 holds 

H ~  = O, 

then the bundle E is stable. 

In our situation we have c l ( K * )  = - c 2 / 2 ,  rank (K) = (c2/2) + 2, hence I~(K*) = 

= c2/(c2 + 4) and K * ~  = K * ( -  1). F rom the sequence dual to (1.9) we calculate that  
H ~  = H ~  = 0. For  p >I 1 there  is 

2c2 - 4p 
[z((AP+2K* ) ( - p ) )  = (p + 2)tz(K*) - p - 

c ~ + 4  

hence ff p + 2 < r a n k ( K )  - 1 = (c2/2) + 1, then ~ ( ( A P + 2 K * ) ( - p ) )  > 0 and to check 
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the stability of K* it is sufficient to know that  

H ~  - 1)) = 0 for p = 0, c2 . . . , ~  +1. 

The case p = 0 is easy. For  p t> 1, taking the second exterior power of (1.7) we get, 
after a twist 

(AP+2 E)(  - p  - 1) = 0 --~ (AP+2 K * )( - p  - 1) - -~  (Ap+I K * )( _p)C~/2 ___) ... 

hence the stability of K follows by induction on p. In particular, 

H~ I+~J~ K * ) ( - c 2 / 2 ) )  = H~ (K)  = O . 

We now prove the second part  of the first s tatement of (1.10). Assume that  there 
exist two exact sequences 

0 ~ 0(-1) b > K P - ~ E - - - - > - 0  
\ 

\\P\ Iid 
a, 

0 ~ 0(-1) b > K ' - - - - > - E  > 0 

From (1.5) we see that  H 1 ( K * ( -  1)) = 0. The morphism p can be then lifted to a 
non-zero morphism q: K-- ,  K'. Because K and K'  are stable bundles of the same 
ranks and Chern classes, q must be an isomorphism. 

To prove the second assertion of (1.10), let us notice ftrst that  if H~ = 0, 
then from (1.7), twisted and dualized, it follows that  H ~ (K(1)) = C b, hence there is 
only one immersion of (9 ~ into K(1). 

We now may easily conclude the proof of Proposition (1.2). From the dual to (1.7) 
we get H ~ (E) = 0 (since E is autodual) and from (1.7) twisted by - 2 we calculated 
that  H I ( E ( - 2 ) )  = 0. 

(1.11) PROPOSITION. - If  E is as above, i.e., stable with c l ( E ) = 0  and 
H I ( E ( - 2 ) )  = 0 on @~, then E(c2/2)  is globally generated. 

PROOF. - With the notation as above, E(c2/2)  is an image of K ( c 2 / 2 ) =  
= K |  -1 = A b * I ( K  *) and K* is globally generated as an image of (9b-% 

(1.12) COROLLARY. - Let  E be a stable,  rank-2 bundle with H i ( E ( 1 ) )  = 
= H i ( E ( - 2 ) )  = 0. Then H2(End(E) )  = 0. 

PROOF. - F rom H i ( E ( 1 ) ) =  0, we calculate, tensoring (1.9) by E*, tha t  
H 2 ( E * |  =0 .  Then, tensoring (1.7) again by E =E* ,  we conclude that  
H 2 ( E  | E *) = O. 

(1.13) PROPOSITION. - The stable bundles K arising as kernels as in (1.9) make up a 
smooth and Zariski open subset U of dimension (5/4) c~ + c2 - 3 of the moduli space 
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of rank-(c2/2 + 2) bundles with Chern classes -c2 /2 ,  (c~/2), - ( c~ /4 )  on Q3. The set 
U is irreducible and unirational. 

PROOF. - We proved in (1.10) that K is stable. From the sequence (1.9), its twists 
and its tensor product with K we calculate, in a standard way that h 2 ( K |  K * ) =  
= h 3 (K | K* ) = 0. Thus the corresponding points of the moduli space are smooth. The 
stability of K implies h ~ (K | K*)  = 1 hence, by similar tricks we may easily calculate 
that 

h l ( K  Q K *) = 1 - z ( K  Q K* ) = 1 - (c2 + 2) 'z(K) + ( c 2 / 2 ) ' z ( K ( - 1 ) )  = 

5 c~ + c2 - 3.  = 1 - (c2 + 2)(c2 + 2) + (c2/2)[5(c2 + 2) - (c2/2)] = ~- 

In order to see that the property to be a kernel in an exact sequence (1.9) is open in 
the moduli space, we first calculate the cohomology of such a K 

~ c 0 0 
0 0 0 hi(K(j)) 

o o b a | 

0 0 0 0 
), 

j = - I  j =0  j 

with a = 3c2/2 - 2, b = c2/2, c = 5c2/2. The cohomology is natural, hence it remains 
the same on an open subset of the moduli space. On the other hand, having K with the 
cohomology as above, we may find a vector bundle 

(1 .14)  0 --> K --> F --) 0 a (~ 0(1) b --> 0 ,  

defined by generator of Extl((9~G O(1) b, K). For the bundle F we then have 

c 0 0 o ~i 

o o o o I hi(F(J)) 
0 0 0 0 
0 0 0 c 

>- 

j = - i  j=O j 

and h~ = c. By the characterization of bundles with no intermediate cohomology, 
see (0.8), F must be a trivial bundle, hence (1.14) reduces to (1.9), as we wanted. 
Now, an open subset of Horn (O c~ + 2, O(1) c~/2 ), namely the one corresponding to stable 
bundles, surjects on U, hence U is irreducible and unirational. This concludes the 
proof of (1.13). 

To study the moduli M(0, c2), we distinguish two types of bundles, these with 
H~ ~ 0 and those with H~ = 0. We are interested in the case c2 ~< 4, but 
some things can be stated in a general set-up, as well. 
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(1.15) PROPOSITION. - If E is a stable rank-2 bundle on Q with c~ ( E ) =  0 and 
H I ( E ( - 2 ) )  = 0, but H~ ~ 0, then E arises as an extension 

(1.16) 0 ~ r E(1) --~ Iz (2) ~ 0, 

where Z is a locally complete intersection curve with 

H ~  = 1 + c2 /2 .  

If Z is smooth, then it is the sum of 1 + c2/2 disjoint conics. 

PROOF. - It is similar to that in [SSW] for c2 = 4. Namely, let Z be the zero of a 
generic section of E(1). Z is neither a surface nor empty nor zero-dimensional, hence a 
curve. By the adjunction formula we obtain a z  = (9(-  1)IZ, hence no connected com- 
ponent of Z is a single line. From the exact sequences (1.16) and 

(1.17) 0 --~ Iz(2) --~ r (2) ~ (gz (2) -~ O 

we calculate (knowing the cohomology of E) that H ~ ( I z )  = 0 and dim H 1 ( I z )  = c2/2. 

Moreover, degZ = c2(E(1)) = c2 + 2. This concludes the proof. 

(1.18) COROLLARY. - If in the above proposition Z is smooth, then the moduli space 
M(0, c2) is smooth at the corresponding points. 

PROOF. - To prove the smoothness of the moduli at these points, let us notice that 
(1.16) tensored with �9 gives 

E(1)IZ = ?~z/~3 = Vz(1)@ Vz(1), 

where ~ z / Q  is the normal bundle. We know already by the properties of the spectrum 
that H 1 ( E ( -  2)) = 0. Then H e (E(1)) = H 1 ( E ( -  4)) = 0. The vanishing of H 2 (End E) 
now follows by tensoring (1.16) and (1,17) with E ( -  1). 

(1.19) PROPOSITION. - The family of bundles in M(0, c2 ) coming from disjoint conics 
is of dimension (7/2)c2 + 6 if c2 ~> 4 and of dimension 9 if c2 = 2. 

PROOF. - The dimension of the family is equal to 

dim Extl (Iz(2), O) + (1 + c2/2) 'dimG(2, 4) - dim H~ (E(1)) , 

the first dimension being 1 + c2/2 = dimH~ [0SS], ch. 1 w 5 and the last one be- 
ing generically 1 if c2 i> 4 and 5 if c2 = 2. 

By (0.2), the component of M(0, ce) containing bundles arising from disjoint con- 
ics is of dimension 6c2 - 3. Hence, as already noticed in [SSW], for c2 1> 4 the generic 
bundle does not come from disjoint conics. We may notice also (compare with Prop. 
1.13) that (5/4)c~ + c2 - 3 > 6c2 - 3 for c2 >I 6, but these two expressions are equal 
for c2 = 4. This means that in general there exist some K's which do not come from 
any E and that this does not happen for c2 = 4. 
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2. - The  m o d u l i  space  M(0,  2). 

It is natural to expect some analogy between M(0, 2) on (}a and Mp~ (0, 1). To some 
extent it is so. Let us recall that a stable, rank-2 bundle on Ps with Cl = 0, c2 = 1 is a 
null-correlation bundle and that the moduli space Mps(0, 1) is isomorphic to 
Ps\Q4 = F(AeV)\G(1, 3), where V is the linear 4-space with F (V)=  P~. We 
showed, (0.6), (1.11), that for this case bundles E(1) are spanned, that 
dim H~ (E(1)) = 5 and hence, by (1.16), any such bundle arises from two disjoint con- 
ics. By (1.19), the moduli is then 9-dimensional. It was shown in [SSW] that each bun- 
dle from MQ~ (0, 2) is a pull-back of a null-correlation bundle on F 3. To obtain a de- 
tailed description of the moduli M(0, 2), we present three different approaches. The 
first one is more geometric while in the second one we work on skew-symmetric ma- 
trices and in the third one on symmetric matrices. 

(2.1) THEOREM.- The moduli space MQs(0, 2) is a locally trivial algebraic fibration 
over P 4 \ (~8 with fibre p5 \ (~4. 

PROOF. - Let us consider the bundles K defined in the monad (1.2) as the kernels of 
the maps (74___~ 0(1). We saw in (1.10) that any such K is uniquely determined by E. 
We then obtain a holomorphic map v: M(0, 2)--->M' where M' is a component of 
M ( -  1, 2, 2) and will show that this gives a fibration as stated in (2.1); the stability of 
K was proved in (1.10). This is the main difference between the present case and the 
case of Mp~(0, 1), where the kernel K is t~8(1) whose moduli is a one-point 
space. 

From the monad (1.1) we calculate 

hl (K|  h2(K| K(1)=A2K *, h~ 

and hence the moduli of K (i.e. families of K's arising as kernels in 

0 -o K -~ (~4 ---~ �9 (1) ---~ 0) 

is the space of all quadruples of hyperplanes in F4: = F(H~ meeting outside 
the quadric @3, in other words, F 4 \  @3. Geometrically, the map ~ associates to each 
bundle E the point of intersection of planes which contain two skew conics--the zero 
locus of a section of E(1). In particular, this point is determined uniquely by E (com- 
pare (3.7) below). Projection from this point down onto a hyperplane transversal to 
Q3 shows that the fibre of u is the moduli space Mp~(0, 1), i.e. F 5 \ ~ 4  and also that 
the fibration is locally trivial. 

(2.2) PROPOSITION. - The moduli space MQs(0, 2) is fine. 

PROOF. - A universal family can be constructed by pulling back the natural uni- 
versal family {lI} on F t \ ( } 3  ={moduli space for cokernels of �9 O(1) 4 } which is 
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given by 

0 --, ~* (0 f a* 0(1)4--~ lI -o 0 

with a: ( F I \ Q )  x Q :  ~ Q and over the point (s, x) which corresponds to s: OQ~--* 
--. OQ~(1) a we have f (s ,  x ) =  s(x). 

We may, however, prove (2.2) directly from a criterion of Maruyama [Mar]: the 

moduli space of stable bundles with the Hilbert polynomial z(E(t)) = a~ i 
fine if GCD(ai) = 1. 

COROLLARY. - M(0, c2) is fine if c2 --- 2 (mod 4) and M( - 1 ,  c2) is fine if GCD(c2 - 
- 1 , 4 ) = 1 .  

PROOF. - It suffices to apply this criterion to the formulas given in (0.2). 

We show the second method to study the moduli space M(0, 2) on Q .  Of 
c o u r s e  

(2.3) The space of all non-zero 5 • 5 skew-symmetric matrices modulo propor- 
tionality is the projective space F 9. The projective coordinates c12, c18, ..., Ca~ in this 
F9 originate in the upper-right entries of such matrices. The subset of rank-4 matri- 
ces is isomorphic to F ~ \ G r a s s ( 1 ,  4). 

Let now 

C0 = [Cll, C22, C33, C44, C44, C5 ], 

where Ci~ are the pfaffians of the matrix [c~j], i.e. 

running over permutations of the set { I, 2, 3, 4, 5}, etc. Let the quadric Q be given 
in F 4 by xTQx = 0, where Q is a symmetric matrix of rank 5. Then we have 

(2.4) THEOREM. - The moduli space M(0, 2) is equal to F 9 \ V 4 ,  where V4 is a quartic 
hypersurface given by C T" Q" Co = 0. 

We prove (2.4) in several simple steps. 

(2.5) LEMMA. - The 4 • 4 determinants of a 5 • 5 skew-symmetric matrix belong to 
the ideal generated by the pfaffians C~i in the polynomial ring C[cij]. 

PROOF. - A straightforward check. 

(2.6) LEMMA. - A skew-symmetric 5 • 5 matrix C has rank 4 if and only if Co = 
= [Cll, C22, C~3, C44, C55 ] is not zero. If this is the case, then Co ~ is the only solution of 
C . x = O .  
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PROOF. - Follows from (2.5). This shows also that the space of all skew-symmetric 
5 • 5 matrices of the maximal rank4 is F S \ G r a s s ( 1 ,  4). 

(2.7) LEMMA. - L e t  A, B, A,/~ be 5 • 4 matrices of rank 4. Then AB T = zTl/~ T if and 
only if there exists an invertible D such that A = AD,  B = B (D -2  )~ 

PROOF. - Let A = AD,  B = BE.  Then ~ r  = A D E T B  T = AB r. Since A and B are 
of maximal ranks, we may cancel both sides of the latter equality by A and B T and the 
]emma follows. 

( 2 . 8 )  L E M M A .  - Let the maps g: O( - 1) --. 04 and f :  (04 --~ (0(1) in the monad (1.2) be 
given by f = ~, ai xi and g = ~, bi T xi, with ai and bi matrices of the size 1 • 4. If A = 
= [ao, al,  a2, as, a4 ], B = [bs, b~, b~, b3, b4 ]T are 5 • 4 matrices, then the conditions for 

A and B to make up a monad are 

a) AB t is a skew-symmetric matrix of the maximal rank 4. 

b) If A B t y  = 0 (i.e. if y is given by the pfaffians of AB t) then yQyt  ~ O. 

PROOF. - The conditions to have a monad are 

i) A, B have maximum rank. 

ii) The points as, bo such that A tao = 0, B tbo = 0  satisfy a~Qao ~ 0 

b~ Qbo ~ O. 

ffi) x t A B ~ x  = 0 if x satisfies x~Qx = O. 

By iii) we have A B  t + B A  t = )~Q for some 2 e C. It follows 

)~a~Qao = ~o.~,~t A Dt.tt~o + a tBAtao  = 0 + 0 = 0 

and then ~ = 0 and AB t is a skew-symmetric matrix of rank 4. In particular as = bo. 
This proves the theorem. 

(2.9) LEMMA. - Let f, g be as above andf ' ,  g' be another pair of maps like in Lemma 
(2.8), with the corresponding matrices A', B'. Then (f,g) give the same bundle as 
( f ' , g ' )  if and only if A '  =AD,  B '  = B ( D - 1 )  T with a non-singular D. 

PROOF. - Directly from (2.7). 

Hence, the map 

(2.10) M(0, 2) --) F g \ V 4  

which takes a bundle E onto its Kronecker module AB T (in the sense e.g. of [0SS]), is 
an embedding and in fact, an isomorphism. Indeed, let C E F s \ V4 be a 5 • 5 skew- 
symmetric matrix of rank 4, whose rows are for example rl,  r2, r~, r4, 21 rl + 2 2 r2 + 
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+ ~sr3 + ~4r4. Then C = AB ~ with o0 [] 
1 0 rl 

A =  0 1 , B r  = r2 
0 0 rs ' 

[21 ~2 ~ ~4J r4 

and A, B satisfy the monad condition. 

(2.11) REMARK. - The fibration u: F 9 ~ V 4 - ~  P 4 \ ( ~  with fibres F s \ Q 4  can be 
seen directly. Let Q be the identity matrix, i.e. Q = (~x~ = 0) in F 4. Then 

Pg \ V4 ~ M = [ e~ ] -~ x = [ Cl1~ C22 , C~3 , C44, C5~] e p 4 \ Q ,  

where Cii are the pfaffians. The equation of V4 is now ~ C~ = 0. 
We shall now discuss the jumping line variety of bundles from M(0, 2). 

(2.12) PROPOSITION. - Let (x, y> = l r (~3 be a line and E e M(0, 2) be a bundle de- 
fined by the monad corresponding to the matrices A, B. Then the Kronocker module 
AB T of E is nondegenerate on l, i.e., xTABTy ~ 0 ,  if and only if the restriction E l l  is 
trivial. 

PROOF. - Since E l l  is the cohomology of the monad 

�9169169 

we can translate the proof of Lemma (4.2.3) in [OSS] almost word for word. 

(2.13) COROLLARY. - The variety of jumping lines of an E e M(0, 2) is a quadric (}e 
in p3:= F a n o ( Q ) .  The bundle is determined uniquely by its variety of jumping 
lines. 

PROOF. - The condition for a line l = (x, y} to be a jumping one is x T A B T y  = 0, 

which is a linear equation in the Plficker coordinates p~j = Y~Yj in 

P g ~ G r a s s ( 1 , 4 ) ~ F 3 = t h e  variety of lines in Q ,  the embedding PacP9  being 
2-Veronese. 

(2.14) All quadratic surfaces in F 3 = F(W) form a F 9 and it is worth to remark 
that the proof of (2.13) gives an explicit correspondence between this •9 and that of 
(2.3). 

From the above discussion a clear geometric picture emerges. Any skew symmet- 
ric matrix A E Fg \V4  determines a ,partial, null-correlation on F4~ Q3, namely by 
x - o k e r ( x T A ) .  Such a null-correlation associates to a point a hyperplane passing 
through a point Co = [Cll, C~2, C33, C44, C55 ], where Cil are the pfaffians. The jumping 
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lines through a point x e (~8 are now the lines on the 2-quadric which is the intersec- 
tion of the null-hyperplane of x with our quadric Q .  It may happen that the intersec- 
tion is a cone, not a smooth Q .  These ,lucky- points have a whole F ~ of jumping lines 
passing through them, not only two. The following examples show that the configur- 
ation of jumping lines may be different for various bundles. 

EXAMPLE 1. - Let the quadric Q3 be 2Xo Xl + 2x2 x8 + x~ = 0 and the bundle E be 
the cohomology of the monad 

XI, X2, X3 Xl, --XO, ~3, --932 
O ( - 1 )  ~~ > 0 4 ~- O ( - 1 ) .  

Then the line <x, y} is a jumping one fff 

Xo y~ - x~ Y0 + x2 ys - xs Y2 = 0. 

Consider the lines 11 ~- {Xl ---- X8 = X4 }, /2 = {Xo = X2 = X4 }. Then 

l is a jumping line iff l meets ll or /2. 

Hence the family of jumping lines consists of two planes in F s, namely the union of 
the apolar planes to the points [/1 ], [/2] in F 3 = Fano ( Q ) .  Indeed, through any point 
x ~t ll U / 2  there pass two jumping lines: the one joining x = [x0, xl, x2, x3, x4] with 
p = [ -x~ ,  0, xl, 0, 0] on 11 and the other joining x with [0, -x2 ,  0, Xo, 0] e/2. Let us 
also notice that 11 U/2 is the degeneracy locus on Q of the matrix 

[x~ - xo  x3 -x2  0 ] . 
Xl Xo X3 -- X2 X4 

4 
EXAMPLE 2. - Let @3 be ~ x~ = 0 and the monad be given by 

i=O 

with [ f i , f l , J ~ , ~ ]  = E-x1 - ix~/2, xo - 3ix2/2, 3 ix l /2  - x3, ixo/2 + x2]. Then the 
degeneracy locus on (~  of the matrix 

Xo Xl $r X3 1 
- x l  - ix3/2 xo - 3ix~/2 3 i x l / 2 -  x~ ixo/2 + x2 

consists of two points p~ = [i, i, 1, - 1 ,  0], P2 = [i, - i ,  1, 1, 0] and <x,y} is a jumping 
line if and only if 

Xo( -Y l  - iy3/2) + xl(Yo - 3iy2/2) + x2(3iy~/2 - y~) + x3(iyo/2 + Y2) = O. 

Hence for every x e Qs, x ~ p~, p2 there pass two jumping lines and lines through one 
of the p~, P2 are jumping. The quadric which parametrizes the jumping lines in the F ~ 
of lines is a cone with vertex in [@1, P2 >]. 

We have MQ~ (0, 2) --= F 9 \V4 .  The following theorem describes V4 geometrically, 
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looking at ]79 as the variety of quadrics in ]?a (see (2.14)), equipped with the nullcorre- 
lation N. 

(2.15) THEOREM. - a) No double plane belongs to ]79\V4, that is the 2-Veronese 
embedding of ]?s lies in V4. 

b) A pair of intersecting planes belongs to ]79 \ V 4  if and only if the common line 
of the two planes is not isotropic. 

c) A quadric cone belongs to ]79\V4 if and only if in its ruling there are two dis- 
tinct isotropic lines. 

d) A smooth quadric belongs to F 9 \ V 4  if and only if it has four isotropic lines, 
(two in each ruling). 

PROOF. - Consider a smooth quadric in ]?3 = Gr (]71, Q3) with exactly four isotropic 
lines, two in each ruling. These lines meet in four points in a configuration (42). We 
have then four quadric cones in Q~ whose vertices are joined by a dual configuration 
(42). Let P i e  ]?3 (i = 1, .. . ,  4) be the four vertices of the cones and zi be the vectors of 
their homogeneous coordinates. Let C be the skew- symmetric matrix corresponding 
to the smooth quadric we consider, see (2.14). Let Q be the symmetric matrix defin- 
ing Q .  

We see that  Czi is proportional to Qz~, hence rk(C) = 4. Let Co e ]73 be the point 
with coordinates given by the five principal pfaffians of C. We get c~Cz~ = Ozi = O, 
hence c~ Qz~ = 0 Vi, that is Co is the pole of the hyperplane Z = (P1, P2, P3, P4 >. 
Z N Q~ is a smooth quadric because a cone cannot contain four lines in a configuration 
(42). Hence co ~ Q3, that is C ~ V4 by the definition of Vs. It  follows that no quadrie 
with four isotropic lines belong to V4. Now it is sufficient to check that the degree of 
the closure of the variety of quadrics without four isotropic lines is four. It  is easy and 
can be also seen from the tables I and II. 

Hence the ease d) of the theorem is proved. The eases a), b) and c) follow from the 
ease d) by a degeneration argument. 

(2.16) REMARK. - If p(l) is a point(line) in F 4, w e  denote by 7:p (=z) the polar hyper- 
plane (plane) with respect to @3. Referring to the above theorem the corresponding 
configurations of jumping lines in @3 are: 

b) There are two disjoint lines ll, 12 c @3 such that a line 1 c @3 is jumping, if 
and only i f l N l l ~ 0  or IV~le~0.  

In this case {x e @31 all lines through x are jumping} = 11 (3/2. 

c) There are a line l c @3 and a smooth conic C c =z meeting 1 in two disjoint 
points. A line l' is jumping if and only if there is a point p e C such that  l' belongs to 
the same ruling of 1 in the quadric =p N Q3. 

In this case C V) l = {P1,/ '2 } and 

{z e Q3 lall lines through x are jumping} = {P1, P2}. 
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d) There  are a line l not contained in Qa meet ing Qa in P1, Pz, a plane = ~ 1 
meet ing Qa in a smooth conic D and a smooth conic C tangent  to D in P1, P> F o r  

TABLE I. - Orbits of Sp(4)= {G[GJG t= J} on F 9, see (2.3) and (2.20). 

Orbit Projective Jordan Dimen- Degree Description 
form of AJ -1 sion of closure of closure A[ l ~ 

) , ;~0,1 _Vr~ 2 f o r 2 = - i  

1 
- 1  

for ), = - 1 it is r = 0, 
otherwise a hypersurface 

det (A) 

~2 (A) - 4 det (A) (4 - 1) 2 

[ :]11o 8 4  det A,:O 

C 

- 1  1 

- 1  

6 5 Gr(F1 ,  p4) ;  rk(A) -< 2; 
equations: AJ-1A = g.J 

D 1 
- i  

0 o] 
10 Sec (F~(2)); 

rk (A) < 2 

E 1 1 

1 

- 1  

v4 

F 0 1 
0 1 

0 

{~ = o} n {det(A) = 0} 

G 

I 
O 1 

0 

0 

10 Image of F ( T Q )  
through (9 e (1) 
{tangent lines to Qs } 
equations: AJ -1A = 0. 

H 0 1 
0 

0 ol 
3 . Fv(2), rk(A) = 1; 

spinor variety 
of lines in Q~ 
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TABLE II. - Orbits of  Spin (5) on ~9 = {quadrics in F 9 }, see (2.14), (2.20). 

Orbit Geometrical description Closure Singular locus 
in terms of quadric surfaces of closure 

Az smooth quadrics A~ U F tO G U H G for 2 ~ - 1 
with four isotropic lines ~ for ~ = - 1 

B cones with B U D to F U G U H D 
two isotropic lines 

C smooth quadrics with C to G U H 
all lines of a ruling isotropic 
two isotropic in the 
other ruling 

D two planes with D U G tO H H 
non-isotropic intersection 

E smooth quadrics with C tO E U F U G U H 
one line of a ruling isotropic 
two isotropic in the 
other ruling 

F cones with F U G U H 
one isotropic line 

G two planes with G U H H 
isotropic intersection 

H doubles planes H 

every p e C there are two rulings l~, l~ in the smooth quadric zrp N @a which form two 
distinguished families l 1, 12 parametrized by C. A line l' is jumping if and only ff there 
is a point p �9 C such that l' belongs to the ruling 11. The choice l~ corresponds to an- 
other smooth quadric whose lines are antipolar with respect  to the first ones. Hence 
we have an involution i on the open par t  of M(0, 2) given by rk  - 4 quadrics. In terms 
of symmetric matrices the involution i is given by A ~ J A - 1  jr ,  where J is the skew- 
symmetric matrix defining the nullcorrelation in F 3. The variety of fLxed points of i is 
C in the notation of the tables I and II, (its closure is Gr (F  1, F 4 )). One can check that 
every E is isomorphic to i (E)  up to automorphisms of Q~ (see (2.21)). 

Let  P0 be the pole of the line l with respect  to C. Let  1 be the polar line of 1 with re- 
spect to the smooth quadric =po ~ Qa (or equivalently the polar line of = with respect  
to Qs).  

We have I N 08 = {Pa, P4 } and in this ease {x �9 Qa I all lines through x are jump- 
ing} = {P1, P2, Pa, P4 }. The four points Pi are joined by four lines in rrpo ("1 Qa in a 
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configuration (42). We remark that the other ruling of the smooth quadric in Ps de- 
fines a conic C in the plane zr 1 ~ l. 

Making use Of the isomorphism stated in (2.10), we denote the fibrations (2.1) and 
(2.11) by the same symbol ~. We have then a third ,,very geometric, description of the 
fibration. 

(2.17) PROPOSITION. - If  p e P~ \ V t  corresponds to a rk 2 quadric (case b) then ~(p) 
is the pole of the hyperplane <ll,/e>. 

I f p  E P g \ V  t corresponds to a rk3 quadric (case c) then ~(p) is the pole of 1 with 
respect to C. 

I f p  e P g \ V  4 corresponds to a rk4 quadric (case d) then o(p) is the pole of l with 
respect to C (or equivalently the pole of Z with respect to C), or the pole of <l, l> with 
respect to Qs. 

PROOF. - In order to see in the case (d) that Po is polar to 1 = <P1, P2 > with respect 
to C consider that, as Po is polar to {P1, Pc, Ps, P4 }, all the lines PoP1, PoPe, PoPs, 
P0 P4 are tangent to Q .  Then the polar hyperplane of any point Q e Po P, must con- 
tain P1,/)3, P4. If Q e C then the quadric ~Q A ~3 must contain the lines P~ P8 and 
P1 P4, hence at least one of them should be jumping. But in the smooth quadric in p3 
of jumping lines two lines of the same family never intersect, hence the situation 
above can happen only for one Q, that is for Q = P1. This means that PoP1 is tangent 
to C. In the same way we can show that PoPe is tangent to C. 

Now a degeneration argument again proves the case (c). The case (b) is clear from 
the proof of (2.15). The fact that the cases (b) and (c) really occur is clear from the Ex- 
amples 1 and 2 above. 

(2.18) COROLLARY. - The subvariety of p9 \ V 4  given by rk-2 quadrics (it is D in the 
notation of the tables) cuts every fibre of the fibration ~: P g \ V  4 ~ P 4 \ Q  3 in a vari- 
ety isomorphic to S2pl \{d iagonal}  whose closure in P S \ ( ~  4 is the Veronese sur- 
face. The subvariety of rk <~ 3-quadrics (it is B is the notations of the tables) cuts 
every fiber of e in a subvariety whose closure is the secant variety of the Veronese 
surface. 

We may also explain what the unstable planes for E are. Here the description of 
M~3(0, 2) as a fibre space is more convenient. 

(2.19) PROPOSITION. - Let E ~ ~(E) = p e p4 \C)~ be the fibration as in (2.1) and H 
be a hyperplane in p4 such that @8 ;q H is smooth. Then E I @3 N H is stable (with re- 
spect to O(1)) iff p ~ H. 

PROOF. - Let p e H. The projection 7r: Q8---> p3 from p induces 

rr H : Q~ (3 H --) ~p3 A H = P~. 

There exists a null-correlation bundle E '  on p8 with z r * ( E ' ) = E ,  7rh(E ' IP  z) = 
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= E I Q  3 N H, [SSW]. Since h~ ' IF 2) = 1 (a property of the null-correlation bun- 
dles), we have h~ A H) = 1. Let p ~tH and s e H~ be a section with the 
zero set Y given by two disjoint conics C~ and C2. The planes the conics are contained 
in meet at p and Z = H N Y is a 4-point scheme in Qs N H. Tensoring (1.16) with 
(0Q~ N g w e  get 

0--> (?Q3n~-oE(i)l(~ 3 N H-->Iz(2)--)O. 

The lines H N C1 and H N C2 are skew, hence Z is not contained in a plane, that is 
h~ = 0, otherwise the plane of the two conics meet in H. It follows that 
h ~ (E I Q n H) = O, too. 

(2.20) Let J be the nondegenerate 4 x 4 skew-symmetric matrix which defines 
the nullcorrelation N on Fz. We have the action of S p ( 4 ) =  {GIGJG t = J }  over 
F(S2V) _-__ p9 given by A----)GAG ~ (A is a symmetric matrix). 

Now, looking at the 2:1 covering 

Sp (4) - Spin ( 5 ) ~  S0(5) ~ Aut ( Q )  

we see that the action in (2.20) induces the natural action of Aut ((~3) on the open sub- 
set F g \ V  4 --- M(0, 2). We are interested in the orbits of this action. The formula 
(GAGt) j  -1 = G (A j -1 )G  -1 shows that we reduce to look at the possible projective 
Jordan forms of A J-1. In the tables I, II we list the results obtained by WILLIAMSON 
([Wil], pag. 162) with a geometrical interpretation. For the computations of singular 
loci the program [BS] was useful. 

It is easy to check that the characteristic polynomial of A J-1 is an even polynomi- 
al, that is 

(2.21) det (AJ -1 - tI) = t 4 + ~(A)t  2 + det (A). 

This defines the quadratic form ~(A) whose zero locus is a smooth quadric hyper- 
surface in Fg. In particular ~(A) and det (A) are affine Sp (4)-invariant and the expres- 
sion ~2 (A)/det (A) is a projective Sp (4)-invariant. A look at the tables I and II proves 
the following 

(2.22) THEOREM. - (i) The equation of V4 in F 9 is o 2 (A) - 4. det (A) = 0, 

(ii) Sing V4 ~- Gr (F 1, F~ ), 

(iii) Let EA be the bundle corresponding to the symmetric matrix A e F g \ V 4 .  
There exists an automorphism g e Aut(Qs)  such that g*EA ~ EA, if and only if 

det (A)/(~ ~ (A) - 4 det (A)) = det (A')/(~z (A') - 4 det (A')) 

rk (A) = rk (A'). 

(2.23) REMARK. - The adjoint representation of Spin (5) (which is A2W where F 4 - -  

= F(W)) acts on F ~ = ]?(A 2 W). If B e F(A 2 W) is represented by a 5 • 5 skew-symmet- 
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Hc matrix and Q is the matrix defining (~8, then the polynomial 

det (BQ-1 _ tI) = - (t 5 + s ( B ) t  ~ + c (B) t )  

is a Spin (5)-invariant and the analogue of d e t ( A j - I  _ tI)  considered above. We could 
have worked directly on this polynomial and obtain the same results. In the corre- 
spondence described in (2.14) we have 

16 det (A) s 2 (B) - 4c(B) 

~2 (A) - 4 det (A) c(B) 

In particular, the equation of V4 is c(B) = O. Also, ~(A) = 0 and s(B) = 0 define the 
same quadric. Moreover, with the help of[BS] one can check that (with the notation 
of the table I), the equation of H in matrix form is BQ - 1B = 0 and the equation of G is 
(up to multiple structures) B Q - 1 B Q - 1 B  = O. 

3. - T h e  m o d u l i  s p a c e  M(0,  4). 

Let us now discuss the case c~ = 4. Some such bundles arise from three disjoint 
conics and make up a family of dimension 20, [SSW]. 

(3.1) PROPOSITION. - Let E be a bundle from M(0, 4) whose generic section vanishes 
on three disjoint conics. Then dim H ° (E(1)) = 2 or 1 depending whether E is or is not 
a pullback of a bundle E '  on F3 under a double covering Q - ~  F3. 

In order to prove proposition (3.1) we need the following lemma. 

(3.2) LEMMA. - Let P1, P2, Ps be three 2-planes in F 4, let P =P1 (1P2 AP~. 
Then 

H ° ( I p  e4(2)) = I O I f P 1 A P 2 A P s = 0 ,  
[ 1 if P 1 0 P 2  (~Ps is one point. 

PROOF. - Let us assume that the planes which contain the conics are disjoint. 
There is no smooth quadric Q3 c p 4  containing them. Let us then suppose that they 
are contained in a cone through a point q. Take a generic F 3 not containing q. A 
smooth quadric F s n  C then contains three disjoint lines. This is not possible. Of 
course no cone with vertex a line can contain a plane not containing the line, other- 
wise it contains all F 4. If the vertex line meets the three planes at three points, we 
obtain the cone containing three different F3's, hence a variety of degree at least 3, a 
contradiction again. 

If P1 •/)2 A P8 = {P} then we may pick three lines on our planes that lie in one F s 
and find a smooth 2-quadric K containing them. It  is easy to see that the cone over K 
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with vertex p is the only quadric in p4 which contains P~ A P2 A Ps. This proves the 
lemma. 

(3.3) COROLLARY. - Three conics in a general position in p4 do not lie on a 
3-quadric. 

PROOF OF PROPOSITION (3.1). - Let us assume that dim H~ (E(1)) = 1. Then 
dimH~(E(1)) = 1, too. Let Z be the union of the three conics. From (1.16) we get 
d imH ~ (Iz. Q~ (2)) = O, H 1 (Iz, Q3 (2)) = 1. Since IQ~, e '  (2) = cOe,, from 

O-~ IQs, p,(2)--> Iz, p4(2)---> Iz, Q3(2)-->O 

and from the preceding lemma we get 

dim H ~ (Iz, p4 (2)) = dim H 1 (Iz, ~ (2)) = 1. 

Hence there is one 3-quadric in Q4 which contains Z. The planes must then be dis- 
joint, since otherwise apart from a smooth quadric passing through the conics, there 
is one described in the proof of the Lemma (3.2). 

The bundles whose conics' planes meet at one point p have then dimH~ = 2 
and the above discussion shows also the converse. It is easy to see that such E's are 
pullbacks of bundles on ]ps by a double projection of Q~ from p and that they make up 
a family of dimension 17. 

A local deformation of bundles discussed in (3.1) need not be such, [SSW], and if it 
does not arise from three conics, then H~ = 0. 

This argument generalizes using Manolache's result in the appendix, and we 
have: 

(3.4) THEOREM. - M(O, 4) is irreducible, unirational and reduced. 

PROOF. - Let E be a bundle from M(0,4). Suppose first we have h~  0. 
Then every nonzero section of E(1) vanishes on a degree 6 curve Y with COy -~ O y ( -  1) 

(see (1.15)). In the appendix Manolache shows that every family of bundles coming 
from such curves has dimension .<20. By (0.2) ; / ( E n d ( E ) ) = - 2 0 ,  hence 
h l (EndE)  - h 2 ( E n d E )  = 21 and every component of M(0,4) must be of dimension 
i> 21. It follows that the generic bundle E in every component has h~ = 0. By 
the formula to the Euler-Poincar~ characteristic (see (0.2)), we infer that hi(E(1)) = 0. 
Since for c2 = 4 we have (5/4) c~ + c2 - 3 = 6c2 - 3 = 21 the claim follows from (1.10), 
(1.12) and (1.13). 

( 3 . 5 )  P R O P O S I T I O N .  - Let E be a generic bundle in M(O, 4) 

(a) E(2) is globally generated; 

(b) a generic section of E(2) vanishes on a curve of genus 7 and degree 12 

on Q3. 



GIORGIO OTTAVIANI - MICHAEL SZUREK: On moduli, etc. 217 

PROOF. - ( a )  follows by (1.11). Then we tensor (1.16) and (1.17) with (%-2)  and 
check, plugging in the cohomology of E, that h~ C. Then, by the adjunction 
formula, coz = c0(DIg, hence g(Z)= 5 + (c2/2) by the <<2g- 2,-formula. This proves 
(b). 

4. - The m o d u l i  space  M ( - 1 ,  2). 

The main result of this section is the following 

(4.1) THEOREM. - The moduli space M := Mo3 - 1, 2) is a locally trivial algebraic fi- 
bration over B : =  P 4 \  Q with fibre being two disjoint copies of F 2 \  Q1. In particu- 
lar, it is a Stein manifold of dimension 6, rational, irreducible and smooth. 

REMARK. - Contrary to the case cl = 0, no bundle in M•3(- 1, 2) is a pullback of a 
bundle from P 8 by a double covering. Indeed there is no rank-2 stable bundle on P 8 
with cl = - 1, c2 = 1, [0SS]. 

The main idea of our proof of (4.1) consists in showing that all our bundles come ei- 
ther from disjoint lines in Q or from a double line living on some smooth Q c Qs. 
Then we study such bundles: We start with some preparatory lemmas. Let E be from 
M Q ( - 1 ,  2). 

( 4 . 2 )  P R O P O S I T I O N .  - The cohomology of E(j) is as follows 

o o o 

1 o o 
o o 1 
0 o o 

j = - 2  j = - I  j=O 

, i 0  

0 h~(j)) 
0 
2 

> 

j = l J  

PROOF. - The spectrum of E consists of - 1 only. Then hi (E( - j  )) = 0 for j ~< - 1 
and h 1 (E) = 1. From the Riemann-Roch formula for the Euler-Poincar~ characteris- 
tic, see (0.2), we calculate that y.(E(1)) = 2. In a standard way (using Serre's duality 
and stability) we also find that the groups H~ and HS(E(j)),  j <~ O, are as we 
claim. 

Since y~(E(1)) = 2, the bundle E(1) has at least two sections. Let Y be the zero set 
of such a generic section. Then d e g Y =  c2(E(1))=2,  and by adjunction formula 
o~y = (9(-2)  I Y. Moreover, this section gives rise to an extension 

(4.3) 0 --> O-~ E(1) --~ Iy(1) --> 0, 

hence h~ 1> 1, this means that at least one linear form vanishes on Y. Then 
Yc Qs (~ H where H is a hyperplane in p 4 .  If h~ were I> 2, there would exist 
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two independent forms that vanish on Y, hence Y r (}~ A P with a two-dimensional 
plane P e P  4. This, by adjunction, would imply ~oy=O( -1 ) l Y ,  a contradiction. 
Hence h~ = 2, which proves (4.2). 

(4.4) PROPOSITION. - The zero set Y of a section of E(1) is a divisor of type (2, 0) on a 
smooth hyperplane section (~2 r (~3 (and hence is either a disjoint sum of two lines or a 
double line). The zero sets Ys, Yt of two sections of E(1) lie on the same smooth 2- 
quadric Q2 and cut a system g~ without base points. 

PROOF. - From the preceding discussion it follows easily that there exists a hyper- 
plane H such that Y r Q3 N H. If Q3 N H were a cone, Y would be a curve of degree 2 
on the cone, which is a complete intersection with a plane. Hence ~ y =  0(-1) ,  
what is a contradiction. Thus (~8 (3 H is smooth, and in a similar way we exclude Y of 
type (1,1). 

Let s, t be the two sections of E(1) with s vanishing on Ys. As  in lemma 9.3 of [Ha] 
it follows that Ys and Yt lie on the same 2-quadric. The zero sets Ys and Yt determine 
then a system g~. We show that it has no base points. To this end, it is sufficient to 
prove that for a given line L, there exists s e H ~ (E(1)) not vanishing identically on L. 
Hence we have to show that h ~ (In | (E(1) ) )  ~< 1. Tensoring the Koszul complex 

by E(1) we obtain 

O "-> (9 ( - 1 )  "-"> S "* I L --> O 

O ---~ E --> E | S (1) ---~ I L | E (1) --> O . 

If L' is generic, we have h~ , |  = 0, hence by the above exact sequence with 
L' in place of L we get h ~ (E | S(1)) = 0. Thus the cohomology sequence of the above 
sequence gives 

0 ---->H~ | E (1 ) )  - -~H 1 (E)  -~ 

as we wanted. 

We may now prove our description of the moduli M( - 1, 2) as stated in (4.1). The 
quadric surfaces on Q form a F a. Let 

(4.5) u: M --~ F4 \(~}s 

be the map sending a bundle E to its corresponding quadric Q2--the envelope of zeros 
of sections of E(1). The fibres of this map are the base-point-free systems of type 
(2, 0) on Qe, up to proportionality, i.e., two disjoint copies of p 2 \ Q ,  which corre- 
spond to the two rulings of the quadric Q2 defined by E. Any ruling defines a conic in 
G(1, 3) and any system gl on a conic is defined by all the lines through a fLxed point p 
in the plane of the conic, having base points if and only if p lies on the conic. This 
proves (4.1). 
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(4.6) REMARK. - Later on we show (see 6.7) that the moduli space M ( -  1, 2) has 
also another fibration, namely that it is a (F2 \Q1) -bund le  over Q 4 \ Q 3 .  

(4.7) REMARK. - In [0t], it is shown that E extends to a vector bundle on Q4 and 
even to one on Q ,  but not further. Moreover, the inclusion Q4 --* Q5 induces an iso- 
morphism between the moduli of stable, rank-2 bundles with Chern classes ( -  1, 2) 
on Q and on Q4 with ( -  1, (1,1)), which are both isomorphic to P T \ Q 6 .  We saw that 
this was not the case for the inclusion Q - - ,  Q4. 

(4.8) REMARK. - As in the case c~ = 0, we may construct a monad for stable 2-bun- 
dles with Cl = - 1, c2 = 2: 

Every stable 2-bundle with cl = -  1, c2 = 2 on Q is the cohomology of a 
monad 

O---, (S G S)(1) --) O(1) 

where S is the spinor bundle. 

PROOF. - The cohomology of E being as in Proposition (3.2), we consider an 
extension 

0 ~ E(1) --~ B - *  O(1) --> 0, 

killing H 1 (E), then we take an extension 

O--~ B * --~ C--+ O---> O 

which kills Hi(B*) .  The bundle C* has no intermediate cohomology and 

cl(C*) = 2, h~ = 8, rank(C*) = 4 .  

Hence C* must be S @ S* by (0.8) and the monad follows. The first map of the monad 
correspond to a choice of two skew lines on Q3, whereas the second epimorphism is in 
fact a choice of a Q2. We may have then got (4.1) from the monad. 

We now pass to the study of the jumping behaviour of bundles E from M(~ ( - 1, 2) 
on lines, conics and planes. Let us call the ruling determined by E on a two-dimen- 
sional quadric Q~ (see 4.4), the first ruling. Then 

(4.9) PROPOSITION. - A line l is a jumping line for E ff and only if it belongs to the 
second ruling of the 2-quadric determined by E. The bundle has an exceptional split- 
ting type on a conic C iff C r Q2. 

PROOF. - It is easy to see that there exist lines with the splitting type (0, - 1 ) .  
Hence it must be a generic type. Therefore a line 1 is jumping iff every section of 
E(1)II vanishes at I> 2 points, i.e., meets zeros of all sections of E(1) twice. Similar 
arguments apply to smooth conics as well. 
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(4.10) PROPOSITION. - For every smooth Q2 c Q3, the bundle E e MQ3(- 1, 2) is 
stable on (~2. 

PROOF. - Straightforward from the divisorial sequences. 

(4.11) COROLLARY. - The manifold of jumping lines of a bundle E e Meg( - 1, 2) is a 
non isotropic line in p 3 =  Fano ( (~ )  and does not determine E uniquely. The mor- 
phism p ' : M ( - 1 . 2 ) - - ) Q 4 \ Q 3  (see (5.7)) can be interpreted as 

E ~  {variety of jumping lines of E}.  

PROOF. - Easy from (4.9) and the information from (0.3). 

(4.12) THEOREM. - Aut(Q3) acts transitively on M ( - 1 , 2 ) .  

PROOF. - First observe that we can perform an automorphism which moves any 
point of p4 \ ( ~ 8  to any other one. Hence the proof is reduced to a consideration of the 
orbits of the action of Spin (4) on pairs of lines of a quadric Q2 c ]?(V). The two half- 
spin representations of Spin(4) = SL(2) x SL(2) act on the two rulings of Q2. The 
isotropy subgroup that f'Lxes a point contains GL(2) and this acts transitively over 
G * .  

5. - T h e  m o d u l i  s p a c e  M ( - 1 ,  3). 

As in the previous sections, the first thing to be explained is what happens when 
E(1) has sections. 

( 5 . 1 )  L E M M A .  - The bundles E e MQ~ ( - 1, 3) with H ° (E(1)) ¢ 0 make up families of 
dimensions ~< 11. 

PROOF. - Any section s e H ° ( E ( 1 ) )  vanishes on a locally complete intersection 
curve of degree ce(E(1))= 3, with O~z = (0(-2).  We get three possibilities only: 

a) Z is given by three disjoint smooth lines or 

b) Z is the disjoint union of a smooth line with a double one or 

c) Z is a triple line. 

It seems likely that the cases b) and c) are in the closure of the case a), but we 
avoid a detailed discussion by a simpler dimensional count. In the first case the family 
of curves depends on 3 + 3 + 3 = 9 parameters. Applying [BF], we can compute the 
dimensions of the families occurring in the other two cases. In case b), the double 
structures Z' on a fixed line L with ~Og, = (9(-2)  are given by the Ferrand construc- 
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tion and they are in a bijective correspondence with the surjective maps 

~ , q  --(_9(~(0(-1)-->O 

modulo C*, hence depending on two parameters. The family of curves Z from b) de- 
pends then on 3 + 3 + 2 = 8 parameters. In case c) we have triple structures Z on a 
fixed line and they arise in two consecutive steps 

O ---) C)L ---) C)Z, ~ OL ---) O 

O -~ OL ~ Oz-+ Vz, ~ O 

and by Corollary (2.5) in [BF] they depend on 

h ~ Q3) + h ~  

parameters. Hence the family of curves Z of ease c) depends on 3 + 4 = 7 parameters. 
In the eases a), b), e) we have the exact sequence 

O ---> O--) E (1) ---> J y (1) ---> O 

and we can compute h~ (?)) = h~ = h~  = 3. 
Hence the bundles coming from three disjoint lines consist of a family of dimen- 

sion 9 + 3 - 1 = 11 (h~ = 1) if the three lines do not lie in a hyperplane). In the 
other two cases the dimension is smaller. 

(5 .2 )  T H E O R E M .  - The moduli space MQ~ ( -  1, 3) is irreducible, unirational, reduced 
of dimension 12. The generic bundle has H ~  and E(2) is globally 
generated. 

PROOF. - Let E be such a bundle. From the formulas given in Section 0, we calcu- 
late )~(E(-1)) = •(E(-2))  = 0, )~(E) = - 2 and 

h l ( E n d E )  - h2(EndE)  = 12. 

This implies that every irreducible component of M Q s ( - 1 ,  3) has dimension at least 
12. By Lemma (5.1) it follows that in every component of MQ8 ( -  1, 3 )  the generic bun- 
dle has H~ = 0. The data for the Kapranov diagram of such a bundle E(1) are 
then 

* 0 0 0 
* 0 0 0 
* 0 2 0  
* 0 0 0 

E(1) has rank 2 and is the cohomology of the corresponding Kapranov sequence, 
hence the diagram becomes (this is the only possibility to make the output to be a 
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bundle of rank 2) 

0 0 0 0  
3 0 0 0  
0 0 2 0  
0 0 0 0  

and we see easily that E(1) has a resolution 

(5.3) 0 ~ S 8 ~ ~ --, E(1) --, 0. 

It follows that we have a morphism from an open subset of the vector space 
Hom(S s, #~) to the open subset of MQ~(-1, 3) consisting of bundles with H°(E(1))=  
= 0. This shows that Mqa(-1 ,  3) is irreducible and unirational. To prove that it is re- 
duced of dimension 12 we compute h e (EndE) for bundles corresponding to three lines 
in a generic position. From the exact sequences like (1.16) and (1.17) above, where 2 in 
latter one is to be replaced by 1, taking into consideration that the normal bundle to a 
line on Q8 is (9 @ (?(1) and using the spectrum, we calculate very easily (the argument is 
the same of the proof of Corollary (1.18)) that h2(EndE) = 0, hence d i m H l ( E n d E ) =  
= 12 and the moduli is smooth at such E. E(2) is globally generated by (0.9). 

6 .  - The topology of M(0, 2) and of  M ( -  1, 2). 

In this section we study the topology of the moduli spaces. The reason for writing 
this in a separate section is that the methods we use are purely topological. We follow 
the ideas from [Ne]. Let us first collect tools. First, we shall need the following version 
of 

The Lefschetz duality theorem. Let X be an irreducible projective variety of com- 
plex dimension n and Y a subvariety such that X \  Y is smooth. Then, for every integer 
i 

H i ( X ,  Y) = H 2 ~ _ ~ ( X \ Y ) .  

Since every projective variety can be triangulated as a finite polyhedron, this result 
follows from [Sp], 6.2.19 and 6.1.11. Then 

(6.1) The long cohomology sequence of a pair Qn-1 ¢ F~ gives the long exact 
sequence 

__> n (pn) ---)H (~n-1)  ---> H 2 n - i - l ( P n ~ ( ~ n - 1 )  "--~"" • .. H2n-~(P \ Q - 1 ) ~ H  i r 

where r is the restriction map. r is an isomorphism for i odd and for i even, i ~< n - 2 
and it is the multiplication by two for i even, n ~ i ~< 2n. For i = n - 1 even r takes the 
generator 1 e H ~ - I ( F  ~) to the element (1, 1)e  H=- I (Q~_I )~ -Z  ~ Z. From these 
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facts ti follows that H i ( P ~ \ Q . _ I )  is isomorphic to Z for i = 0 or i = n odd, to Z2 for 
i ~< n -  1, i odd and to 0 otherwise. 

(6.2) Absolute Hurewicz theorem. If X is a simply connected topological space and 
there is m I> 2 such that Hq(X)= 0 for 1 ~< q < m, then rzq(X)= 0 for q < m and 
7:m(X) = Hm (X). 

(6.3) Lifting criterion. Consider a commutative triangle of continuous maps 

(E, eo) 
r / - ~  I 

z/> x; (Y, Yo) ( , o) 

Then there exists a lifting f '  of f if and only if 

f .  (~1 (Y, Y0)) c d .  ~1 (E, e0). 

(6.4) 

sequence 

(6.5) 

The long homotopy sequence for a fibering X--~ Y with fibre F is an exact 

... ---> 7:{+ 1 (Y) - - .  7:i ( F )  --~ r:{ (X)  - o  7:{ (Y) --) ={_~ ( F )  - o . . .  

7 : l (pn \Qn-1 )  : Z2. 

PROOF. - Let us show first that ~ l ( Q 2 \ Q 1 )  = 0. Fix a ruling on Q2 and a smooth 
@1 c Qe c P 3. Let p: Q e \ Q 1  ---> Q, be a projection which associates to each point of Q1 
the point on the chosen ruling through it and lying on Q1. Hence p is a fibering with fi- 
bre C and the long homotopy sequence gives 

=1 (C) --* =1 ( Q  \(:)1) ~ ~1 (p1). 

Since r q ( C ) =  7q(P 1) = 0, we have 7 : l (Q2 \Q1)=  0, too. The standard double cover- 
ing Q 2 \ Q I - - )  P 2 \ Q 1  is a 2:1 map, hence 7 q ( P Z \ Q 1 ) =  Z2. The formula (6.5) now 
follows from the following theorem of Zariski, [Ch], (1.1): 

Let H be an algebraic hypersurface of the complex projective space P~. If n i> 3, 
then for any hyperplane L from a Zariski open and non-empty subset of the space of all 
hyperplanes in P ~, the canonical injection of L \ H  into P ~ \ H  induces an isomor- 
phism 

r~l ( L \ H ,  e) --~ ~1 ( F~ \ H ,  e) 

for e e L \ H .  

(6.6) The double covering d: Q . \ Q . _ I - ~ P ~ \ Q n _ ~  is the covering space map. 

PROOF. - Follows from (6.5). 
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Now we want to show that the moduli M = M( - 1, 2) has another fibration then 
that given in (4.1). 

(6.7) The fibering of M: = M ( - 1 ,  2) given in Section 3 lifts to M-- ,  Q 4 \ Q 3  and 
the fibres are P 2 \ Q I :  

Q4\ Q3 

'J- f  l Pl d 
M P> ~4\Q8 

PROOF. - We want to apply (6.3). The appropriate piece of the long homotopy 
sequence 

�9 -- --~ =1 (M) --* r:l (P4 \ Q a )  --) =o ((P2 \ Q 1 ) )  I_[ ((P2 \ Q 1 ) )  --) 7:0 (M) 

specifies to 

�9 .. -* =I(M) -* Z2--* Z2--* 0, 

hence the image of = 1 (M) in = ~ (P t \ Qa ) is zero. The lifting condition is therefore ful- 
filled. Recall that p associates to each bundle E of M the quadric containing zeros of 
sections of E(1) and the fibre corresponds to the two rulings. The covering 
( ~ 4 \ Q s - )  P 4 \ Q 3  (where Qa is the Klein quadric) splits the rulings and hence the fi- 
bres of p' are ~2 \Q1 .  

(6.8) The homology of Q ~ \ Q ~ - I  is 

Z i f i = O  o r i = n  
Hi((~' \Q~-I)= 0 otherwise. 

PROOF. - Looking at the analogue of (5.1), we get that the restriction map 
H~(Q~)-~ H~( (~_I )  is an isomorphism if i ~ n, i ~ 2n. For i = 2n it is zero and has 
kernel Z. It  has kernel Z for i = n even and it has cokernel Z for i = n odd. 

(6.9) ~2(Q4~(~3) = ;v3((~4~Q3) = O, 7:4(Q4~Q3) = Z. 

PROOF. - Immediate from (6.8) and the Absolute Hurewicz Theorem. 

(6.10) 7:1(M(- 1, 2)) - •2- 
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PROOF. - The appropriate piece of the long homotopy sequence of the fibering M ~-~ 
- ~  Q \ @ 8  is 

�9 . -  - ~  ~2 (Q4 \ Q )  -~  ~ ~ ( F  2 \ Q 1 )  -~  ~L (M) -~ ~1 ( Q  \ Q 3 )  = 0 .  

Since ~2( (~4 \ (~a)=  0 and 7 : l ( P Z \ Q 1 ) =  Z2, (6.10) follows. 

We may also calculate higher homotopy groups and some homology of the moduli 
space M = M ( -  1, 2). Namely 

(6.11) Let M be any fibration over (~4\Q3 with fibre p z \ @ ~ .  Then 

Z for i = 0 , 4 ,  

H i ( M , Z ) ~  Z2, for i = 1 , 5  

0 i = 2 , 3 , 6 ,  

and =2 (M) = =3 (M) = 0, r~ 4 (M) = Z~. 

PROOF. - We have a Serre spectral sequence with 

E~'q = H p ( Q 4 \ Q ~ ,  H q ( F 2 \ Q 1 ) )  

abutting to H.(M) .  In our case E~' ~ is (see also (6.1)): 

q t  Z2 0 0 0 Z2 0 
Z 0 0 0 Z 0 

) 
p 

hence E~' q = E~' q so the homology is as we claimed. To calculate the homotopy, we 
use Hurewicz Absolute Theorem again. 

(6 .12 )  COROLLARY. - If Q denotes the field of rational number, then 

H~(M(-1 ,  2), Q) = O for i = 0, 4 and zero otherrwise. 

( 6 . 1 3 )  COROLLARY.  - The topological Euler-Poincar~ 
z ( M ( -  1, 2), (~) = 2. 

For the bundles from M: = M(0, 2) we have 

characteristic is 

( 6 . 1 4 )  P R O P O S I T I O N .  - The fundamental group ,':i (M) is Z4. 

PROOF. - By (2.21), the quartic hypersurface V4 discussed in Section 2 is normal 
and with the singular locus of dimension 6. The best way to check this is to use [BS]. 
The generic one-dimensional section of V4 by hyperplanes is then a smooth quartic 
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curve C 4 c F  2. Hence x l ( M ) = ~ l ( F g \ V 4 ) = ~ 1 ( F 2 \ C 4 )  = •4 by the theorem of 
Zariski and [Sh], Ch. IX, Sect. 4, Ex. 1. 

(6.16) COROLLARY. - ~2 (M(0, 2)) = =3(M(0, 2) = 0, r~t (M(0, 2)) = Z. 
H~(M(0, 2), Q ) =  Q for i = 0,5 and 0 otherwise. The Ettler-Poincar~ characteristic 
z(M(O, 2), (>) is 0. 

PROOF. - Similar to that for M ( - 1 ,  2). 

(6.17) The fibration e: P g \ V 4 - o p 4 \ Q 3 ,  seen in (2.1), (2.11), (2.17), is not 
trivial. 

PROOF. - Otherwise =1 (M) = Z2 • Z2. 

A P P E N D I X .  

The curve Y of degree 6 with ~oy = ~ y ( -  1) on a smooth quadrie Q3. 

N I C O L A E  M A N O L A C H E  

In this appendix we give a complete list of the curves as in the title. 

THEOREM. - Curves Y of degree 6 with COy = Oy( - 1) on a smooth quadric Q3 are of 
the following types 

1) three disjoint conics (maybe degenerate), 

2) a disjoint union of a conic and a double conic (maybe degenerate), 

3) a double structure of a connected curve consisting of a union of three 
lines, 

4) 

5) 
point, 

a triple structure on a conic (maybe degenerate), 

a double structure on a union of a line and a conic meeting at one 

6) a double structure on a union Y0 of a simple line and a double line, the Hilbert 
polynomial of Y0 being 3n + 1, 

7) certain ,~quasiprimitive~ multiplicity-6 structures on a line, 

8) a double structure on the first infinitesimal neighbourhood of a line, 

9) a double structure on a twisted cubic. 

Hence there are nine families (not disjoint) C1, ..., C9 of curves, which cover the 
Hilbert scheme of curves in Q of degree 6 with ( gy  = ~ y (  -- 1) .  Corresponding to them 
are nine families 8~1 . . . .  , ~:9 of vector bundles on Qs, of rank 2, stable and with Chern 
classes cl = 0, c2 = 4, given by extensions 0 ~ (~-o E(1)-- ,  I y ( 2 ) ~  0. We calculate (or 
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at least evaluate) the dimensions of the families C1, . . . ,  C9 and ~1, ..., 5~ �9 As they are 
all less than 21, it follows that the moduli space MQ (0, 4) is irreducible (see the Theo- 
rein 3.4 of the paper for the details). 

The classification done here resembles very much that given in [BM] for curves in 
F 3 with ~Oy = O y ( -  1) and of degree 6, done in the connection with the study of the 
moduli space M ( - 1 ,  4) on F 8. 

The current work was done during the author's stay at the Sonder- 
forschungsbereich 170 ,Geometric and Analysis,, in GSttingen, Germany, in 
1992. 

1. - P r o o f  o f  t h e  t h e o r e m .  

We organize the classification upon the number of connected components and then 
upon the number of irreducible components of a curve with the properties as in the ti- 
tle. We begin with some easy remarks. 

REMARK 1. - Because of the equality 

2p~(Y~) - 2 = degoJy1 = deg(gy~(-1) = - degY1, 

any connected component Y1 of Y should have even degree. 

REMARK 2. - Let Y1 c Y be a connected 1.c.i. reduced curve, such that Yred \ t71 and 
Y1 have no common irreducible component. Then Y = I11 U Y2 (primary decomposi- 
tion) and Y1, Y2 are Cohen-Macalauy curves with no common component. It follows 
that Y1 and Y2 are locally algebraically linked (see [M2] or [M3]) and we have the exact 
sequences (dual to each other) 

(1) O --> O.~ yl (1 )  ---> (gy ---> (gy2 ----> O , 

(2) O --> CO y2 ( 1 )  ---~ (gy ---> (gy1---~ O . 

By restricting the first one to Y1 one obtains 

(3) 0 --> ~o r~ (1) --~ (gr~ ~ (gy~ n y~ ~ 0. 

REMARK 3. - If 2"1 in Remark 2 is a line, then it follows from the above that I11 V) I12 
is, as a scheme, a reduced point. Then, using the fact that Y1 U Y'2 is a complete inter- 
section in Y1 A Y2 and that I71 is nonsingular in Y1 A Y2, we see that Y~ is non- singular 
in I71 A Y2, too. If we restrict the exact sequence (2) to I12, we obtain oJy~ = Oy~(-2), 
Y~ being the connected component of Y2 which meets I71. Due to the first remark, the 
degree of Y~ should be 1, 3 or 5. When the degree is 1, then I11 and another line meet- 
ing it, make up a connected component of Y. However, degrees 3 and 5 are not possi- 
ble. Indeed, if deg Y~ = 3, then I11 U Y~ would be a curve of degree 4 with co = (9( - 1), 
hence with the Hilbert polynomial 4n + 2 and then Y~' would have the Hilbert polyno- 
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mial 3n + 3. These data contradict the exact sequence 

O----) Oy~ u y~ --~ �9 • y~ ---> Oy~ n ~ ---> O . 

In a similar way one excludes the degree 5. 
Thuswe showed that Y contains a line as an irreducible component iff it contains a 

degenerate conics as a connected component and the line is a component of the 
conic. 

REMARK 4 .  - If  Y1 from Remark 2 is a conic (possibly degenerate), then the exact 
sequence (3) shows that Y1 is a connected component of Y. 

From the above remarks it follows that Y may have at most three connected com- 
ponents. We discuss the three cases separately. 

I) Three  c o n n e c t e d  c o m p o n e n t s .  From the above remarks it follows that the com- 
ponents are conics, maybe degenerate. 

II) T w o  c o n n e c t e d  c o m p o n e n t s .  They should have degrees 2 or 4 and that of de- 
gree 2 should be a conic. The other component has degree 4 with o~ = (%- 1). The 
curves in F 8of degree 4 and with ~o = (9( - 1) were classified in [M1] and it was shown 
there that they are either a union of two conics (maybe degenerate) or a double struc- 
ture on a conic (smooth or not). This remains true also in our case. We shall sketch the 
proof. 

Let Y be a connected curve of degree 4, ~ = �9 1). Then Y cannot have more 
than two irreducible components. Indeed, let us assume this is the case. Then they 
are two double lines, since the single lines and the conics have been excluded by the 
Remarks 3 and 4. Then the residue of X = Y~ in Y, in the sense of the locally algebraic 
linkage, is X (see[M2] or [M3] and also [BM], Lemma 8). The condition ~Oy= Oy(-1)  
shows that the doubling is made with the invertible sheaf Ox, i.e., we have an exact 
sequence of the form 

O - o  r --~ coy ~ cox ~ O . 

When Yr~d is irreducible, Y is either a double conic or a structure of multiplicity 4 
on a line. We show now that these multiplicity-4 structures are also double structures 
on a conic degenerated to a double line. Indeed, suppose that the structure on Y is 
quasiprimitive in the sense of [BF1] and [BF2]. Then oJy IX = ~Ox | L - a ( - D ) ,  where 
L is an invertible sheaf on Yred = X and D is a divisor on X (eL [BF2] or [M2], [M3]). 
The condition oJ y = COy ( -  1) allows only L = COx ( -  1) and dog D = 2. The double struc- 
ture on X with L = Ox(-1)  as the associated line bundle is a degenerate conic and Y 
is a double structure on it (cf. [BM], the remark on p. 333). 

When Y is not quasiprimitive, by [BF2], w 4, the ideal I y  of Y in (~3 is given by the 
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exact sequence 

(4) o o, 

where I x  is the ideal of X in Q and the discriminant of p does not vanish anywhere. 
Let us note that the middle term in the sequence equals S 2 ( I x / I ~ ) .  

We want to show now that also these structures can be obtained by doubling a 
conic degenerate to a double line. If X is a line on Q3, then it is easy to see that we can 
choose homogeneous coordinates in p4 such that X is described by the ideal (x, y, z) in 
the quadric Q given by the equation q = 0, where q = u x  - vy  + ¢(x, y, z), ¢ being a 
quadratic form in x, y, z. Then the conormal bundle of X in Q is 

(x, y, z) 
VX, Q3 : (X, y, z) 2 + (q) = 

(x, y) + (x, y ,  z)  2 + ( u x  - vy )  

(x, y ,  z) 2 + (ux  - x y )  

(z) + (x, y,  z) 2 + (ux  - vy )  
@ 

(x, y,  z) 2 + (ux  - x y )  
= ¢ ) x @ O z ( - 1 )  

and one has 

(x, y, z) 2 + (q) (x, y)2 + (x, y, z) s + (q) 

S2(~X'Q3) = (x, y, z) 8 + (q) (x, y, z) 3 + (q) • 

(xz ,  y z )  2 + (x, y, z) 3 + (q) (z) 2 + (x, y, z) 3 + (q) 
@ ® = O @ ©( - 1) @ (% - 2 ) .  

(x, y, z) ~ + (q) (x, y,  z) 3 + (q) 

Then, I y  defined by an exact sequence like (4), is of the form I y  = (x  2, x y ,  y2, z 2, q) in 

suitable new coordinates. If we take Y1 ¢ Q3 to be the subscheme of F 4 given by the 
ideal (x, y, z2), then we see directly that Iy21 ¢ Iy  ¢ I y  1 , as ideals in (9Q8. This proves our 
claim. 

III) One connected  component .  By the remarks made at the beginning, the curve 
Y with one connected component cannot have more than three irreducible compo- 
nents, and if this is the case, these components are necessarily three double lines. 
Then Y is a doubling of a curve X consisting of three lines. They cannot lie in the same 
plane in a F 4 containing Q~, hence X is a curve with the Hilbert polynomial 3n + 1. 
The ideal of Y is given as the kernel of a surjective map Ix--*  ~ox(1). This case can be 
also interpreted as a degeneration of the one that will appear later on, namely a 
double structure on the sum of a line and a conic meeting at one simple point. 

When Y has two irreducible components Y1 and Y2 there are two possibilities: they 
have degrees (3, 3) or (2, 4) and they are necessarily either nilpotent structures on 
lines or nilpotent structures on a line and a conic (this can happen only in the second 
case). 

Let us consider the case (3, 3). Let X1 = (Y1)red, X~ = (Y~)rod" Then, in appropriate 
coordinates x, y, z of the point X1 V~ X2 in (}3 we have X1 = (z, x), )(2 = (z, y) and Y is 
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locally one of the following 

IF=  (z, xSy3), 

o r  

Iy = (z 3, xy), IF = (z s, xy + z 2 ) 

I y=  ((z + y2)(z + x y -  xS),(z + y)z + xy s) 

according to [BM], Lemma 9. 
We show that the last form of Iy cannot occur. Indeed, Y1, Y2 are then triple 1.c.i. 

structures, because in the only point where they may be not such, namely in the com- 
mont point of X1 and 2"2, we have 

I y , = ( z + x y - x 2 ,  xS), I y2=(z+yS ,  y3). 

Then Y1, I12 are primitive triple structures given by certain invertible sheaves 
Oxl (rl), �9 (r2), hence of the Hilbert polynomials 3n + 3rl + 3 and 3n + 3r2 + 3, re- 
spectively. As Y1 and Ys are locally algebraically linked by Y, we have the exact 
sequences 

0 -~ ~ y~ (1) -o (?F -o Oy1 --) 0 

and then the Hilbert polynomial of Y is 

Xy(n) = 6n + 3 + 3(rl - rs),  

which shows rl = re = : r. On the other hand, the natural exact sequence: 

O --~ (Oy--. Oy1 x C2y2----) C)y, n y2---. O 

gives 2r = 1, which is impossible. 
If we denote by J the ideal of Y in ()3 and by I the ideal of X = Yred = X1 U Xe in 

()~, then one sees by some natural local calculations that J:  I = / 2  defines a 1.c.i. 
double structure on X and that J: I ~ = I. Moreover, as the ,,direct filtration, from 
above coincides with the ~,inverse one, (i.e., J: (J: I) = I, J: (J: I s) = I2), we have an 
algebra structure (cf. [M3]) on el(Y) = Ox �9 I/I2 @ I2/J, where I/I2, I9./J are invert- 
ible sheaves on X. In particular, one sees that the map 

I/Is | I/I2 ----> I2 / ( I .  I2) ----) I2/J  

is an isomorphism. 
Thus we have proved that Y is a triple structure on X, given by exact sequences of 

the form 

O---> Iz/I~--~ Ix/I~--~ L--->O, 

0 ----)J/(Iz'Is) ~ Is / ( Iz ' I2)  -->L 2 ~ O, 

where L = I/Is,  L ~ = I2/J. 
In particular, o~FIX=o~x|  -s = L - 2 ( - 1 ) ;  the condition oJf= r  gives 
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L = COx. Because H i ( L )  = H * ( L  ~) = 0, we have Pic Y - - P i c X  and so the above con- 
struction really gives triple structures on X with o~ = O(-  1). 

Suppose now that Y = Y~ U Y~ where Y~ is a double line and Yea degree-4 curve. 
Then Y~ is either a double conic or a multiplicity-4 structure on a line. When (Ye)red = 
= X~ is a conic, then Y is a doubling by ~Ox (1) of a curve X = X~ U Xe, where X1 is a line, 
Xe is a conic and X1 ~ X~ is a simple point. 

The case where Ye is a multiplicity-4 line is discussed in the following 

LEMMA 1. - If  Y1 U Y2 is a 1.c.i. structure on X = X1 U Xe, where X1, X2 are two 
meeting lines, degY1 = 2, degY2 = 4  and o~y= ¢9(-1), then Ye is a quasiprimitive 
structure with the associated line bundle coz~ ( - 1) or COx2 and Y is a double structure 
on X1 U Y~', where Y~' is the double structure on X2 in the canonical filtration of Y2. 
The Hilbert polynomial of X1 U Y~' is 3n + 1. 

P R O O F .  - Assume the contrary, i.e. that t"2 is not quasiprimitive. Then Y~ contains 
the first infinitesimal neighbourhood X~' of X2 in Qs and the residue of X~' in Y2 is X2. 
Then X1 U Y~' and X1 U Xe are locally algebraically linked by Y, so that we have an ex- 
act sequence 

O --~ O~ x1u y~ (1) --) Oy --+ Ox1u x2 --> O . 

It follows that the Hilbert polynomial of X1 U X~' is 4n + 2. From the exact 
sequence 

O --) Oz2 @ Ox~ ( - 1 )  ~ Or~, ~ cox~ ~ O . 

we infer that the Hflbert polynomial of Y~' is 3n + 2 and from the exact se- 
quence 

O-+Vxiur~-+Ox, × Or~,-) cox~n r~,-) 0 

it follows that X, n Y~' has length 1. On the other hand, a direct computation shows 
that l(cox, n y ~ ) =  2; a contradiction. Then Y~ is a quasiprimitive structure on X2 and 
there exist exact sequences: 

0--~ Ox2 (2r + dl)-)Oy2,,,--~coy~,--~O , 

O --~ Oz~ ( 3r  + dl + d2 ) -O Oy2 -~ coy~,. ---) O , 

where dl and d2 are the degree of some divisors D1, De on Xe, De concentrated at 
X1 (~ X2. As X1 U X2 and )(1 U Y2 " are locally algebraically linked by Y, one has an 
exact sequence 

O "-'> cO XI U Yz,,, ( 1 )  --> COy -"> COXI U X2 ---> O . 

which shows that the Hilbert polynomial of X~ U Y2 " is 4n + 2. As Xy2., (n)  = 3n  + 

+ 3r + dl + 3, we easily calculate that l(X~ A Y2")  = 3r + d l  + 2. As this length is an 
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integer between 1 and 3 and dl I> 0, the only possibilities are r = - 1 ,  r = 0. The 
residue of X1 U Y~' being X1 U Y~' itself, Y is a doubling of X1 U Y~'. Notice that  z(n) = 
= Zx~ u y6 (n)  = Xx~ (n)  + Xy~, (n)  - l(X~ A Y~' ) = 3n  + r + 3 - l, where 1 is the length of 

X1 A Y~'. From here it follows 

x ( n ) = 3 n  for v = - l ,  1 = 2 ;  

z ( n ) = 3 n + l  f o r r = - l ,  l = l  o r r = 0 ,  I = 2  

z ( n ) = 3 n + 2  for r = 0, l = l .  

We show now that  z(n) = 3n + 1 is the only possibility. Indeed, r = - 1, 1 = 2 implies 
that  the double line is a degenerate conic, hence it lies in a plane and that  the simple 
line lies in the same plane. But Q8 does not contain a cubic plane curve. This excludes 
z (n)  = 3n. 

We show now that  l = 1 implies r = - 1. Indeed, we have l = 1 only when locally 
around the point X1 A X2 the ideals of X1 of Y~' and of X1 U Y~' are Ix1 = (Y, z), Iy~ = 

= (x,  z~), Ixiuy~ = (xy ,  xz ,  z2). 
Introducing a double structure Y on X1 U Y~':= I10 with OJy = �9  is equiva- 

lent to giving a surjection I r o / I ~ o ~  ~yo(1). Restricting this surjection to X2 one ob- 
tains a surjection I Y o / ( I x ~ . I y o ) - - ~ y o ( 1 ) l X 2 .  From the diagram with the exact line 
and columns 

0 0 

C C 

0 > IyoNI~J(Ix2"I~ %) > I~o/(IxJyo)----~ Iz . / I~ > Ix~/(Iyo+I~) > 0 

I~/(Iy; .Ix~) Ix2/Iy~, = �9 

0 0 

where C is the skyscraper sheaf at X1 A X2, one obtains 

zro/(Ix2. Iro) = vx2(2r) O v( - r  - 2 )  | C .  

To compute OJyo IX2 let us observe that  we have the exact sequence (by a Cohen- 
Macalay 1.a.l., cf. [M2], which works for curves): 

0 --> OxI(-2)  --* (2ro ~ �9 -~ 0 
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which gives, by dualization 

O -o co y~ ~ OJ yo --) OJ xl ( 2 ) ~ O . 

But, as ~y~, = COy~, ( - r -  2), by restricting the above sequence to X2 one obtains 

O - ~  COx~ ( - r - 2 ) - ~  O~ yo I X 2  --> C --~ O . 

A local computation shows that  this sequence in fact splits, and hence OJyo IX2-  
= ©x2 ( - r - 2) @ C.  Then a surjection Iyo/(Ix~ "Iy o ) -* oJ Yo (1) IX2 is possible for r = - 1 
only. Hence the proof is finished. 

In what follows we consider curves Y of degree 6 with ~oy = COy( - 1) and such that  
]('red ~- X is irreducible. X can be a line, a conic or a twisted cubic (plane cubics do not 
lie in Q3). 

Let  us take first X to be a line and Y a quasiprimitive structure on it. Then the as- 
sociated graded COx-algebra has the form 

(?xO ©x(r) • COx(2r + e + f i )  @ ©z(3r  + d + e + f i  + fe) • 

@Ox(4r + d + 2e + 2f~ + f2) • Ox(5r + d + 2e + 2f~ + f2) 

where d, e, ~ ,  fe are the degrees of some effective divisors D, E, F1, F2 such that  D, 
E, F1 + F2 are pairwise disjoint (cf. [M3]). Then X(COy(n)) = 6n + 15r + 3d + 6e + 
+ 6j~ + 3~ + 6 = 6n + 3 implies r = - 1 and 3d + 6e + 6f~ + 3~ = 12. From here e + 
+ f l  < 2. 

By a general theory, Y is a double structure on the triple structure Y3 in the 
canonical filtration. The case e + fl  = 0 cannot occur, because such a triple structure 
would be a plane curve of degree 3 and such curves do not exist on Q3. Then Y8 is a 
triple line with the Hilbert polynomial 3n + 1 or 3n + 2 and Y is a doubling of 
it. 

I f  Y is not quasiprimitive, there are two possibilities: the numerical character is 
(I, 2, 2, 1) or (1, 2,1,1,1), cf. [M3]. In the first case the canonical filtration will con- 
tain the first infinitesimal neighbourhood X (~) = Y2 of X in Q (this is a triple struc- 
ture of the Hilbert polynomial 3n + 2) and as I~ 2 c Iy  (one checks this locally, using 
the local structure of I y ,  cf. [M3]), Y is a double structure on Y2, given by a surjection 

(I). 

LEMMA. - There is no multiplicity-6 s t ructure  Y on a line X in Q8 with 
~ y  = COy( - -  1 )  and numerical characters (1, 2, 1,1,1). 
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PROOF. - Adapting the Theorem 4.15 from [M3] to our situation, we see that  such a 
structure would yield two exact sequences 

O --~ L ~ ( D ) ---~ F ---~ L 2 -~ O , 

O ~  L 2 ( D ) - o  v--~ L o O ,  

where F is a rank-2 vector bundle on X, ~ is the conormal bundle of X in Qs, L is a line 
bundle on X and D is an effective divisor. Also, in this case ~ y I X - -  
~ - L - 4 ( - D ) |  if L = C ) x ( r )  and d = d e g D 1 > 0 .  But 
v = O x ( - 1 )  @ Ox, so that  r = - 1, d -- 2 are the only possibilities in the second exact 
sequence above. This implies ~oylX = Ox, which contradicts O~y = Oy( -1 ) .  

REMARK. - One can show that  in F ~ the 1.c.i. structures Y on a line X of degree 6, of 
numerical character (1, 2,1, 1,1) and OJy : O X ( - - 1 )  do not exist, either. The require- 
ment about the character is equivalent to a certain structure of the local rings of Y, 
cf. [M3]. 

When Yred = X is a conic, then Y is a primitive structure on it. The associated line 
bundle should satisfy ~Oy IX = ~ z  | L -2 hence L = Ox. When Yre~ = X is a twisted cu- 
bic, then Y is a double structure on it, corresponding to a surjection 

I x / I ~ - o  (Ox(1). 

2. - Computat ion  of  the  d imens ion  o f  the  famil ies  o f  curves and bundles .  

We can now compute, or at least evaluate from above, the dimensions of the fami- 
lies of curves e l ,  . . . ,  C9 and of the corresponding families of vector bundles 
5~1 . . . .  , ~9, given as non-trivial extensions 

0 --* O-* E(1) --> Iy(2)  ~ 0 

with Y in C1, . . . ,  eg. For  a generic E and Y we have 

dim 5ri = d imei  + h~ ((gy) - h~ 

Let  us also notice that  h~ = 1 + h~ 

#1)  As d i m e l = 1 8 ,  it follows that  d imSr l=20 ,  because h ~  and 
h ~ (E(1)) = 1 generically. 

#2)  Here the doubling of a conic X is given by surjections Ix/I~--~Cgz and 
I z / I ~ - - 2 ( 9 x ( -  1) and hence by 5 parameters. Then dim C2 = 17 and hence dim 5~e ~< 

~< 19. 

$3)  ~8 and ~3 consists of curves, resp. vector bundles, which are degenerations 

of es ,  resp. 5~5. 

#4)  To give a conic X means to give 6 parameters,  to give a doubling Y2 with �9 
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means 5 more parameters,  to give a tripling which extends the given doubling means 
to give a splitting of the natural exact sequence 

0 > I} / ( I  x" Iy) - > Iy2/(I z" Iy) ----->" I~,JI} > O. 

I 
Ox o x ( -  2) 

Such splitting are in a 1-1 correspondence with Horn ( O x ( - 2 ) ,  Ox)  = H ~ (Ox(2)) hence 
5 more parameters are required. This shows that  dim e ,  = 16 and so 

dim ~4 < 18. 

# 5) A conic C and a line X such that  C N X is a simple point determine a P 3. For  
the generic situation it follows that  the curve Yo = X U C is contained in a smooth 
quadric Q2 of dimension 2. Then to give such an Yo, we need 8 parameters (4 to give a 
]p3 plus 3 to give a conic in P 3 Cl Q = Q~ plus 1 to give a point on the conic). To give a 
doubling requires 

dim Hom (Iyo/I~o , ~Oyo ( - 1)) - 1 = h 1 (Iyo/I~, o ( - 1)) - 1 

parameters.  From the exact sequence of conormal sheaves 

O---> v Q2, 08 | Oyo---> V yo, Qs ---> V yo, 02--> O , 

and the exact sequences 

o - ,  o x ( -  1)-~ on  --~ oc --~ o 

0 ~ OQ2( - 2 ,  - 4 )  -~ O02( - 1, - 2 )  -~ Vyo ' Q2 ---> 0, 

the latter coming from the fact that  Y0 is a divisor of type (1, 2) in (~2, one computes 
that  h i (vyo ' 03 ( - 1)) = 11. Hence dim C5 = 18. To compute dim 0~5, we need h ~ (Oy)  and 
h ~  The first one we calculate easily from the sequence 

O --> r Yo (1)  ----> Oy--> Oyo ---> O , 

and the sequence which relates Oy o to o x ( - 1 )  and Oc and the result is h~ = 3. To 
evaluate h ~  we have to study the structure of Y more closely. We may look at 
Y as a union of a double line X2 and a double conic C2. The two double structures give 
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rise to exact sequences 

O ~ Vx(r) ~ V x ~  Vx--~ O 

(5) O__~ L___~Oc2 ~Oc__~ 0 

where we assume that i * L  = (gp, (s) for the embedding i of P~ as the conic C in Q .  
Then the Hilbert polynomials are: 

Zx2(n)  = 2n + r + 2, Zoo(n) = 4n + s + 2. 

The exact sequence coming from local algebraic linkage 

O ---> ~ x~ (1) --. (gy O C)~ --~ O 

implies 

(6) s - r = l .  

We have the following commutative diagram with exact rows and columns: 

0 

0 --->- oJx| ~ i  > or > Oc~ux > 0 

O~x2 | o Jr 1 > Oy ----->" Oc2 > 0 

o 

The first row is the exact sequence of the linkage of X and C2 U X and the first column 
is the dual of (5) tensored with ~o ~1. From here we obtain 

~ o x ( - r )  | COy x = I c2 / I c2ux .  

On the other hand, the exact sequence 

0 ~ Ic2/(Ic2 u x )  -o  O / I x  ~ �9  2 + Ix---> 0 

shows that Ic~/(Ic2 u x )  = Ox ( - D1 ) with D1 the divisor on X associated to C2 A X as a 
subscheme in X. In this way we proved that 

~oylX = O~x( - r )  | Ox(D1)  . 

Completely similarly one proves 

~ylC = ~c| L -I |  

where D2 is C A X2 as a divisor on C. 
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These two formulas above were firstly proved 
manuscript [BF1]. Hence we provided here another proof. 

From the exact sequence 

in the non-published 

O ~ V x u o ~  Vx~ X O o ~  Vxno2~ O 

one obtains 

(7) l ( �9 = r + s + 1.  

Around the point P = C A X there are only two possibilities for Y: 

A)  I y  = (z, x2y2) ,  Ic2 = (z, x2),  Ix2 = (z, y2)  or 

B)  Iy  = (z ~, xy) ,  Ic2 = (z 2, x),  Ix2 = (z 2, Y). 

We then make use of the exact sequences 

O -~ I y ~  Ic2--~ ~Ox2 (1) --> O , 

O--) Ic~--* Ic--~ L - *  O. 

In the situation A) we have 

(7')  r + s + l = 4 .  

The equation (6) and (7') give s = 2, r = 1 and D1 = 2P, D2 = 2P, so that  o)x~ = 
= Ox~( -3 ) .  In this situation h ~  = h~ I> 2. In the case B) we have 

7") r + s + l = 2  

and hence r = 0 ,  s = l ,  D I = P ,  D 2 = P  and finally ~ox2=(?x2(-2). This gives 
h ~  = h~ i> 3. From all of this we obtain 

dim 5~5 < 18. 

# 6) According to Lemma 1 and with the notation from there, a curve Y in C6 is 
a doubling on Yo = X1 U Y~', where X1 is a simple line, Y~' is a double structure on a line 
X2 meeting X1 and with the invertible sheaf COx~ (r) where r = - 1  or r = 0. When 
r =  - 1 ,  we have l(X1 A Y~')= 1, so that  this case has been already discussed at  
#5) - -be ing  its degeneration. Here we consider the case r = 0, l(X1 A Y~') = 2. Le t  C~ 
be the corresponding family of curves. We choose homogeneous coordinate x, y, z, u, 
v in F 4 such that  Ixl = (x, y ,  u) ,  Ix2 = (x, y,  z) and the equation of Q takes the form 
r y, z)  + yv  + zu  = 0 where the quadratic form r does not contain a term in z 2. As 
the doubling Y~' of )(2 is done with L = COx2 and vx2, •a = Ox2 �9 c9x2(- 1), one sees that  
the ideal of Y2 in F 4 is of the form Iy~, = (x - ky  - mz ,  (x, y ,  z) 2, yv  + uz)  where k, m 
are constants. The condition l(X1 A Y~') = 2 gives m = 0. I f  we change x - ky with X 
and substitute X = x afterwards, we obtain Ix1 = (x, y ,  u) ,  Ix~ = (x, y,  z), Iy~, = 
= (x, (y ,  z) 2, yv  + zu) ,  Ixl u y~' = (x, y2, yz ,  yv  + uz) .  We showed that  X1 U Y~' = Yo is a 
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1.c.i. curve in Qs, contained in the smooth quadric surface of the equation x = 0 in Qs. 
From the exact sequences 

O ---) ¢gxl ( - 2 ) --) COyo -O Or~, -o O , 

O "-'> Oyo ( - l ) --> V yo, Qs --> V yo, Q2 --> O , 

one gets h I ((IYo/I~o)( - 1)) = 11. Summing up: 

dim C~ = 3 (a line X1 ) + l(a point on X1 ) + l(a line X2 through the point) + 

+ l ( a  doubling of X2 with r =  0, l(X~ (3 Y~') =2)  + 

+ 10(a doubling on Yo = X~ U Y~) = 16. 

In a standard way one computes h°(Or) = 8 and then h°(Ir(2)) I> 1, because at least 
the term x 2 is in the ideal. Then 

dim g'~6 ~< 17. 

# 7) As we saw, in this case we have in fact two families of curves, the first one 
corresponding to r = - 1, e +]~ = 1, the other one to r = - 1, e +f~ = 2. From the 
equality 3d + 6e + 6j~ + 8~ = 12 one sees that e +f~ = 1 gives d + f i  = 2 and e +f~ = 
= 2 yields d = ~ = 0. 

According to [BF2], the dimension of all quasiprimitive structures of fixed type 
(i.e., r and a divisor f~xed) is 

3(to give a line X in Q3) + 0 (doubling with Ox(-1))  + 

+ h ° (X, (det N~ ) ® (gx(-8) ® Ox(E + F~ ) ® Ox(D~ )) + 

+ h ° (X, (det N ~ )  ® O z ( - 4 )  ® ¢)x(D + E + F1 + F2) ® Ox(D~ )) + 

+ h ° (X, (det N~ ) ® Ox ( - 5) ® Ox (D + 2E + 2F1 + F2) ® Oz (D~)) + 

D '  , + h ° ( X , ( d e t N ~ )  ® O x ( - 6 )  ® (gx(D + 2E + 2FI + F2) ® Ox( ~ )) 

where N x  is the normal bundle of X in Qa, D, E, F1 and F2 are the divisors associated 
to the quasiprimitive structure and Di' are divisors on X given by (90~ = J2/ (J i  + I2) 
with Ji being the ideals in the canonical filtration. Using [M3], Theorem 3.3, one com- 
putes D" : 

D~ = E + F~, D'  3 = D + E + F I + F z ,  

D4 = D + E + 2 F I + F 2 ,  D'  ' 5 < ~ D + E + 2 F ~ + F 2 .  

In this way we have: dim CT(e +f l  = 1) < 17 and then, as h°((gy) = 3 and h°(E(1))/> 
t> 1, we obtain dim 5~7(e + f l  = 1) ~< 19. In fact, we can show that h°(Iy3(1)) = 1 and 
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then h~ I> 1 so that h~ i> 2, but this is not important for the whole classi- 
fication and we will omit the proof. 

Using the same technique as above, we calculate that dim ~ (e + f~ = 2) ~< 13 and 
d i m ~ ( e  +f~ = 2) ~< 15. Altogether 

dim 5~7 ~< 19. 

#8)  As the conormal bundle of a line X in Q8 is ox(~ Ox(-1) ,  the conormal 
sheaf of the first infinitesimal neighbourhood Yo will be Ox@ O x ( - 1 )  @ O x ( - 2 )  and 
then, denoting by Ix the ideal of X in Qa: 

d i m ~  = 3(a line) + h~ + h~ + h~ - 1 = 

= 2 + h 2 ( I 8 ( -  1)) + h2 ( I 8 ( - 2 ) )  + h2( I8 ( -3 ) ) .  

From the exact sequence 0 --) 18--> Ix -* O5 �9 O5 ( - 1) -~ 0 we now see immediately 
that dim ~ ~< 11 and 

dim 5~s ~< 13. 

#9)  Finally, we discuss the dimension of the family of double twisted cubics. 
Let us notice that in the moduli space M p a ( -  1, 4) such curves give rise to a family of 
bundles which is dense in one of the components of in Mp~ ( -1 ,  4), [BM]. 

Denoting now a twisted cubic by X, we see that the dimension of the family of 
double twisted cubics on Q3 equals 

9(to give a twisted cubic)+ h l ( ( I x / I S ) ( - 1 ) ) -  1. 

As is well known, a twisted cubic is a divisor of type (1, 2) on a smooth 2-quadric. 
Then one computes h l ( ( I x / I S ) ( - 1 ) ) =  11, so that d i m ~ =  19. From the exact 
sequence 

o Iy/IS-  Ix/I -   x(1) 0 

and from the fact that i* ( Ix / IS)  = (?p~ ( - 3 )  ~ Op~ ( - 4 )  for an embedding i of p1 as 
a twisted cubic, one sees that i * ( I r / I S ) = O p ~ ( - 8 ) .  Hence the exact sequence 
0 - ,  18 --> 111 --) I r /18  ~ 0 shows h o (Iy (2)) = h o (I~ (2)) = 1. Putting the things togeth- 
er, we see that 

dim 5~9 = 20. 
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