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Abstract. We prove that the moduli space of mathematical instanton bundles on P3 with
c2 = 5 is smooth.

Introduction

Instanton bundles were defined by Atiyah, Drinfeld, Hitchin and Manin [ADHM] in
order to construct all the self-dual solutions of the Yang–Mills equation over S4. A
mathematical instanton bundle E on P3 := P3(C) can be defined as the cohomology
bundle of a monad

O(−1)k −→ O2k+2 −→ O(1)k

on P3. This is equivalent to the condition that E is a stable bundle of rank 2 on P3

such that c1(E) = 0, c2(E) = k, and H1(E(−2)) = 0. If E is a mathematical instanton
bundle, then it is easy to check by using the Hirzebruch–Riemann–Roch Theorem that
h1(S2E) − h2(S2E) = 8k − 3. By deformation theory, h1(S2E) = dim(TEMI(k)) �
dimE MI(k) ≥ 8k − 3 and in case of equality, MI(k) is smooth at E. So 8k − 3 is the
expected dimension of the moduli space of mathematical instanton bundles MIP3(k) =
MI(k). It is not known if the moduli space MI(k) is a regular variety of pure dimension
8k − 3. It is evident in the case k = 1. In the cases 2 � k � 4 it was proved in [H], [ES]
and [LeP]. In [Ch] and later in [NT] it was proved that MI(k) is regular at bundles E
with h0(E(1)) �= 0. In [R2] (see also [S]) it was proved that MI(k) is regular at bundles
with a jumping line of maximal order. In this article we give a general proof of the
regularity of MI(k) for the cases 2 � k � 5.

Theorem 1. For 2 � k � 5 the moduli space MI(k) of mathematical instantons is a
regular variety of pure dimension 8k − 3.

Our result should be compared with [AO2] (see also [R1]), where it was proved that
the closure of MI(5) in the Maruyama scheme of vector bundles of rank 2 with c1 = 0,
c2 = 5 contains singular points. Our proof requires tools both from multilinear algebra
and algebraic geometry.
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An invariant theoretical description of MI(k)

Our first goal is to describe the moduli space MI(k) in terms of invariant theory. The
group SL2k+2 acts canonically on the space C2k+2. Let ω be a nondegenerated 2-form
on C2k+2 and Sp2k+2 the stabilizer of ω in the group SL2k+2. The 2-form ω defines
canonically the Sp2k+2-isomorphism C(2k+2)∗ � C2k+2. We have the canonical actions
of the group SL4 ×SLk ×Sp2k+2 on the spaces C4,C4∗,C2k+2,Ck, Ck∗,C4 ⊗Ck, . . ..

We have the canonical quadratic SL4 × SLk × Sp2k+2-morphism

γ : C4∗ ⊗ Ck∗ ⊗ C2k+2 −→ S2C4∗ ⊗ ∧2Ck∗.

γ(A) is the symmetrization in the two indices corresponding to C4∗ and the full con-
traction in the indices corresponding to C2k+2 of the tensor product A ⊗ A ⊗ ω. Also
consider the canonical bilinear SL4 × SLk × Sp2k+2-morphisms

β : C4∗ ⊗ Ck∗ ⊗ C2k+2 × C2k+2 −→ C4∗ ⊗ Ck∗

and
ε : C4∗ ⊗ Ck∗ ⊗ C2k+2 × C4 ⊗ Ck −→ C2k+2.

Consider the following conditions for an element A ∈ C4∗ ⊗ Ck∗ ⊗ C2k+2:
(E1) ε(A, f ⊗ b) �= 0 for all 0 �= f ∈ C4, 0 �= b ∈ Ck,
(E2) γ(A) = 0,
(E3) β(A, h) �= 0 for all 0 �= h ∈ C2k+2.

An element A ∈ C4∗ ⊗ Ck∗ ⊗ C2k+2 defines the sheaf morphism O2k+2 fA−→ O(1)k.
fA is the composition C2k+2 ⊗ O → H0(O(1)) ⊗ Ck∗ ⊗ O → Ck∗ ⊗ O(1), where
H0(O(1)) = C4∗, the left map is given by A, and the right map is the evaluation of
H0(O(1)) at points of P3. The morphism fA and the symplectic structure over O2k+2

define the sequence

O(−1)k f�
A−→ O2k+2 fA−→ O(1)k. (1)

The condition (E1) means that fA is surjective or that Ker fA is locally free. The
condition (E2) means that the above sequence is a complex. Therefore, (E1) and (E2)
together mean that (1) is a monad according to [BH]. The condition (E3) means
moreover that the cohomology bundle E of the monad is a stable vector bundle. It
is well known (see e.g., [AO1], Th. 2.8) that the conditions (E1) and (E2) imply (E3).
Set

Ii = {A ∈ C4∗ ⊗ Ck∗ ⊗ C2k+2 | the condition (Ei) holds for A},
I : = I1 ∩ I2 ∩ I3 = I1 ∩ I2,

and consider the canonical mapping π : I −→ I/G, where G = SLk ×Sp2k+2 ×C∗ and
I/G is the set of G-orbits in I.
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Remark 1. In [CO] it was proved that there exists a structure of an affine variety on
I/G such that the mapping π is the invariant-theoretical factorization. Moreover, the
factor I/G is the geometrical factor.

Lemma 2. For any A ∈ I we have

dim(Tπ(A)MI(k)) = dim(TAI) − 3k2 − 5k − 3.

Therefore, dim(Tπ(A)MI(k)) � 8k − 3 and

dim(Tπ(A)MI(k)) = 8k − 3 if and only if dim(TAI) = 3k2 + 13k.

This is a well known result (see [O], Pr. 1.4 for example). For the convenience of the
reader here is the sketch of the proof. Let K be the kernel of fA in (1). From (1) we
get the two sequences:

0 −→ ∧2(O(−1)k) −→ K(−1)k −→ S2K −→ S2E −→ 0

and
0 −→ S2K −→ S2(O2k+2) −→ O(1)k(2k+2) gA−→ ∧2(O(1)k) −→ 0.

From the first sequence it follows that h1(S2E) = h1(S2K) − k2.
From the second sequence it follows that h1(S2K) = dim ker(H0(gA))−(2k+3)(k+1).

Now observe that H0(gA) is dγ|A, hence ker(H0(gA)) can be identified with TAI and
this concludes the proof. �
Theorem 3. Suppose that E is an instanton bundle on P3 and H is a plane. Then
h0(E|H) � 1.

Proof. (Trautmann) From the sequence

0 −→ E(−2) −→ E(−1) −→ E|H(−1) −→ 0

we have H0(E|H(−1)) = 0. If s is any section of E|H , then its cokernel is the ideal sheaf
IZ of a 0-dimensional subscheme Z in H because if Z contains a divisorial component,
then H0(E|H(−1)) �= 0. Obviously, H0(IZ) = 0 hence s must span H0(E|H). �
Definition 1. W (E) = {H ∈ P3∗ | h0(E|H) �= 0} is called the variety (scheme) of
unstable planes of E. Its scheme structure is defined as the degeneracy locus of the
mapping

H1(E(−1)) ⊗O −→ H1(E) ⊗O(1)

over P3∗ (Theorem 3 shows that this map drops rank at most by one).

For an element A ∈ C4∗ ⊗ Ck∗ ⊗ C2k+2 define the subvariety

XA = {(f∗, b∗) ∈ P3∗ × Pk−1∗ | f∗ ⊗ b∗ ∈ Im(β(A, ·))}.

Lemma 4. Let q1 be the projection of P3∗ ×Pk−1∗ on P3∗. We have W (E) = q1(XA)
and the fiber of the projection XA −→ q1(XA) over H is isomorphic to P(H0(E|H)).
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Proof. We have H ∈ W (E) iff h0(K|H) �= 0, where K := Ker fA. We have H0(K|H) =
Ker(C2k+2 −→ (C4∗/f∗) ⊗ Ck∗), where the line f∗ = Cf∗ corresponds to H . Then
the existence of a nonzero α ∈ H0(K|H) is equivalent to β(A, α) = f∗ ⊗ b∗, where
(f∗, b∗) ∈ P3∗ × Pk−1∗ . �
Corollary 5. The morphism XA −→ q1(XA) is bijective, in particular dimXA =
dim q1(XA). �

Recall that special ’tHooft bundles are the instanton bundles such that h0(E(1)) = 2.
They can be defined through the Serre correspondence by k + 1 skew lines lying on a
smooth quadric surface [H]. We need the following special case of a theorem of J. Coanda
[Co].

Theorem 6. If E is an instanton bundle such that dimW (E) � 2, then E is a special
’t Hooft bundle and W (E) is a quadric surface. �

It is known [H] that special ’tHooft bundles are smooth points with expected local
dimension in the moduli space.

Corollary 7. If A0 ∈ I and dimXA0 � 2, then

dim(Tπ(A0)MI(k)) = 8k − 3. �

Lemma 8. Suppose A0 ∈ I and dim(TA0I) > 3k2 + 13k; then there exists 0 �= S0 ∈
S2C4 ⊗ ∧2Ck such that ξ(A0, S0) = 0, where

ξ : C4∗ ⊗ Ck∗ ⊗ C2k+2 × S2C4 ⊗ ∧2Ck −→ C4 ⊗ Ck ⊗ C2k+2

is the canonical bilinear SL4 × SLk × Sp2k+2-morphism.

Proof. From dim(TA0I) > 3k2+13k it follows that the differential dγ|A0 is nonsurjective.
The differential dγ|A0 is nonsurjective iff (dγ|A0)∗ is noninjective, i.e., (dγ|A0)∗(S0) = 0
for some 0 �= S0 ∈ S2C4 ⊗ ∧2Ck. It can be easily checked that

(dγ|A)∗(S) ≡ 2ξ(A, S).

Hence, dim(TA0I) > 3k2 + 13k implies that ξ(A0, S0) = 0 for some element 0 �= S0 ∈
S2C4 ⊗ ∧2Ck. �

For the convenience of the reader we give a cohomological interpretation of Lemma 8.
Let E0 be the instanton bundle defined by A0 ∈ I as the cohomology bundle of monad
(1). By Lemma 2 and deformation theory the assumption that dim(TA0I) > 3k2 + 13k
is equivalent to h1(S2E0) = dim(Tπ(A0)MI(k)) > 8k − 3. Therefore, the assumption of
Lemma 8 is equivalent to H2(S2E0) �= 0. The second symmetric power of the left-hand
side of (1) gives H2(S2E0) � H2(S2(Ker fA0)). The second symmetric power of the
right hand side of (1) gives

H2(S2(Ker fA0)) � Coker
[
H0(O(1)) ⊗ Ck∗ ⊗ C2k+2∗ Φ−→ H0(O(2)) ⊗ ∧2(Ck∗)

]
.

Lemma 8 follows because the dual of Φ can be identified with ξ(A0, ·).
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Algebraic lemmas

In this section we prove some algebraic lemmas which we use in the proof of our main
result.

Lemma 9. Suppose R is a nonzero block-matrix:

R =
[
R1

R2

]
,

where Ri is a skew-symmetric matrix of size k × k; then there exists a column v0 of
height k such that

Rv0 =
[
λ1u0

λ2u0

]
�= 0

for some column u0 of height k, λ1, λ2 ∈ C.

Proof. Suppose that det(R1) �= 0. In this case set v0 ∈ Ker(R2 − μ0R
1), where μ0 is a

root of the equation det(R2 − μR1) = 0.
Suppose that det(R1) = 0. One can assume that

R1 =
[
R1

11 0
0 0

]
, R2 =

[
R2

11 R2
12

R2
21 R2

22

]
,

where R1
11 is a skew-symmetric matrix of size k′ × k′, k′ < k, det(R1

11) �= 0 and R2
11 is

a skew-symmetric matrix of size k′ × k′. If R2
12 �= 0 or R2

22 �= 0, then we set v0 =
[

0
v′0

]
for some v′0 such that R2

12v
′
0 �= 0 or R2

22v
′
0 �= 0. If R2

12 = 0 and R2
22 = 0, then R2

21 = 0

and we set v0 =
[
v′0
0

]
, where

[
R1

11

R2
11

]
v′0 =

[
λ1u

′
0

λ2u
′
0

]
�= 0. �

Consider the linear spaces C4 and Ck. Let f1, . . . , f4 be the standard basis of C4 and
let f∗

1 , . . . , f∗
4 be the dual basis of the dual space C4∗. Let b1, . . . , bk be the standard

basis of Ck and let b∗1, . . . , b∗k be the dual basis of the dual space Ck∗. The group SL4 acts
canonically on the space C4 and the group SLk acts canonically on the space Ck. So the
actions of the group SL4×SLk are defined on the spaces C4,C4∗,Ck,Ck∗,C4⊗Ck, . . ..

Consider the linear space S2C4 ⊗ ∧2Ck. For an element S ∈ S2C4 ⊗ ∧2Ck define

rk(S) = dim(Im(ρ(S, ·))),

where
ρ : S2C4 ⊗ ∧2Ck × C4∗ ⊗ Ck∗ −→ C4 ⊗ Ck

is the canonical bilinear SL4 × SLk-morphism. Note that rk(S) is an even number.

Lemma 10. Suppose 2 � k � 5 and consider S ∈ S2C4 ⊗∧2Ck such that 2 � rk(S) �
2k − 2. Then one of the following conditions holds:
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(1) ρ(S, B∗0) = f0 ⊗ b0 �= 0 for some B∗0 ∈ C4∗ ⊗ Ck∗, f0 ∈ C4, b0 ∈ Ck.
(2) rk(S) = 6 and there exists 0 �= f∗0 ∈ C4∗ such that ρ(S, f∗0 ⊗ b∗) = 0 for all

b∗ ∈ Ck∗.
(3) rk(S) = 8 and dim(ZS) � 2, where

ZS = {(f∗, b∗) ∈ P3∗ × Pk−1∗ | ρ(S, f∗ ⊗ b∗) = 0},
P3∗ = PC4∗,Pk−1∗ = PCk∗.

Proof. Consider the coordinate expression of S in the bases {fi} and {bi}:

S = σij
lpflfp ⊗ bi ∧ bj.

We get a block matrix σ defined by

σ = (σij)1�i,j�k =

⎡⎢⎢⎢⎣
0 σ12 . . . σ1k

σ21 0 . . . σ2k

...
...

. . .
...

σk1 σk2 . . . 0

⎤⎥⎥⎥⎦ ,

where σij = (σij
lp)1�l,p�4 is a symmetric matrix of size 4 × 4, σij = −σji.

Rewrite the coordinate expression of S as

S = σ̂ij
lpfifj ⊗ bl ∧ bp.

Then we get a second block matrix σ̂ defined by

σ̂ = (σ̂ij)1�i,j�4 =

⎡⎢⎢⎣
σ̂11 σ̂12 σ̂13 σ̂14

σ̂21 σ̂22 σ̂23 σ̂24

σ̂31 σ̂32 σ̂33 σ̂34

σ̂41 σ̂42 σ̂43 σ̂44

⎤⎥⎥⎦ ,

where σ̂ij = (σ̂ij
lp)1�l,p�k is a skew-symmetric matrix of size k × k, σ̂ij = σ̂ji. Let r be

the maximal rank of full contractions of S ⊗ b∗ ⊗ b′∗ over all b∗, b′∗ ∈ Ck∗. Transform
the basis {bi} and obtain

r = rk(σ12). (2)

We have
2k − 2 � rk(S) = rk(σ) = rk(σ̂) � 2 rk(σ12) = 2r.

Therefore one of the following cases holds:

(a) r = 1 or 2,
(b) r = 3, rk(σ) = 6, and k � 4,
(c) r = 4, rk(σ) = 8, and k = 5,
(d) r = 3, rk(σ) = 8, and k = 5.
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Transform the basis {fi} and obtain

σ12
lp =

{
1 if 1 � l = p � r,

0 if l �= p or l = p > r.
(3)

From (2) it follows that σij
lp = 0 for l, p > r, whence

σ̂ij = 0 for i, j > r. (4)

(a) Consider the case (a).
In this case we prove that the condition (1) holds, i.e., we prove that there exists a

column f0 of height 4 and columns b0, B∗01, . . . , B∗04 of height k such that

σ̂

⎡⎢⎣B∗01
...

B∗04

⎤⎥⎦ =

⎡⎢⎣f0
1 b0

...
f0
4 b0

⎤⎥⎦ �= 0.

Suppose that σ̂ij �= 0 for some 1 � i � 2 and 3 � j � 4. In this case we set B∗0k = 0
for all k �= j and choose B∗0j by using (4) and Lemma 9.

Suppose that σ̂ij = 0 for all 1 � i � 2 and 3 � j � 4. We have σ̂lp �= 0 for some
1 � l � 2 and 1 � p � 2. In this case we set B∗0k = 0 for all k �= p and choose B∗0p by
using (4) and Lemma 9.

(b) Consider the case (b).
In this case we prove that the condition (2) holds, i.e. we prove that there exists a

column f∗0 of height 4 such that

σ

⎡⎢⎣b∗1f∗0
...

b∗kf∗0

⎤⎥⎦ = 0 (5)

for any column b∗ of height k.
From the condition rk(σ) = 6 and 2 it follows that

σij =

⎡⎢⎢⎣
σij

11 σij
12 σij

13 0
σij

21 σij
22 σij

23 0
σij

31 σij
32 σij

33 0
0 0 0 0

⎤⎥⎥⎦ .

From this, for

f∗0 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦
it easily follows (5).
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(c) Consider the case (c).
In this case we prove that the condition (3) holds. We have

ZS =
{
(f∗, b∗) = (

⎡⎢⎣f∗
1
...

f∗
4

⎤⎥⎦,

⎡⎢⎣b∗1
...
b∗5

⎤⎥⎦) | σ

⎡⎢⎣b∗1f
∗

...
b∗5f∗

⎤⎥⎦ = 0
}
.

Consider the matrix

σ̃ =
[

0 E4 σ13 σ14 σ15

−E4 0 σ23 σ24 σ25

]
,

where E4 is the identity matrix of size 4 × 4. The 8 rows of the matrix σ̃ are the first
8 rows of the matrix σ. Since rk(σ) = 8 = rk(σ̃) and for a matrix P of size 20 × p we
have:

σP = 0 iff σ̃P = 0. (6)

For 3 � i � 5 consider the following matrix Pi of size 20 × 4:

Pi =

⎡⎢⎢⎢⎢⎣
−σ2i

σ1i

Pi3

Pi4

Pi5

⎤⎥⎥⎥⎥⎦ ,

where Pii = −E4 and Pij = 0 for j �= i. We see that σ̃ · Pi = 0.
From (6) it follows that σ · Pi = 0 or

σji = σ1jσ2i − σ2jσ1i, 3 � j � 5.

From this we obtain

0 = σji + σij = σ1jσ2i − σ2jσ1i + σ1iσ2j − σ2iσ1j

= [σ1j , σ2i] + [σ1i, σ2j ], 3 � i, j � 5.

One can rewrite these equations into the following compact form:

[t1σ13 + t2σ
14 + t3σ

15, t1σ
23 + t2σ

24 + t3σ
25] = 0 (7)

for all t1, t2, t3 ∈ C.

Claim 11. For every (b∗3, b
∗
4, b

∗
5) �= (0, 0, 0) there exists (b∗1, b

∗
2) and a nonzero column

f∗ of height 4 such that

σ

⎡⎢⎣b∗1f
∗

...
b∗5f∗

⎤⎥⎦ = 0.
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Proof of Claim 11. From (7) it follows that the symmetric matrices

b∗3σ
13 + b∗4σ

14 + b∗5σ
15, b∗3σ

23 + b∗4σ
24 + b∗5σ

25

commute. Therefore they have a common eigenvector f∗ with the eigenvalues −b∗2, b∗1,
respectively. We have

σ̃

⎡⎢⎣b∗1f∗
...

b∗5f
∗

⎤⎥⎦ = 0

and from this and (6) Claim 11 follows. �
From Claim 11 it follows that dim(ZS) � 2.

(d) Consider the case (d).
In this case we prove that the condition (3) holds, i.e., we prove that dim(ZS) � 2.

Claim 12. Suppose N ⊂ PC5∗ is a line in general position; then there exists 0 �= f∗0 ∈
C4∗, 0 �= b∗0 ∈ N such that ρ(S, f∗0 ⊗ b∗0) = 0.

Proof of Claim 12. One can assume that N = 〈b∗1, b∗2〉, where b∗i are basic vectors of
C5∗. We have to prove that there exists a column f∗0 of height 4 and λ1, λ2 ∈ C,
(λ1, λ2) �= (0, 0) such that

σ

⎡⎢⎢⎢⎢⎣
λ1f

∗0

λ2f
∗0

0
0
0

⎤⎥⎥⎥⎥⎦ = 0. (8)

Consider the 4th and 8th rows of the matrix σ:

row4(σ) = (0, . . . , 0, σ13
41 , σ

13
42 , . . . , σ

15
43 , σ

15
44),

row8(σ) = (0, . . . , 0, σ23
41 , σ

23
42 , . . . , σ

25
43 , σ

25
44).

We want to show that row4(σ) and row8(σ) are linearly dependent. Suppose that
row4(σ) and row8(σ) are linearly independent. Then the first 8 rows of the matrix
σ are linearly independent. Since rk(σ) = 8, we see that every row of σ is a linear
combination of the first 8 rows. From row4(σ) �= 0 it follows that σ1i

4j �= 0 for some
3 � i � 5, 1 � j � 4. Since σi1

j4 = −σ1i
4j �= 0, we see that the (4(i − 1) + j)th row

row4(i−1)+j(σ) = (σi1
j1, σ

i1
j2, σ

i1
j3, σ

i1
j4, σ

i2
j1, σ

i2
j2, σ

i2
j3, σ

i2
j4, . . . )

of the matrix σ is not a linear combination of the first 8 rows. This contradiction proves
that row4(σ) and row8(σ) are linearly dependent.

Finally, to obtain (8) we take

f∗0 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ ,

and λ1, λ2 such that (λ1, λ2) �= (0, 0) and λ1row4(σ) + λ2row8(σ) = 0. �
From Claim 12 it follows that dim(ZS) � 3 > 2. �
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The proof of Theorem 1

We suppose that there exists A0 ∈ I such that dim(Tπ(A0)MI(k)) > 8k − 3 and
obtain a contradiction.

From Corollary 7 it follows that

dim(XA0) � 1 (9)

and by Lemma 2 we have dim(TA0I) > 3k2 + 13k. Hence, by Lemma 8 there exists
0 �= S0 ∈ S2C4 ⊗ ∧2Ck such that

ξ(A0, S0) = 0. (10)

Claim 13. (1) Consider the following composition of linear mappings

ρ(S0, ·) ◦ β(A0, ·) : C2k+2 −→ C4 ⊗ Ck, h �→ ρ(S0, β(A0, h)).

Then we have ρ(S0, ·) ◦ β(A0, ·) = 0. (2) Consider the following composition of linear
mappings

ε(A0, ·) ◦ ρ(S0, ·) : C4∗ ⊗ Ck∗ −→ C2k+2, B∗ �→ ε(A0, ρ(S0, B∗)).

Then we have ε(A0, ·) ◦ ρ(S0, ·)) = 0.

Proof of Claim 13. Consider the following nontrivial trilinear SL4×SLk×Sp2k+2-mor-
phism:

τ : C4∗ ⊗ Ck∗ ⊗ C2k+2 × S2C4 ⊗ ∧2Ck × C2k+2 −→ C4 ⊗ Ck,

(A, S, h) �→ κ(ξ(A, S), h),

where
κ : C4∗ ⊗ Ck∗ ⊗ C2k+2 × C2k+2 −→ C4 ⊗ Ck

is the canonical bilinear SL4 × SLk × Sp2k+2-morphism. Note that

τ(A0, S0, h) = κ(ξ(A0, S0), h) ≡ 0. (11)

The SL4 × SLk × Sp2k+2-module

(C4∗ ⊗ Ck∗ ⊗ C2k+2) ⊗ (S2C4 ⊗ ∧2Ck) ⊗ C2k+2

contains the irreducible SL4 × SLk × Sp2k+2-module C4 ⊗ Ck with multiplicity 1.
Therefore, there exists a unique, up to a scalar factor, nontrivial trilinear SL4 ×SLk ×
Sp2k+2-morphism

C4∗ ⊗ Ck∗ ⊗ C2k+2 × (S2C4 ⊗ ∧2Ck) × C2k+2 −→ C4 ⊗ Ck.

Therefore,
(ρ(S, ·) ◦ β(A, ·))(h) ≡ c1τ(A, S, h) (12)
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for some c1 ∈ C and
(ε(A, ·) ◦ ρ(S, ·))∗(h) ≡ c2τ(A, S, h) (13)

for some c2 ∈ C.
From (12) and (11) we have

(ρ(S0, ·) ◦ β(A0, ·))(h) = c1τ(A0, S0, h) ≡ 0.

This gives us statement (1). From (13) and (11) we have

(ε(A0, ·) ◦ ρ(S0, ·))∗(h) = c2τ(A0, S0, h) ≡ 0.

From this statement (2) follows. �

From Claim 13 (1) we have

Im(β(A0, ·)) ⊂ Ker(ρ(S0, ·)). (14)

On the other hand, by (E3) we have rk(β(A0, ·)) = 2k + 2 and with (14) this gives us

rk(ρ(S0, ·)) � 2k − 2. (15)

From (15) it follows that one of the conditions (1)–(3) of Lemma 10 holds for S = S0.

I. Consider the case when the condition (1) of Lemma 10 holds for S = S0.
By the condition (1) of Lemma 10 there exists B∗0 ∈ C4∗⊗Ck∗ such that ρ(S0, B∗0) =

f0 ⊗ b0 �= 0. Thus, we have ε(A0, f0 ⊗ b0) = ε(A0, ρ(S0, B∗0)) = 0 by Claim 13 (2) and,
therefore, A0 /∈ I1. But this contradicts to A0 ∈ I.

II. Consider the case when the condition (2) of Lemma 10 holds for S = S0.
From (15) it follows that k = 4 or k = 5. By the condition (2) of Lemma 10 we have

{f∗0} × Ck∗ ⊂ Ker(ρ(S0, ·)). On the other hand, we have (14) and

dim(Ker(ρ(S0, ·))) − dim(Im(β(A0, ·))) =

{
0 if k = 4,

2 if k = 5.

Therefore, Im(β(A0, ·) ⊃ {f∗0} × M for some linear subspace M ⊂ Ck∗ of dimension
� 3. But this contradicts (9).

III. Consider the case when the condition (3) of Lemma 10 holds for S = S0.
From (15) it follows that k = 5. Thus,

dim(Im(β(A0, ·))) = 12 = dim(Ker(ρ(S0, ·)))

and from this together with (14) it follows that Im(β(A0, ·)) = Ker(ρ(S0, ·)). Therefore,
XA0 = ZS0 . From this and the condition (3) of Lemma 10 we obtain dim(XA0) =
dim(ZS0) � 2. But this again contradicts (9).
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