The Theorem of Mather on Generic Projections for Singular Varieties

A. ALZATI, ${ }^{1}$ E. BALLICO ${ }^{2}$ AND G. OTTAVIANI ${ }^{3}$
${ }^{1}$ Dip. di Matematica Univ. di Milano, via C. Saldini 50 20133-Milano, Italy. e-mail: alzati@mat.unimi.it
${ }^{2}$ Dip. di Matematica Univ. di Trento, via Sommarive 14 38050-Povo Trento, Italy. e-mail: ballico@science.unitn.it
${ }^{3}$ Dip di Matematica Univ. di Firenze, viale Morgagni 67/ A 50134-Firenze, Italy. e-mail: ottavian@udini.math.unifi.it

(Received: 26 May 1999; in final form: 20 June 2000)
Communicated by K. Strambach

Abstract

The theorem of Mather on generic projections of smooth algebraic varieties is also proved for the singular ones.

Mathematics Subject Classification (2000). primary 32C40; secondary 14B05, 14N05.

Key words. jet spaces, generic projections.

1. Introduction

In [1], a self-contained proof appeared of the following transversality theorem of Mather on generic projections (see [2]) in the setting of algebraic geometry:

THEOREM 1.1. Let X be a smooth subvariety of codimension c of the complex projective space \mathbf{P}^{n}. Let T be any linear subspace of \mathbf{P}^{n} of dimension t such that $T \cap X=\emptyset$ (so $t \leqslant c-1$). For any $i_{1} \leqslant t+1$ let $X_{i_{1}}=\{x \in X \mid \operatorname{dim}$ $\left.\left[(T X)_{x} \cap T\right]=i_{1}-1\right\}$ (the dimension of \emptyset is -1). When $X_{i_{1}}$ is smooth, for any $i_{2} \leqslant i_{1}$ define $X_{i_{1}, i_{2}}=\left\{x \in X_{i_{1} \mid} \mid \operatorname{dim}\left[\left(T X_{i_{1}}\right)_{x} \cap T\right]=i_{2}-1\right\}$ and so on; for $i_{k} \leqslant \ldots i_{2} \leqslant i_{1}$ define (when possible) $X_{i_{1}}, \ldots, i_{k}$. For T in a Zariski open set of the Grassmannian $\operatorname{Gr}\left(\mathbf{P}^{t}, \mathbf{P}^{t}\right)$, each $X_{i_{1}}, \ldots, i_{k}$ is smooth (and so the above definitions are possible) until (increasing k) it becomes empty and its codimension v_{I} in X can be calculated (where $I=\left(i_{1}, i_{2} \ldots, i_{k}\right)$).

We refer to [1] for the calculation of v_{I} and for comments and remarks about the theorem.
This theorem was stated for smooth subvarieties of \mathbf{P}^{n} but the same proof can also be used for the smooth open set X of a singular algebraic variety Y except for the crucial th. 3.15, (p. 409 of [1]), in which the compactness of X is needed.

In this short note we want to replace the proof in [1] with a little longer proof which also works in the case under examination. We obtain the following theorem:

THEOREM 1.2. Theorem 1.1 still holds if X is replaced with the smooth open subvariety of a possibly singular projective variety Y.

2. Background

Let Y be a singular algebraic subvariety of the n-dimensional projective space \mathbf{P}^{n} over the complex numbers. Let X be the smooth open set of Y. First of all we outline the proof of Mather's theorem given in [1] and we introduce some notation.

Fix an integer t with $0 \leqslant t \leqslant c-1$. Let L be a $(n-t-1)$-dimensional linear subspace of \mathbf{P}^{n}.
Let $F=\left\{\mathbf{P}^{t} \in \operatorname{Gr}\left(\mathbf{P}^{t}, \mathbf{P}^{n}\right) \mid \mathbf{P}^{t} \cap X=\emptyset\right.$ and $\left.\mathbf{P}^{t} \cap L=\emptyset\right\}$. For any $f \in F$ let $p_{f}: X \rightarrow L$ be the linear projection centered in f and let $j^{k} p_{f}$ be its k-jet $\left(j^{k} p_{f}: X \rightarrow J^{k}(X, L)\right.$ sends every $x \in X$ into the k-jet of p_{f} in x, see [1] for the definition of $J^{k}(X, L)$). Let $I=\left(i_{1}, i_{2} \cdots, i_{k}\right)$ be any sequence of integers with $\left(i_{1} \geqslant i_{2} \cdots \geqslant i_{k} \geqslant 0\right)$.

Let $g: X \times F \rightarrow J^{k}(X, L)$ be given by: $g(x, f)=\left(j^{k} p_{f}\right)_{x}$.
The proof of Mather's theorem is divided into two steps:
(1) define in $J^{k}(X, L)$ some submanifolds Σ^{I} with the property that $j^{k} p_{f}^{-1}\left(\Sigma^{I}\right)=X_{I}$ (when X_{I} are defined), this definition is not trivial and it is due to Boardman: Σ^{I} are the so-called Thom-Boardman singularities, they are smooth, locally closed and of codimension v_{I};
(2) show that there exists a Zariski open set $U \in F$ such that for any $f \in U$, $j^{k} p_{f}: X \rightarrow J^{k}(X, L)$ is transversal to Σ^{I}.

The proof of step (1) runs exactly as in [1].
To prove step (2) first we remark (see [1], prop. 3.13) that for any smooth subvariety $W \subset J^{k}(X, L)$ there exists a Zariski open set $U \in F$ such that for any $f \in U, j^{k} p_{f}: X \rightarrow J^{k}(X, L)$ is transversal to W if g is transversal to W. Second, we give the following definition: let $\varphi: X \rightarrow J^{k}(X, L)$ be a holomorphic map and let $W \subset J^{k}(X, L)$ be a smooth subvariety, then define:

$$
\delta(\varphi, W, x)=0 \quad \text { if } \varphi(x) \notin W
$$

$\delta(\varphi, W, x)=\operatorname{dim}\left[J^{k}(X, L)\right]-\operatorname{dim}\left[T W_{\varphi(x)}+\mathrm{d} \varphi(T X)_{x}\right]$, if $\varphi(x) \in W$, where $T W$ and $T X$ are the tangent spaces and d stands for the usual differential.

Note that $\delta(\varphi, W, x) \geqslant 0$ and that φ is transversal to W at x if and only if $\delta(\varphi, W, x)=0$.

As in [1], th. 3.10 and 3.11 , it can be shown that for $W=\Sigma^{I} \subset J^{k}(X, L)$ the following condition $(*)$ is satisfied:
$(*) \quad \delta(g, W,(x, f)) \leqslant \delta\left(j^{k} p_{f}, W, x\right)$ for any $(x, f) \in X \times F$ and equality holds if and only if $\delta\left(j^{k} p_{f}, W, x\right)=0$.

Therefore to prove step (2) all that we need is the following:
THEOREM 2.1. With the previous notation, assume that condition (*) is satisfied for some smooth subvariety $W \subset J^{k}(X, L)$; then there exists a Zariski open set $U \in F$ such that for any $f \in U, j^{k} p_{f}: X \rightarrow J^{k}(X, L)$ is transversal to W.

The proof of this theorem (th. 3.15 in [1]) must be rewritten in our case. In Section 3 we will give this proof and so we will also prove Theorem 1.2.

3. Proof of Theorem 2.1

Let us define $\delta_{g}=\operatorname{Sup}_{(x, f) \in X \times F}\{\delta(g, W,(x, f))\}$; moreover, let us define $A=\left\{(x, f) \in X \times F \mid \delta(g, W,(x, f))=\delta_{g}\right\} \subset X \times F, A$ is a Zariski closed set in $X \times F$. Note that Theorem 2.1 is true if $\delta_{g}=0$ (see th. 3.13 in [1]), so we can assume $\delta_{g} \neq 0$ and $A \neq \emptyset$.

Let $\pi_{2}: X \times F \rightarrow F$ be the natural projection. $X \times F$ is equipped with the induced Zariski topology from $Y \times F$. Let \bar{A} be the Zariski closure of A in $Y \times F$; let $\pi_{3}: Y \times F \rightarrow F$ be the natural projection, $\pi_{3}(\bar{A})$ is a Zariski closed set of F. If $\pi_{3}(\bar{A})$ is a proper subset of F, we can consider $F^{\prime}=F \backslash \pi_{3}(\bar{A})$ and $g^{\prime}=g_{\mid X \times F^{\prime}}$. The assumptions of the theorem are true for F^{\prime} and g^{\prime} and $\delta_{g^{\prime}}<\delta_{g}$. If the corresponding $\pi_{3}(\bar{A})$ were a proper subset of F^{\prime}, we would get $F^{\prime \prime}$ and $g^{\prime \prime}$ and so on. After a finite number of steps, we would get F^{\prime} and g^{\prime}, for which the assumptions would be still true, with $\delta_{g^{\prime}}=0$, so the theorem would be proved.
Hence, we have only to prove that $\pi_{3}(\bar{A})$ is a proper subset of F.
By contradiction, let us assume that $\pi_{3}(\bar{A})=F$, then $F=\overline{\pi_{2}(A)}$.
We can choose $\left(x_{0}, f_{0}\right) \in A$ and $z_{0}=\left(j^{k} g\right)_{\left(x_{0}, f_{0}\right)} \in W$. As $\delta\left(g, W,\left(x_{0}, f_{0}\right)\right)$ is strictly positive, by assumption we get that $\delta\left(j^{k} p_{f_{0}}, W, x_{0}\right)$ is strictly positive too, hence $j^{k} p_{f_{0}}$ is not transversal to W at x_{0}.
W is smooth at x_{0} so it is a local complete intersection, then it is possible (see [1], proof of th. 3.15) to get a smooth subvariety $W^{\prime} \subset J^{k}(X, L)$ and a smooth dense open Zariski set $Z \subset X \times F$ such that: $W \subseteq W^{\prime}, \operatorname{dim}\left(W^{\prime}\right)-\operatorname{dim}(W)=\delta_{g}, g$ is transversal to W^{\prime} at (x, f) for any $(x, f) \in Z$.

The holomorphic map $g_{\mid Z}: Z \rightarrow J^{k}(X, L)$ is transversal to W^{\prime} so that $g_{\mid Z}^{-1}\left(W^{\prime}\right)=g^{-1}\left(W^{\prime}\right) \cap Z$ is smooth in $X \times F$.

Let us consider

$$
\pi=\pi_{2_{\mathrm{g}^{-1}\left(W^{\prime}\right) \cap \mathrm{z}}}=\pi_{3_{\mid g^{-1}\left(W^{\prime}\right) \cap \mathrm{z}}}: g^{-1}\left(W^{\prime}\right) \cap Z \rightarrow F .
$$

It is easy to see that
(1) $\overline{\pi_{2}(A \cap Z)}=F$.

Hence $F=\overline{\pi_{2}(Z)}$. Moreover $F=\overline{\pi_{2}\left(g^{-1}\left(W^{\prime}\right)\right)}$, otherwise there would exist a Zariski open set $B \subset F$ such that $B \cap \pi_{2}\left(g^{-1}\left(W^{\prime}\right)\right)=\emptyset$, hence for any $f \in B$ and
for any $x \in X,(x, f) \notin g^{-1}\left(W^{\prime}\right)$, i.e. $g(x, f) \notin W^{\prime}$, i.e. $g(x, f) \notin W$, i.e. for any $f \in B$ and for any $x \in X, \delta(g, W,(x, f))=0$ and the theorem would be immediately proved (see th. 3.13 of [1]).

It follows:

$$
\overline{\pi_{2}\left(g^{-1}\left(W^{\prime}\right) \cap Z\right)} \subseteq \overline{\pi_{2}\left(g^{-1}\left(W^{\prime}\right)\right) \cap \pi_{2}(Z)} \subseteq \overline{\pi_{2}\left(g^{-1}\left(W^{\prime}\right)\right)} \cap \overline{\pi_{2}(Z)}=F
$$

therefore:

$$
\begin{equation*}
\overline{\pi\left(g^{-1}\left(W^{\prime}\right) \cap Z\right)}=F . \tag{2}
\end{equation*}
$$

Now we consider the holomorphic map $\pi: g^{-1}\left(W^{\prime}\right) \cap Z \rightarrow F$ between smooth manifolds, as (2) holds there exists a Zariski open set $D \subset F$ such that for any $f \in D \pi^{-1}(f)$ is smooth and of the expected codimension.

By (1) $\left[\pi_{2}(A \cap Z)\right] \cap D \neq \emptyset$, then we can choose $f_{1} \in\left[\pi_{2}(A \cap Z)\right] \cap D$ such that $\pi^{-1}\left(f_{1}\right)$ is smooth, of the expected codimension and biholomorphic to a Zariski open set of $\left(j^{k} p_{f_{1}}\right)^{-1}\left(W^{\prime}\right) \subset X$. We can also choose $x_{1} \in X$ such that $\left(j^{k} p_{f_{1}}\right)^{-1}\left(W^{\prime}\right)$ is smooth, of the expected codimension and smooth at x_{1}. This fact implies that $j^{k} p_{f_{1}}$ is transversal to W^{\prime} at x_{1}, (see [1], th. 1.2), i.e. $\delta\left(j^{k} p_{f_{1}}, W^{\prime}, x_{1}\right)=0$.

On the other hand $f_{1} \in \pi_{2}(A \cap Z)$, hence it is possible to choose $x_{1} \in X$ such that $\left(x_{1}, f_{1}\right) \in A$, i.e. $\delta\left(g, W,\left(x_{1}, f_{1}\right)\right)=\delta_{g}$.

Let $z_{1}=\left(j^{k} p_{f_{1}}\right)_{x_{1}}$ then:

$$
\begin{aligned}
& \delta\left(j^{k} p_{f_{1}}, W^{\prime}, x_{1}\right)=\operatorname{dim}\left[J^{k}(X, L)\right]-\operatorname{dim}\left[\left(T W^{\prime}\right)_{z_{1}}+d j^{k} p_{f_{1}}(T X)_{x_{1}}\right] \\
& \delta\left(j^{k} p_{f_{1}}, W, x_{1}\right)=\operatorname{dim}\left[J^{k}(X, L)\right]-\operatorname{dim}\left[(T W)_{z_{1}}+d j^{k} p_{f_{1}}(T X)_{x_{1}}\right]
\end{aligned}
$$

and

$$
0=\delta\left(j^{k} p_{f_{1}}, W^{\prime}, x_{1}\right) \geqslant \delta\left(j^{k} p_{f_{1}}, W, x_{1}\right)-\delta_{g}
$$

But assumption $(*)$ and the fact that $\left(x_{1}, f_{1}\right) \in A$ imply:

$$
0 \geqslant \delta\left(j^{k} p_{f_{1}}, W, x_{1}\right)-\delta_{g}>\delta\left(g, W,\left(x_{1}, f_{1}\right)\right)-\delta_{g}=\delta_{g}-\delta_{g}=0
$$

a contradiction!

4. Cones

In this brief section we want to remark that when Y is a cone, it is possible to use Mather's theorem (1.1). For instance, let us assume that Y is a cone in \mathbf{P}^{n} of vertex V on a smooth subvariety B of \mathbf{P}^{n} whose span is \mathbf{P}^{s} with $\operatorname{dim}(Y)=\gamma=b+v+1, \operatorname{dim}(B)=b, \operatorname{dim}(V)=v, n=s+v+1$.

Let T be a generic t-dimensional subspace of \mathbf{P}^{n} with: $T \cap Y=\emptyset, t \leqslant \gamma-1$, $\gamma \geqslant(t+1)(n-\gamma)$. Let $Y_{t+1}=\left\{y \in Y \mid y\right.$ is a smooth point, $\left.(T Y)_{y} \supset T\right\}$.

If Y were smooth Mather's theorem (1.1) would say that, for generic T, Y_{t+1} is a smooth subvariety of Y and $\operatorname{dim}\left(Y_{t+1}\right)=\gamma-(t+1)(n-\gamma)$, in our case we have:

PROPOSITION. The closure of Y_{t+1} is a cone of dimension $\gamma-(t+1)(n-\gamma)$ with vertex V over a smooth variety.

As Y is a cone we remark that $t \leqslant s-1(t \leqslant n-\gamma-1=s-b-1)$, hence there exists a linear subspace $H \simeq \mathbf{P}^{s}$ in \mathbf{P}^{n} such that $H \supset T$ and $H \cap V=\emptyset$. We can assume that $B=H \cap Y$ and we can apply Theorem 1.1 to \mathbf{P}^{s}, T and B as B is smooth, $T \cap B=\emptyset$ and T is generic in \mathbf{P}^{s} with respect to B. If $t \leqslant b-1$ and $b \geqslant(t+1)(s-b)$ (for instance when $t=0$ and $2 b \geqslant s$) then $B_{t+1}=\left\{y \in B \mid(T B)_{y} \supset T\right\}$ is a smooth subvariety of B and $\operatorname{dim}\left(B_{t+1}\right)=b-(t+1)(s-b)$. On the other hand, $(T B)_{y} \supset T$ if and only if $(T Y)_{y} \supset T$ as $(T Y)_{y}=\left\langle V,(T B)_{y}\right\rangle$ i.e. $(T B)_{y}=(T Y)_{y} \cap H$, hence $Y_{t+1} \cap H=B_{t+1}$ and the closure in Y of Y_{t+1} is another cone of vertex V over B_{t+1}. This cone has dimension $b-(t+1)(s-b)+v+1=\gamma-(t+1)(n-\gamma)$ which is exactly the expected dimension when Y is smooth.

Acknowledgements

All authors are members of Italian GNSAGA. Work supported by Murst funds.

References

1. Alzati, A. and Ottaviani, G.: The theorem of Mather on generic projections in the setting of algebraic geometry, Manuscripta Math. 74 (1992) 391-412.
2. Mather, J. N.: Generic projections, Ann. of Math. 98 (1973), 226-245.
