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synopsis

introduction, motivation, historical background

Minkowski sums, products, roots, implicitly-defined sets
connections 1. complex interval arithmetic, planar shape operators
bipolar coordinates and geometry of Cartesian ovals

connections 2. anticaustics in geometrical optics

Minkowski products — logarithmic Gauss map, curvature, convexity
implicitly-defined sets (inclusion relations) & solution of equations

connections 3. stability of linear dynamic systems —
Hurwitz & Kharitonov theorems, I'-stability



geometric algebras in RY

algebras of points

e N =1:real numbers N = 2 : complex numbers
e N > 4: quaternions, octonions, Grassmann & Clifford algebras

e elements are finitely-describable, closed under arithmetic operations

algebras of point sets

e real interval arithmetic (finite descriptions, exhibit closure)

e Minkowski algebra of complex sets (closure impossible for any
family of finitely-describable sets)

e must relinquish distributive law for algebra of sets
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selection of PH quintic Hermite interpolants

N
G-

D = {z| Re(z) > |Im(z)| & |z| <3}

showthat D®D = {f(zg,22) | zo,z2 € D} C D

where f(zo,2,) = 2 [zo — 325+ /120 — 15(22 + 22) + 10202> }
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Wessel’s algebra of line segments

sums of directed line segments

Two right lines are added if we unite them in such a way that the second
line begins where the first one ends, and then pass a right line from the
first to the last point of the united lines.

products of directed line segments

As regards length, the product shall be to one factor as the other factor is
to the unit. As regards direction, it shall diverge from the one factor as
many degrees, and on the same side, as the other factor diverges from
the unit, so that the direction angle of the product is the sum of the
direction angles of the factors.

= directed line segments identified with complex nhumbers



sad fate of Caspar Wessel, Norwegian surveyor

moral #1: don’t expect mathematicians to pay any attention
to your work if you're just a humble surveyor

moral #2: don’t expect anyone to read your scientific papers
iIf you publish in Norwegian (Danish, actually)



basic operations

a,b = reals a,b = complex numbers A,B = subsets of C

Minkowski sum : A& B {a+b|lacAandbe B}
Minkowski product : AR B = {axb|lacAandbec B}

subdistributive law : (A@B)®C C (A®C)® (BRC)

negation and reciprocal of a set:

—B={-b|becB}, Blt={b!'|beB}

Minkowski difference and division:

AcoB=A®(-B), AoB=AoB™!

®,0 and ®, 0 notinverses — (AeB)eB#A, (AB)oB#A



“implicitly-defined” complex sets

A®B = {f(a,b)|ae A, beB}

A B = U translations of B by a
acA

AR B = U scalings /rotations of B by a
acA

A®B = U conformal mappings of B by f(a, -)
acA

A () B can be difficult to evaluate — sometimes use
bounding Minkowski combination, e.g., for f(a,b) = a* + ab

A®OB Cc AR (APB) Cc (ARA) & (AR B)



Minkowski powers and roots

® commutative, associative = define Minkowski power by
n tjir\nes

R"A = AA®---®A

= {2z122---2,|zi€e Afor i=1,...,n}
correspondingly, define Minkowski root by @™ (®1/74) = A

(21202, |2, €@V A for i=1,....n} = A

do not confuse with “ordinary” powers & roots

A" = {z" |z A}, AY" ={z|z"c A}

inclusion relations: A™ C @4, @/"4 C AY"
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Nickel (1980): no closure under both + and x for sets specified by finite number of parameters




complex interval arithmetic

(a,b]+ [c,d] = [a+c,b+d]

a,b]—|c,d] = [a—d,b—c]

(a,b] X [¢,d] = [min(ac,ad,be,bd), max(ac, ad,be, bd) |
la,b] +|c,d] = [a,b] x[1/d,1/c]

extend to “complex intervals” (rectangles, disks, .. .)

disk ® disk 75 disk — (Cl, Rl) X (CQ, RQ) ‘= (0102 ; |C1’R2 + ’CQ‘Rl + RlRQ)

<)

exact complex interval arithmetic = Minkowski geometric algbera



geometrical applications: 2D shape operators

S; = complex disk of radius d
offset at distance d > 0 of planar domain A: A; = A® Sy

for negative offset, use set complementation: A_; = (A° P Sy)°

dilation & erosion operators in mathematical morphology (image processing)

scaled Minkowski sum (f = real function on A):

AeorB ={a+ f(ablac A, beB}

recover domain D from medial-axis transform:
D=M& & ={m+r(m)s meM,seS5;}

M = medial axis, » = radius function on M



offset curves & medial axis transform




Monte Carlo experiment — product of two circles




bipolar coordinates

p2 p1 X 2 r1

ellipse & hyperbola : ritre =k
the ovals of Cassini : riro = k

the Cartesian oval(s) : mry £ nry = +1

generalize to (redundant) multipolar coordinates



Cartesian oval C; ® Co

C1,Co have center (1,0) and radii Rq, Ro

poles (0,0), (a1,0), (az,0) where a; =1 — R?, ay = 1 — R3

(a1, as = images of 0 under inversion in Cq, Cs)

three different representations in bipolar coordinates:

Ripo £ p1 = Tai1Rs
Ropg = p2 = ZLashy
Rgpl + Rlpg = 4+ (CLQ — al)

degenerate cases — limacon of Pascal & cardioid

Cartesian oval is an anallagmatic curve
(maps into itself under inversion in a circle)



©
0

Cartesian oval: Ry#1#R, limacon of Pascal: Ry=1#R, cardioid: Ry=1=R5




Cartesian ovals

“LCenveloppe d’'un cercle variable dont le centre parcourt la
circonférence d’un autre cercle donné et dont le rayon varie
proportionnellement a la distance de son centre a un point
fixe est un couple d’ovales de Descartes.”
F. Gomes Teixiera (1905)
Traité des Courbes Spéciales Remarquables Planes et Gauches

Cartesian oval = boundary of Minkowski product of two circles



anticaustic — Jakob Bernoulli (1692)

time = 0

index p

index q

time =t

propagate
"backward"

all index q

@

time =0

"anticaustic”

anticaustic = involute of caustic (zero optical path length)




reflection/refraction of spherical waves

surface | mode | anticaustic wavefront
plane | reflect | point degree 2
plane | refract | ellipse/hyperbola | degree 8
sphere | reflect | limacon of Pascal | degree 10
sphere | refract | Cartesian oval degree 14

Farouki & Chastang, Exact equations of
"simple" wavefronts, Optik 91, 109 (1992)




geometrical optics

“operator language” for optical constructions

0 = light source, A = smooth refracting surface, k = refractive index ratio

= anticaustic S for refraction of spherical waves = 9(A ® C)

where C = circle with center 1 & radius k!

0 = light source, £ = line with Re(z) = 1, § = desired anticaustic

= mirror M yielding anticaustic S by reflection = 1 9(S ® £)



duct examples
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line ® circle — ellipse or hyperbola

circle ® circle — Cartesian oval (R, Ry # 1 here)



Minkowski roots — ovals of Cassini
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“ordinary”: riro = R or r* —2r2cosf + 1 = R?
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n't order: ry---7, = R or 2" — 2r"cosnf + 1 = R?



21/2 circle

R<1

N

NN
A
20
L
\

N
R=1 o
R>1

circle containing origin is not logarithmically convex
— require composite curve as Minkowski root



catalog of Minkowski operations

set operation

set boundary

line ® line

parabola

line ® circle

ellipse or hyperbola

circle ® circle

Cartesian oval

21/2 disk ovals of Cassini
21/™ disk n'h order ovals of Cassini
line ® curve negative pedal of curve wrt origin

circle ® curve

anticaustic for refraction by curve

circle ® --- ® circle

generalized Cartesian oval

disk ® A = disk

0A = inner loop of Cartesian oval




“theory versus practice”

“In theory, there is no difference between theory and practice.
In practice, there is.

Yogi Berra

Yankees baseball player,
aspiring philosopher



famous sayings of Yogi Berra, sportsman-philosopher

e Baseball is ninety percent mental,
and the other half is physical.

e Always go to other people’s funerals
— otherwise they won’t come to yours.

e |t was impossible to get a conversation going,
everyone was talking too much.

e You better cut the pizza into four pieces,
because I’'m not hungry enough to eat six.

e You got to be very careful if you don’t know where
you are going, because you might not get there.

e Nobody goes there anymore. It's too crowded.



Minkowski product algorithm

z — logz : Minkowski product — Minkowski sum

for curves ~(t), 6 (u) write ~(t) @ 6(u) = exp (log~y(t) ® logd(u))

and then invoke Minkowski sum algorithm

problems =- work directly with v(¢) and é(u)
. log(z) defined on multi-sheet Riemann surface
. exp(z) exaggerates any approximation errors

. log~(t) & log 6(u) are transcendental curves

logarithmic curvature theory: for curve ~(t) define kioq()
= ordinary curvature of image, log~(t), under z — log z

hence ... logarithmic lines, inflections, convexity, Gauss map, elc.



ordinary & logarithmic curvature of ~(¢)

r(t) = y@)], 0(t) =argy(t), ¥(t) =arg~'(t)

d
K = d—w invariant under translation, but not scaling
S

d
Klog = T d—(w — #) invariant under scaling, but not translation
s

. compute logarithmic Gauss maps of ~(t) & d(u)
. subdivide «(t) & §(u) into corresponding /log-convex segments

. simultaneously trace corresponding segments and generate candidate
edges for Minkowski product boundary

. test edges for status (interior/boundary) w.r.t. Minkowski product

establish orientation & ordering of retained boundary edges



Minkowski product example
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left: quintic Bézier curve operands; center: products of one operand with
points of other; right: untrimmed & trimmed Minkowski product boundary



Minkowski product of N circles

sin 04 sin 6

tch logarithmic Gauss maps : A
A Osa A R R1 + cos 6 Ry + cosfy

geometrical interpretation: intersections of operands
with circles of coaxal system (common points 0 & 1)

=)
<

proof — inversion in operand circles

0(C1 ®---®@Cn) = “N* order Cartesian oval”

multipolar representation with respect to poles at 0, a1, a9, ...,an ?



implicitly-defined complex sets

A®B = {f(a,b)|ae A, beB}

example: f(a,b) =ab+b? and A, B = disks |z| <1, |z—1] <1
subdistributivity = A®B C (A& B)®@B C (A®B)® (B® B)

set a(\) =e* and b(t) =1+ et for 0 < \,t <27 in f(a,b)

— family of limacons r(\,t) = 2! + !N 4 26l 4 * 4

generalize Minkowski sum & product algorithms to A () B :

: g da db db
matching condition argﬁ — arga — km + arg T
f—=const.
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(a)

implicitly—defined set as one—parameter family of limacons
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il

A=n—cos '1/4

3
<—<
s —

A=0

singular curve of surface r(A,t) generated by implicitly—defined set




solution of linear equation A ® X =B

A, B = circular disks with radii a, b

solution exists <— a <)

2 IR 2
) e )
-1 0 1 2 3 -1 0 1 2 3

solution = region within inner loop of a Cartesian oval

generalization to polynomial equations, linear systems?



stability of linear dynamic system

Laplace transform of linear nt" order system:

n

d"y dy
— - — 0
adtn—l- —I—aldt—l-aoy

characteristic polynomial p(s) = a,s" + -+ + a1s + ag

stability <= roots z1, . ..,z, satisfy Re(zx) < 0
an as as ary Qg
ap a2 044 A4 d4g
0 al as as ay
0 a as as4 a
An _ 0 2 4 6
0 0 al as as
0 0 ao as ay
classical Routh-Hurwitz criterion: A,,, Ay —1,..., A1 >0

(can generalize to complex coefficients ay, ..., a,)



Kharitonov conditions

desire “robust stability” of system with uncertain parameters

p(s) = aps” + -+ + a1s + ag Where ai € [a,, Q]

pi(s) = ag + a;s + Tes® + azs® + -
p2(S) = a9 + ais + 5282 + QSSS + ...
p3(s) = ap + ays + Q282 + a3s® + - -
pi(s) = @ + a1 + a,s® + azs® + -
Kharitonov polynomials p4(s), ..., p4(s) stable <= p(s) “robustly stable”

Kharitonov, Differential’nye Uraveniya 14, 1483 (1978)

value set : V(p(s)) = values assumed by p(s) at fixed s as coeffs
ai vary over intervals |a,,ar | = rectangle with corners p(s), ..., pa(s)

(complex coeffs — eight Kharitonov polynomials)



['-stability of system

roots z4, ..., z, of characteristic polynomial with coeffs a; € A,
p(s) = ap,s™ + -+ + a1s + ag

Hurwitz stability Re(z,) < 0 may be inadequate;
also desire good damping and fast response

for any subset I" of left half-plane, p(s) is I'-stable if z1,...,z, € T

(]
Re . Re

p(s) “robustly” I'-stable <= one case I'-stable, and value set
satisfies 0 € V(p(s)) for all s € OT" (zero exclusion principle)



along the imaginary axis

iation of value—set

oefficients

val

bic polynomial with inter



example problem

consider I'-stability of quadratic p(s) = ass® + ais + ag

coefficients disks A,, A;, Ay have centers c; = 1,
c1=p+gq,co=pgandradi Ry = R = Ry = 0.25

stability region I' boundary: ~(¢t) = (— cosht,sinht), —co < t < 400

value set V(t) for p(s) along boundary ~(t)
= family of disks with center curve & radius function

c(t)=14+pq— (p+q)cosht + i[(p+ q) — 2cosht] sinht
R(t) = Ro(1 + Vcosh 2t + cosh 2t)

stability condition: 0 ¢ V(t) for —oo < t < +00
<= 2 real polynomials have no real roots

(true for any “complex disk polynomial”)
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closure

basic functions: Minkowski sums, products, roots,
implicitly-defined complex sets, solution of equations

lack of closure for finitely-describable sets
— rich geometrical structures & applications

2D shape generation and analysis operators
generalization of interval arithmetic to complex sets

curves in bipolar & multipolar coordinates —
generalize classical Cassini and Cartesian ovals

operator language for direct & inverse
problems of wavefront reflection & refraction

robust stability of dynamic/control systems —
extend Routh-Hurwitz & Kharitonov conditions



ANY QUESTIONS ??

It is better to ask a simple question, and perhaps seem like
a fool for a moment, than to be a fool for the rest of your life.

old Chinese proverb

Please note —

Answers to all questions will be given
exclusively in the form of Yogi Berra quotations.




some famous Yogi Berra responses

e |If you ask me anything | don’t know,
I’'m not gonna answer.

e | wish | knew the answer to that, because
I'm tired of answering that question.

Concerning future research directions ...

e The future ain’t what it used to be.




