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Introduction

Let V be a vector space of dimension n + 1, endowed with the natural action of the
general linear group GL(n+ 1). This action extends to an action of the same group
on SymdV , the space of homogeneous polynomial of degree d in n+1 variables, which
in turn can be viewed as an action on the coefficients ai of such d-forms.
An invariant is a multilinear map SymdV × · · · × SymdV −→ C, which remains in-
variant under the action of SL(n+ 1).
The theory of invariants has been extensively studied since the classical work of
Hilbert, who proved the fundamental finiteness theorem for the ring of invariants
(Theorem 4.9). Since then, the study of invariants has remained a central topic in
algebra and geometry. When investigating a given invariant, a key question is to un-
derstand its vanishing locus, that is, the set of forms on which it vanishes, and what
geometric or algebraic properties these forms posses.

Historically, much attention has been devoted to symmetric invariants, which re-
flect intrinsic properties of a single form. In this thesis we focus on an skew invariant
R ∈

∧3
(Sym3C3) that relates three plane cubic curves:

R : Sym3C3 × Sym3C3 × Sym3C3 −→ C

We focused on the study of the locus defined by R(f, g,−) ≡ 0, while the question
of determining the geometric conditions under which R(f, g, h) = 0 remains open.
Our analysis begins by observing that R(f,H(f),−) = 0 for a generic smooth cubic
f whose Hessian is denoted by H(f). Then, we examine how this relation changes
when f is a singular cubic.
We define an algebraic subvariety N of the Grassmannian of lines in P9, such that

N = {L ∈ G(1, 9) | R(f, g,−) = 0, ∀ f, g ∈ L}

The main result of this thesis is the proof that N coincides with the closure of the
orbit of the Hesse pencil under the action of SL(3). We denote this orbit by
O(⟨x3 + y3 + z3, xyz⟩), and refer to its closure as the Hesse Pencil Variety:

N = O(⟨x3 + y3 + z3, xyz⟩)

We have shown that both varieties have dimension 8, and that their multidegree with
respect to the Schubert cycle decomposition is the same, namely (1, 3, 9, 12, 6). This
guarantees that the two varieties coincide in dimension 8. As for the lower-dimensional
orbits, we proceed by analyzing all the orbits contained in N , and verifying that they
are also contained in the Hesse Pencil Variety.
Finally, we are also able to show that this variety is not smooth, as it contains two
singular orbits, namely those of ⟨x2y, x2z⟩ and ⟨x3, x2y⟩.

We now provide a more detailed description of the contents of each chapter.
The first four chapters are introductory and serve to present the tools necessary for
the subsequent analysis. In particular, the first chapter is devoted to the study and
description of the irreducible representation of GL(n + 1), while the second chap-
ter introduces fundamental concepts related to d-forms, that is, elements in SymdV .
These topics form the essential background needed to approach the theory of invari-
ants, which is the focus of Chapter 4. Indeed, the objects we aim to study arise



precisely from the action of GL(n + 1) on the space of d-forms. Chapter 3 is ded-
icated to Grassmann varieties, with particular emphasis on the decomposition of a
variety into Schubert cycles. This decomposition, as anticipated, plays a key role in
the main result of the thesis.
Chapter 5 serves as a ”toy model” that helps to anticipate and better understand the
construction later developed in the case of plane cubics. We begin by observing that
binary quartics-elements in Sym4C2- and plane cubics-elements of Sym3C3- are the
only two cases in which the Hessian map sends a d-forms to another d-forms of the
same degree. For this reason, we first examine binary quartics, which involve lower-
dimensional objects, before addressing the case of plane cubics. The analogy between
the two settings lies in the fact that, in both, one can define a Hesse Pencil Variety,
i.e., the orbit closure of the pencil generated by a smooth form and its Hessian. In
both contexts, we study the dimension, the multidegree, the orbits contained in the
variety, and its singular locus. In the binary quartic case, this variety is a smooth
Fano threefold already studied in literature. In this thesis, we re-express it from a
different prospective, providing an alternative description of this classical object.
Chapter 6 recalls some well-known results on plane cubics, with a particular focus on
their relation with the Hessian. Of particular importance for the study in the follow-
ing chapters is the Hesse configuration, namely arrangement of the nine inflection
points of a smooth cubic. These nine points lie on twelve lines, with the property
that any line through two of them contains a third. Equally relevant is the explicit
description of the fibers of the Hessian map H−1(f), as f varies along the orbits of
SL(3).
The final two chapters are devoted to the original research. In Chapter 7, we introduce
the invariant R, providing its explicit formula. We prove that for a generic cubic f ,
one has R(f,H(f),−) = 0, and we describe the space {g ∈ Sym3C3 |R(f, g,−) = 0}
as f varies along the orbits of the action of SL(3). In Chapter 8, we introduce the
two varieties: the variety N , whose equations are explicitly known since they derive
from the explicit expression of R, and the Hesse Pencil Variety S. The entire chapter
is devoted to proving that N = S, following the strategy previously outlined. Since
the equations of N are known, we are able to perform explicit computations using the
software Macaulay2. On the other hand, we study S from a theoretical perspective,
for instance to compute its dimension and multidegree. In particular, in order to
compute the multidegree of S, we were naturally led to study the geometry of the
Hesse configuration of nine points in P2. We proved that, given 4 general points in
the plane, there exist exactly 6 distinct Hesse configurations containing them, and
this turned out to be crucial for completing the proof.



1 Representation Theory

In this section, we will first provide general notions from representation theory, and
then focus on the representations of the general linear group.

1.1 Fundamental Concepts

Definition 1.1 (C-algebra). Let A be a complex vector space that also has a unital
ring structure. If

λ(ab) = (λa)b = a(λb) ∀a, b ∈ A and λ ∈ C

holds, then A is called a C-algebra.

Given a finite group G it is possible to define a C-algebra as

CG :=

∑
g∈G

λgeg |λg ∈ C

 (1.1)

and this is called the Group Algebra of G. The elements {eg|g ∈ G} form a basis of
CG as a vector space over C. The addition and multiplication are defined as follows:∑

g∈G

λgeg +
∑
h∈G

µheh =
∑
g∈G

(λg + µg)eg

∑
g∈G

λgeg ·
∑
h∈G

µheh =
∑

h,g∈G

(λgµh)egh.

The neutral element is e1. To simplify the notation, we will write g instead of eg, and
thus an element in CG is written as

∑
g∈G λgg.

Definition 1.2 (Representation). Let G be a group. A group homomorphism

ρ : G→ GL(V ) ≃ GLdim(V )(C)

where GL(V ) denotes the general linear group of a complex vector space V , is called
a representation of G.

Remark 1.3. By linearity, ρ can be extended to a morphism ρ : CG −→Matdim(V )(C),
that is

ρ

∑
g∈G

λgg

 =
∑
g∈G

λgρ(g).

Since the construction can be inverted, we will refer to both simply as a representation
of G.

Note that it follows immediately from the definition that this is equivalent to
stating that V is a G −module, that is, there exists an action of G on V (we write
G ↷ V ):

G× V −→ V

with g · v := ρ(g)v. In the following, we will not distinguish a representation from the
G−module associated with it.
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Definition 1.4 (Character). Let ρ be a representation of G. We define the character
of G associated with ρ as:

χρ : G −→ C

where χρ(g) := trace(ρ(G))

If V is the G-module associated with ρ, we can also use the notation χV = χρ.
It follows from the properties of the trace of a matrix that χρ(h

−1gh) = χρ(g) ∀ρ and
from this, it follows that χρ(g) can be expressed as a function of the eigenvalues of
the matrix ρ(g). Note that

χρ(1) = trace(Id) = dim(V ). (1.2)

An important non-trivial fact about characters is that the isomorphism class of a
representation is uniquely determined by the character associated with it.

Remark 1.5. [Formal Character] Suppose that G = GL(n) is a linear group. Then,
χρ is a polynomial in the entries g(i,j) of the matrix g ∈ GL(n). Moreover, due to the
properties of characters, it is invariant under conjugation by GL(n). It follows from
Lemma 4.1.4 in [17] that this polynomial can be expressed as a symmetric polynomial
in terms of the eigenvalues t1, .., tn of a matrix g ∈ G. When written in this form,
the character is referred to as the formal character of ρ.

Let (V, ρ) be a G-module. If W is a subspace of V invariant under the action of
G, then we call (W,ρ ↾W ) a submodule of V . We say that (V, ρ) is irreducible if
there does not exist any proper submodule of V. Another important non-trivial fact
in representation theory is that every representation of a reductive1 group G can be
written as a direct sum of irreducible ones. Moreover, if V = ⊕iVi is the decomposi-
tion in irreducible representations, choosing the basis of V as the union of the bases
of Vi in an ordered manner, we have

ρ(g) =


ρ1(g)

ρ2(g)
...

...
ρk(g)


where (ρi, Vi) for i = 1, .., k are the representations of Vi which respect the chosen
basis, that is ρi(g) ∈ GLdimVi

C.

We denote by V G the set of elements that remain invariant under the action of
G, that is

V G := {v ∈ V |g · v = v ∀g ∈ G}; (1.3)

this is a submodule of V on which the action of G is trivial.

1In characteristic zero, saying that a group is reductive is equivalent to requiring that every ra-
tional representation is completely reducible. We will adopt this definition and restrict our attention
to this setting. Notably, the groups GL(n) and SL(n) are reductive, and they will be the main focus
in the discussion that follows.
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Let V and W be two vector spaces, and let G be a group acting on both. Then,
the action of G on V ⊕W and V ⊗W given by

g · (v ⊕ w) = (g · v)⊕ (g · w)

g · (v ⊗ w) = (g · v)⊗ (g · w)

are well defined. Moreover, the character associated with these representations are
the sum and the product of the two characters respectively, that is

χV⊕W = χV + χW

χV⊗W = χV · χW

Let ρ : G −→ GL(V ) the action of G on V . We denote by V ∗ the dual vector space
of V . The dual representation of V is define as the representation of G on V ∗ given
by:

ρ∗ : G −→ GL(V ∗) such that ρ∗(g)(ϕ)(v) = ϕ(ρ(g−1)(v)) for all g ∈ G, ϕ ∈ V ∗ and v ∈ V

Moreover, if (ρ, V ) is an irreducible representation, then its dual (ρ∗, V ∗) is also
irreducible.

1.2 GL(V )-Representations

Let Σd be the symmetric group, whose elements are the permutation of d points,
its order is d!. To a partition λ = (λ1, .., λk) of d, with λi ≥ λi+1, is associated a
Ferrers diagram with λi boxes in the i− th row. For example, the Ferrers diagram
associated to λ = (3, 2, 1, 1), that is a partition of 7, is

We define a tableau to be a numbering of the boxes by the integers 1, .., d and, by a
slight abuse of notation, we shall continue to denote this object by λ. Given a tableau,
define two subgroups of the symmetric group

P = Pλ = {g ∈ Σd|g preserves each row}

and
Q = Qλ = {g ∈ Σd|g preserves each column}

Consider the group algebra CΣd as in definition (1.1), and define these two elements
in it:

aλ =
∑
g∈P

eg and bλ =
∑
g∈Q

sgn(g) · eg

If V is any vector space, Σd acts on the d− th tensor power V ⊗d by permuting factor,
that is

(v1 ⊗ · · · ⊗ vd) · σ = vσ(1) ⊗ · · · ⊗ vσ(d). (1.4)
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Therefore, Remark 1.3 gives a morphism CΣd −→ End(V ⊗d) and identifying aλ and
bλ with their respective images, we have

Im(aλ) = Symλ1V ⊗ · · · ⊗ SymλkV ⊂ V ⊗d

Im(bλ) = ∧µ1V ⊗ · · · ⊗ ∧µkV ⊂ V ⊗d

where µ is the conjugate partition to λ, that is defined by interchanging rows and
columns in the Ferrers diagram, i.e., reflecting the diagram in the 45◦ line. We set

cλ := aλ · bλ ∈ CΣd; (1.5)

this is called a Y oung symmetrizer. For example, when λ = (d), c(d) = a(d) =∑
g∈Σd

eg and the image of c(d) on V ⊗d is SymdV . When λ = (1, .., 1), c(1,..,1) =

b(1,..,1) =
∑

g∈Σd
sgn(g)eg, and the image of c(1,..,1) on V ⊗d is ∧dV .

We will see that the images of the symmetrizers cλ in V ⊗d provide essentially all the
finite-dimensional irreducible representations of GL(V ).

It is well known that for any finite-dimensional complex vector space V , we have
the canonical decomposition

V ⊗ V = Sym2V ⊕ ∧2V.

The group GL(V ) clearly acts on V and thus, it acts on V ⊗V as seen in the previous
paragraph. We will see that this is the decomposition of V ⊗ V into a direct sum of
irreducible GL(V )-representations.
Instead, if we increase the number of factors and consider V ⊗d, we have:

V ⊗d = SymdV ⊕ ∧dV ⊕ other spaces, (1.6)

just as SymdV and ∧dV are images of symmetrizing operators from V ⊗d to itself,
so are the other factors. The symmetric group Σd acts on V ⊗d, say on the right, by
permuting factors as in 1.4 and this action commutes with the left action of GL(V ).

Let λ be a partition of d, a standard Y oung tableau of shape λ (for short:
SY Tλ) is a filling T of the Ferrers diagram of λ with integers 1, 2, .., d (without
repetitions) such that the rows and the columns are increasing. For instance, here are
some SY Tλ corresponding to the partition λ = (3, 2, 1, 1) of 7:

1 2 3
4 5
6
7

1 2 3
4 7
5
6

· · ·

1 5 7
2 6
3
4

Now, we denote by cT the Young symmetrizer associated with the standard Young
tableau T , as we defined in 1.5.
Since the actions of Σd and GL(V ) on V ⊗d commute, we can give the following
definition:

Definition 1.6. Let λ be any partition of d and T a standard Young tableau of shape
λ. We denote the image of cT an V ⊗d by STV and we call it the Weyl module
associated with T :

STV := Im(cT : V ⊗d −→ V ⊗d) (1.7)

which is a representation of GL(V ).
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Observe that there is only one way to obtain a standard Young tableau (SYT)
from the partitions d = d e d = 1 + ... + 1. Thus, as we have previously observed,
the partition d = d corresponds to S(d)V = SymdV while the partition d = 1+ ..+ 1

corresponds to S(1,..,1)V = ∧dV .

Theorem 1.7. The Weyl modules STV , with T a SY Tλ and λ a partition of d, are
precisely the irreducible GL(V )−modules that appears in the decomposition of V ⊗d.
The Young symmetrizers cT define an isomorphism of GL(V )−module:

V ⊗d ∼=
⊕
λ⊢d

⊕
T SY Tλ

STV

For instance, in the case d = 2, there are only two possible partitions: 2 = 2 and
2 = 1 + 1. For each of them, there is only one associated standard Young tableau.
Thus, we have:

c
1 2

⊕ c
1

2

: V ⊗2 −→ S
1 2

V ⊕ S
1

2

V ∼= Sym2V ⊕ ∧2V

For d = 3 there are three different partitions and four different SY T ’s. We have:

V ⊗3 ∼= S
1

2

3

V ⊕ S
1 2

3

V ⊕ S
1 3

2

V ⊕ S
1 2 3

V

If T and T ′ are SY T of the same shape λ, then ST and ST ′ are isomorphic GL(V )-
modules, and so we can write Sλ := ST ∼= ST ′ . The following theorem reformulates
the previous one in terms of this information and adds important details about the
characters associated with these Weyl modules.
We denote by Sλ = Sλ(x1, .., xn) the Schur polynomial associated with the partition
λ. A detailed analysis of these polynomials can be found in [8].

Theorem 1.8. • Let n = dimV . Then SλV is zero if λn+1 ̸= 0. If λ = (λ1 ≥
· · · ≥ λn ≥ 0), then

dim SλV = Sλ(1, .., 1) =
∏

1≤i≤j≤n

λi − λj + j − i

j − i

• Let mλ be the number of SY T of shape λ. Then

V ⊗d ∼=
⊕
λ⊢d

SλV ⊕mλ .

• For any g ∈ GL(V ), let x1, .., xn be the eigenvalues of g:

χSλV (g) = Sλ(x1, .., xn). (1.8)

An important point we wish to emphasize about Schur polynomials is the follow-
ing: as λ varies over the partitions of d into at most n parts, these polynomials Sλ

form a basis for the symmetric polynomials of degree d in these n variables. If λ = d,
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then Sλ(x1, .., xn) is the sum of all possible monomials of degree d in x1, .., xn. If
λ = 1 + .. + 1, then Sλ(x1, .., xn) is the d − th elementary symmetric polynomial in
x1, .., xn, that is, the sum of all possible monomials of degree d without repetitions.
A semi−standard Y oung tableau of shape λ (for short SSY Tλ) is a filling U of the
Ferrers diagram of λ with integers 1, .., n (repetition is allowed) such that the rows
of U are weakly increasing and the columns are strictly increasing. This definition
allows us to write a formula for Schur polynomials,that is

Sλ(x1, .., xn) =
∑

U SSY Tλ

n∏
i=1

x#i′s in U
i (1.9)

Let’s make an example. We consider d = 3, n = 3 and λ = (2, 1). There are 8 possible
SSY Tλ and they are:

1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

1 3
3

2 2
3

2 3
3

Thus, using the formula, we obtain

S(2,1)(x1, x2, x3) = x2
1x2 + x1x

2
2 + 2x1x2x3 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3

As for the number mλ, it is given by the following formula:

mλ =
d!∏

(Hook lengths)

In the denominator, we have the product of the lengths of all the hooks that appear in
the representation of λ as a Ferrers diagram. To clarify, let us consider λ = (3, 2, 1, 1),
and choose a square in the Ferrers diagram (blue). The hook associated with this
square consists of the set of all the squares below it and those to the left of it (cyan).

By counting all these squares, we obtain the length of the corresponding hook, which
can then be recorded in the diagram. Finally we display the complete diagram with
the lengths of all the hooks.

6 3 1

4 1

2

1

In the denominator of the formula 1.2, all the numbers written in the diagram appear,
so that we obtain

mλ =
7!

6 · 3 · 4 · 2
= 35

8



Theorem 1.9. As d ∈ N and λ ⊢ d vary, the Weyl module SλV form the complete
set of irreducible representations of GL(V ).

One of the main problems in representation theory is to decompose a given repre-
sentation into a direct sum of irreducible ones. In particular, if W is a GL(V )-module,
then, as a consequence of the theory developed so far, it decomposes as

W ∼=
⊕
λ

cλ SλV

The coefficients cλ are called multiplicities and finding them provides a solution to
the problem stated above. Since we have stated that each representation is uniquely
determined by its character, the problem of determining the multiplicities cλ is a
problem in the symmetric polynomials. In fact,

χW =
∑
λ

cλSλ

where χW is the formal character of W (defined in Remark 1.5), that is a symmet-
ric polynomial in the eigenvalues of a matrix. We have already recalled that Schur
polynomials provide a basis for this space, so the coefficients cλ are (theoretically)
uniquely determined. Moreover, in [17] is presented the algorithm to compute them.

Remark 1.10. Let us consider the irreducible representation SλV of GL(n). As we
know, its dual is also irreducible and, by Theorem 1.9, it is again associated with a
Young diagram λ∗. In particular, if we embed the partition λ into a rectangular Young
diagram with n rows and λ1 columns, then the partition λ∗ is the complement of λ
within this rectangle.
For example, if n = 3 and λ = (5, 1), then the dual representation corresponds to the
partition λ∗ = (5, 4), which is the complement of λ in the rectangle of shape (5, 5, 5).

Let λ and µ be two partitions of d andm respectively, and consider the composition
Sµ(SλV ). The problem of decomposing this functor into irreducible representations
is called Plethysm problem.

It can been shown and it is in [8] that

Sµ(Sλ(V )) =
⊕
ν

MλµνSνV

where the sum is over all partitions ν ⊢ dm and Mλµν are non-negative integers. In
this regard, note that SλV ⊂ V ⊗d and Sµ(Sλ) ⊂ (SλV )⊗m ⊂ V ⊗dm.

(V ⊗d)⊗m (SλV )⊗m ⊂ (V ⊗d)⊗m Sµ(SλV ) ⊂ (SλV )⊗m

⊕
ν MλµνSνV

(cλ)
⊗m

⊕Mλµνcν

cµ

Proposition 1.11. Let λ ⊢ d and µ ⊢ m be two partitions. Suppose n divides dm
and let ng = dm. Then

Sµ(SλV )GL(V ) ∼= c(g,..,g)S(g,..,g)V ∼= c(g,..,g)C∗

9



where c(g, .., g) = Mλµ(g,..,g).
Moreover,

dim(Sµ(SλV )GL(V )) =

{
c(g,..,g) if n divides dm

0 otherwise
(1.10)

Proof. Let ν be the partition of dm given by ν = (g, g, .., g)︸ ︷︷ ︸
n

, and consider SνV . It

equals the one dimensional GL(V )-module given by

detg : GL(V ) −→ C∗

This is a group morphism thanks to the proprieties of the determinant and thus it
defines a one-dimensional representation. Moreover, its formal character is given by

χdetg (x1, .., xn) = trace([detg(diag(x1, .., xn))]) = detg(diag(x1, .., xn)) = xg
1x

g
2 · · ·xg

n

where x1, .., xn are the eigenvalues of a matrix in GL(V ).
We also know from Theorem 1.8 that the character associated with SνV is given by
S(g,g,..,g)(x1, .., xn) = xg

1 · · ·xg
n. For this last equality, we can simply use the formula

(1.9), noting that there is only one possible SSY T , which is obtained by placing the
number 1, .., n in each column.
Hence, since these two modules have the same character, they must be isomorphic,
that is, SνV ∼= C∗. Furthermore, this means that

Sµ(SλV ) ∼= C∗ ⊕ · · · ⊕ C∗︸ ︷︷ ︸
Mλµν

⊕ · · ·

as a GL(V )-module. For every C that appears in the decomposition of Sµ(SλV ), there
must be an element that generates it and, therefore, must be an invariant under the
action of GL(V ).

To prove the converse, namely that all invariants are obtained this way, it will
be sufficient to observe that no other module appearing in the decomposition can
have dimension one. The dimension of a Weyl module is simply its formal character
evaluated at (1, .., 1), and thus, once again, we can use the formula in (1.9). Whenever
we have a Ferrers diagram with a column shorter than n, there are always more than
one way to fill it, and this implies that the dimension of the associated module cannot
be 1.

In the following chapters, we will be interested in Symm(SymdV ) and ∧m(SymdV ).
Applying the previous discussion to these two cases, we will be able to determine, at
least in principle, whether these spaces contain invariants or not.

2 On Degree-d Forms and Their Hessian

In this chapter, we briefly present some fundamental facts about homogeneous poly-
nomials and their associated Hessians.
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2.1 The Veronese Variety

Let V be a complex vector space of dimension n+1. The space Symd(V ) is the dth
symmetric power of V and it can be identified with the space of all homogeneous
polynomials of degree d in n+ 1 variables as follows:

Proposition 2.1. We have Symd(V ) ∼= C[x0, .., xn]d, where the last one is the space
of all homogeneous polynomials of degree d in dim(V ) = n+ 1 variables.

Proof. We define
Ψ : Symd(V ) −→ C[x0, .., xn]d

Ψ(Φ) = fΦ : V → C

where fΦ(v) := Φ(v, ..., v︸ ︷︷ ︸
d

).

Φ : V d −→ C is a multilinear function invariant under permutation of the entries.
Let e0, .., en be a basis of V and x0, .., xn its dual basis, we can write

Φ(v1, .., vd) =

n∑
i1,..,id=0

Φ(ei1 , .., eid)xi1(v1) · · · xid(vd)

From this, it is clear that fΦ is a polynomial on the x′
is.

Vice versa if f =
∑n

i1,..,id=0 fi1,..,idxi1 · ·xid ∈ C[x0, .., xn]d we define

Φf (v0, .., vd) =

n∑
i1,..,id=0

fi1,..,idxi1(v0) · · · xid(vd)

These two map are inverses, and the isomorphism is proved.

The map
νd : PV −→ P(Symd(V )) (2.1)

defined as νd(v) = vd = v⊗ v⊗ ..⊗ v is called the d− th V eronese map and its image
ν(PV ) is the d− th V eronese variety. It consists of all polynomials that are the dth
power of a linear form.
Once a basis for V and the corresponding basis for SymdV have been fixed, the
Veronese map can be expressed in coordinates. Let us consider the case n = 2, d = 2:

ν : P3 −→ P5

ν([x0, x1, x2]) = [x2
0, x0x1, x0x2, x

2
1, x1x2, x

2
2]

Keeping this in mind, the following result becomes extremely clear and simple.

Theorem 2.2. A linear function on Symd(V ) is uniquely determined by its restric-
tion to the Veronese variety.

Proof. Let H be a linear function on Symd(V ). We evaluate the function H on a
generic point of the Veronese variety. We obtain a homogeneous polynomial of degree
d in n variables whose coefficients are the same of the linear function H. Since H is
known on the Veronese variety, we can derive the coefficients.

11



In equivalent way, Theorem 2.2 says that PSymdV is spanned by elements lying
on the Veronese variety.
To make effective the previous Theorem, compare a general polynomial

f =
∑

i0+..+in=d

d!

i0! · ·in!
ai0,..,inx0

i0 · · · xn
in

with the d-th power of a linear form

(b0x0 + ..+ bnxn)
d =

∑
i0+..+in=d

d!

i0! · ·in!
b0

i0 · · · bninx0
i0 · · · xn

in

getting the correspondence

b0
i0 · · · bnin −→ ai0,..,in . (2.2)

2.2 The Hessian Map

We keep the notation from the previous paragraph and let f ∈ SymdV , that is, a
homogeneous polynomial of degree d in n + 1 variables, named xi for i ∈ {0, .., n}.
We define the Hessian of f as follows:

H(f) := det

((
∂2f

∂xi
∂xj

)
i,j

)
= 0 i, j ∈ {0, 1, .., n}

It is a homogeneous polynomial of degree (d− 2)(n+1) in the variables xi, that is an
element of Sym(d−2)(n+1)V .
Given a degree-d form, the variety

V (f) := {p ∈ Pn | f(p) = 0} ⊂ Pn

is well-defined and is the object of interest when we speak of such forms. The poly-
nomial f uniquely determines V (f), up to scalar multiplication of f itself. Moreover,
we can identify f with its coefficients ai for i = 0, .., N , where N =

(
n+d
d

)
− 1. Since

scalar multiples define the same space, we will be interested in the projective space
PN = P(SymdV ). Thus, the Hessian map can be rewritten as:

H(d,n) : P(
n+d
d )−1 99K P(

n+d

d )−1 with d = (d− 2)(n+ 1) (2.3)

The points where this map is not defined correspond to polynomials f such that
H(f) ≡ 0. These are called hypersurfaces with vanishing Hessian. This carries a
natural scheme structure and is known as the (d, n)−Gordan-Noether locus, denoted
by GNd,n. We define a cone in Pn as something that does not depend on all the
variables, up to projective transformation. Clearly, if the hypersurface V (f) ⊂ Pn

is a cone, then f has vanishing Hessian. Hesse claimed that the converse was also
true, regardless of the degree of f . Later, Gordan and Noether proved that Hesse’s
claim holds for n ≤ 3, but it does not hold for n ≥ 4. In fact, they provided a
counterexample in the case n = 4.

Theorem 2.3. If n ≤ 3, then a hypersurface has vanishing hessian if and only if it
is a cone.
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This topic is discussed in the article [9].
Other properties of the Hessian map are studied in [4], we limit ourselves to making
a few remarks. Let us begin by noting that the only case in which this map contracts
is the case (3, 1); in fact, we obtain H(3,1) : P3 → P2, and thus such a map cannot be
generically finite, with generically finite meaning the generic fiber is finite. Moreover,
in general, when n = 1, the locus where the Hessian map vanishes coincides with the
rational normal curve of Pd, which is the image of the d− th Veronese map from P1

to Pd:
[λ, µ] 7−→ [λd, λd−1µ, ..., µd]

corresponding to the binary forms of the type (λx + µy)d. We denote this curve by
Γ. In particular, the following holds (Proposition 2.6 in [4]):

Proposition 2.4. The Hessian map H(d,1) is generically finite onto its image, unless
d = 3, in which case it has general fibers of dimension 1, i.e., the chords of Γ.

Equality between the source and the target spaces of the Hessian map occurs only
in the two cases (4, 1) and (3, 2), that corresponds to P(Sym4C2) and P(Sym3C3).
Thus, in the case of binary quartics and plane cubics we have

H(4,1) : P4 99K P4 H(3,2) : P9 99K P9

and, as we shall see later, it is possible to consider the fixed points of these maps,
which will themselves carry a scheme structure. From the previous proposition, these
two maps are generically finite; in particular, H(4,1) has degree 2, and H(3,2) has
degree 3.

3 Grassmannians

In this chapter, we explore Grassmann varieties, with a particular focus on Schubert
calculus and the fundamental basis Theorem 3.9. This will be useful in the study
of an invariant concerning plane cubics, which we will discuss in the final chapter.
Before that, we will also introduce a ”toy model”, concerning binary quartics and the
Grassmannian G(P1,P4), in the chapter 5.

3.1 Definition

Let V be a vector space of dimension n+ 1. We define

G(d+ 1, V ) := {W ⊂ V linear subspace | dim(W ) = d+ 1},

there is a natural bijection with the space

G(d,P(V )) = {P(W ) ⊂ P(V ) projective subspace | dim(P(W )) = d}

We will denote this latter space by G(Pd,Pn), or simply by G(d, n).
Let W ⊂ V be as in the definition, and let ω0, ..., ωd and ω′

0, .., ω
′
d be two bases of

W . Then, we have that ω0 ∧ ... ∧ ωd = λ ω′
0 ∧ ... ∧ ω′

d. Thus, each element of G(d, n)

determines, up to scalars, a unique element of
∧(d+1)

V . This allow us to define a
map, called the Plücker map,

Φ : G(d, n) −→ P
(∧d+1

V

)
= PN
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such that Φ(W ) = [ω0 ∧ .. ∧ ωd] and N =
(
n+1
d+1

)
− 1.

Proposition 3.1. The Plücker map is injective.

Proof. Let W and Y be two subspaces of V of dimension d+ 1, and let ω0, .., ωd and
y0, .., yd be two bases respectively of W and Y such that ω0 ∧ ...∧ωd = λ y0 ∧ ...∧ yd.
It follows that ω0 ∧ ... ∧ ωd ∧ yi = 0 for all i = 0, .., d which means that yi ∈ W for
all i. Therefore, Y ⊂ W , and since they have the same dimension, it follows that
Y = W .

For any (d + 1) × (n + 1) matrix [pi(j)] with i = 0, .., d and j = 0, .., n, and any
sequence of (d + 1) integers j0, ..jd with 0 ≤ jβ ≤ n, let us denote by p(j0 · · · jd) the
determinant of the (d + 1) × (d + 1)-matrix [pi(jβ)] with i = 0, .., d and β = 0, .., d.
Of course, it holds that

p(j0 · · · jd) = 0 if any two of the jβ are equal,

p(j0 · · · jd) = −p(j0 · · · jβ−1jβ+1jβjβ+2 · · · jd) for β = 1, .., d− 1

and
p(j0 · · · jd) = sgn(σ) p(jσ(0) · · · jσ(d)) ∀ σ permutation of {0, .., d}

Thus, such a function p is uniquely determined by its values on sequences of the form
0 ≤ p0 < · · · < pd ≤ n, and there are exactly N + 1 of them.
Note that, fixed a basis of V , {e0, .., en}, and using coordinates with respect to the

basis of
∧(d+1)

V , {ei0 ∧ ...∧eid , 0 ≤ i0 < ... < id ≤ n}, Φ(W ) is given by the minors
of maximal order d+ 1 of the (d+ 1)× (n+ 1) matrix formed by the coordinates of
the vectors of a basis of W . That is, if we define

MW :=


− w0 −
− w1 −

·
·

− wd −

 ∈Mat(d+1)×(n+1)C

then the coordinate of Φ(W ), corresponding to the basis element ei0 ∧ ...∧ eid , is the
determinant p(i0 · · · id) of the matrix MW . Therefore, considering all these determi-
nants, they define a point (.., p(i0 · · · in), ..) of PN . These are called Plücker coordinates
of W .
Not every point of PN arises from some d-plane in Pn. In fact, the Plücker coordinates
p(j0, .., jd) of a d-plane must satisfy some quadratic relations. In particular, we state
the following theorem, whose proof can be found in [11].

Theorem 3.2. There is a natural bijective correspondence between the d-planes in
Pn and the points of PN , whose coordinates satisfy the quadratic relations

d+1∑
λ=0

(−1)λp(j0 · · · jd−1kλ)p(k0 · · · ǩλ · · · kd+1) = 0 (3.1)

where j0 · · · jd−1 and k0 · · · kd+1 are any sequences of integers with 0 ≤ jβ , kγ ≤ n.
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We can also find an open covering of G(d, n) that endows it with the structure of
a subvariety of PN . In particular, there exists a bijection between the points of PN

that satisfy (3.1) and for which a certain Plücker coordinate p(k0 · · · kd) ̸= 0 (for some
fixed indices 0 ≤ k0 < .. < kd ≤ n), and the set of (d + 1) × (n + 1) matrices whose
submatrix (d+1)× (d+1) formed by the columns indexed by k0, .., kd is the identity
matrix. Clearly, such a matrix is mapped to the point in PN given by the appropriate
(d+ 1)× (d+ 1) minors, as explained above. Conversely, if (. . . , p(j0 · · · jd), . . . ) is a
point in PN satisfying the stated properties, it corresponds to the matrix defined by

pi(j) =
p(k0···ki−1jki+1···kd)

p(k0···kd)
.

Thus, the variety of points of PN whose coordinates satisfy the quadratic relations
3.1 is covered by N + 1 copies of affine space of dimension (d + 1)(n − d) and the
following holds:

Corollary 3.3. G(d, n) is an irreducible projective variety of dimension (d+1)(n−d).
Moreover, G(d, n) is rational.

Esempio 3.4 (Plücker relations of G(1,4)). Let’s now look at a practical example of
how the Plücker relations can be derived from the open covering of the Grassmannian.
We will analyze the case of projective lines in P4, that is, G(1, 4), which we will deal
with later in the thesis, specifically when discussing binary quartics that give rise to
the projective space P4.
We know that G(1, 4) is embedded in a projective space of dimension 9, so we have
10 Plücker coordinates, which are:

p(i,j) := p(i, j) for i = 0, .., 3 and j = i+ 1, .., 4

The local open set corresponding to p(0,1) ̸= 0 corresponds to matrices of the form[
1 0 a1,3 a1,4 a1,5
0 1 a2,3 a2,4 a2,5

]
and the Plücker coordinates of such a matrix are

p(0,1) = 1 p(0,2) = a2,3 p(0,3) = a2,4 p(0,4) = a2,5

p(1,2) = −a1,3 p(1,3) = −a1,4 p(1,4) = −a1,5
p(2,3) = a1,3a2,4 − a2,3a1,4 p(2,4) = a1,3a2,5 − a1,5a2,3

p(3,4) = a1,4a2,5 − a1,5a2,4

By substituting the previous equations into the last three and homogenizing with p(0,1),
three Plücker relations are obtained:

p(0,1)p(2,3) = p(1,3)p(0,2) − p(1,2)p(0,3), p(0,1)p(2,4) = p(1,4)p(0,2) − p(1,2)p(0,4),

p(0,1)p(3,4) = p(1,4)p(0,3) − p(1,3)p(0,4)

However, these are not sufficient to define the ideal of G(1, 4) in P9. We also need
to consider the other local open sets and proceed in the same way. For example, by
considering p(0,2) ̸= 0, we obtain three equations, one of which is new compared to the
previous ones, namely

p(0,2)p(3,4) = p(0,3)p(2,4) − p(2,3)p(0,4)
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By proceeding further, only one additional equation is found, which can be obtained,
for instance, from p(1,2) ̸= 0 and it is

p(1,2)p(3,4) = p(2,4)p(1,3) − p(2,3)p(1,4)

There are thus 5 Plücker relations that define G(1, 4), and they are precisely the ones
listed above.
Note that these equations correspond to the five pfaffians2 4×4 of the skew-symmetric
matrix 

0 p(0,1) p(0,2) p(0,3) p(0,4)
−p(0,1) 0 p(1,2) p(1,3) p(1,4)
−p(0,2) −p(1,2) 0 p(2,3) p(2,4)
−p(0,3) −p(1,3) −p(2,3) 0 p(3,4)
−p(0,4) −p(1,4) −p(2,4) −p(3,4) 0


Thus, the Grassmannian G(1, 4) corresponds to the variety of 5×5 skew-symmetric

matrices of rank ≤ 2.

3.2 Schubert Varieties

Let A0 ⊂ A1 ⊂ · · · ⊂ Ad be a strictly increasing sequence of (d + 1) linear spaces in
Pn. A d − plane W in Pn is said to satisfy the Schubert condition defined by this
sequence if dim(Ai ∩W ) ≥ i for all i. We denote this set

Ω(A0, .., Ad) := {W ∈ G(d, n) | dim(W ∩Ai) ≥ i} ⊂ G(d, n)

Esempio 3.5. Let us consider the Grassmannian of lines in P4, namely G(1, 4). Here
d = 1. Let A0 be a fixed line in P4, and let A1 be P4 itself. Then the subset Ω(A0, a1)
of G(1, 4) represents the set of lines L such that:

dim(A0 ∩ L) ≥ 0 and dim(P4 ∩ L) ≥ 1

Since the second condition is automatically satisfied, Ω(A0, A1) represents the set of
lines L intersecting A0.

Proposition 3.6. Let 0 ≤ a0 < · · · < ad ≤ n be a sequence of integers and
for i = 0, .., d let Ai be the ai-dimensional linear space in Pn whose points are of
the form (p(0), .., p(ai), 0, .., 0). Then Ω(A0, .., Ad) consists exactly of those points
(.., p(j0, .., jd), ..) in G(1, d) satisfying p(j0, .., jd) = 0 whenever ji > ai holds for some
i.

We will not provide a full proof of this statement, which is Proposition 3 in [11].
However, let us outline the main steps of the argument.
If the Ai are as in the proposition, and we consider a d-planeW satisfying the Schubert
condition, then, by induction on i, we may pick a point Pi = (p0(i), .., pn(i)) ∈ Ai∩W
such that P0, .., Pn are linearly independent and span W . The (d+1)× (n+1) matrix
whose rows are the coordinates of the points Pi is of the form

∗ · · · ∗ 0 · · · · · · · · · · · · 0
∗ · · · · · · ∗ 0 · · · · · · · · · 0

∗ · · · · · · · · · · · · ∗ 0 · · · 0


2Let A be a skew-symmetric matrix. Then det(A) = Pf(A)2, and Pf(A) is called the Pfaffian of

A. Moreover, skew-symmetric matrices have even rank.
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and this is because Pi ∈ Ai.The number of zeros at the end of the i− th row is exactly
n − ai. The minors of the matrix give the Plücker coordinates of W ∈ G(d, n). In
the proof of the proposition, this description of W is used to show that its Plücker
coordinates satisfy the required property. The converse, however, requires a bit more
care and is proved using what was observed after Theorem 3.2.
Let us now see how one can conventionally associate a tableau to such a set Ω(A0, .., Ad),
that is to a matrix as above. We began by observing that the first row must contain
at least d zeros, the second at least one less, the third at least one less, and so on.
We can therefore ”exclude” these zeros from our analysis, since they arise solely from
the strictly increasing condition for the sequence of spaces. In each row, there remain
n− ai − (d− i) significant zeros, for i = 0, ., d. By setting

λi = n− d− ai + i for i = 0, .., d (3.2)

we obtain a Young tableau with d rows representing Ω(A0, .., Ad). Note that λi ≥ λi+1

for i = 0, .., d − 1 and that such a tableau is contained in a table of dimension
(d+ 1)× (n− d), that is

d+ 1

n− d

Proposition 3.7. Let A0 ⊂ · · · ⊂ Ad and B0 ⊂ · · · ⊂ Bd be two strictly increasing
sequences of linear spaces in Pn and assume dim(Ai) = dim(Bi) for i = 1, .., d. Then
there is an invertible linear transformation of PN into itself which carries G(d, n) into
itself and Ω(B0, .., Bd) into Ω(A0, .., Ad).

Proof. Since dim(Ai) = dim(Bi) for all i, there obviously is an invertible (n + 1) ×
(n + 1) matrix T = [ti,j ] such that the associated linear transformation of Pn into
itself carries Bi into Ai for all i, T (Bi) = Ai. Clearly, T carries a d-plane W in Pn

into another one T (W ), and if W satisfies the Schubert condition dim(Bi ∩W ) ≥ i
for all i, then T (W ) satisfies the Schubert condition dim(Ai ∩ T (W )) ≥ i for all i
because T (Bi) = Ai.
Choose (d+ 1) points Pi = (pi(0), .., pi(n)) for i = 0, .., d which span W . The images
of these points under T generate T (W ); in particular, we denote

Qi(j) =

n∑
α=0

tj,αpi(α) for j = 0, .., n

The Plücker coordinates obtained from the minors of the (d+1)× (n+1) matrix with
entries given by the points Qi are linear combinations of the Plücker coordinates of
W , given by the points Pi.
We have thus obtained a linear transformation Λ(ti,j) from PN into itself, which maps
the Grassmannian G(d, n) into itself and Ω(B0, .., Bd) into Ω(A0, .., Ad).
Finally, since T is invertible, Λ is also invertible, and its inverse is given by Λ(T−1).
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Thus, a set of the form Ω(B0, .., Bd) is equivalent to one of the type described
in Proposition 3.6. Moreover, as we have seen, to such sets one can associate a
Young tableau, and conversely, a Young tableau contained in a (d + 1) × (n − d)
table corresponds to a well-defined sequence of integers ai, which can be obtained
from the formula (3.2). Therefore, we have obtained a correspondence between the
Young tableau of this kind and the subsets of G(d, n) of the form Ω(A0, ..Ad), up to
projective transformations.

Corollary 3.8. Using the previous notation, Ω(B0, .., Bd) consists of those points in
G(d, n) whose coordinates q(j0, ..jd) satisfy certain linear equations. In particular,
Ω(B0, .., Bd) is an irreducible subvariety of G(d, n) and, if we set bi = dim(Bi),

dim(Ω(B0, .., Bd)) =

d∑
i=0

bi − i

These subvariety Ω(B0, .., Bd) of the Grassmannian G(d, n) will be referred to as
Schubert varieties.
To obtain the linear equations of a Schubert variety, it is enough to find the linear
transformation that maps it to its ”simple” form Ω(A0, .., Ad), namely the one in
Proposition 3.6. Since we know that such a variety is defined by p(j0, .., jd) = 0
whenever ji > ai, we can deduce the equations for the original variety.
Note that the number of boxes of the tableau associated to a Schubert variety satisfies:

|λ| =
d∑

i=0

(n− d− bi + i) = (d+ 1)(n− d)−
d∑

i=0

bi + i

= dim(G(d, n))− dim(Ω(B0, .., Bd)) = codim(Ω(B0, .., Bd))

Finally, we recall here the formula for computing the degree of Schubert varieties in
terms of the tableau λ associated with Ω(B0, .., Bd). The following formula can be
found in [7]:

degree(Ω(B0, .., Bd)) =
|λ|!∏

(Hook lengths)
(3.3)

where the denominator is the same of the one appearing in the formula of mλ in
section 1.2.

3.3 Cohomology Ring

In this section, we examine how Schubert varieties allows us to define a basis for the
cohomology ring of the Grassmannian, which will be very useful for solving enumer-
ative problems.
The cohomology group with the integers as coefficients Hi(G(d, n),Z) = Hi(G(d, n))
is zero when i is greater than 2(d+ 1)(n− d) = 2 dim(G(d, n) and the direct sum

H∗(G(d, n),Z) =
⊕
i

Hi(G(d, n))

is a graded ring under the cup product. Since G(d, n) is a complex manifold, it is
also an oriented real manifold, and therefore H2(d+1)(n−d)(G(d, n)) is isomorphic to
Z.

H2(d+1)(n−d)(G(d, n))
deg−−→ Z
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If u is a cohomology class, then deg(u) is called the degree of u.
To every subvariety X of a compact complex manifold M , it is possible to associate
a cohomology class. In particular, if X is irreducible and has codimension p, then
such a class lies in H2p(M,Z) (this can be found in [10]). We can apply this to the
Grassmannian G(d, n) and Schubert varieties in it.
Let Ω(A0, .., Ad) ⊂ G(d, n) be a Schubert variety, it can be proved that its cohomology
class depends only on the integers ai = dim(Ai) for i = 0, .., d. We can then denote
these classes by Ω(a0, .., ad) and we call them Schubert cycles.

Theorem 3.9 (The basis theorem 1). Considered additively H∗(G(d, n),Z) is a free
abelian group and the Schubert cycles Ω(a0, .., ad) form a basis. In particular, the

Schubert cycles Ω(a0, .., ad) with [(d + 1)(n − d) −
∑d

i=0(ai − i)] = p form a basis of
H2p(G(d, n)) and each odd dimensional group is zero.

Esempio 3.10. Consider the Grassmannian of points in Pn, we have G(0, n) = Pn

and Ω(A0) = A0. The basis theorem says that H2p(Pn) is a free cyclic group generated
by the class Ω(n− p). The other groups are zero.

Remark 3.11. Recalling the language of tableaux introduced in the previous section,
we can easily identify the cycles that generate a cohomology group H2p(G(d, n)). We
know that codim(Ω(A0, .., Ad)) = |λ|, and thus it follows from the theorem that the rel-
evant cycles are those corresponding to varieties with |λ| = p. Therefore, all tableaux
contained in a table of dimension (d+1)× (n−d) and consisting of p boxes generates
H2p(G(d, n)).

Theorem 3.12. The basis {· · · ,Ω(a0, .., ad), · · · } of the group H2p(G(d, n),Z and
the basis {· · · ,Ω(n− ad, .., n− a0), · · · } of the group H2[(d+1)(n−d)−p](G(d, n),Z) are
dual under the pairing v, w → deg(v · w) of Poincaré duality.

In other words, the proposition says that an arbitrary element ν of H2p(G(d, n))
can be written uniquely in the form

ν =
∑

δ(n− ad, .., n− a0)Ω(a0, .., ad) (3.4)

with
δ(n− ad, .., n− a0) = deg(ν · Ω(n− ad, .., n− a0))

In particular, if we consider X an irreducible subvariety of G(d, n) of dimension n−p,
its cohomology class ν lies in H2p(G(d, n)), and therefore can be written as a linear
combination in (3.4). To determine the coefficient δ(n−ad, .., n−a0), we can choose a
Schubert variety Ω(B0, .., Bd) such that dim(Bi) = n−a(d−i), so that its cohomology
class corresponds to Ω(n − a0, .., n − ad). This variety has dimension equal to the
codimension of X, and thus, by choosing the Bi appropriately, we find that the
intersection of X with Ω(B0, .., Bd) consists of a finite number of points. The number
of such points, counted with multiplicity, is precisely δ(n− ad, .., n− a0).

Definition 3.13. (Multidegree) Let X be an irreducible subvariety of G(d, n) of di-
mension n − p and let ν be its cohomology class as in (3.4). We define (..., δ(n −
ad, .., n− a0), ...) the multidegree of X.

Let Y be an irreducible subvariety of G(d, n) of dimension p and (..., ϵ(a0, .., ad), ...)
its multidegree. If the intersection between X and Y is a finite set of points then this
number i(X ∩ Y ) is the degree of the product of∑

δ(n− ad, .., n− a0)Ω(a0, .., ad) and
∑

ϵ(a0, .., ad)Ω(n− a0, .., n− ad)
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therefore, using the preposition we have

i(X ∩ Y ) =
∑

δ(n− ad, .., n− a0)ϵ(a0, .., ad)

Esempio 3.14. (Bézout’s Theorem) Consider G(0, n) = Pn and let X be an irre-
ducible subvariety of dimension n − p. Note that, in this case, the Schubert cycles
correspond to the linear subspace of Pn. In particular, Ω(n−p) is the cycle of a linear
subspace of dimension n−p. From the previous theory, we have that ν = δ(p)Ω(n−p),
where ν ∈ H2p(P) is the cohomology class of X and δ(p) is the number of points with
multiplicity in the intersection of X and a suitable chosen p-dimensional linear space,
that is, the degree of X in the usual sense. Let Y be a p-dimensional subvariety of Pn

with cohomology class ϵ(n− p)Ω(p). As in the previous case, ϵ(p) denotes the degree
of Y in the usual sense. If the intersection of X and Y consists of finitely many
points, then from the previous formula we obtain i(X ∩ Y ) = δ(n − p)ϵ(p), which is
the well-known result of Bézout’s theorem.

4 Invariant Theory

In this section we will introduce the fundamentals of invariant theory for forms, ex-
amine its most important theorems, and demonstrate how to determine such objects.

4.1 Invariants and Covariants of Forms

Let V be a complex vector space of dimension n+1. The linear group of (n+1)×(n+1)
matrices, GL(V ), clearly acts on V ; consider the group action of GL(V ) on SymdV
given by c · (v ⊗ ... ⊗ v) = (c · v) ⊗ ... ⊗ (c · v) ∀c ∈ GL(V ), v ∈ V . We would like to
draw attention to this action for a moment. For simplicity, let us consider the case
dim(V ) = 2. The elements of SymdV can be regarded as homogeneous polynomials
of degree d in two variables (see Proposition 2.1)

f(x, y) =

d∑
k=0

(
d

k

)
akx

kyd−k

Acting on x and y with an element of GL(2) means to substitute x = c1,1x+c1,2y and
y = c2,1x + c2,2y in the previous expression. The binary form f(x, y) is transformed
into another binary form f(x, y). We call ak the coefficients of this new form, they
are a linear combinations of the ai whose coefficients are polynomials in the ci,j . The
explicit representation of this coefficients is in [17] paragraph 3.6. Note that this
action is defined by the equations:

x = (ci,j)x and f(a, x) = f(a, x) ∀(ci,j) ∈ GL(2) (4.1)

Consider the polynomial ring C[a0, ..ad, x, y] where the variables are those of V ,
namely (x,y) and the coefficients of the linear form ai. The group GL(2) acts on
this space taking x → x, y → y and ai → ai as we described before. A polynomial
I ∈ C[a0, ..ad, x, y] is said to be a covariant of index g if

I(ai, x, y) = (c1,1c2,2 − c2,1c1,2)
g I(ai, x, y) ∀(ci,j) ∈ GL(2) (4.2)
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A covariant I is homogeneous if it is homogeneous both as a polynomial in the
variables a0, .., ad and in the variables x, y. In this case, the total degree of I in
a0, .., ad is called the the degree of the covariant I, and its total degree in x,y is called
the order of I. A covariant of order 0, that is, a polynomial I ∈ C[a0, .., ad] that
satisfies the (4.2) is said to be an invariant.
We can also consider a collection of binary forms

fi(x, y) =

di∑
k=0

(
di
k

)
ai,kx

kydi−k for i = 1, 2, .., r

A polynomial I ∈ C[a1,0, a1,1, .., a1,d1
, ..., ar,dr

, x, y] is called a joint covariant of the
forms f1, .., fr if it is a relative invariant of the GL(2)-action. This means

I(a1,1, ., a1,d1
, .., ar,dr

, x, y) = (c1,1c2,2−c2,1c1,2)gI(a1,1, ., a1,d1
, .., ar,dr

, x, y) ∀ (ci,j) ∈ GL(2)

Where the ak,i are obtained as in the case of a single form described above. We say
that I is a joint invariant of f1, .., fr if I does not depend on x and y at all.
When the dimension of V is bigger than 2 we can repeat all the same steps. A form
of degree d is

f(x0, .., xn) =
∑

i0+...+in=d

d!

i0!...in!
ai0,..,inx0

i0 ...xn
in (4.3)

and the action of GL(n+1) has a description analogous to that of the 2-dimensional
case. In this case, however, we need to pay closer attention to the definition of
covariant, which (as we will explain later in section 4.3) is nothing but a generalization
of what we saw in the case of two variables.

Definition 4.1. Let SymdV ⊗ · · · ⊗ SymdV︸ ︷︷ ︸
m

=
⊕

λ⊢md(SλV )nλ be the decomposition

in irreducible representations of GL(V ). Each of the Weyl modules appearing in this
decomposition is called a Covariant of degree m of d-forms.

Assume t = dim(SλV ) for some Weyl module in the decomposition, then GL(V ) ·
SλV = SλV , that is, every object in this space is mapped by the group action to
another object in the same space. However, a polynomial expression in the variables
ai (the coefficients of the d-forms) and xi (coordinates of V ) does not always exist
to describe these objects, unlike the case when dim(V ) = 2. In the case t = 1, the
submodule is generated by a single polynomial I ∈ C[a1,i0,..,in , .., am,i0,..,in ] invariant
under the action of GL(n+ 1). These are called invariant of d− forms.

We observe that the space Symm(SymdV ) is contained in SymdV ⊗ · · · ⊗ SymdV︸ ︷︷ ︸
m

and each of its submodules is a symmetric covariant of m forms. Note also that
Symm(SymdV ) can be viewed as the space of homogeneous polynomials of degree
m in the variables ai, where the ai represent the coefficients of a form in SymdV .
Consequently, each submodules gives rise to an ideal of C[SymdV ] whose generators
has degree m.
The space Symm(SymdV )GL(V ) is called the space of symmetric invariants of degree
m for forms of degree d. The following sections will be dedicated to the study of
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this space.

Similarly, the space
∧m

(SymdV ) is contained in SymdV ⊗ · · · ⊗ SymdV︸ ︷︷ ︸
m

. The

Weyl submodules that appear in its decomposition correspond to skew covariants of
m forms. When the submodule has dimension one, we obtain a single polynomial
expression I ∈ C[a1,i0,..,in , .., am,i0,..,in ] that is skew-symmetric which respect to the
blocks of variables corresponding to the coefficients of the m forms. In this case, I
is called a skew invariant. These objects can be interpreted as joint invariant of m
forms of degree d. We will deal with one of these in section 7.

Invariants which do not depend on the determinant of the matrix C ∈ GL(V ), are
called absolute invariants.
The special linear group SL(V ), consisting of n× n matrices with determinant equal
to one, is a subgroup of GL(V ); therefore, the action on d-forms described above can
be restricted to this subgroup. Moreover, the invariants with respect to the action of
GL(V ) coincide with those under the action of SL(V ).

4.2 Invariance For the Torus

The group SL(V ) contains the torus (C∗)n of diagonal matrices

T = {D(t1, .., tn,
1

t1 · · · tn
)|ti ∈ C∗}.

T is a subgroup of SL(V ), so whenever there is an action of SL(V ) on a vector space,
we can consider its restriction to T.
Let consider an element f ∈ Symd(V ) as in (4.3). The space Symm(Symd(V )) is
spanned by monomials fi0,1,..,in,1

...fi0,m,..,in,m
.

The weight of the monomial fi0,1,..,in,1
...fi0,m,..,in,m

is the vector

(

m∑
j=1

i0,j ,

m∑
j=1

i1,j , ...,

m∑
j=1

in,j) (4.4)

A monomial is called isobaric if its weight has all equal entries. Consider the double
sum

∑n
k=0

∑m
j=1 ik,j =

∑m
j=1 d = md. So the weight of an isobaric monomial in

Symm(Symd(V )) is ( md
n+1 , ..,

md
n+1 ), in particular isobaric monomials exist if and only

if n+ 1 divides md.

Proposition 4.2. I ∈ Symm(Symd(V )) is invariant for the action of the torus of
diagonal matrices (C∗)n ⊂ SL(V ) if and only if it is a sum of isobaric monomials.

Note that it is enough to check if a monomial of given degree is isobaric for n
places in the (n+1)-dimensional weight vector. Indeed, if we assume it to be true for
the first n entries, we obtain:

md =

n∑
k=0

m∑
j=1

ik,j =
n(md)

n+ 1
+

m∑
j=1

in,j =⇒
m∑
j=1

in,j =
md

n+ 1

In particular, for binary form it is enough to check the condition just for one place.

22



Proof. Consider the polynomial f = fi0,..,inx0
i0 · · ·xn

in ∈ Symd(V ), to see the action
of a diagonal matrix D(a0, .., an) on fi0,..,in we have to substitute xi → aixi in f

f(xi) = fi0,..,in(a0x0)
i0 · · · (anxn)

in = a0
i0 · · · aninfi0,..,inx0

i0 · · · xn
in

Therefore this action takes fi0,..,in to a0
i0 · · · aninfi0,..,in .

Consider the diagonal matrix with entries ( 1
t1···tn , t1, .., tn) that acts on fi0,..,in by

multiplying by (t1 · · · tn)−i0t1
i1 · · · tnin . Acting on the monomial

fi0,1,..,in,1
· · · fi0,m,..,in,m

we multiply it by (t1 · · · tn)−
∑

j i0,j t1
∑

j i1,j · · · tn
∑

j in,j and this is equal to 1 if and
only if

∑
j ik,j does not depend on k.

Corollary 4.3. A necessary condition for the existence of a non-zero I ∈ Symm(Symd(V ))
that is invariant for SL(V ) is that n+ 1 divides md.

Proof. If I is invariant then it is also invariant for the torus of diagonal matrices.

Note that this results had already been obtained by other means in the chapter
on representation theory; in particular, it follows from Proposition 1.11.

4.3 The Symbolic Representation of Invariants

Remember that V is a complex vector space of dimension n+1, then the space ∧n+1V
has dimension 1 and it is isomorphic to C. For every v1, .., vn+1 ∈ V the determinant
v1 ∧ .. ∧ vn+1 is well defined and it is SL(V )-invariant. Let us consider a rectangular
Young tableau of size (n+1)×g filled with numbers, where each number corresponds
to a linear form on V . i corresponds to a linear form li. We construct a tableau
function by taking the product of the determinant arising from each column. For
example

1 1

2 3

3 4

represents (l1∧l2∧l3)(l1∧l3∧l4). To define formally this notion, we set [a] = 1, .., a for
any natural number a and we associate to any tableau T a function t : [n+1]× [g] −→
[m], where g is the number of columns, m is the highest number appearing in the
diagram and t(i, j) is the entry at the place (i,j) of the tableau.

Definition 4.4. For any Young tableau T of size (n+1)×g filled with numbers from
1 appearing h1 times until m appearing hm times, so that h1 + ..+hm = g(n+1), we
denote by GT the multilinear function Symh1V × ..× SymhmV −→ C defined by

GT (l1
h1 , .., lm

hm) =

g∏
j=1

(lt(1,j) ∧ ... ∧ lt(n+1,j))

GT is called a tableau function.

Note that GT is well-defined by Theorem 2.2.
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Proposition 4.5. Every tableau function GT is SL(V )-invariant.

Proof. Immediate by the proprieties of the determinant.

This last result is equivalent to saying that GT is a joint invariant.

Every F ∈ Symm(Symd(V )) corresponds to a multilinear function

F : Symd(V )× ...× Symd(V )︸ ︷︷ ︸
m

−→ C

which is symmetric in the m entries.

Definition 4.6. Let md = (n + 1)g. Let T be a Young tableau of size (n + 1) × g
filled with numbers from 1 appearing d times until m appearing d times. Let GT :
Symd(V )× ..× Symd(V )︸ ︷︷ ︸

m

−→ C be the function introduces in Definition 4.4. We de-

note by FT the polynomial obtained by symmetrizing GT , that is FT (h) = GT (h, ..., h︸ ︷︷ ︸
m

)

for any h ∈ Symd(V ). FT is called a symmetrized tableau function.

Proposition 4.7. Any FT as in Definition 4.6 is SL(V )-invariant.

Proof. Let g ∈ SL(V ) and h ∈ Symd(V ). We have FT (g · h) = GT (g · h, .., g · h) =
GT (h, .., h) = FT (h) where the second equality follows by Proposition 4.5.

Note that FT is the polynomial associated with GT due to the isomorphism in
Proposition 2.1.
Now, let’s explain how to obtain in practice the expression of such an invariant in
terms of the coefficients of a general linear form in Symd(V ).
Let consider a Young tableau as in Definition 4.4 with m = 3. We can easily evaluate
GT on three d − th powers of liner forms: (a0x0 + ... + anxn)

d, (b0x0 + ... + bnxn)
d

and (c0x0 + ... + cnxn)
d. This give an expression for GT as a sum of monomials

in the ai, bi and ci with total degree md and degree d separately in each of the
ai, bi and ci. Using the correspondence in 2.2, we obtain the general expression for
GT ((ai1,..,in), (bi1,..,in)(ci1,..,in)):

ai00 · ·ainn bj00 · ·bjnn ck0
0 · ·ckn

n −→ ai0,..,inbj0,..,jnck0,..,kn
(4.5)

Here, (ai0,..,in),(bj0,..,jn),(ck0,..,kn) are three generic d-forms, and this is the explicit
expression for a joint invariant.
To write the expression of FT ((ai0,..,in)) we use the same correspondence as in 4.5,
applying the same coefficients to all the three generic d-forms in the target. Specifi-
cally:

ai00 · ·ainn bj00 · ·bjnn ck0
0 · ·ckn

n −→ ai0,..,inaj0,..,jnak0,..,kn (4.6)

Remark 4.8. The construction made for invariants can be generalized to suitable co-
variants. Recalling the definition of covariants, let us consider the space Symm(SymdV ),
and let SλV be an irreducible representation of this space with dimension greater than
1. The associated Young diagram λ consists of m · d boxes, but it is not rectangular.
For instance, consider the space Sym2(Sym4V ) where V has dimension 2. The de-
composition of this space is

Sym2(Sym4V ) ∼= S(8) ⊕ S(6,2) ⊕ S(4,4)
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Let’s consider the covariant S(6,2)V . We can complete the Young diagram λ = (6, 2)
to make it rectangular and with columns of length dim(V ).

In the boxes of the original partition, we place the numbers from 1 to 2, each repeated
4 times, as in the case of rectangular tableaux, while in the remaining boxes we place
x.

1 1 1 1 2 2

2 2 x x x x

To find the expression of the covariant, we proceed as in the case above, with the only
difference that x represents a linear form with coefficients x, y (or xi with i = 0, .., n
in the case dim(V ) = n+1) and it is not modified using the correspondence in (2.2),
unlike the coefficients of the other linear forms (4.6). From our example, we obtain:

I(ai, x, y) =(−a23 + a2a4)x
4 + (2a2a3 − 2a1a4)x

3y + (−3a22 + 2a1a3 + a0a4)x
2y2+

+ (2a1a2 − 2a0a3)xy
3 + (−a21 + a0a2)y

4

This expression corresponds to the Hessian of a quartic form of the type a4x
4 +

4a3x
3y + 6a2x

2y2 + 4a1xy
3 + a0y

4, which therefore turns out to be a covariant. We
will see that this is not a coincidence, but rather a general phenomenon for d-forms.
Finally, we observe that this construction is only possible for covariants whose rectan-
gular completion is missing boxes on the same row. This is why we mentioned that it
is not always possible to express a covariant as a polynomial in the ai (the coefficients
of the forms) and the xi (coordinates in V ).

The entire constructions carried out for Symm(SymdV ) can be analogously re-
peated for invariants and covariants of

∧m
(SymdV ). Clearly, in this case it makes

sense only to obtain the explicit expression of GT , that is, of the corresponding rela-
tive invariants. In fact, since we are dealing with antisymmetric functions, attempting
to compute the expression of FT would yield zero. Joint invariants of this type are
called skew invariants. We will study an example of a skew invariant in Chapter 7
and use the construction just described to derive its explicit expression.

4.4 Finiteness of the Ring of Invariant

Let (W,ρ) be any rational representation of G = SL(n+ 1). We denote by C[W ] the
space of homogeneous polynomials in dim(W ) variables. This space has the structure
of a graded ring

C[W ] =

∞⊕
m=0

SymmW

Theorem 4.9 (Hilbert’s finiteness theorem). Using the previous notation, the invari-
ant ring C[W ]G is finitely generated as a C− algebra.

The proof is in [16]. This result is very important; in the following, we will apply
it with W = SymdV and V a complex vector space of dimension n+ 1. In this case
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we have

C[W ] =

∞⊕
m=0

Symm(SymdV ) =

∞⊕
m=0

⊕
λ⊢dm

cλSλV

Moreover, from Preposition 1.11, it follows that

C[W ]G =

∞⊕
g=0

c(g,g,...,g)S(g,g,...,g)V

where g(n + 1) = md and the coefficients c(g,g,...,g) may also vanish. The previous
theorem tells us that this ring has finitely many generators, and the following result
provides a method to find them.

Theorem 4.10. The space of invariants of degree m, Symm(SymdV )G, is generated
by symmetrized tableau functions FT , constructed as in Definition 4.6.

Let I1, .., Ik be a finite set invariants that generate C[SymdV ]G. A syzygy among
them is an integral rational functions of I1, .., Ik that vanishes identically. It can be
shown that the number of irreducible syzygies, that is, those which cannot be obtained
as a linear combination of syzygies of lower degrees, is finite. Moreover, there relations
are known, but we will not go into detail about this aspect.

5 Binary Quartics

The aim of this chapter is to introduce a toy model for the subsequent study of the
Hesse variety associated with plane cubics. In particular, after introducing some basic
notions concerning binary quartics, we will focus on the study of the subvariety of
G(1, 4) given by the Zariski closure of the set of pencils generated by a quartic and
its Hessian. We will also see that this variety is well known in the literature, and that
this is simply an alternative way to define it.

5.1 Key Concepts

We denote by [x, y] the homogeneous coordinates of P1. A quartic Q in this space is
defined by an equation of the form f = 0 with

f = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4.

Thus, we can identify it with the coefficients of this polynomial and see it as a point
in P4. A quartic is said to be singular if it has at least one multiple root; otherwise,
it is called smooth.
The Hessian of a quartic is still a quartic; in fact it is defined by

H(f) = det

((
∂2f

∂xi
∂xj

)
i,j

)
i, j = 1, 2

where x1 = x and x2 = y. H(f) is a homogeneous polynomial of degree 4 in (x, y),
whose coefficients are polynomial of degree 2 in the ai. These coefficients can be easily

26



computed, and by identifying the Hessian with its coefficients, it corresponds to the
point of P4:

[−6a21 + 6a0a2,−3a1a2 + 3a0a3,−3a22 + 2a1a3 + a0a4,−3a2a3 + 3a1a4,−6a23 + 6a2a4]

It is clear that the Hessian of a quartic is not always well-defined. In fact, when all the
previously expressions vanish, the Hessian cannot be determined. This also provides
a way to obtain the ideal defining the variety Z of quartics for which the Hessian is
not defined, which turns out to have dimension 1. Moreover, Z coincides with the
variety of cones, that is, with the set of quartics defines by equations of the form (as
discussed in Chapter 2, section 2.2):

f = (a0x+ a1y)
4

This is called the quartic rational normal curve.
Let us now consider quartics that coincide with their own Hessian. Denote by Sq the
variety obtained as the Zariski closure of this set. This produces a two-dimensional
variety that contains the previously defined variety Z, that is, Z ⊂ Sq. Moreover, the
equation of a quartic in this space is of the form:

f = (a0x
2 + a1xy + a2y

2)2

and thus, Sq is the variety of squares. It is defined by 7 equations of degree 3

in ai given by the vanishing of the coefficients of det

(
fx fy

H(f)x H(f)y

)
, which is a

polynomial of degree 6 in (x, y). Finally, Sq is smooth.

5.2 Invariants of Binary Quartics

A binary quartic can be regarded as an element in Sym4V , where V is a 2-dimensional
vector space, identifying it with the polynomial that defines it. Sym4V in fact, has
dimension 5. An invariant of degree m for binary quartics will be given by an element
in Symm(Sym4V )GL(2), that is, by a homogeneous polynomial of degree m in the
variables a0, .., a4 invariant under the action of GL(2). From Proposition 4.9, we also
know that the space of all invariants C[Sym4V ]GL(2) is finitely generated as a ring,
and in particular, we have:

Theorem 5.1. The ring of invariants of binary quartics, that is ⊕mSymm(Sym4V )GL(2),
is freely generated by two invariants I and J of degree 2 and 3 respectively.

First of all, we can verify the existence of these two invariants according to Propo-
sition 1.11, that is, by decomposing the spaces Sym2(Sym4V ) and Sym3(Sym4V )
into Weyl modules.

Sym2(Sym4V ) ∼= S(8) ⊕ S(6,2) ⊕ S(4,4)

Sym3(Sym4V ) ∼= S(12) ⊕ S(10,2) ⊕ S(9,3) ⊕ S(8,4) ⊕ S(6,6)
Thus, in the first decomposition, we find the invariant I, which corresponds to
S(4,4) ∼= C∗, and in the second, the invariant J , which corresponds to S(6,6) ∼= C∗.

The invariant I corresponds to the tableau
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1 1 1 1

2 2 2 2

and applying the procedure in 4.3, we obtain:

I = 3a22 − 4a1a3 + a0a4

As for the invariant J, it corresponds to the tableau

1 1 1 1 2 2

2 2 3 3 3 3

and it is given by the formula

J = a32 − 2a1a2a3 + a0a
2
3 + a21a4 − a0a2a4 =

∣∣∣∣∣∣
a0 a1 a2
a1 a2 a3
a2 a3 a4

∣∣∣∣∣∣
The vanishing of the invariants I and/or J has geometric meaning: I = J = 0 if and
only if the quartic has a triple or a quadruple root. Moreover, if I = 0 and J ̸= 0
the roots form an anharmonic quadruplet, that is the cross-ratio of the four roots

(z1, z2, z3, z4) =
(z1−z3)(z2−z4)
(z1−z4)(z2−z3)

is equal to −ω or −ω2 where ω3 = 1. This requirement

concerns the symmetric arrangement of the roots on the projective line P1. Whereas
J = 0 if and only if the quartic can be written as the sum of two fourth powers,
f = (ax− by)4 + (cx+ dy)4, and the roots form an harmonic quadruplet (the cross-
ration of the four roots is 1

2 , 2 or −1). See [6] for further details.
Both I3 and J2 have degree 6, and any combination of them is still an invariant of
degree 6. The most important among these is the discriminant

∆ = I3 − 27J2,

which vanishes if and only if the quartic is singular.

Finally, I3

J2 is an absolute invariant.

We now present the classification of orbits under the action of GL(2) on the space
of quartic forms. This can be found in [14].

Orbit representatives Hessian Description dim(O(f))

x4 + 6λx2y2 + y4 λ ̸= ± 1
3 x4 + y4 + 6 1−3λ2

6λ x2y2 simple roots 3

x4 + x2y2 6x4 − x2y2 one double root 3

x2y2 x2y2 two double roots 2

x3y x4 triple root 2

x4 0 quadruple root 1

Where O(f) is the orbit of the quartic f , that is

O(f) = {c · f | c ∈ GL(2)}
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Remark 5.2. (How to compute the dimension of an orbit) Let X be an algebraic
variety and G an algebraic group such that G acts on X. Let x ∈ X and O(x) its
orbit, consider

G
ϕ−−→ O(x)

given by ϕ(g) = g · x. The differential of this morphism at the identity dϕe yields

TeG
dϕe−−→ TxO(x)

Denote by Je the Jacobian matrix of ϕ evaluated at the identity element of G. It holds
that:

rank(Je) = dimA(TxO(x)) = dimA(O(x))

where dimA denotes the affine dimension.

When we view the Hessian of a quartic as a polynomial of degree 2 in (x, y) with
coefficients that are degree 4 polynomials in the ai, it follows from Proposition 4.4.2
in [17] that it is a covariant of degree 2 and order 4 (this property actually holds
more generally for homogeneous forms, as stated in the proposition: the Hessian of a
d-form is a covariant of index 2 and order (n+1)(d-2)). Therefore, if a quartic lies in
a given orbit, then the Hessian of all quartics in the same orbit lie in the same orbit
as the Hessian of f . This is equivalent to saying that the Hessian map is equivariant
under the action of GL(2).

5.3 Syzygetic Pencils and their Variety

Proposition 5.3. Let f be a quartic in P4 that belongs to the image of H but not to
Sq. Then it is the Hessian of two other quartics in P4 − Sq.

This can be found in [4]. Note that this statement is equivalent to saying that the
Hessian map is generically a [2 : 1] map.

From the orbits of GL(2), we can see that a quartic in Sq with a non-vanishing
Hessian is equivalent to x2y2. From this, it is easy to verify that the space of quartics
whose Hessian is such an element has dimension 1. In particular, for x2y2, this space
is given by x4+λy4, to which we must add x2y2 itself. On the other hand, for elements
of Sq with a vanishing Hessian, we can take x4 as a representative. It is then found
that the space of quartics whose Hessian is x4 has dimension 1, and it is given by
x4 + λx3y.
We summarize these results in a table.

Orbit representatives Description H−1(f)

x4 + 6λx2y2 + y4 λ ̸= ± 1
3 x4 + 6tx2y2 + y4 with 6λt = 1− 3t2

x4 + x2y2 x4 − 2x2y2

x2y2 x4 + λy4 λ ∈ C∗ e x2y2

x3y empty

x4 x4 + λx3y λ ∈ C
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Consider the Grassmannian of the lines in P4, G(P1,P4). As we show in 3.4, it
is embedded in a projective space of dimension 9. Taking the Plücker coordinates of
this space p(i,j) when i = 0, .., 3 and i < j ≤ 4, G(P1,P4) is defined by five quadratic
equations. Moreover, it has dimension 6 and degree 5. Consider P4 as the space of
binary quartics and let f ∈ P4 be a quartic. Then, as long as the Hessian is well-
defined and distinct from f , it generates a line ⟨f,H(f)⟩ in P4, that is a point in
G(P1,P4).

Proposition 5.4. Let L be a line in P4 generated by a quartic and its Hessian, that
is L = ⟨f,H(f)⟩, whit H(f) ̸= 0, f . Then, the Hessian of every quartic on the line L
still lies on L.
Moreover, if a quartic is in L−Sq, then the quartics for which it is the Hessian must
also be contained in L.

Proof. From the description of the GL(2)-orbits, it follows that f can be chosen in
the form

x4 + 6λx2y2 + y4 = 0 with λ ∈ C (5.1)

We can easily compute the Hessian of such quartic, we obtain:

x4 + 6
1− 3λ2

6λ
x2y2 + y4 = 0

which clearly still is of the same form.
This is equivalent to saying that every pencil of the form ⟨f,H(f)⟩, with f smooth is
projectively equivalent to one of the form

x4 + 6λx2y2 + y4 = 0 with λ ∈ C ∪ {∞}

where for λ =∞ the equation is x2y2 = 0. Moreover, from the previous computations,
it also follows that the Hessian of a quartic in the pencil still belongs to the pencil.

For the second part, it is enough to observe that the correspondence λ → 1−3λ2

6λ
defines a [2 : 1] map from C ∪ {∞} to itself. That is, a generic quartic in the pencil
is the Hessian of two other quartics in the same pencil.
There are two additional cases in which a pencil can be generated by a quartic and
its Hessian, namely when f lies in the orbit of x4 + x2y2 or x3y. In the first case,
everything works similarly to the case of smooth quartics; that is, given f of the form
x4+x2y2+λ(6x4−x2y2), its Hessian has the same form with λ −→ 11λ+3

18λ−4 . Moreover,
each quartic in this pencil is the Hessian of a unique other quartic, which also belongs
to the same pencil. In the case of x3y + λx4, each of the quartic in the pencil has x4

as its Hessian, and it is not the Hessian of any quartic.

From the canonical form of a pencil generated by a smooth quartic and its Hes-
sian, we can observe that it contains three quartics that coincide with their own
Hessian. One is given for λ =∞, while the others are found by solving the equation
6λ2 = 1− 3λ2, that gives λ ∈ {+ 1

3 ,−
1
3}.

Definition 5.5. Consider the set of lines generated by a quartic and its Hessian. We
denote by S the subvariety of G(P1,P4) obtained as the Zariski closure of this space,
that is

S = {⟨f,H(f)⟩ ∈ G(P1,P4) |f has 4 simple roots}
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Let’s now see how to calculate the dimension of S theoretically. Later, we will
also discuss how to compute the equations of S computationally, and thus determine
its dimension.
We define

P := {(f, L) ∈ P4 × S |f ∈ L} ⊂ P4 ×G(P1,P4),

we denote by p2 : P4 × G(1, 4) −→ G(1, 4) and p1 : P4 × G(1, 4) −→ P4 the two
projections. Let’s consider the restriction of these two maps to P and examine their
fibers.

P

P4 S

p1|P p2|P

Let g ∈ P4 a quadric, p1|−1
P (g) = {(g, L) ∈ {g} × S |g ∈ L} ⊂ P . So, for a generic

quartic, that is, if g is not in C and its Hessian is defined, we have that there exists
a unique L ∈ S that satisfies this condition, and it is given by L = ⟨g,H(g)⟩. This
follows from Proposition 5.4. We obtain

dim(P ) = dim(P4) + dim(p1|−1
P (g)) = 4 + 0 = 4.

Let now L ∈ S, p2|−1
P (L) = {(f, L) ∈ P4 × {L} |f ∈ L} ⊂ P . Clearly, this fiber

consists of all the quadrics contained in L and therefore has dimension 1. We have

4 = dim(P ) = dim(S) + dim(p2|−1
p (L)) = dim(S) + 1 =⇒ dim(S) = 3.

To obtain the equations defining S in Plücker coordinates, we proceed as follows: we
consider the 2× 5 matrix where the first row contains the coefficients ai of a generic
quadric, and the second row contains the corresponding coefficients of the hessian,
expressed in terms of the ai.

A =

[
a0 a1 a2 a3 a4

−6a21 + 6a0a2 −3a1a2 + 3a0a3 −3a22 + 2a1a3 + a0a4 −3a2a3 + 3a1a4 −6a23 + 6a2a4

]
To obtain the equation of the generic line for f and H(f) in Plücker coordinates, we
simply set the latter equal to the 2nd-order minors of the previous matrix, that is

p(i,j) = det(Ai|Aj) for i = 0, .., 3 and i < j ≤ 4

where Ai is the i−th column of the matrix A. Thus, we obtain the Plücker coordinates
as cubic expressions in the ai. Finally, it will be sufficient to eliminate all the auxiliary
variables ai to obtain an ideal containing the desired relations among the p(i,j).
We carried out this computation using Macaulay2. It turns out that S is defined by
8 equations, three of which are linear, while the remaining five are quadratic. These
last equations are precisely the quadratic equations that define G(1, 4). Thus, S is
obtained as the intersection of three hyperplanes in P9 with the Grassmannian G(1, 4).
In particular,

(3p(2,3) − p(1,4), 2p(1,3) − p(0,4), 3p(1,2) − p(0,3), 2p2(1,4) − 3p(0,4)p(2,4) + 2p(0,3)p(3,4),

p(0,4)p(1,4) − 3p(0,3)p(2,4) + 3p(0,2)p(3,4), p2(0,4) − 2p(0,3)p(1,4) + 2p(0,1)p(3,4),
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p(0,3)p(0,4) − 3p(0,2)p(1,4) + 3p(0,1)p(2,4), 2p2(0,3) − 3p(0,2)p(0,4) + 2p(0,1)p(1,4))

are the equations that define S. Furthermore, we computed the dimension end the
degree of S, obtaining:

dim(S) = 3 degree(S) = 5

This variety turns out to be smooth. To verify this, we computed the variety of
singular points contained in S and checked that it is empty. This last variety is
obtained by adding to the defining equations of S those given by the condition that
the Jacobian matrix of S has rank less than 6 = codim(S).
In the following, we will see how to use Schubert calculus to compute the multidegree
of S with respect to Schubert cycles. In G(P1,P4) there are exactly nine Schubert
cycles that generate H∗(G(1, 4),Z). Each of these cycles corresponds to a Young
tableau that can be embedded in the representative 2 × 5 matrix. Additionally, we
know that codim(Ω(λ)) = # boxes in λ. Since we are interested in evaluating the
multidegree of S, which has dimension 3, we focus on H6(G(1, 4),Z). From the basis
theorem 3.9, it follows that it has two generator corresponding to the tableaux:

Indeed, these correspond to Schubert varieties of dimension 3. Using the notation in
section 3.3, these two Schubert cycles are denoted respectively by Ω(0, 4) and Ω(1, 3).
It follows from the theory that the degree of S can be written as follows:

deg(S) = α deg(X ) + β deg(X ) (5.2)

and the coefficients α and β can be computed as the degree of the intersection between
S and the same Schubert variety. With the caution of choosing the Schubert varieties
in such a way that their intersection with S consists of a finite number of points, the
degree thus represents the number of points with multiplicity in the intersection. To
clarify:

dim(S ∩X ) = 0 =⇒ α = deg(S ∩X )

dim(S ∩X ) = 0 =⇒ β = deg(S ∩X )

For this last fact, we observe that, according to Proposition 3.12, the cycles Ω(0, 4)
and Ω(1, 3) are self-dual.
The degrees of these two Schubert varieties can be compute using the Hook lengths
formula in (3.3), we have

deg(X ) =
3!

3 · 2 · 1
= 1 deg(X ) =

3!

3 · 1 · 1
= 2

Proposition 5.6. Using the previous notation, the multidegree of the variety S is
given by

α = 1 β = 2
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Proof. A Schubert variety corresponding to the cycle Ω(0, 4) represents all the lines
in P4 that pass through a fixed point. Intersecting with S, we must ask ourselves
how many lines of the type ⟨f,H(f)⟩ ⊂ P4 pass through a given point g ∈ P4. In
the general case, there is only one such line, as follows from Proposition 5.4, and it is
given by ⟨g,H(g)⟩. Thus, we obtain α = 1.
A Schubert variety corresponding to the cycle Ω(1, 3) represents all the lines in P4

that touch a given line r and are contained in a hyperplane P3 that also contains
r. Similarity to the previous case, we need to count the number of lines of the form
⟨f,H(f)⟩ that satisfy these properties. Again, by Proposition 5.4, this number is
equal to the number of quadrics on r whose Hessian belongs to the given hyperplane.
The condition of belonging to r becomes ai = pi+λ vi. The coefficients of the Hessian
of such a quadric, denoted by ai, are polynomials of degree 2 in λ. A hyperplane of
P4 is given by a linear equation of the form:

4∑
i=0

µi ai = 0 µi ∈ C

where the ai are the coordinates of P4. The condition that the Hessian belongs to
this hyperplane can be rewritten as

4∑
i=0

µi ai = 0,

which turns out to be a quadratic equation in the parameter λ, and therefore there
are two solutions. In this way, we obtain β = 2.

We performed these computations also using Macaulay2. The key observation
we want to make is that, to find the Schubert varieties that satisfy the condition of
having a finite intersection with S, one can follow a procedure similar to the one used
in the proof of Proposition 3.7, where T is a random matrix, 5 × 5 in this case. We
present the obtained results in the following table.

Schubert variety Xλ deg(Xλ) codim(S +Xλ) degree(S +Xλ)
(0,4) 1 9 1
(1,3) 2 9 2

Note that the degrees of the two Schubert variety are consistent with the Hook-
length formula (3.3) in section 3.2.
Thus, we obtain α = 1 and β = 2 again. Rewriting the formula in 5.2, we have
dim(S) = 1 · 1 + 2 · 2 = 5 which coincides with the direct computation of the degree
of S.

5.4 The Orbit Closure of a Pencil

We recall that S denotes the closure of the family of pencils generated by a binary
quartic and its Hessian. Since the Hessian map is SL(2)-equivariant, it follows that
S is also SL(2)-invariant. Indeed, if ⟨f,H(f)⟩ ∈ S, then for any C ∈ SL(2), we have
C · ⟨f,H(f)⟩ = ⟨C · f,H(C · f)⟩ ∈ S. Thus, S contains orbits of pencils, and our goal
in this section is to determine which ones and how many. In particular, we will show
that the following theorem holds.
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Theorem 5.7. The variety S, defined in 5.5, coincides with the closure of the orbit
of the pencil < x4 + y4, x2y2 > under the action of GL(2), that is

S = O(⟨x4 + y4, x2y2⟩)

Moreover, S consists of 3 orbits of pencils and is smooth.

Since we know (see preposition 5.4) that all the pencils of the form ⟨f,H(f)⟩
with f smooth are equivalent to ⟨x4 + y4, x2y2⟩, the first part of the theorem follows
immediately.
Let f be a quartic, we define

P3
f := {⟨f, g⟩ ∈ G(1, 4) | g ∈ P4}

that is, the closure of the space of all pencils containing f . It has dimension 3.
For each orbit of quartics, we fix a representative and compute the dimension of
P3
f ∩ S. The results are summarized in the following table, along with a description

of the corresponding space.

Representative f dim(P3
f ∩ S) Description

x4 + y4 0 ⟨x4 + y4, x2y2⟩

x4 + x2y2 0 ⟨x4, x2y2⟩

x2y2 1 ⟨x2y2, ax4 + by4⟩ a, b ∈ C

x3y 0 ⟨x3y, x4⟩

x4 1 ⟨x4, ax3y + bx2y2⟩ a, b ∈ C

We now observe that ⟨x2y2, a(x4) + b(y4)⟩ a, b ∈ C contains actually only finitely
many orbits of pencils. Indeed, for a, b ̸= 0, we have H(ax4 + by4) = x2y2. Thus,
using the equivariance of the Hessian map, the following diagram commutes

ax4 + by4 ax4 + by4

x2y2 x2y2

·C

H H

·C

We have ⟨x2y2, ax4 + by4⟩ · C = ⟨x2y2, ax4 + by4⟩ and the orbits of such pencils
corresponds to the orbits of the quartic ax4 + by4 with a, b ̸= 0. Clearly, all of them
lie in the orbit of x4+y4. We must also consider the cases where a = 0 or b = 0. These
two cases are equivalent up to switching x and y, so they yield a simple additional
orbit. Therefore, we obtain exactly two orbits of pencils generated by

⟨x2y2, x4 + y4⟩ ⟨x2y2, x4⟩

Similarly, also the pencils of the form ⟨x4, ax3y + bx2y2⟩ turn out to form only
finitely many orbits. However, more care is needed in this case. In particular, we
have H(ax3y + bx2y2) = −3a2x4 − 4b(ax3y + bx2y2) ∈ ⟨x4, ax3y + bx2y2⟩ for every
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a, b ̸= 0. The equivariance of the Hessian map gives the following diagram:

f = ax3y + bx2y2 ax3y + bx2y2

H(f) ∈ ⟨x4, ax3y + bx2y2⟩ C ·H(f) ∈ ⟨x4, ax3y + bx2y2⟩

·C

H H

·C

from which we deduce that C · ⟨x4, ax3y+ bx2y2⟩ = C · ⟨f,H(f)⟩ = ⟨ax3y+ bx2y2, C ·
H(f)⟩ = ⟨x4, ax3y + bx2y2⟩. So, as in the previous case, the orbits correspond to
those of ax3y + bx2y2, to which we must add the ones for a = 0 or b = 0. We thus
obtain three orbits, with the following representatives:

⟨x4, x3y + x2y2⟩ ⟨x4, x3y⟩ ⟨x4, x2y2⟩

Finally, observing that x3y+ x2y2 lies in the same orbit as x4 + x2y2, and using once
again the equivariance of the Hessian map, we get ⟨x4, x3y+x2y2⟩ = ⟨x4, x4+x2y2⟩ =
⟨x4, x2y2⟩.
In Section 5.5, after determining the equations defining S, we also verified that it is
smooth. As an additional check, we can compute the rank of the 8 × 10 Jacobian
matrix for each orbit. At smooth points, the Jacobian should have rank equal to
the codimension of S, which is 6; therefore, any point where the rank drops must be
singular. In the following table, we summarize all the orbits contained in S along
with their dimension and the rank of the Jacobian matrix.

Representative ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank(J)

⟨x4 + y4, x2y2⟩ 3 6

⟨x4, x2y2⟩ 2 6

⟨x4, x3y⟩ 1 6

This concludes the proof of Theorem 5.7.
It is possible to see explicitly that both lower-dimensional orbits lie in the closure of
the pencil ⟨x4+y4, x2y2⟩. Indeed, consider the two families of quartics x4+x2y2+ty4

and x3y + t(x4 + y4), depending on a parameter t. Each of these, together with its
Hessian, generates a pencil in O(⟨x4 + y4, x2y2⟩), which are, respectively,

⟨x4+x2y2+ty4, 12tx2y2+2ty4+2x4−x2y2⟩, ⟨x3y+tx4+ty4, 16t2x2y2+8txy3−x4⟩

Taking the limit as t → 0, we obtain, respectively, ⟨x4, x2y2⟩ and ⟨x4, x3y⟩, which
must therefore lie in the closure of O(⟨x4 + y4, x2y2⟩).

5.5 The Variety of Pencils Revisited

The variety S studied so far is actually a well-known variety in the literature. In fact,
in the article [1], all the closed 3-fold GL(2)-orbits are classified. In particular we will
see that our variety corresponds to the orbit of the sextic x5y − xy5.
To make the connection with that definition of S, let us recall that G(1, 4) is embedded
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in P9. In particular, we can think of it as contained in
∧2

(Sym4C2), which indeed
has dimension 9. This space has the following decomposition in Weyl modules:∧2

(Sym4C2) ∼= S(7,1)C2 ⊕ S(5,3)C2

Since the representations of SL(2) are isomorphic to their duals, we can also write∧2
(Sym4C2) ∼= Sym6C2 ⊕ Sym2C2

Thus, the orbit of the sextic x5y − xy5 is contained in Sym6C2 ⊂
∧2

(Sym4C2) and,
from the classification in article [1], we conclude that this orbit coincides with S.

Proposition 5.8. Using the previous notation we have:

G(1, 4) ∩ P(Sym6C2) = S (5.3)

This will become clear once the correspondence between
∧2

(Sym4C2) and the
two submodules Sym6C2 and Sym2C2 is made explicit in Plücker coordinates. These
two modules, of dimension 7 and 3 respectively, correspond to the tableaux

We can use the symbolic representation of covariants, as explained in Remark 4.8, to
obtain explicit formulations of these covariants. In particular, we start from

1 1 1 1 2 2 2

2 x x x x x x

1 1 1 1 2

2 2 2 x x

and construct the two corresponding polynomials in the variables ai, bi of two quartics
and x, y of C2. We report here the results obtained, along with their expression in
Plücker coordinates.

F6 = (−a4b3 + a3b4)x
6 + (3a4b2 − 3a2b4)x

5y + (−3a4b1 − 6a3b2 + 6a2b3 + 3a1b4)x
4y2+

+ (a4b0 + 8a3b1 − 8a1b3 − a0b4)x
3y3 + (−3a3b0 − 6a2b1 + 6a1b2 + 3a0b3)x

2y4+

+ (3a2b0 − 3a0b2)xy
5 + (−a1b0 + a0b1)y

6

= p(3,4)x
6 − 3p(2,4)x

5y + (3p(1,4) + 6p(2,3))x
4y2 − (p(0,4) + 8p(1,3))x

3y3+

+ (3p(0,3) + 6p(1,2))x
2y4 − 3p(0,2)xy

5 + p(0,1)y
6

F2 = (−a4b1 + 3a3b2 − 3a2b3 + a1b4)x
2 + (a4b0 − 2a3b1 + 2a1b3 − a0b4)xy+

+ (−a3b0 + 3a2b1 − 3a1b2 + a0b3)y
2 =

(p(1,4) − 3p(2,3))x
2 − (p(0,4) − 2p(1,3))xy + (p(0,3) − 3p(1,2))y

2

These two expression show that Sym6C2 can be obtained by intersecting
∧2

(Sym4C2)
with the three hyperplanes defined by the vanishing of the coefficients of F2, namely:

p(1,4) − 3p(2,3) = 0 p(0,4) − 2p(1,3) = 0 p(0,3) − 3p(1,2) = 0
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Observe that these hyperplanes are exactly those defining the variety S, which proves
Proposition 5.8.
Furthermore, the expression of the sextic F6 gives an explicit correspondence between
quartic pencils and sextics. Let us consider, for example, the pencil ⟨x4 + y4, x2y2⟩.
It must correspond to a sextic in the orbit of x5y − xy5. Consider the 2 × 5 matrix
whose rows are the coefficients of x4 + y4 and x2y2[

1 0 0 0 1
0 0 1 0 0

]
The 2× 2 minors of this matrix give the Plücker coordinates of the pencil generated
by these two quartics, which are

p(0,1) = 0 p(0,2) = 1 p(0,3) = 0 p(0,4) = 0

p(1,2) = 0 p(1,3) = 0 p(1,4) = 0

p(2,3) = 0 p(2,4) = −1
p(3,4) = 0

Using F6, the corresponding sextic is x5y − xy5, as expected.
Similarly, we can proceed for the other lower-dimensional orbits in the closure.

Pencil Sextic

⟨x4 + y4, x2y2⟩ x5y − xy5

⟨x4, x2y2⟩ xy5

⟨x4, x3y⟩ x6

What has been obtained for the lower-dimensional orbits also corresponds to what
is stated in the article [1]. In the closure of the orbit of x5y−xy5, there are two other
lower-dimensional orbits, those of x5y and x6, with dimensions 2 and 1, respectively.

Remark 5.9. We have seen that the variety S is given by the intersection of the
Grassmannian G(1, 4) with three hyperplanes. According to the article [12], it is
a Fano 3-fold. A Fano variety X is characterized by having ample anticanonical
bundle. In particular, for the Grassmannian G(1, 4), the canonical bundle satisfies
KG(1,4)

∼= O(−5). By intersecting with three hyperplanes, we obtain a 3-fold S with
KS
∼= O(−2). In this article S is also described as a variety of sums of squares.

6 Plane Cubics

In this chapter, we will focus on the study of plane cubic curves, exploring their main
invariants and concluding with an analysis of the Hessian map.

6.1 Key Concepts

Let’s start by introducing these objects. A plane cubic Cf is defined by a homogeneous
polynomial of degree three in the variables x, y, z, which represent the homogeneous
coordinates in a projective space. Thus, as follow from Proposition 2.1, we can say
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that it is an object in Sym3V , where V is a three-dimensional vector space. In
particular, we have

Cf = {[x, y, z] ∈ P2 |f(x, y, z) = 0} = {f = 0} with

f = a0x
3+3a1x

2y+3a2x
2z+3a3xy

2+6a4xyz+3a5xz
2+a6y

3+3a7y
2z+3a8yz

2+a9z
3.

We can thus identify Cf with f , and f with the ten homogeneous coordinates given
by its coefficients ai. Therefore, we can think of a cubic curve as a point in P9.
A point p ∈ Cf is called singular if the gradient of f vanishes at that point. Other-
wise, it is called smooth.
The group SL(3) acts on cubic curves as explained at the beginning of chapter 3. The
orbits of this action are all classified and can be found in [3], we will analyze them in
detail later. In particular, there are infinitely many orbits, 8 of them contain singular
cubics, while the others are of the form:

Eλ : x3 + y3 + z3 + 6λxyz = 0 λ ∈ C− {−1

2
, 0, 1}

and contain smooth cubics.

The Hessian cubic of f , H(ai, x), defined in section 2.2, is an homogeneous poly-
nomial of degree 3 in the variables x, y, z whose coefficients are polynomials of degree
3 in the ai. It is still a plane cubic. A point p ∈ C is called a flex point if it is a
common point of C and its Hessian, that is, it satisfies f(p) = 0 and H(f)(p) = 0.
It then follows from Bézout’s theorem that, in general, a plane cubic has nine flex
points. The tangent line to the cubic at these points intersects the cubic only at that
point, with multiplicity 3.
It is called triangle a cubic whose Hessian coincides with the cubic itself. This is
equivalent to saying that all the points of such a cubic are flex points and thus, it is
the union of three lines.

Remark 6.1. If we consider two curves of order n, they will intersect at n2 points.

However, only n(n+3)
2 points are needed to determine a curve of order n in the plane

(Cramer’s paradox). In general, with some exceptions, the n2 intersection points of

two curves of order n impose only n(n+3)
2 − 1 conditions on curves of the same order

that must pass through these points. Moreover, the curves of order n that pass through
n(n+3)

2 −1 points of the plane also pass through other n2−
(

n(n+3)
2 − 1

)
= (n−1)(n−2)

2

points.
All of this can be applied to the case of cubics, and in particular, it holds that: Cu-
bics passing through eight generic points of the plane also pass through a ninth. In
particular, if P1, .., P9 are the nine intersection points of two cubics, the condition of
passing through any eight of these points imply passing through the nine.
It can be found in [6], Book II, Chapter 15.

Theorem 6.2 (Mac-Laurin). The line joining two flex points of a smooth cubic
contains a third flex point.

This theorem can be found in [6], where a different proof is given from the one
we outline here. Specifically, we observe that every smooth cubic is projectively
equivalent to one of the form Eλ, and for these, the theorem can be verified explicitly.
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In any case, we will explore this in more detail in the following sections. Furthermore,
Mac-Laurin extends this statement to cubics with a node: the three inflection points
of a cubic with a node are collinear.
The lines containing three flex points are called Mac−Laurin lines. In the smooth
case, from the existence of nine flex points, it follows that there are exactly

(
9
2

)
1
3 = 12

Mac-Laurin lines. Four of them pass through the same flex point.
Such a configuration of 9 points in P2 and 12 lines is called the Hesse configuration.

p1

p4

p7

p2

p5

p8

p3

p6

p9

Figure 1: This figure represents nine points in Hesse configuration and the twelve lines
that characterize them. The eight black lines are clearly visible, while the remaining
four could not be explicitly drawn. Instead, four different colours were used to connect
the three points on each of these lines.

The twelve Mac-Laurin lines form 4 triangles, each containing the nine inflection
points. To construct a triangle, we choose one of the 12 lines, named a, through three
flex points. As the second line, we take a line b that is not one of the 3 · 3 + 1 = 10
lines passing through one of the three flex points in a. Finally, there are exactly nine
lines that connect one inflection point on a with one on b. Adding a and b, it remains
only one line c that completes the trilateral.

The following theorem is also due to Mac-Laurin, we present here a slightly dif-
ferent proof from the one given in [6].

Theorem 6.3. Let pi ∈ P2 for i = 1, .., 9 be nine points in the Hesse configuration.
If Cf is a smooth cubic passing through these nine points, then these points are flex
points of f .

Before proving this theorem, we first recall some aspects of the group structure
of elliptic curves. We choose a point p0 ∈ C, called the ”origin”, which will serve as
the neutral element of the group. Let p and q be two other points on the curve. The
sum p+ q is defined as follows: we draw the line through p and q, which intersect the
cubic at a third point, denoted by t. Next, we draw the line through p0 and t; this
line intersects the cubic at a third point, which is precisely p + q. It can be proved
that this defines a group structure on C.
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p

q

p0

t

p+ q

Lemma 6.4. Let p0, the origin of the group, be a flex point of the cubic. The following
proprieties hold:

• three points of C are collinear if and only if their sum equals p0.

• p is a flex point of C if and only if 3p = p0.

Proof. Let p, q and r be three points of C. First, suppose that the points are collinear.
When we sum p+ q , we obtain the third intersection point of the line through r and
p0 with the cubic. Now, adding r to this point means finding the intersection of the
tangent to p0 with C . However, since p0 is a flex point, its tangent intersects the
cubic only at p0 with multiplicity 3. Thus, we obtain precisely p0.
Conversely, supposed that p+ q+ r = p0. This means that the points p+ q and r are
collinear with p0. It then follows from the definition of p+ q that r must be the third
point of the line through p and q with C, which implies that p, q and r are collinear.
Now, let p be a flex point of C. The sum p+p is given by the third intersection point
of the line through p and p0 with C. Summing again with p, we obtain p0, which
shows that 3p = p0.
Conversely, let p ∈ C such that 3p = p0. This means that p + p and p are collinear
and this happens if and only if the third intersection point between the tangent line
from p and the cubic C is again p, that is p is a flex point.

Proof of Theorem 6.3. Consider a group structure on C where the origin is a flex
point. Since this point serves as the neutral element of the group, we will simply
denote it by 0. Let pi for i = 1, .., 9 be the nine points in the Hesse configuration.
From the previous lemma, it follows that the relationship that must hold between
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these points can be rewritten as follows:

p1 + p2 + p3 = 0

p4 + p5 + p6 = 0

p7 + p8 + p9 = 0

p1 + p4 + p7 = 0

p2 + p5 + p8 = 0

p3 + p6 + p9 = 0

p1 + p5 + p9 = 0

p3 + p5 + p7 = 0

p2 + p6 + p7 = 0

p1 + p6 + p8 = 0

p2 + p4 + p9 = 0

p3 + p4 + p8 = 0

Each equation represents one of the 12 lines, and each point belongs to 4 lines,
meaning it lies on 4 of these equations.
There are no privileged points in this configuration, so it will be sufficient to show that
one of these pi is a flex point, that is, satisfies 3pi = 0. Let us choose, for example, p1.
Summing the first three equations that contain it, starting from the top, we obtain:

3p1 + p2 + p3 + p4 + p7 + p5 + p9 = 0

Observing that p2 + p4 + p9 = 0 and p3 + p5 + p7 = 0 are two of the equations, we
obtain the thesis: 3p1 = 0.

6.2 Invariants of Plane Cubics

An invariant for plane cubics is an homogeneous polynomial I ∈ C[a0, .., a9] that is
invariant under the action of SL(3). As follows from the theorem 4.9, the space of all
invariants must be finitely generated, and indeed we have the following proposition:

Theorem 6.5. The ring of invariants of a plane cubic, that is
⊕

m Symm(Sym3C3)GL(3),
is freely generated by two invariants S and T of degree 4 and 6 respectively.

We will see in a moment the definition and what these two invariants represent.
First, let’s just mention that this proposition can be found in [17] and it can be proved
as an application of the constructive proof provided by Hilbert for the Finiteness
Theorem 4.9.
From the proposition 1.11, we can also evaluate the presence of these invariants or,
alternatively, the absence of lower-degree invariants by decomposing modules of the
type Symm(Sym3C3) into irreducible representation of GL(3). Here, we report the
lowest degrees calculated with the help of the software Macaulay2.

Sym2(Sym3C3) = S6 ⊕ S(4,2)

Sym3(Sym3C3) = S9 ⊕ S(7,2) ⊕ S(6,3) ⊕ S(5,2,2) ⊕ S(4,4,1)
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Sym4(Sym3C3) = S12⊕S(10,2)⊕S(9,3)⊕S(8,4)⊕S(8,2,2)⊕S(7,4,1)⊕S(7,3,2)⊕S(6,6)⊕S(6,4,2)⊕S(4,4,4)
Thus, we see that there are no invariants of degree lower than 4 and, at degree 4,
we observe the factor S(4,4,4) that corresponds to the invariant S mentioned in the
Theorem. Continuing the calculation for greater degrees, it can be seen that there
are no invariants of degree 5 and that there is one of degree 6 corresponding to the
module S(6,6,6).
The Aronold invariant S, it is of degree 4 and its symbolic representation using the
tableau language is the following:

1 1 1 2

2 2 3 3

3 4 4 4

We denote by S the corresponding multilinear form GT and its symmetrization FT :

S(l31, l
3
2, l

3
3, l

3
4) = (l1 ∧ l2 ∧ l3)(l1 ∧ l2 ∧ l4)(l1 ∧ l3 ∧ l4)(l2 ∧ l3 ∧ l4)

By calculating the expression of the invariant in terms of the coefficients ai, as we
explained at the end of paragraph 4.3, one obtains a sum of 25 monomials. The cubic
forms for which S = 0 (equianharmonic cubic) can be expressed as the sum of three
cubes.
The other invariant T , that appears in the proposition, has degree 6 and corresponds
to the tableau:

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

This gives a sum of 103 monomials of degree 6. The cubic forms for which T = 0
(harmonic cubic) are hessian of their own hessian.
The explicit expressions of both these invariants, in terms of the coefficients of a plane
cubic, can be found in [17].

There is a connection between these two invariants and the invariants I and J
defined in the case of quartics in Section 5.2. Let Cf be a plane cubic and P ∈ Cf a
point, we define

πP : Cf − {P} −→ P1

where P1 represents the line in P2 through P and πP (Z) = ⟨P,Z⟩. The map is gener-
ically 2 : 1, as a general line through P intersects the cubic curve Cf in two further
points. Moreover, there are four branch points, namely the directions for which the
line through P meets the cubic at a single point with multiplicity greater than one.
These four points determine a binary quartic. Moreover, if we carry out the same
construction with a different point P ′ ∈ Cf , the resulting quartic lies in the same
SL(2)-orbit as the previous one. As P varies, all the quartics obtained in this way are
SL(2)-equivalent. In particular, cubics with S = 0 determine quartics with I = 0 and
are called anharmonic (among them we find the Fermat cubic). On the other hand,
cubics with T = 0 give rise to quartics with J = 0 and are therefore called harmonic.
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The two invariants S and T let us to introduce the discriminant of a plane cubic
as

∆ = T 2 − 64S3 (6.1)

which vanishes whenever the cubic is singular. Otherwise, the curve is an elliptic
curve. The fact that the discriminant is an invariant implies that if a cubic is singular,
then all cubics in its orbit are singular as well. We include here the table listing all
the orbits of the SL(3) action.

Table 1: Orbits with respect to the action of SL(3)

Cubic Hessian cubic Description

x3 triple line

xy(x+ y) three concurrent line

x2y double line+ line

x(x2 + yz) −3x3 + xyz conic+ sec.line

y(x2 + yz) y3 conic+ tangent line

y2z − x3 − x2z 3xy2 − x2z + y2z nodal

y2z − x3 xy2 cusp

x3 + y3 + z3 + 6txyz with t3 ̸= 1 same form with t′ = −1−2t3

6t2 smooth

xyz xyz triangle

Moreover, cubics have an absolute invariant, given by S3

T 2 .

6.3 Hesse Pencil

The syzygetic pencil is defined as the pencil of smooth cubics generated by a cubic
and its Hessian: λf+µH(f). Since a cubic and its Hessian have nine common points,
which are the inflection points of f , all the cubics in this pencil must pass through
these points, which we call the base points of the pencil. Being inflection points
of f , they form a Hesse configuration and, therefore, by Theorem 6.3, they must be
inflection points for all the cubics in the pencil. Thus, we have the following:

Proposition 6.6. All the cubics in a syzygetic pencil have the nine base points as
their inflection points.

It follows directly from this result that the Hessian of any cubic in the pencil must
still belong to the pencil. In this regard, note that the cubics passing through eight
generic points of P2 determine a pencil, and thus, in this case, such a pencil must
coincide with λf+µH(f). Hesse proved this fact in 1844, along with a more profound
result which is in Theorem 6.7.
In general, the pencil of cubics given by

Eλ : x3 + y3 + z3 + 6λxyz = 0 λ ∈ C ∪ {∞} (6.2)
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where E∞ : xyz = 0, is called the Hesse pencil.
This kind of pencil also appears in the context of binary quartic: indeed, it corresponds
to the pencil of quartics generated by a smooth quartic and its Hessian ⟨x4+y4, x2y2⟩,
as defined in (5.1).
Eλ is a syzygetic pencil: in fact, it is generated by the Fermat cubic x3 + y3 + z3

and its Hessian xyz. By intersecting these two curves, we find the inflection points of
the Fermat cubic, which are:

(0, 1,−1) (0, 1, ϵ) (0, ϵ, 1)

(1, 0,−1) (1, 0, ϵ) (ϵ, 0, 1)

(1,−1, 0) (1, ϵ, 0) (ϵ, 1, 0)

where ϵ = e2πi/3 is the primitive cubic root of unity.
To find the singular cubics that belongs to the pencil, we denote by (x0, y0, z0) a
singular point and solve the system:

x3
0 + y30 + z30 + 6λx0y0z0 = 0

3x2
0 + 6λy0z0 = 0

3y20 + 6λx0z0 = 0

3z20 + 6λx0y0 = 0

Without loss of generality, we can take z0 = 1 (otherwise, z0 = 0 =⇒ x0 = 0, y0 = 0).
3x3

0 + 6λx0y0 = 0

3y20 + 6λx0 = 0

2λx0y0 = −1
−→


x3
0 = 1

y0 = −1
2λx0

3y20 + 6λx0 = 0

Substituting x0 = ϵk with k = 0, 1, 2 and y = −1
2λϵk

into the last equation, we obtain

λ = {− 1
2 ,

−1
2 ϵ, −1

2 ϵ2}. Moreover, the cubic for λ = ∞, namely xyz = 0, is clearly
singular. Thus, in conclusion, the Hesse pencil contains 4 singular cubics.
The Hessian of a cubic in the pencil is easily obtained as∣∣∣∣∣∣

6x 6λz 6λy
6λz 6y 6λx
6λy 6λx 6z

∣∣∣∣∣∣ = −63(λ2x3 + λ2y3 + λ2z3 − xyz(2λ3 + 1)) = 0

By rearranging this expression, we obtain:

H(Eλ) : x
3 + y3 + z3 + 6µ xyz = 0 where µ =

−1− 2λ3

6λ2

This clearly shows that the Hessian of a cubic in the pencil still belongs to the pencil.
Moreover, to find the inflection points of such a cubic, we must impose:{

x3 + y3 + z3 + 6λ xyz = 0

x3 + y3 + z3 + 6µ xyz = 0
−→

{
x3 + y3 + z3 = 0

xyz = 0

where the second system is obtained by subtracting the two previous equations. Thus,
the solutions are the same as those of the Fermat cubic, and this proves that all the

44



cubic in the pencil have the same inflection points, which are the base points of the
pencil.
For a fixed µ, the solutions in λ of the equation 6λ2µ = −1−2λ3 provide the equations
of the three cubics of which the cubic Eµ is the Hessian. In the general case, these
three are the only cubics with such a property. In fact, if there were a cubic not in
the pencil Eλ whose Hessian coincides with Eµ, this would mean that Eµ lies in the
intersection of two pencils of cubics. As seen above, it follows that the Hessian of Eµ

should belong to both pencils, and thus they would coincide.
The cubic xyz = 0, which is obtained for λ = ∞, is a cubic whose Hessian coincides
with itself. It is easy to see that there are three other cubics in the pencil with this
propriety, which can be found by solving the equation 6λ2µ = −1− 2λ3 where we set
µ = λ. We obtain 8λ3 = −1, that is λ ∈ {−1

2 ,−
1
2ϵ,−

1
2ϵ

2}. These 4 cubics are the
triangles of the pencil and coincide with its 4 singular cubics.
The triangles are also the Hessian of two other cubics in the pencil, which we now

aim to determine. To do so, we reconsider the equation µ = −1−2λ3

6λ2 with µ ∈
{∞,− 1

2 ,−
1
2ϵ,−

1
2ϵ

2}.

• For µ =∞ we have λ2 = 0, that is, λ = 0 counted twice.

• For µ = − 1
2 we have 2λ3−3λ2+1 = (2λ+1)(λ2−2λ+1) = (2λ+1)(λ−1)2 = 0.

Thus, the other cubic is obtained from λ = 1, and it must be counted twice.

• For µ = − 1
2ϵ we have 2λ

3−3λ2ϵ+1 = (2λ+ϵ)(λ2−2ϵλ+ϵ2) = (2λ+ϵ)(λ−ϵ)2 = 0.
In this case as well, only one other cubic is found, for λ = ϵ, and it is counted
twice.

• For µ = − 1
2ϵ

2 we have 2λ3−3λ2ϵ2+1 = (2λ+ϵ2)(λ−ϵ2)2 = 0. Thus we obtain,
λ = ϵ2 counted twice.

In general, we can conclude that each triangle of the pencil is the Hessian of a unique
irreducible cubic, counted with multiplicity 2.

Theorem 6.7 (Hesse’s Theorem). The pencil determined by a smooth cubic and its
Hessian contains the Hessians of all its curves. Moreover, each cubic is the Hessian
of three others, which belong to the syzygetic pencil whose base points are its nine flex
points.

Proof of Theorem 6.7. Every smooth cubic is projectively equivalent to a cubic of the
form Eλ (table 1). Therefore, it will be sufficient to prove the theorem for a cubic
of this type. Since we have seen that such a cubic has as Hessian exactly Eµ with

µ = 1−2λ3

6λ2 , the generated pencil coincides with the Hesse pencil Eλ, and thus the
theorem holds, as follows from the previous observations.

6.4 The Hessian Map

We have previously defined the Hessian of a cubic f in (2.2). We will now show that
the equation defining the Hessian cubic is a covariant of index 2. In fact, let C = (ci,j)
be an element of GL(3), the action on f is defined by the equation f(ai, x) = f(ai, x)

as shown in (4.1). Applying the differential operator ∂2

∂xi
∂xj

we obtain:

∂2

∂xi
∂xj

f(a, x) =

3∑
k,l=1

∂2f(a, x)

∂xi
∂xj

ci,k cj,l
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and the determinant of these expression gives

H(a, x) = det

(
∂2f(a, x)

∂xi
∂xj

)
= det(C)2 · det

(
∂2f(a, x)

∂xi
∂xj

)
= det(C)2 ·H(a, x). (6.3)

If we now identify both f and H(f) with their coefficients in P9, it is clear that the
factor det(C)2 no longer has any relevance, and thus we obtain a GL(3)-equivariant
map

H : P9 −→ P9 (6.4)

that take a cubic to its hessian cubic and satisfies H(C · f) = C · H(f) where
C ∈ GL(3). To clarify this last statement, recall that, since H(ai, x) is a cubic
form, acting on it with an element C ∈ GL(3) means to replacing x → C x and
examining the new coefficients in x. Thus, the expression obtained in 6.3 tells us that
these coefficients are the same as those of H(ai, x), that is the Hessian of C · f whose
coefficients are the ai.
Let’s write the explicit expression of the map H in terms of the coefficients ai of f .
H(f) =

−a22a3 + 2a1a2a4 − a0a
2
4 − a21a5 + a0a3a5

3a1a
2
4 − 3a1a3a5 − 3a22a6 + 3a0a5a6 + 6a1a2a7 − 6a0a4a7 − 3a21a8 + 3a0a3a8

3a2a
2
4 − 3a2a3a5 − 3a22a7 + 3a0a5a7 + 6a1a2a8 − 6a0a4a8 − 3a21a9 + 3a0a3a9

3a3a
2
4 − 3a23a5 − 6a2a4a6 + 3a1a5a6 + 6a2a3a7 − 3a0a

2
7 − 3a1a3a8 + 3a0a6a8

12a34 − 12a3a4a5 − 6a2a5a6 − 12a2a4a7 + 18a1a5a7 + 18a2a3a8 − 12a1a4a8 − 6a0a7a8 − 6a1a3a9 + 6a0a6a9

3a24a5 − 3a3a
2
5 − 3a2a5a7 + 6a1a5a8 − 3a0a

2
8 + 3a2a3a9 − 6a1a4a9 + 3a0a7a9

−a24a6 + 2a3a4a7 − a1a
2
7 − a23a8 + a1a6a8

−6a4a5a6 + 3a24a7 + 6a3a5a7 − 3a2a
2
7 + 3a2a6a8 − 3a1a7a8 − 3a23a9 + 3a1a6a9

−3a25a6 + 3a24a8 + 6a3a5a8 − 3a2a7a8 − 3a1a
2
8 − 6a3a4a9 + 3a2a6a9 + 3a1a7a9

−a25a7 + 2a4a5a8 − a2a
2
8 − a24a9 + a2a7a9


The Hessian map is not defined for cubic forms with a vanishing Hessian, that is,
for all cubic forms (ai) for which the ten cubic equations above vanish. These equa-
tions thus define the equations of the variety consisting of cubics with a vanishing
Hessian, which we will denote by Z:

Z = {f ∈ P9 | H(f) = 0} ⊂ P9

It has dimension 5, and we can also provide a characterization of such cubic forms.
In fact, the following holds:

Proposition 6.8. Let f be the polynomial defining a cubic in P2, and let Cf = {f =
0} ⊂ P2. Then, H(f) = 0 if and only if Cf is a cone, that is, if and only if Cf

consists of three distinct lines passing through a common point.
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A proof of this fact can be found in [9].
Note that this is consistent with the classification of orbits under the action of SL(3).
In fact, the cubics with vanishing Hessian are precisely those given by triple line x3,
double line plus line x2y and three concurrent lines xy(x+ y).

Let us now consider the cubics that are fixed points for this map, that is, those
that coincide with their own Hessian. Let Tr denote the Zariski closure of this set:

Tr := {f ∈ P9 | H(f) = f} ∈ P9 (6.5)

This variety has dimension 6 and contains Z, since the equations defining it are

obtained by imposing the vanishing of the 2 × 2 minors of the matrix

[
f

H(f)

]
.

Again, we are able to provide a characterization of the cubic in Tr.

Proposition 6.9. Let f be a polynomial defining a cubic in P2, and let Cf = {f =
0} ⊂ P2. Then, f ∈ Tr if and only if Cf is the union of three lines, that is f =
(α0x+ α1y + α2z)(β0x+ β1y + β2z)(γ0x+ γ1y + γ2z).

This is why Tr will be referred to as the variety of triangles. From the classification
of the orbits under the action of SL(3), we see that all the triangles lie in the same
orbit, which is the one of xyz.

Proposition 6.10. Given six generic points in P2, meaning that no three of them
are collinear, there exist exactly 15 triangles passing through these points.

p2

p4

p6

p1

p3

p5

Proof. Let us fix one side of the triangles as the line p1p2. We then need to construct
two more lines passing through the remaining four points, and we have 3 possible
choices for this. Since p1 can initially be paired with any of the 5 points, we obtain
a total of 3 · 5 = 15 triangles.
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We now study the preimages of H. As seen in Hesse’s theorem, a generic cubic f
is the Hessian of three other cubics that lie in the same syzygetic pencil as f . That
is, the following holds:

Proposition 6.11. The Hessian map for plane cubic is generically [3:1].

However, this does not hold for the cubics in Tr. These certainly lie in the image
of H, as they are fixed points of the map, but not only that. Since H is equivariant
with respect to the action of SL(3), we can reduce to studying the case of xyz, as a
representative of Tr − Z. To find the cubics of which xyz is the Hessian, we need to
determine for which coefficients ai the 2× 2 minors of the matrix vanish:[

H(f)
0 0 0 0 1 0 0 0 0 0

]
where H(f) is a row vector containing the coefficients of the Hessian of a generic
cubic. By saturating with Tr, one finds that the cubics whose Hessian is xyz are
given by equations of the form

λ1x
3 + λ2y

3 + λ3z
3 = 0

which form a projective space of dimension 2 in P9, to which we must add xyz itself.
If, on the other hand, we consider a cone, taking x3 as a representative, we find that
the space of cubics whose Hessian is the cone has dimension 4 and is defined by the
following conditions: {

a24 − a3 ∗ a5 = 0

a6 = a7 = a8 = a9 = 0

We denote
H−1(f) := {g ∈ P9 | H(g) = f} ⊂ P9 (6.6)

Table 2: Space of the cubics with a fixed cubic as Hessian. Results for the SL(3)
orbits.

Cubic f dim(H−1(f)) Description of g ∈ H−1(f)

x3 4 a0x
3 + 3a1x

2y + 3a2x
2z + 3a3xy

2 + 6a4xyz + 3a5xz
2

with a24 = a3a5 and a22a3 − 2a1a2a4 + a21a5 ̸= 0

xy(x+ y) empty

x2y 3 a0x
3 + 3a1x

2y + 3a2x
2z + a6y

3 with a2, a6 ̸= 0

x(x2 + yz) 0 x3 − 3xyz

y(x2 + yz) empty

y2z − x3 − x2z 0 −2x3 − 3x2z + 3xy2 + 3y2z

y2z − x3 empty

x3 + y3 + z3 − 3txyz with t3 ̸= 1 0 x3 + y3 + z3 − 3λxyz with 4− λ3 = 3λ2t

xyz 2 a0x
3 + a6y

3 + a9z
3 with a0, a6, a9 ̸= 0 and xyz
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7 A Skew Invariant of Plane Cubics

In this chapter, we introduce a skew invariant of plane cubics. In particular, we deal
with a joint invariant of three cubics. We will see that it is closely related to the
Hessian of a cubic.

7.1 Definition

We identify the space of plane cubics with Sym3C3 and consider the space
∧3

(Sym3C3).
We can decompose the latter into Weyl modules, obtaining:∧3

(Sym3C3) = S(7,1,1) ⊕ S(6,3) ⊕ S(5,3,1) ⊕ S(3,3,3)

As follows from Proposition 1.11, S(3,3,3) corresponds to a skew invariant of degree 3.
Its explicit expression can be obtained thrugh symbolic representation.
From Theorem 2.2, we can define this invariant on the Veronese variety:

R : Sym3(C3)× Sym3(C3)× Sym3(C3) −→ C

R (l3,m3, n3) := (l ∧m ∧ n)3 (7.1)

where l,m, n are linear forms, and l ∧m ∧ n is the determinant.
In the language of tableau functions, as defined in 4.3, R corresponds to the SL(3)
invariant function associated with the 3× 3 tableau:

1 1 1

2 2 2

3 3 3

From this definition, it is evident that R is an antisymmetric invariant.
The expression of R over three generic cubics can be obtained using the process
described in paragraph 4.3. It is important to note that the only expression we need
corresponds to GT . In fact, if we attempt to derive an expression analogous to FT as
in Definition 4.6, the result is 0 due to the antisymmetric property of the invariant.
Below, we provide the Macaulay2 code to compute this expression:

KK=QQ

R1=KK[x_1..x_3,y_1..y_3,z_1..z_3,a_0..a_9,b_0..b_9,c_0..c_9]

inv=det(matrix{{x_1,x_2,x_3},{y_1,y_2,y_3},{z_1,z_2,z_3}})^3

syma=(x,h)->(contract(x,h)*transpose matrix{{a_0..a_9}})_(0,0)

symb=(x,h)->(contract(x,h)*transpose matrix{{b_0..b_9}})_(0,0)

symc=(x,h)->(contract(x,h)*transpose matrix{{c_0..c_9}})_(0,0)

invx=syma(symmetricPower(3,matrix{{x_1,x_2,x_3}}),inv)

invy=symb(symmetricPower(3,matrix{{y_1,y_2,y_3}}),invx)

invz=symc(symmetricPower(3,matrix{{z_1,z_2,z_3}}),invy)

factor invz

In this code xi, yi, zi are the coefficients of the three linear forms and (ai), (bi), (ci)
represent the three generic cubics. We apply the correspondence from 4.5 in the
following way:

x1, x2, x3 ←→ ai y1, y2, y3 ←→ bi z1, z2, z3 ←→ ci
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We obtain the following expression for R, it is a sum of 54 monomials:

R((ai), (bi), (ci)) = (−1)(a9b6c0−3a8b7c0+3a7b8c0−a6b9c0−3a9b3c1+6a8b4c1−
3a7b5c1+3a5b7c1−6a4b8c1+3a3b9c1+3a8b3c2−6a7b4c2+3a6b5c2−3a5b6c2+6a4b7c2−
3a3b8c2+3a9b1c3−3a8b2c3−6a5b4c3+6a4b5c3+3a2b8c3−3a1b9c3−6a8b1c4+6a7b2c4+
6a5b3c4−6a3b5c4−6a2b7c4+6a1b8c4+3a7b1c5−3a6b2c5−6a4b3c5+6a3b4c5+3a2b6c5−
3a1b7c5−a9b0c6+3a5b2c6−3a2b5c6+a0b9c6+3a8b0c7−3a5b1c7−6a4b2c7+6a2b4c7+
3a1b5c7−3a0b8c7−3a7b0c8+6a4b1c8+3a3b2c8−3a2b3c8−6a1b4c8+3a0b7c8+a6b0c9−
3a3b1c9 + 3a1b3c9 − a0b6c9)

Moreover, R can also be rewritten in terms of the exterior (wedge) product as
follows:

R((ai), (bi), (ci)) = (−1)(a9 ∧ a6 ∧ a0 − 3a8 ∧ a7 ∧ a0 − 3a9 ∧ a3 ∧ a1 + 6a8 ∧ a4 ∧
a1 + 3a7 ∧ a5 ∧ a1 + 3a8 ∧ a3 ∧ a2 − 6a7 ∧ a4 ∧ a2 − 3a6 ∧ a5 ∧ a2 − 6a5 ∧ a4 ∧ a3

7.2 Relationship with the Hessian

As we know the Hessian of a plane cubic is also a plane cubic, we can identify it
by its coefficients, which are polynomials in the ai of degree 3. As a result, we
obtain a vector with 10 entries, denoted by a = (a0, .., a9). Let Q[a0, .., a9]3 be
the space of homogeneous polynomial of degree 3 in the variables ai, thus we have
a ∈ (C[a0, .., a9]3)10 and a Syzygy among ai is a 10-tuple of elements in C[a0, .., a9],
s = (s0, .., s9), such that asT =

∑
i aisi = 0.

Macaulay2 provides a command to compute syzygies. Using the following code, we
calculate the syzygies of H(f):

f=x_1^3*a_0+3*x_1^2*x_2*a_1+3*x_1^2*x_3*a_2+3*x_1*x_2^2*a_3+6*x_1*x_2*x_3*a_4+

+3*x_1*x_3^2*a_5+x_2^3*a_6+3*x_2^2*x_3*a_7+3*x_2*x_3^2*a_8+x_3^3*a_9

hf=det diff(x1,diff(transpose x1,f))

X=matrix{{ x_1^3,(1/3)* x_1^2*x_2,(1/3)* x_1^2*x_3,(1/3)* x_1*x_2^2,

(1/6)* x_1*x_2*x_3,(1/3)* x_1*x_3^2, x_2^3,(1/3)* x_2^2*x_3,

(1/3)* x_2*x_3^2, x_3^3}}

xhf=contract(X,hf)--coefficienti hessiana

kernel xhf

ghf=gens kernel(xhf)

At the end of this code, we obtain a 10 × 45 matrix with elements in K. Every
column of this matrix represents a syzygy of a. The first 10 columns have entries of
degree 1 in the ai while the other 35 has degree 3 in the ai. We are now particularly
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interested in the 10× 10 submatrix whose coefficients are linear in the ai:

S =



−a6 0 −a7 0 0 −a8 0 0 0 −a9
3a3 −a7 2a4 0 −a8 a5 0 0 −a9 0
0 a6 a3 0 a7 2a4 0 0 a8 3a5
−3a1 2a4 −a2 −a8 a5 0 0 −a9 0 0
0 −2a3 −2a1 2a7 0 −2a2 0 2a8 2a5 0
0 0 0 −a6 −a3 −a1 0 −a7 −2a4 −3a2
a0 −a2 0 a5 0 0 −a9 0 0 0
0 a1 a0 −2a4 −a2 0 3a8 a5 0 0
0 0 0 a3 a1 a0 −3a7 −2a4 −a2 0
0 0 0 0 0 0 a6 a3 a1 a0


Let’s return to discussing the invariant R and associate a matrix to it, which we
will denote as R. This matrix is defined such that R((bi), (ai), (ci)) = bRc, where
b = (b0, .., b9), a = (a0, .., a9) and c = (c0, .., c9) represent the coefficients of three
generic cubic forms. It is evident that R is a matrix whose entries are linear in the
ai, and it is also straightforward to compute it:

R =



0 0 0 0 0 0 −a9 3a8 −3a7 a6
0 0 0 3a9 −6a8 3a7 0 −3a5 6a4 −3a3
0 0 0 −3a8 6a7 −3a6 3a5 −6a4 3a3 0
0 −3a9 3a8 0 6a5 −6a4 0 0 −3a2 3a1
0 6a8 −6a7 −6a5 0 6a3 0 6a2 −6a1 0
0 −3a7 3a6 6a4 −6a3 0 −3a2 3a1 0 0
a9 0 −a5 0 0 3a2 0 0 0 −a0
−3a8 3a5 6a4 0 −6a2 −3a1 0 0 3a0 0
3a7 −6a4 −3a3 3a2 6a1 0 0 −3a0 0 0
−a6 3a3 0 −3a1 0 0 a0 0 0 0


This way of expressing the invariant R is useful for the following

Proposition 7.1. Let R be the antisymmetric invariant of Sym3(C3) that we dis-
cussed earlier. Then, for any f ∈ Sym3(C3) for which the Hessian is define, we have
R(f,H(f),−) = 0, where H(f) is the Hessian of f .

Proof. We begin this proof by observing the two matrices R and S . These matrices
are identical up to a permutation of their columns, meaning there exists a permutation
matrix P such that RP = S . Constructing such a matrix P is straightforward:

P =



0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1/3 0 0
0 0 0 −1/3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1/3 0
0 0 0 0 1/6 0 0 0 0 0
0 −1/3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 −1/3 0 0 0 0
0 0 1/3 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0



51



This observation implies that every column of R is also a syzygy for the coefficients
of the Hessian of the cubic form whose coefficients are the ai.
Therefore, we can express −R(f,H(f),−) = R(H(f), f,−) = aR(−) = 0 where
f = (ai)i and H(f) = (ai)i is the hessian of f . The final equality follows directly
from the earlier observation.

Corollary 7.2. If f and g are two cubic forms belonging to the same pencil generated
by a cubic form and its Hessian, then R(f, g,−) = 0.

Proof. This result follows directly from the previous theorem and the linearity of the
invariant R.

We conclude this section by presenting the computation of the rank of the matrix
R for all the possible orbits of the action of SL(3) and making some observations.

Table 3: Rank of the matrix associated with the invariant R for a representative in
each orbit of the action of SL(3)

Cubic f Hessian cubic H(f) Rank(R)

x3 4

xy(x+ y) 6

x2y 6

x(x2 + yz) −3x3 + xyz 8

y(x2 + yz) y3 8

y2z − x3 − x2z 3xy2 − x2z + y2z 8

y2z − x3 xy2 8

x3 + y3 + z3 − 3txyz with t3 ̸= 1 same form with t′ = t3−4
6t2 8

xyz xyz 6

Note that the cubics for which the rank of R is less than 8 are all cubics for which
the Hessian is either not defined or coincides with the cubic itself. We define

T := {f = (ai) |Rank(R(ai)) ≤ 6} ⊂ P9 (7.2)

C(f) := {g ∈ P9|R(f, g,−) ≡ 0} ⊂ P9 (7.3)

For a fixed f , the Rank of R is the dimension of the image of the invariant R, whereas
C(f) defines the kernel. Thus, we have T = {f | dim(C(f)) ≥ 3}. Moreover, from
corollary 7.2, it follows that C(f) = ⟨f,H(f)⟩ when Rank(R(f)) = 8, that is f ̸∈ T .

7.3 The Vanishing Locus of the Invariant R

At this point, it becomes natural to ask for which f and g we have R(f, g,−) = 0,
and, in the case this is not true, for which h we have R(f, g, h) = 0.
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Let us begin by rewriting R in a similar but clearer formulation for what we need to
do:

R : Sym3(C3)× Sym3(C3) −→ (Sym3(C3))∗

R(f, g) := R(f, g,−) : Sym3(C3)→ C
Let f = (ai), g = (bi) and h = (ci) the identification of the three cubic forms with

their coefficients. Consider the expression of R we gave in 7.1 and reorder it according
to the coefficients of h, that is:

R =(−a9b6 + 3a8b7 − 3a7b8 + a6b9, 3a9b3 − 6a8b4 + 3a7b5 − 3a5b7 + 6a4b8 − 3a3b9,

− 3a8b3 + 6a7b4 − 3a6b5 + 3a5b6 − 6a4b7 + 3a3b8,−3a9b1 + 3a8b2 + 6a5b4 − 6a4b5 − 3a2b8 + 3a1b9,

6a8b1 − 6a7b2 − 6a5b3 + 6a3b5 + 6a2b7 − 6a1b8,−3a7b1 + 3a6b2 + 6a4b3 − 6a3b4 − 3a2b6 + 3a1b7,

a9b0 − 3a5b2 + 3a2b5 − a0b9,−3a8b0 + 3a5b1 + 6a4b2 − 6a2b4 − 3a1b5 + 3a0b8,

3a7b0 − 6a4b1 − 3a3b2 + 3a2b3 + 6a1b4 − 3a0b7,−a6b0 + 3a3b1 − 3a1b3 + a0b6) · (c0, c1, .., c9) =
= n(ai, bi) · (c0, .., c9)

(7.4)

This represents the scalar product between two vectors with ten entries. Note that
(c0, .., c9) is simply a point in Sym3(C)3, while R(f, g,−) is a point in (Sym3(C3))∗.
Using the dual basis, the first 10-vector we introduced in the last expression for R,
denoted as n = n(f, g), is R(f, g,−) ∈ (Sym3(C3))∗. Summarizing, n ∈ (C[ai, bi])10
such that R(f, g, h) = n · (c0, .., c9).

Let’s begin by considering the cubic f of the form x3+y3+z3−3txyz with t ∈ C.
By rewriting the expression of n in this case, we obtain:

n = (−b6 + b9,−3b8t + 3b3, 3b7t − 3b5, 3b5t − 3b1, 0,−3b3t + 3b2, b0 − b9,−3b2t +
3b8, 3b1t− 3b7,−b0 + b6)

Then R(f, g,−) = 0 when this vector is identically 0. This leads to two distinct
cases:

• If t3 ̸= 1 we have R(f, g,−) = 0 if and only if{
b0 = b6 = b9

b1 = b2 = b3 = b5 = b7 = b8 = 0

This is equal to stating that R(f, g,−) = 0 if and only if g is a cubic form in
the same pencil as f . In other words, g = x3 + y3 + z3 − 3sxyz for some s ∈ C.

• If t3 = 1, meaning f is a cubic that coincides with its Hessian, we have
R(f, g,−) = 0 if and only if 

b0 = b6 = b9

b3 = tb8 = t2b2

b5 = tb7 = t2b1

That is, g = x3+y3+z3+6b4xyz+3b1(t
2xz2+ty2z+x2y)+3b2(t

2xy2+tyz2+x2z).
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Repeating the same argument for the other orbits under the action of SL(3), excluding
those with Rang(R) = 8 for which we already know the result, we obtain the following
results:

Table 4: Vanish locus of R(f, g,−) = 0 when f is a representative in each orbit of the
action of SL(3)

Cubic f {g | R(f, g,−) = 0}

x3 x3 + 3b1x
2y + 3b2x

2z + 3b3xy
2 + 6b4xyz + 3b5xz

2

xy(x+ y) x3 + 3b1(x
2y + xy2) + 3b2(x

2z + xyz + y2z) + b6y
3

x2y x3 + 3b1x
2y + 3b2x

2z + b6xyz

x(x2 + yz) x3 + 6b4xyz

y(x2 + yz) y(x2 + yz) + b6y
3

y2z − x3 − x2z y2z − x3 − x2z + b3(3xy
2 − x2z + y2z)

y2z − x3 y2z − x3 + 3b3xy
2

x3 + y3 + z3 − 3txyz with t3 ̸= 1 x3 + y3 + z3 + 6b4xyz

xyz x3 + 6b4xyz + b6y
3 + b9z

3

Comparing these results with those reported in Table 2, we easily observe that,
for triangles, the space where R vanishes is obtained by adding the triangle itself,
as a linear combination, to the space of cubics for which the triangle is the Hessian.
In fact, since R is antisymmetric, we have R(f, f,−) = 0, and from the linearity of
R, it follows that the cubic itself must always be a generator of the space in which
R vanishes. Regarding x2y, the space shown in the table above exactly coincides
with the space H−1(f), which already contains the cubic x2y in its span. Finally,
we observe that for the triple lines, that is x3, the space H−1(f) is contained in the
space where R vanishes because in the first space we have an additional condition on
the coefficients.

8 The Hesse Pencil Variety

This chapter is devoted to the study of a variety N ⊂ G(1, 9). The defining equations
are obtained from the explicit expression of R; in particular, this variety describes the
locus R(f, g,−) ≡ 0. At the end of the chapter, we will prove that N coincides with
the Hesse Pencil Variety, that is, the closure of the orbit of the Hesse pencil under
the action of SL(3).
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8.1 Connection with the Invariant

Let us consider the Grassmannian Gr(P1,P9), that is the set of of projective lines
in P9. Gr(P1,P9) is a projective variety of dimension 16 (projective dimension) em-
bedded in a projective space of dimension 44: Gr(P1,P9) ↪→ P44. Observing the
expression of R introduced in the previous section, we see that n = n(ai, bi), defined
in (7.4), is closely related to the Plücker coordinates of the line through points ai and
bi. In fact, we have

pij = aibj − ajbi ∀ i = 0, .., 9 and j > i

and the components of the vector n can be rewritten in terms of these coordinates.

n(pij) = (3p7,8−p6,9, 3p5,7−6p4,8+3p3,9, 3p5,6−6p4,7+3p3,8, 6p4,5+3p2,8−3p1,9, 6p3,5+
6p2,7 − 6p1,8, 3p2,5 − p0,9, 6p3,4 + 3p2,6 − 3p1,7, 6p2,4 + 3p1,5 − 3p0,8, 3p2,3 + 6p1,4 −
3p0,7, 3p1,3 − p0,6)

We define a variety contained in G(P1,P9), whose equations are given by the
vanishing of the entries of the vector n(pij) and the equations of the Grassmannian.
We denote this variety by N. With the help of Macaulay2, we can easily compute the
dimension of the variety N , obtaining:

N = (n(pi,j) = 0) ∩Gr(P1,P9) ⊂ Gr(P1,P9) dim(N) = 8. (8.1)

Using the Betti command to determine the generators of the ideal, we get:

betti mingens N

0 1

total: 1 210

0: 1 10

1: . 200

so, the ideal N has 10 generators of degree 1 and 200 generators of degree 2.
We can also evaluate the degree of N , which is 622 (the degree of G is 1430).

Let us now consider the space
∧2

Sym3C3, which has dimension 45. We can think

of G(1, 9) ⊂ P(
∧2

(Sym3C3)). This space decomposes into Weyl modules as follows:∧2
(Sym3C3) = S(5,1)C3 ⊕ S(3,3)C3

These two covariants have dimension 35 and 10, respectively.

Proposition 8.1. Using the previous notations, we have

G(1, 9) ∩ S(5,1) = N

Proof. We proceed analogously to the case of quartics5.8. The covariant of dimension
10 corresponds to the tableau
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Hence, as follows from Remark 4.8, we can obtain an explicit expression starting from
the tableau

1 1 1

2 2 2

x x x

In this way we obtain a polynomial in Sym3C3 whose coefficients can be rewritten in
terms of Plücker coordinates:

F10 =(3p(7,8) − p(6,9))x
3 + (3p(5,7) − 6p(4,8) + 3p(3,9))x

2y+

+ (3p(5,6) − 6p(4,7) + 3p(3,8))x
2z + (6p(4,5) + 3p(2,8) − 3p(1,9))xy

2+

+ (6p(3,5) + 6p(2,7) − 6p(1,8))xyz + (3p(2,5) − p(0,9))xz
2 + (6p(3,4) + 3p(2,6) − 3p(1,7))y

3+

+ (6p(2,4) + 3p(1,5) − 3p(0,8))y
2z + (3p(2,3) + 6p(1,4) − 3p(0,7))yz

2 + (3p(1,3) − p(0,6))z
3

The vanishing of the 10 coefficients of this polynomial corresponds to the equations
defining the space S(5,1)C3, which is thus obtained by intersecting

∧2
(Sym3C3) with

this ten hyperplanes. To conclude the proof of the proposition, it is sufficient to
observe that the ten coefficients of F10 coincide with the vector n(pi,j).

The variety N contains the lines of P9 for which R(ai, bi,−) = 0, where ai and
bi are two points of the line itself. Remember that these points in P9 correspond to
cubics, and according to corollary 7.2, a generic point of this variety corresponds to
a syzygetic pencil, that is, a pencil of the form ⟨f,H(f)⟩.

Definition 8.2. Consider in G(1, 9) the set of lines generated by a smooth cubic and
its Hessian. We call Locus of Hesse pencils the subvariety of G(1, 9) defined as
the Zariski closure of this set, and denote it by S.

S = {⟨f,H(f)⟩ ∈ G(1, 9) |f smooth} ⊂ G(P1,P9)

As we observed above, it holds that S ⊂ N .

Let’s now see how to obtain the dimension of S from a theoretical perspective.
One could consider deriving computationally the equations that define the variety S,
using a procedure similar to that applied in the case of binary quadrics and G(1, 4)
in 5. The problem is that in this case we are dealing with a much larger number of
variables, and in particular, we need to eliminate 10 variables from an ideal defined
by 45 equations. The computation time increases so much that it can be considered
computationally infeasible. We define

P := {(f, L) ∈ P9 × S |f ∈ L} ⊂ P9 ×G(1, 9)

and we denote by p1 : P9 × G(1, 9) −→ P9 and p2 : P9 × G(1, 9) −→ G(1, 9) the
projections onto the two spaces.

P

P9 S

p1|Z p2|Z
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Let’s take f ∈ P9 and consider its fiber over P , that is p1|−1
P (f) = {(f, L) ∈ {f} ×

S | f ∈ L}. In the general case, there is only a syzygetic pencil to which f belongs,
and it is the one generated by f itself and its Hessian, L = ⟨f,H(f)⟩, as follows from
Hesse’s Theorem 6.7. Thus, the dimension of a generic fiber is 0 and we have

dim(P ) = dim(P9) + 0 = 9.

Now, let’s consider L ∈ S. Its fiber is given by p2|−1
Z (L) = {(f, L) ∈ P9×{L} | f ∈ L}.

This fiber is exactly composed of the cubics lying in L, and therefore has dimension
1. It follows that

9 = dim(P ) = dim(S) + 1 =⇒ dim(S) = 8.

The goal of what we will do in the following of this chapter is to prove that the two
varieties N and S are indeed the same. The strategy we intend to employ involves
decomposing the classes of these two varieties into a linear combination of Schubert
cycles, calculating their multidegrees. At the end of the process, the equality of these
multidegrees will ensure the equality between S and N , except for subvarieties of
dimension less than 8, as follows from Theorem 3.9. In the case of N , we will do this
computationally, and since we already know the degree of N , the weighted sum of
the multidegrees should result in 622. For S, since we do not have the equations that
define it, we cannot compute its multidegree directly. However, since we know the
theoretical description of S, we will derive its multidegree theoretically from this.

In G(P1,P9) there are exactly five Schubert cycles with dim = 8. As it follows
from Theorem 3.9, these cycles generates H16(G(1, 9),Z). Therefore, since both S
and N have dimension 8, their degree can be expressed as a linear combination of the
degree of these cycles. Each of these cycles corresponds to a tableau consisting of 8
squares contained within a 2× 10 matrix. In particular, these are:

λ1= λ2 =

λ3= λ4 = λ5 =

If λi represents one of these diagrams, we denote byXi the corresponding Schubert
variety. Using the notation in [11], these Schubert cycles correspond, in order, to
Ω(0, 9), Ω(1, 8), Ω(2, 7), Ω(3, 6), Ω(4, 5). From the theory, we know that:

degree(N) =

5∑
i=1

αi degree(Xi)

degree(S) =

5∑
i=1

βi degree(Xi)

Therefore, the two vectors α = (α1, α2, α3, α4, α5) and β = (β1, β2, β3, β4, β5) repre-
sent the multidegrees of the two varieties N ans S respectively. Moreover, we also
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know that the coefficients αi are found as the number of elements in the intersection
between N and the Schubert variety dual to Xi. However, since all these varieties
are self-dual (see Theorem 3.12), the intersection must be taken with Xi itself. We
also recall that this number corresponds to the degree of the intersection of the two
varieties, with the care of choosing the Schubert variety in such a way that has a zero-
dimensional intersection with N . As we already observed in the case of the quartics,
this can be achieved by following the approach used in the proof of Proposition 3.7,
taking as T a random 10×10 matrix in this case. The same argument can be applied
to S to determine β.

As I mentioned earlier, the multidegree of N was determined computationally.
Below, we present the obtained results in a table.

Schubert variety Xλ deg(Xλ) codim(N ∩Xλ) degree(N ∩Xλ)

(0,9) 1 44 1

(1,8) 7 44 3

(2,7) 20 44 9

(3,6) 28 44 12

(4,5) 14 44 6

We thus obtain that α = (1, 3, 9, 12, 6), and using the formula above for the degree
of N , we get degree(N) = 1 · 1 + 3 · 7 + 9 · 20 + 12 · 28 + 6 · 14 = 622, which indeed
matches the degree of N previously found directly from the equations.

Proposition 8.3. Using the notation above, the multedegree of the variety S is given
by

β = (1, 3, 9, 12, 6)

For this proof, we will use the theoretical description of the Schubert varieties and
S to determine the number of elements in the intersection, that is, the degree. In any
case, everything presented in the proof has been computationally verified whenever
possible.

Let’s start from Ω(0, 9). A Schubert variety corresponding to this cycle represents
the lines in P9 passing through a fixed point f ∈ P9. When intersecting with S, we
need to count the number of syzygetic pencils passing through that point, that is,
for the fixed cubic f . In the general case, there is only one, which corresponds to
⟨f,H(f)⟩, as follows from Hesse’s Theorem 6.7. Thus, we obtain β1 = 1.

As for Ω(1, 8), a Schubert variety corresponding to this cycle represents the lines
in P9 that meet a fixed line l and are contained in a hyperplane P8 that also contains
l. Thus, as before, to find the intersection with S, we need to count the number of
syzygetic lines with this property. This requirement can be reformulated as follows:
how many cubics that belongs to l have their Hessian contained in the fixed hyper-
plane? The condition of belonging to l becomes ai = pi + λvi for i = 0, .., 9. The
coefficients of the Hessian of such a cubic, denoted by ai, are polynomials of degree 3
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in λ. A hyperplane of P9 is given by a linear equation of the form:

9∑
i=0

µi ai = 0 µi ∈ C

where the ai are the coordinates of P9. The condition that the Hessian belongs to
this hyperplane can be rewritten as

9∑
i=0

µi ai = 0,

which turns out to be a cubic equation in the parameter λ, and therefore there are
three solution. In this way, we obtain β2 = 3.

We proceed in an analogous way for the cycle Ω(2, 7). A Schubvert variety as-
sociated with this cycle represents all the lines in P9 that meet a plane π and are
contained in a subspace P7 of P9 that also contains the plane π. We need to count
how many syzygetic lines satisfy this property. This number will coincide with the
number of cubics in π whose Hessian lies in the fixed P7. The condition that a cubic
belongs to π can be written as:

ai = pi + λvi + µwi i = 0, .., 9

The coefficients of the Hessian of such a cubic ai are polynomials of degree 3 in (λ, µ).
Suppose that the space P7 is given by the intersection of the two hyperplanes:

9∑
i=0

δi ai = 0

9∑
i=0

γi ai = 0 βi, γi ∈ C

Thus, the Hessian of a cubic in π belongs to these hyperplanes if and only if{∑9
i=0 δi ai = 0∑9
i=0 γi ai = 0

That are two equations of degree 3 in the two variables (λ, µ). By Bézout’s theorem,
there must be 9 solutions, that is β3 = 9.

It’s time to study what happens for the cycle Ω(3, 6). First, we observe that
by using reasoning analogous to the previous cases, we obtain a greater number of
solutions. The reason is that, up to this point, we have been able to disregard the
variety of triangles T . In fact, the dimension of T is 6, so it has an empty intersection
with a generic line or a generic plane in P9. A Schubert variety associated with the
cycle Ω(3, 6) represents the lines that intersect a P3 and are contained in a P6, which
in turn contains the P3. We need to count the number of cubics that lies in the P3

and that has their Hessian in the P6. The cubics lying in P3 will be characterized by
three variables. The condition that the Hessian belongs to a P6 will be given by three
cubic equations in these three variables. Again, by Bézout’s theorem, we should have
27 solutions. The fact is that these 27 solutions also count the triangles that belong to
P3 and those, clearly, by coinciding with their own Hessian, satisfy the condition we
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used to count these cubics. However, a triangle does not generate a syzygetic pencil.
Thus, the question now becomes: How many triangles lie in a generic P3? To answer
this, we think of P3 as the space of cubic curves passing through six fixed points.
From Proposition 6.10, we know that there are exactly 15 triangles passing through
six generic points. In conclusion, the number of syzygetic pencils will be 27−15 = 12,
meaning β4 = 12.

Remark 8.4. It should be noted that a triangle does not generate a syzygetic pencil
because it does not determine two points of P9 with its Hessian. However, the trian-
gles belong to syzygetic pencils, specifically we know they belong to a 2-dimensional
pencil space ( corresponding to the preimage H−1 of the triangle itself). Therefore, in
principle, there could be other pencils, beyond the ones we have counted, that lie in the
P6 and pass through a triangle in P3. This does not happen because a 2-dimensional
space in P9 has an empty intersection with a generic P6.

The last case we need to address is that of the cycle Ω(4, 5). A Schubert variety
corresponding to this cycle represents the lines in P9 that intersect a fixed P4 nontriv-
ially and are contained in a P5 which, in turn, contains the same P4. Since a general
line in P5 always intersects a general P4 ⊂ P5, the condition can be simply reformu-
lated as describing the lines in P9 that are contained in a general P5. In particular,
we need to count the number of syzygetic pencils satisfying this property. To do this,
we consider the P5 inside P9 as given by the space of cubics passing through four
fixed points. Moreover, since any four points in general position in P2 can always be
mapped, via a projectivity, to

(1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 1)

we may choose there four points to define P5. As we did in the previous steps, in
order to count the pencils contained in this P5, we should ask how many cubics in
this P5 have their Hessian also lying in the same P5. These are precisely the cubics
that share with their Hessian the four fixed points, that is, the cubics that have
four prescribed inflection points. Counting the smooth cubics with this property is
equivalent to counting the number of Hesse configurations of nine points in P2 with
four fixed points.

Lemma 8.5. There are exactly six Hesse configurations passing through the four fixed
points.

Proof. We know that, in a Hesse configuration, any line passing through two points
always contains a third points of the configuration. The four fixed points determine
six lines, so two of these lines must necessarily intersect at a fifth point of the con-
figuration. Indeed, if this were not the case, we would have 4 fixed points plus 6
additional ones from the lines, which would be too many to fit in the configuration.
This gives us three ways to choose the fifth point, which correspond to:
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(0, 0, 1)

(1, 1, 1)

(1, 0, 0)

(0, 1, 0)(0, 1, 1)

Figure 1: {y = z} ∩ {x = 0} = (0, 1, 1)

(0, 0, 1)

(1, 1, 1)

(0, 1, 0)

(1, 0, 0)(1, 0, 1)

Figure 2: {x = z} ∩ {y = 0} = (1, 0, 1)

(0, 1, 0)

(1, 1, 1)

(0, 0, 1)

(1, 0, 0)(1, 1, 0)

Figure 3: {x = y} ∩ {z = 0} = (1, 1, 0)

We will show that for each of these cases, we obtain two Hesse configurations. Let
us take the first case as an example; for the others, the procedure will be analogous.
Consider the line through (1, 0, 0) and (0, 0, 1), that is, y = 0. On this line, there
must be another point of the configuration, which we denotes as (1, 0, λ). This point
generates three other lines of the configuration with the points (0, 1, 0), (0, 1, 1) and
(1, 1, 1), which are respectively z = λx, z = y + λx and z = λx + y(1 − λ). On each
of these lines, we find another point of the configuration.

r

(0, 0, 1)

q

(1, 1, 1)

(0, 1, 1)

(1, 0, 0)

(1, 0, λ)

(0, 1, 0)

p

Let p denote the points of the configuration that lies on the line z = λx. As we
know, this point must lie on exactly three other lines of the configuration. However,
we have four points available (1, 0, 0), (0, 1, 1), (0, 0, 1), (1, 1, 1) that, a priori, would
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determine four additional lines. Therefore, it follows that pmust necessary be collinear
with the line through two of these four points. Excluding the lines that already
intersect the line z = λx at another point and those that already contain three points
of the configuration, the only possibility is that p lies on the line through (1, 1, 1) and
(0, 0, 1), that is x = y. We obtain

p ∈ {z = λx} ∩ {x = y} =⇒ p = (1, 1, λ)

Let q denote the point on z = y + λx. Using a similar reasoning, it follows that q
must also lie on the line through (1, 1, 1) and (0, 1, 0), that is

q ∈ {z = y + λx} ∩ {x = z} =⇒ q = (1, 1− λ, 1)

Finally, let r denote the third point on z = λx+ y(1− λ). We obtain

r ∈ {z = λx+ y(1− λ)} ∩ {z = 0} =⇒ r = (λ− 1, λ, 0)

The line through p and q must contain another point. The lines of the configuration
for (1, 0, 0) must be 4. From the previous calculation, we have already considered 3
of them, namely the lines for the points:

(1, 0, 0) (0, 1, 1) (1, 1, 1)

(1, 0, 0) (0, 0, 1) (1, 0, λ)

(1, 0, 0) (0, 1, 0) (λ− 1, λ, 0)

It follows that the line through p and the one through q must coincide, that is, the
three points p, (1, 0, 0) and q must be collinear.

0 =

∣∣∣∣∣∣∣∣∣
1 0 0

1 1 λ

1 1− λ 1

∣∣∣∣∣∣∣∣∣ = 1 + λ(λ− 1) = λ2 − λ+ 1

The solutions are λ1 = −ϵ and λ2 = ϵ + 1 where ϵ is a primitive third root of unity.
These two values give us the two possible configurations. The only thing left to verify
is that r also lies on the line through q and (0, 0, 1), and on the line through p and
(0, 1, 1).
For λ = −ϵ∣∣∣∣∣∣∣∣∣

1 1 + ϵ 1

0 0 1

−ϵ− 1 −ϵ 0

∣∣∣∣∣∣∣∣∣ = ϵ− (ϵ+ 1)2 = −(ϵ2 + ϵ+ 1) = 0

∣∣∣∣∣∣∣∣∣
1 1 −ϵ

0 1 1

−ϵ− 1 −ϵ 0

∣∣∣∣∣∣∣∣∣ = −ϵ(ϵ+ 1)− (−ϵ+ (ϵ+ 1)) = −ϵ2 − ϵ− 1 = 0
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For λ = 1 + ϵ∣∣∣∣∣∣∣∣∣
1 −ϵ 1

0 0 1

ϵ 1 + ϵ 0

∣∣∣∣∣∣∣∣∣ = −(1 + ϵ+ ϵ2) = 0

∣∣∣∣∣∣∣∣∣
1 1 1 + ϵ

0 1 1

ϵ 1 + ϵ 0

∣∣∣∣∣∣∣∣∣ = −ϵ(1 + ϵ)− (1 + ϵ− ϵ) = −ϵ2 − ϵ− 1 = 0

We have thus found the two configurations corresponding to the first case. For the
other two cases the procedure is the same; here we simply state the results, namely
the six possible configurations.
First case:

(0, 0, 1)

(1, 1, 1)

(1, 0, 0)

(0, 1, 0)(0, 1, 1)

(1, ϵ+ 1, 0) (1, 0,−ϵ)

(1, 1,−ϵ)(1, ϵ+ 1, 1)

(0, 0, 1)

(1, 1, 1)

(1, 0, 0)

(0, 1, 0)(0, 1, 1)

(1,−ϵ, 0) (1, 0, ϵ+ 1)

(1, 1, 1 + ϵ)(1,−ϵ, 1)

Second case:

(0, 0, 1)

(1, 1, 1)

(0, 1, 0)

(1, 0, 0)(1, 0, 1)

(ϵ+ 1, 1, 0) (0, 1,−ϵ)

(1, 1,−ϵ)(ϵ+ 1, 1, 1)

(0, 0, 1)

(1, 1, 1)

(0, 1, 0)

(1, 0, 0)(1, 0, 1)

(−ϵ, 1, 0) (0, 1, ϵ+ 1)

(1, 1, 1 + ϵ)(−ϵ, 1, 1)

Third case:

(0, 1, 0)

(1, 1, 1)

(0, 0, 1)

(1, 0, 0)(1, 1, 0)

(1, 0, ϵ+ 1) (0, 1,−ϵ)

(1, ϵ+ 1, 1)(−ϵ, 1, 1)

(0, 1, 0)

(1, 1, 1)

(0, 0, 1)

(1, 0, 0)(1, 1, 0)

(1, 0,−ϵ) (0, 1, ϵ+ 1)

(1,−ϵ, 1)(ϵ+ 1, 1, 1)
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Recalling where we started, each of these six configurations corresponds to a
syzygetic pencil contained in the P5. We thus have 6 pencils in S ∩ X(5,5), that
is, β5 = 6.

8.2 Pencil Orbits in the Variety

The action of SL(3) on cubics induces an action of the same group on G(1, 9), that
is, on pencils of cubics. Since R is an invariant under the action of SL(3), and the
variety N is defined in term of R, it follows that N must be invariant under this
action, meaning that it is composed by SL(3)-orbits of pencils. The aim of this
section is therefore to understand which and how many orbits are contained in N ,
and which of them form the singular locus of N . Moreover, this classification will
allow us to complete the proof of the following theorem, which was initiated in the
previous section.

Theorem 8.6. In the previously introduced notation, we have

N = S,

and in particular, this variety coincides with the closure of the orbit of the pencil
⟨x3 + y3 + z3, xyz⟩ under the action of SL(3), and contains 8 additional orbits of
pencils. Moreover, this variety is not smooth, and its singular locus coincides with
the two orbits O(⟨x3, x2y⟩) and O(⟨x2y, x2z⟩).

We began by defining, for each cubic f ∈ P9,

P8
f := {⟨f, g⟩ ∈ G(1, 9) | g ∈ P9} (8.2)

which is the closure of the set of pencils through f . This space has dimension 8.
For each orbit of cubics, we fix a representative and compute the dimension of P8

f ∩
N . The results are summarized in the following table, along with a description of
the corresponding space. Let us note that this is just another way of viewing the
information already presented in Table 8.2. Nevertheless, we repeat the results here
for the reader’s convenience.

Cubic f dim(P8
f ∩N) Description

x3 4 ⟨x3, 3b1x
2y + 3b2x

2z + 3b3xy
2 + 6b4xyz + 3b5xz

2⟩

xy(x+ y) 2 ⟨xy(x+ y), b0x
3 + 3b2(x

2z + xyz + y2z) + b6y
3⟩

x2y 2 ⟨x2y, b0x
3 + 3b2x

2z + b6y
3⟩

x(x2 + yz) 0 ⟨x3, xyz⟩

x(y2 + xz) 0 ⟨x(y2 + xz), x3⟩

y2z − x3 − x2z 0 ⟨y2z − x3 − x2z, 3xy2 − x2z + y2z⟩

y2z − x3 0 ⟨y2z − x3, xy2⟩

x3 + y3 + z3 − 3txyz with t3 ̸= 1 0 ⟨x3 + y3 + z3, xyz⟩

xyz 2 ⟨xyz, b1x3 + b6y
3 + b9z

3⟩
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Note that the only cubic f for which a single pencil arise are those for which the
Hessian is defined and distinct from the cubic f ; in this case, the pencil is generated
by the cubic itself and its Hessian. We can compute the dimension of the orbits
of pencil using the Remark 5.2. Furthermore, to study the singular locus of N , we
consider the 210 × 45 Jacobian matrix obtained from the equations defining N , and
we evaluate its rank. Since N has dimension 8, if the rank is lower than 36, then the
point is singular.

Pencil ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank J

⟨x3 + y3 + z3, xyz⟩ 8 36

⟨y2z − x3 − x2z, 3xy2 − x2z + y2z⟩ 7 36

⟨y2z − x3, xy2⟩ 6 36

⟨x3, xyz⟩ 6 36

⟨x(y2 + xz), x3⟩ 5 36

Table 5: Pencils of cubics contained in N that are of the form ⟨f,H(f)⟩

Remark 8.7. Whenever a pencil in N contains a cubic f whose Hessian H(f) is
defined and different from f itself, it must necessarily coincide with ⟨f,H(f)⟩, and
in particular, it must belong to one of the orbits just listed. This follows from the
equivariance of the Hessian map with respect to the action of SL(3).

What we aim to prove in the following is that the pencils through x4, xy(x+ y),
x2y or xyz contained in N form a finite number of orbits. Before proceeding, we state
the following preliminary lemma.

Lemma 8.8. Let ⟨f, g⟩ be a pencil of cubics and suppose that H(g) is define, distinct
from g and H(g) ∈ ⟨f, g⟩. Then, for any C ∈ SL(3) such that H(C · g) ∈ ⟨f, C · g⟩,
we have

C · ⟨f, g⟩ = ⟨f, C · g⟩

Proof. It is enough to recall that H(C · g) = C ·H(g), and thus we have:

C · ⟨f, g⟩ = C · ⟨g,H(g)⟩ = ⟨C · g,H(C · g)⟩ = ⟨f, C · g⟩

A We began our analysis with x3. Our goal is to show that the pencils of the form

⟨x3, 3b1x
2y + 3b2x

2z + 3b3xy
2 + 6b4xyz + 3b5xz

2⟩

form only finitely many SL(3)-orbits that we can control. We observe that
all the cubics in the linear combination are of the form line + conic = {x =
0}+ conic. Let us distinguish several cases:

– Conic(smooth) + Tangent line{x = 0}
This condition is satisfied when the intersection of {x = 0} and the conic
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{3b1xy+3b2xz+3b3y
2 +6b4yz+3b5z

2} consists of a single point, and the
conic does not degenerate into one or two lines. The first requirement leads
to the condition b24 = b3b5, while the second one is equivalent to requiring
that the Hessian is non-zero and distinct from the cubic itself. Toghether
these conditions are precisely those we found for cubics in H−1(x3) (see
Table 2). Moreover, all cubics of the form conic(smooth) + tangent line
lie in the same SL(3)-orbit. By Lemma 8.8, it follows that all the pencil
of the form

⟨x3, smooth conic tangent to {x = 0}⟩

belong to the same orbit.

– Conic(smooth) + Secant line
From the classification of the SL(3)-orbits, we know that all cubics of this
type lie in the same orbit. We claim that the Hessian of such a cubic lies
in the pencil generated by it and by x3. Then, by Lemma 8.8, this will
imply that all pencils of the form

⟨x3, smooth conic secant to {x = 0}⟩

belong to the same orbit.
Let us consider the cubic x(x2 + yz), which is of this type. Its Hessian
is x(−3x2 + xyz) ∈ ⟨x3, x(x2 + yz)⟩ and has the same form. If now xq
denotes another cubic of the same form, we know that there exist a matrix
C ∈ SL(3) such that C · x(x2 + yz) = xq. Moreover, C must send x to
itself and the following diagram commutes:

f = x(x2 + yz) xq

H(f) ∈ ⟨x3, x(x2 + yz)⟩ C ·H(f) = H(xq)

·C

H H

·C

We obtain

H(xq) = C ·H(f) ∈ C · ⟨x3, f⟩ = ⟨C · x3, C · f⟩ = ⟨x3, xq⟩

Which prove our claim.

– Triangles(three not collinear lines)
First, observe that the pencil ⟨x3, xyz⟩ contains the cubic x3 + xyz =
x(x2 + yz), and therefore it coincides with the pencil ⟨x3, x(x2 + yz)⟩,
which is precisely the case previously analyzed.
If x(x + β1y + β2z)(x + γ1y + γ2z) is another triangle of the same form,
then β1γ2 − β2γ1 ̸= 0 and there exist C ∈ SL(3) such that C · xyz =
x(x + β1y + β2z)(x + γ1y + γ2z) and C · x = x. Therefore, all pencils of
the form

⟨x3, triangle(three distinct lines)⟩

lie in the same orbit. However, this orbit coincides with that of the pencils

⟨x3, smooth conic secant to {x = 0}⟩
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– Cone(three distinct line)
All the cones consisting of three distinct lines lie in the same orbit. More-
over, if two such conics share the line {x = 0}, we can map one to the other
using an element C ∈ SL(3) that fixes x. Therefore, applying Lemma 8.8,
we conclude that all pencils

⟨x3, cone(three distinct line)⟩

belong to the same orbit.

– line {x = 0}+ double line
First, observe that the pencil ⟨x3, xy2⟩ contains the cubic x3 + xy2 =
x(x2+y2) that is a cone with three distinct lines. Thus, this pencil coincides
with ⟨x3, x(x2 + y2)⟩ and it is in the previous orbit.
All cubics of the type xr2 lie in the same orbit. In particular, since we
must have C · xr2 = xs2 with r, s ̸= x, it follows that C must fix the line
{x = 0}. Therefore, by applying again Lemma 8.8, we conclude that all
pencils of the form

⟨x3, {x = 0}+ double line⟩

lie in the same orbit. Moreover, based on the initial observation, this orbit
coincides with

⟨x3, cone(three distinct lines)⟩

– double line {x = 0}+ line
All this kind of conics lie in the same SL(3)-orbit. Moreover, if C ·x2r = x2s
then C must fix x, and thus we have

⟨x3, {x = 0}2 + line⟩

lie in the same orbit.

In summary, we have shown that all pencils containing x3 and lying in N fall
into four distinct orbits. We list in the following table a representative for each
orbit, together with the dimension of the orbit and the rank of the Jacobian
matrix 210× 45 of N .

Description Representative ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank J

⟨x3, T rangle⟩ = ⟨x3, xyz⟩ 6 36

⟨x3, Conic+ secant line⟩

⟨x3, Conic+ tangent line⟩ ⟨x3, x(y2 + xz)⟩ 5 36

⟨x3, x · double line⟩ = ⟨x3, xy2⟩ 4 36

⟨x3, Cone⟩

⟨x3, x2 · line⟩ ⟨x3, x2y⟩ 3 35

Table 6: Pencils of cubics contained in N that are of the form ⟨x3, f⟩. Note that ⟨x3, xyz⟩ and
⟨x3, x(y2 + xz)⟩ are two orbits of the form ⟨f,H(f)⟩, and they were already listed in Table 10.
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B Let us now consider the case of x2y. The pencils we need to analyze are of the
form

⟨x2y, b0x
3 + 3b2x

2z + b6y
3⟩

However, the space of cubics defined by such the cubics b0x
3 ++3b2x

2z + b6y
3

with b2, b6 ̸= 0 coincides with H−1(x2y). All these pencils are of the form
⟨f,H(f)⟩, and therefore, by the Remark 8.7, they lie in the same orbit as ⟨y2z−
x3, xy2⟩, which was already listed in Table 10. For the remaining cases, with
b2 = 0 or b6 = 0, it is straightforward to verify that there exists an element of
SL(3) preserving x2y which maps x3 + 3b2x

2z to x2z and x3 + b6y
3 to x3 + y3.

We find five orbits:

Representative ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank J

⟨x2y, y3 + x2z⟩, ⟨x2y, y3 + x2z⟩ 6 36

⟨x2y, x3 + y3⟩ 5 36

⟨x2y, x2z⟩, ⟨x2y, x3 + x2z⟩ 4 35

⟨x2y, y3⟩ 4 36

⟨x2y, x3⟩ 3 35

Table 7: Pencils of cubics contained in N that are of the form ⟨x2y, f⟩. It can be
observed that the last two orbits in the table coincide with two that had already been
listed. Thus, the only new orbits with respect to the previously classified ones are
those of ⟨x2y, x3 + y3⟩ and ⟨x2y, x2z⟩.

C Let us now consider the case of xy(x+ y). The pencils we need to analyze are
of the form:

⟨xy(x+ y), b0x
3 + 3b2(x

2z + xyz + y2z) + b6y
3⟩

We denote by g the linear combination b0x
3 + 3b2(x

2z + xyz + y2z) + b6y
3. A

straightforward computation of the Hessian shows that H(g) ∈ ⟨xy(x + y), g⟩
for every g whose Hessian is defined. Therefore, for such g, the orbit coincides
with one of the form ⟨f,H(f)⟩ already listed in Table 10, namely the one corre-
sponding to ⟨y2z− x3 − x2z, 3xy2 − x2z+ y2z⟩. The remaining cases are pencil
of the form ⟨xy(x+y), x3+ b6y

3⟩. For these we observe that the pencil contains
a triple line only when b6 = 0 or b6 = 1; in all other cases, it instead contains
a double line+ line. We can thus reduce the first case to the orbit of ⟨x3, xy2⟩
and the second one to the orbit of ⟨x2y, x3 + y3⟩, both of which have already
been analyzed. We find three orbits of pencils.
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Representative ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank J

⟨xy(x+ y), z(x2 + xy + y2)⟩, ⟨xy(x+ y), x3 + z(x2 + xy + y2)⟩, 7 36

⟨xy(x+ y), x3 + y3 + z(x2 + xy + y2)⟩

⟨xy(x+ y), x3 + y3⟩, ⟨xy(x+ y), x3⟩ 4 36

⟨xy(x+ y), x3 + b6y
3⟩ 5 36

Table 8: Pencils of cubics contained in N that are of the form ⟨xy(x+ y), f⟩. These three orbits coincide
with three that were already found previously.

D The last case we need to study is that of xyz. We consider pencils of the form

⟨xyz, b0x3 + b6y
3 + b9z

3⟩

and observe that we can act with SL(3) while fixing xyz. Therefore, there are
three orbits.

Representative ⟨f, g⟩ dim(O(⟨f, g⟩)) Rank J

⟨xyz, x3 + y3 + z3⟩ 8 36

⟨xyz, x3 + y3⟩ 6 36

⟨xyz, x3⟩ 6 36

Table 9: Pencils of cubics contained in N that are of the form ⟨xyz, f⟩. These three
orbits are all of the form ⟨f,H(f)⟩, and therefore coincide with three of those in Table
10. In particular, the second one coincides with the orbit of ⟨y2z − x3, xy2⟩.

To summarize what we have done so far: the analysis carried out up to this point
has shown that N contains, in addition to the orbit of the pencil ⟨x3 + y3 + z3, xyz⟩,
which is, in particular, the only one of dimension 8, eight more orbits. Among these,
four are of the form ⟨f,H(f)⟩, while the remaining four have dimensions 5, 4, 4, and
3. Our goal is to show that all these orbits are actually contained in the closure of
O(⟨x3 + y3 + z3, xyz⟩). To do so, we will explicitly construct degenerations which, as
ϵ→ 0, tend to pencils lying in the smaller orbits.

The degenerations for the orbits of the form ⟨f,H(f)⟩ are obtained simply by
taking families of smooth cubics tending to f , together with their corresponding
Hessians. For the orbits of ⟨x2y, x3 + y3⟩ and ⟨x3, xy2⟩, we explicitly constructed
two degenerations of the Hesse pencil. The degeneration for ⟨x2y, x2z⟩ is obtained
from ⟨xy(x + y), z(x2 + xy + y2)⟩ whose orbit is the same as the one generated by
⟨y2z−x3−x2z, 3xy2−x2z+y2z⟩ as follows from the analysis in point C. In particular,
we take ⟨xy(x+ ϵy), z(x2 + ϵxy+ ϵ2y2)⟩ ∈ O(⟨xy(x+ y), z(x2 + xy+ y2⟩) = O(⟨y2z−
x3−x2y, 3xy2−x2z+ y2z⟩). This shows that ⟨x2y, x2z⟩ belongs to the closure of the
Hesse pencil, since we have already observed that the orbit O(⟨y2z−x3−x2z, 3xy2−
x2z + y2z⟩ belongs to it, and therefore any pencil in its closure does as well. Finally,
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the degeneration for ⟨x3, x2y⟩ from ⟨x3, xy(z + ϵz)⟩ ∈ O(⟨x3, xyz⟩), which is suffices
by an analogue reasoning.

Representative ⟨f, g⟩ Degeneration

⟨y2z − x3 − x2z, 3xy2 − x2z + y2z⟩ ⟨y2z − x3 − x2z + ϵz3, 3xy2 − x2z + y2z + ϵ(−9xz2 − 3z3)⟩

⟨y2z − x3, xy2⟩ ⟨y2z − x3 − ϵz3, xy2 + 3ϵxz2⟩

⟨x3, xyz⟩ ⟨x(x2 + yz) + ϵ(y3 + z3), −6x3 + 2xyz + ϵ(216xyzϵ− 6y3 − 6z3)⟩

⟨x(y2 + xz), x3⟩ ⟨x(y2 + xz) + ϵz3, x3 − ϵ(−3y2z + 3xz2)⟩

⟨x2y, x3 + y3⟩ ⟨x3 + 2y3 + (x+ ϵz)3, xy(x+ ϵz)⟩

⟨x3, xy2⟩ ⟨x3 + y3 + (ϵz − y)3, xy(ϵz − y)⟩

⟨x2y, x2z⟩ ⟨xy(x+ ϵy), z(x2 + ϵxy + ϵ2y)⟩

⟨x3, x2y⟩ ⟨x3, xy(x+ ϵz)⟩

Table 10: Classification of orbits in N and their degeneration families arising from O(⟨x3 + y3 + z3, xyz⟩)

Thus, the table shows that all the orbits in N lie in the closure of O(⟨x3 + y3 +
z3, xyz⟩), and we can conclude that S = N . Moreover, from the rank analysis of the
Jacobian matrix, it follows that the singular locus of this variety consists of the two
orbits O(⟨x2y, x2z⟩) and O(⟨x3, x2y⟩), of dimension 4 and 3, respectively. The proof
of the Theorem 8.6 is now complete.

Remark 8.9. The 3-dimensional orbit O(⟨x3, x2y⟩) is the only closed orbit of the
action of SL(3) on P(S(5,1)C3). This follows from the claim 23.52 in [8] since S(5,1)C3

is an irreducible SL(3)-module, indeed, if we consider the pencil ⟨x3, x2y⟩ and act with
the Borel subgroup B ∈ SL(3), that is, the group of upper triangular matrices, it is
easy to see that ⟨x3, x2y⟩ · b = ⟨x3, x2y⟩ for all b ∈ B. Therefore, the orbit of this
element must be closed and it is the unique one.
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