Publications
Preprints


G. Gentili, C. Stoppato, and T. Trinci, Zeros of slice functions and polynomials over dual quaternions
arXiv:1907.13154 [math.CV]



Monograph


G. Gentili, C. Stoppato, and D.C. Struppa, 
Regular functions of a quaternionic variable. Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2013.
front matter - chapters - back matter
download sample pages



Journal Articles


R. Ghiloni, A. Perotti, and C. Stoppato, Division algebras of slice functions. Proc. Roy. Soc. Edinburgh Sect. A, online 2019
pdf - arXiv


R. T. Farouki, G. Gentili, H. P. Moon, and C. Stoppato, Minkowski products of unit quaternion sets, Adv. Comput. Math., 2019
pdf - free view - arXiv

S.G. Krantz, M.M. Peloso, and C. Stoppato, Completeness  on the worm domain and the Müntz-Szász problem for the Bergman space. Math. Res. Lett., 2019
pdf - arXiv


C. Bisi and C. Stoppato, Landau’s theorem for slice regular functions on the quaternionic unit ball. Internat. J. Math., 2017
pdf - arXiv


R. Ghiloni, A. Perotti, and C. Stoppato,  Singularities of slice regular functions over real alternative *-algebras, Adv. Math., 2017
pdf - arXiv


R.T. Farouki, G. Gentili, C. Giannelli, A. Sestini, and C. Stoppato, A comprehensive characterization of the set of polynomial curves with rational rotation-minimizing frames, Adv. Comput. Math., 2017
pdf - free view - arxiv


R. Ghiloni, A. Perotti, and C. Stoppato, The algebra of slice functions, 
Trans. Amer. Math. Soc., 2017
pdf - arxiv


S.G. Krantz, M.M. Peloso, and C. Stoppato, Bergman kernel and projection on the unbounded worm domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2016
pdf - arxiv


R.T. Farouki, G. Gentili, C. Giannelli, A. Sestini, and C. Stoppato, Solution of a quadratic quaternion equation with mixed coefficients. J. Symb. Comput., 2016
pdf - arxiv


G. Gentili, S. Salamon, and C. Stoppato, Twistor transforms of quaternionic functions and orthogonal complex structures. J. Eur. Math. Soc. (JEMS), 2014
pdf - arxiv


C. Bisi and C. Stoppato, The Schwarz-Pick lemma for slice regular functions. 
Indiana Univ. Math. J., 2012
pdf - arXiv


C. Stoppato, A new series expansion for slice regular functions. 
Adv. Math., 2012
pdf - arXiv


C. Stoppato, Singularities of slice regular functions. Math. Nachr., 2012.
pdf - arXiv


G. Gentili, C. Stoppato, Power series and analyticity over the quaternions. 
Math. Ann., 2012.
pdf - free view - arXiv


C. Stoppato, Regular Moebius transformations of the space of quaternions. 
Ann. Global Anal. Geom., 2011.
pdf - free view - arXiv


G. Gentili, C. Stoppato, and D.C. Struppa, A Phragmén - Lindelöf principle for 
slice regular functions. Bull. Belg. Math. Soc. Simon Stevin, 2011.
pdf - arXiv


G. Gentili, C. Stoppato, The open mapping theorem for regular quaternionic functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2009.
pdf - arXiv


C. Stoppato, Poles of regular quaternionic functions. 
Complex Var. Elliptic Equ., 2009.
pdf - arXiv


G. Gentili, C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J., 2008. 
pdf - draft



Book Chapters


C. Stoppato, Some notions of subharmonicity over the quaternions,
in Topics in Clifford Analysis, S. Bernstein, ed., Birkhäuser, Cham, 2019
pdf - arXiv


C. Bisi and C. Stoppato,  
Regular vs. classical Möbius transformations of the quaternionic unit ball, 
in Advances in Hypercomplex Analysis, G. Gentili, I. Sabadini, M. Shapiro, F. Sommen and D.C. Struppa, eds., Springer, Milan, 2013.
pdf - arXiv


G. Gentili and C. Stoppato, 
The zero sets of slice regular functions and the open mapping theorem, 
in Hypercomplex analysis and applications, 
I. Sabadini and F. Sommen, eds., Birkhäuser, Basel, 2011.
pdf - arXiv


G. Gentili, C. Stoppato, D.C. Struppa, and F. Vlacci, 
Recent developments for regular functions of a hypercomplex variable, 
in Hypercomplex analysis, I. Sabadini, M. Shapiro and F. Sommen, eds., 
Birkhäuser, Basel, 2009 (copyright 2008). 
pdf - draft


Journal Abstracts

C. Stoppato, Funzioni regolari di una variabile quaternionica.
Mat. Soc. Cult. Riv. Unione Mat. Ital. (I), 2011
pdf


G. Gentili, C. Stoppato, The zero sets of slice regular functions and the open mapping theorem. Abstracts Amer. Math. Soc., 2009.



Doctoral Thesis

C. Stoppato, Regular functions of one quaternionic variable. PhD Thesis, Università degli Studi di Firenze, 2010.






https://arxiv.org/abs/1907.13154http://link.springer.com/content/pdf/bfm%3A978-3-642-33871-7%2F1https://link.springer.com/book/10.1007%2F978-3-642-33871-7http://link.springer.com/content/pdf/bbm%3A978-3-642-33871-7%2F1http://www.springer.com/cda/content/document/cda_downloaddocument/9783642338700-c1.pdf?SGWID=0-0-45-1366417-p174674117https://www.cambridge.org/core/services/aop-cambridge-core/content/view/C1848A6BCCC35203758A823AD531D556/S0308210519000131a.pdf/division_algebras_of_slice_functions.pdfhttps://arxiv.org/abs/1711.06604https://link.springer.com/content/pdf/10.1007%2Fs10444-019-09687-9.pdfhttps://rdcu.be/btXlDhttps://arxiv.org/abs/1901.07349https://www.intlpress.com/site/pub/files/_fulltext/journals/mrl/2019/0026/0001/MRL-2019-0026-0001-a011.pdfhttp://arxiv.org/abs/1509.06383http://www.worldscientific.com/doi/pdf/10.1142/S0129167X17500173https://arxiv.org/abs/1701.08112http://www.sciencedirect.com/science/article/pii/S0001870815305028/pdfft?md5=5d6d7f21b5a1e8f044b4135e4f0aca00&pid=1-s2.0-S0001870815305028-main.pdfhttp://arxiv.org/abs/1606.03609http://download.springer.com/static/pdf/136/art%253A10.1007%252Fs10444-016-9473-0.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10444-016-9473-0&token2=exp=1486471974~acl=%2Fstatic%2Fpdf%2F136%2Fart%25253A10.1007%25252Fs10444-016-9473-0.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10444-016-9473-0*~hmac=b91eef1de9401f0700c514c5981b5736c674189d5a1ff5b3896b305d50bf8c4ehttp://rdcu.be/unO3http://arxiv.org/abs/1604.07008http://www.ams.org/journals/tran/2017-369-07/S0002-9947-2016-06816-6/S0002-9947-2016-06816-6.pdfhttp://arxiv.org/abs/1506.03749http://annaliscienze.sns.it/index.php?download_pdf=446http://arxiv.org/abs/1410.8490http://www.sciencedirect.com/science/article/pii/S0747717115000577/pdfft?md5=6aaed7aed37916b5b80fbe3c1d435258&pid=1-s2.0-S0747717115000577-main.pdfhttp://arxiv.org/abs/1506.05848http://www.ems-ph.org/journals/show_pdf.php?issn=1435-9855&vol=16&iss=11&rank=2http://arxiv.org/abs/1205.3513http://www.iumj.indiana.edu/IUMJ/FTDLOAD/2012/61/5076/pdfhttp://arxiv.org/pdf/1209.2060.pdfhttps://www.sciencedirect.com/science/article/pii/S0001870812002459/pdfft?md5=2616f9f16e85ff3fb8f419aea5588086&pid=1-s2.0-S0001870812002459-main.pdfhttp://arxiv.org/pdf/1110.4227.pdfhttp://onlinelibrary.wiley.com/doi/10.1002/mana.201100082/pdfhttp://arxiv.org/pdf/1007.0867.pdfhttp://link.springer.com/content/pdf/10.1007%2Fs00208-010-0631-2https://rdcu.be/bYg66http://arxiv.org/pdf/0902.4679.pdfhttp://link.springer.com/content/pdf/10.1007%2Fs10455-010-9238-9.pdfhttps://rdcu.be/bYg7hhttp://arxiv.org/pdf/0811.0965.pdfhttp://projecteuclid.org/euclid.bbms/1320763135http://arxiv.org/pdf/0901.2967.pdfhttp://annaliscienze.sns.it/index.php?download_pdf=29http://arxiv.org/pdf/0802.3861.pdfhttp://www.tandfonline.com/doi/pdf/10.1080/17476930903275938http://arxiv.org/pdf/0804.1665.pdfhttp://projecteuclid.org/euclid.mmj/1231770366Publications_files/GentiliStoppato.pdfhttps://doi.org/10.1007/978-3-030-23854-4_4https://arxiv.org/abs/1812.08459http://link.springer.com/chapter/10.1007/978-88-470-2445-8_1http://arxiv.org/pdf/1209.2351.pdfhttps://doi.org/10.1007/978-3-0346-0246-4_7http://arxiv.org/pdf/0907.5565.pdfhttps://doi.org/10.1007/978-3-7643-9893-4_11Publications_files/Survey081006.pdfhttp://www.bdim.eu/item?fmt=pdf&id=RIUMI_2011_1_4_1_87_0https://doi.org/10.1007/978-3-030-23854-4_4shapeimage_2_link_0shapeimage_2_link_1shapeimage_2_link_2shapeimage_2_link_3shapeimage_2_link_4shapeimage_2_link_5shapeimage_2_link_6shapeimage_2_link_7shapeimage_2_link_8shapeimage_2_link_9shapeimage_2_link_10shapeimage_2_link_11shapeimage_2_link_12shapeimage_2_link_13shapeimage_2_link_14shapeimage_2_link_15shapeimage_2_link_16shapeimage_2_link_17shapeimage_2_link_18shapeimage_2_link_19shapeimage_2_link_20shapeimage_2_link_21shapeimage_2_link_22shapeimage_2_link_23shapeimage_2_link_24shapeimage_2_link_25shapeimage_2_link_26shapeimage_2_link_27shapeimage_2_link_28shapeimage_2_link_29shapeimage_2_link_30shapeimage_2_link_31shapeimage_2_link_32shapeimage_2_link_33shapeimage_2_link_34shapeimage_2_link_35shapeimage_2_link_36shapeimage_2_link_37shapeimage_2_link_38shapeimage_2_link_39shapeimage_2_link_40shapeimage_2_link_41shapeimage_2_link_42shapeimage_2_link_43shapeimage_2_link_44shapeimage_2_link_45shapeimage_2_link_46shapeimage_2_link_47shapeimage_2_link_48shapeimage_2_link_49shapeimage_2_link_50shapeimage_2_link_51shapeimage_2_link_52shapeimage_2_link_53shapeimage_2_link_54shapeimage_2_link_55