ESERCIZI PER IL CORSO FUNZIONI DI VARIABILE COMPLESSA E IPERCOMPLESSA

Si ricordino le notazioni Δ per il disco unitario e $A(r,R) := \Delta(0,R) \setminus \overline{\Delta(0,r)}$ per la corona circolare di raggio interno r > 0 e raggio esterno R > r in \mathbb{C} .

Esercizio 1. Per ciascuna delle seguenti superfici iperboliche X e funzioni olomorfe $f \in \operatorname{Hol}(X,X)$, si descriva la dinamica di f (ovvero il comportamento della successione $\{f^{\circ n}\}_{n\in\mathbb{N}}$ delle iterate) facendo riferimento alla terminologia e ai risultati visti a lezione.

- $X = \Delta e f(z) = \frac{z \frac{i}{4}}{1 + \frac{i}{4}z}$
- $X = A(\frac{1}{4}, 9) \setminus (-9, -\frac{1}{4})$ è una corona circolare privata del suo segmento reale negativo e $f(z) = \sqrt{z} = \exp(\frac{1}{2}\log(z))$ è il ramo di radice quadrata definito su X mediante il logaritmo principale log
- $X = \Delta e f(z) = \frac{\frac{1}{3} z}{1 \frac{z}{3}}$
- $X = \Delta^* e f(z) = \frac{z^2}{2}$

Si ricordino le notazioni: \mathbb{H} per l'algebra reale dei quaternioni; 1, i, j, k per la base standard di $\mathbb{H} = \mathbb{R}^4$; e infine x_0 per x_01 , qualunque sia $x_0 \in \mathbb{R}$.

Esercizio 2. Si provi che per ogni quaternione $q = x_0 + x_1 i + x_2 j + x_3 k$ (con $x_0, \ldots, x_3 \in \mathbb{R}$) valgono le seguenti uguaglianze:

$$x_0 = \frac{1}{4} (q - iqi - jqj - kqk)$$

$$x_1 = \frac{i}{4} (-q + iqi - jqj - kqk).$$

Si trovino analoghe espressioni per x_2 e x_3 .

Esercizio 3. Si denoti con \mathscr{P} l'insieme delle funzioni $f: \mathbb{H} \to \mathbb{H}$ dove f(q) è somma finita di monomi del tipo

$$a_0qa_1qa_2\dots a_{n-1}qa_n$$

con $n \in \mathbb{N}, a_0, \ldots, a_n \in \mathbb{H}$. Con riferimento alla notazione $q = x_0 + x_1 i + x_2 j + x_3 k$ (con $x_0, \ldots, x_3 \in \mathbb{R}$), si provi che l'insieme \mathscr{P} coincide con l'insieme dei polinomi nelle quattro variabili reali x_0, \ldots, x_3 a coefficienti in \mathbb{H} .