
UNIVERSITÀ DEGLI STUDI DI FIRENZE

Facoltà di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica "Ulisse Dini"

Dottorato di Ricerca in Matematica

Tesi di Dottorato

Normal Bundle of Rational Curves

and the Waring's Problem

Candidato:

Alessandro Bernardi

Direttore di Ricerca: Coordinatore del Dottorato:

Prof. Giorgio Ottaviani Prof. Alberto Gandol�

CICLO XXIII, SETTORE DISCIPLINARE MAT/03 GEOMETRIA



A Maddalena



Contents

Introduction iii

1 Preliminaries 1

1.1 Vector Bundles on Projective Space . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the Problem and Known Results . . . . . . . . . . . . . . 6

1.2.1 Known Results on Normal Bundle of Rational Curves . . . . . . 6

1.2.2 Normal Bundle of Rational Curves in ℙn−k . . . . . . . . . . . . 8

1.2.3 Known Results on Restricted Tangent Bundle on Rational Curves 10

1.2.4 Relation Between Normal and Restricted Tangent Bundle . . . . 11

1.3 Apolarity and Waring's Problem . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Catalecticant and Apolarity Setup . . . . . . . . . . . . . . . . 12

1.3.2 Binary Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 The Grassmannians of secant varieties of curves . . . . . . . . . 18

2 Restricted Tangent Bundle of Rational Curves 21

2.1 Restricted Tangent Bundle of Rational Curves in ℙ3 . . . . . . . . . . . 21

2.1.1 Case 3 ≤ n ≤ 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Case n > 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 Rational Curves of degree 7 in ℙ3 . . . . . . . . . . . . . . . . . 34

2.2 Varieties Parametrizing Subschemes of Hilbn ℙ3 . . . . . . . . . . . . . 35

2.3 Restricted Tangent Bundle of Rational Curves in Codim k . . . . . . . 35

2.4 Codimension k, for 1 ≤ k < n
2

. . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Restricted Tangent Bundle of Rational Curves in Codim 1 . . . 44

2.4.2 Restricted Tangent Bundle of Rational Curves in Codim 2 . . . 45

2.4.3 Restricted Tangent Bundle of Rational Curves in Codim 3 . . . 46

2.5 Codimension k, for n
2
≤ k ≤ n− 3 . . . . . . . . . . . . . . . . . . . . . 50

2.5.1 Restricted Tangent Bundle of Rational Curves in Codim n− 3 . 57

i



3 Normal Bundle of Rational Curves 59

3.1 Normal Bundle of Rational Curves in ℙ3 . . . . . . . . . . . . . . . . . 59

3.1.1 Case n = 3, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.2 Case n > 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Normal Bundle of Rational Curves in codimension k . . . . . . . . . . . 78

3.3 Codimension k, for k < n−1
3

. . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Normal Bundle of Rational Curves in Codimension 1 . . . . . . 88

3.3.2 Normal Bundle of Rational Curves in Codimension 2 . . . . . . 90

3.3.3 Normal Bundle of Rational Curves in Codimension 3 . . . . . . 97

3.4 Codimension k, for n−1
3
≤ k ≤ n− 3 . . . . . . . . . . . . . . . . . . . . 101

3.5 Further Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Introduction

In this thesis we address the problem to determine the splitting of the normal bundle

of rational curves in ℙm of �xed degree n.

This problem has been considered in the 80s in a series of papers by Ghione and

Sacchiero (see [Ghione and Sacchiero, 1980] and [Sacchiero, 1982]) and in another se-

ries by Eisenbud and Van de Ven (see [Eisenbud and Van de Ven, 1981] and

[Eisenbud and Van de Ven, 1982]) in the case of rational curves in ℙ3.

In this case the normal bundle has rank 2 and its splitting is Oℙ1(2n − 1 − �) ⊕
Oℙ1(2n− 1 + �) with 0 ≤ � ≤ n− 3. The extreme case � = n− 3 is achieved only if we

allow singularities, while in the smooth case we have 0 ≤ � ≤ n− 4.

We can parametrize the rational curves in several ways. The most natural way

is maybe the Hilbert scheme, as chosen by Eisenbud and Van de Ven. The scheme

H3,n de�ned as the component of the Hilbert scheme Hilbn ℙ3 of rational curves of

degree n in ℙ3 containing the smooth curves as an open subset, has dimension 4(n +

1) − 4 = 4n. Indeed we may look at the parametrizations ℙ1 → ℙ3 as given by 4

homogeneous polynomials of degree n in two variables, which make a rational variety

V 3,n of dimension 4(n+ 1)− 1.

Indeed H3,n is a quotient of (an open subset of ) V 3,n by the action of SL(2),

identifying di�erent parametrizations when give the same curve.

In any case, one can de�ne subschemes Nn
3 ((2n− 1− �), (2n− 1 + �)) = Nn

3 (�) of

H3,n or V 3,n such that the normal bundle of curves in Nn
3 (�) splits exactly as Oℙ1(2n−

1−�)⊕Oℙ1(2n−1+�). The main result achieved by Eisenbud and Van de Ven is that

in the case of smooth rational space curves the corresponding subset N n
3 (�) ⊂ Nn

3 (�) is

irreducible of codimension 2�−1 for 1 ≤ � ≤ n−4. Instead the main result for rational

space curves with only ordinary singularities achieved by Ghione and Sacchiero is that

Nn
3 (�) is a quasi-projective, integral, Cohen-Macaulay variety of codimension 2� − 1

for 1 ≤ � ≤ n− 3.

Few facts on this �avour are known on ℙm, with m ≥ 4. To our knowledge the

iii



INTRODUCTION iv

only paper devoted to this topic remains that of Sacchiero (see [Sacchiero, 1980]). On

ℙm the normal bundle has rank m − 1, and one cannot expect a simple well ordered

�ltration like in the case of ℙ3, but likely there is a much more complicated �ltration

of the subschemes where the normal bundle has a �xed splitting.

In this thesis we choose a more projective point of view, by considering the rational

normal curve Cn ⊂ ℙn and we view our degree n curves as projections from a linear

space L = ℙk−1. The projected curves lie in a projective space of dimension (n − k).

We point out that we are interested to the case with ordinary singularities as in the

work of Ghione and Sacchiero (see [Ghione and Sacchiero, 1980]).

We de�ne the scheme Hm,n as the component of the Hilbert scheme Hilbn ℙm of

arithmetic genus zero curves of degree n in ℙm containing the smooth curves as an

open subset and we may look at the parametrizations ℙ1 → ℙm as given by m + 1

homogeneous polynomials of degree n in two variables, which make a rational variety

V m,n. Moreover we denote with Nn
m(n1, ..., nm−1) the subscheme of curves such that

the splitting type of normal bundle is (n1, ..., nm−1). Note that SL(m+1) acts on both

Hm,n and V m,n, and that the subschemes Nn
m(n1, ..., nm−1) are invariant under this

action. Furthermore the general isotropy subgroup of this action on Mm,n is SL(2).

The action of SL(m + 1) is free on V m,n and an open subscheme of the quotient

V m,n//SL(m + 1). An open subscheme of the quotient of V m,n for SL(m + 1) has

dimension (n+ 1)(m+ 1)− 1− ((m+ 1)2− 1) = (m+ 1)(n−m). Indeed this quotient

is isomorphic to an open subset of the Grassmannian Gr(ℙk−1,ℙn) for m = n− k.
So in this thesis we choose to work directly on the Grassmannian Gr(ℙk−1,ℙn).

One advantage of working directly on the Grassmannian Gr(ℙk−1,ℙn) is that the ir-

reducible components and the codimension of the varieties Nn
m(n1, ..., nm−1)/SL(m+1)

(parametrizing subspaces L such that the curve obtained by projecting from L has nor-

mal bundle isomorphic to
⊕m−1

i=1 Oℙ1(ni) ) remain the same of Nn
m(n1, ..., nm−1). Then

we can study directly the basic structures of these subvarieties in the Grassmannian.

Since now the dimension of the Grassmannian is lower than the dimension of the Hilbert

scheme, this allows easier computations, also with the help of a computer (we bene�t

through this thesis by the software Macaulay2).

But the main advantage of this approach is that we can relate the splitting of the

normal bundle of the projected curve to geometric properties of the subspace L.

The main novelty of this thesis is the interplay between the Waring decomposition

and some geometric properties of the subspace L.

As a sample of this interplay we quote the proposition 3.1.18 which says that the
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centre of projection L ∈ Gr(ℙ1,ℙ5) lies on a 3−secant plane to the rational normal

curve C5 if and only if the normal bundle of the projected rational curve �2(C5) on ℙ3

is N�2(C5);ℙ3 = O(7) ⊕O(11). This result gives the irreducibility of the corresponding

scheme, in particular we quote the theorem 3.1.20 which says that N5
2 (7, 11) is an

irreducible variety of codimension 3 formed by the lines L ∼= ℙ1 that belong to a

3−secant plane to the rational normal curve C5.

Our main tool in this work to study the splitting of the normal bundle N�k(Cn);ℙn−k

of rational curves of degree n in ℙn−k is the following exact cohomology sequence:

0 // H0(N∨
�k(Cn);ℙn−k(n+ 2)) // H0(On−1�k(Cn)

)
NL

n,k // H0(Oℙ1(2)k) // ⋅ ⋅ ⋅

⋅ ⋅ ⋅ // H1(N∨
�k(Cn);ℙn−k(n+ 2)) // 0 ,

where we have indicated with �k the projection map from the linear subspace L ∼= ℙk−1

and NL
n,k the following 3k × (n− 1) matrix:

NL
n,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−2
−2a11 . . . −2a1n−1
a12 . . . a1n
...

. . .
...

ak0 . . . akn−2
−2ak1 . . . −2akn−1
ak2 . . . akn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By our preliminary assumption on singularities we obtain a lower bound on the rank

of the above matrix:

rankNL
n,k = n− 1− ℎ0(N∨�k(Cn),ℙn−k(n+ 2)) ≥ k.

The knowledge of rank(NL
n,k) is su�cient to determine some splitting classes of the

normal bundle, in particular we quote the proposition 3.2.8 which says thatN�k(Cn);ℙn−k
∼=

O(n+ 2)n−1−rank(N
L
n,k)⊕ℱ , with ℱ a vector bundle of rank (rank(NL

n,k)−k) on ℙ1 such

that ℱ ∼=
⊕rank(NL

n,k)−k
i O(li) with li ≥ n+ 3 and deg(ℱ∨(n+ 2)) = −2k .

We point out that in the above result about rational space curves of degree 5 we

have n = 5, k = 2 and rankNL
5,2 = 3.

We prove in the Main Theorem for Normal Bundle 3.4.16 that the following condi-

tions are equivalent:
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i) the centre of projection L ∼= ℙk−1 is general in the (irreducible) variety of those

ℙk−1 which belongs to a linear system Φ of a�ne dimension n − 1 − rank(NL
n,k)

of (n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn;

ii) the curve of degree n projected from L ∼= ℙk−1 has N�k(Cn);ℙn−k
∼= O(n +

2)n−1−rank(N
L
n,k) ⊕ O(n + 2 + B)A−2k+B⋅A ⊕ O(n + 3 + B)2k−B⋅A, where we have

indicated A = rank(NL
n,k)− k and B = ⌊ 2k

rank(NL
n,k)−k

⌋.

The third advantage is clearly that this approach allows to consider curves in spaces

of arbitrary dimension, not only in ℙ3 as seen above. This approach works well only in

particular cases, and the general case remains very di�cult.

In this thesis we work also with the splitting of the restricted tangent bundle

Tℙn−k∣�k(Cn). The �rst results in this direction were given by Ramella in her doc-

toral thesis (see [Ramella, 1993]) where she proved that the splitting of the normal

bundle and of the tangent bundle are surprisingly very few related. Let us mention

that Verdier claimed (without proof) in [Verdier, 1983] a very general result, saying

that the varieties of rational curves in any ℙm of degree n with �xed splitting type of

their restricted tangent bundle are irreducible and giving the codimension. The proof

of this result was clari�ed later by Ramella (see [Ramella, 1990]).

As for the normal bundle we consider the following exact cohomology sequence:

0 // H0((Tℙn−k∣�k(Cn))
∨(n+ 1))) // H0(On�k(Cn)

)
TL
n,k // H0(Oℙ1(1)k) // ⋅ ⋅ ⋅

⋅ ⋅ ⋅ // H1((Tℙn−k∣�k(Cn))
∨(n+ 1))) // 0 ,

where we have indicated with TLn,k the 2k × n matrix:

TLn,k =

⎛⎜⎜⎜⎜⎜⎜⎝
a10 . . . a1n−1
−a11 . . . −a1n
...

. . .
...

ak0 . . . akn−1
−ak1 . . . −akn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and it must be:

rankTLn,k = n− ℎ0((Tℙn−k∣�k(Cn))
∨(n+ 1))) ≥ k + 1.

We prove in the Main Theorem for Restricted Tangent Bundle 2.5.18 that the

following conditions are equivalent:
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i) the centre of projection L is general in the (irreducible) variety of those ℙk−1 which
belongs to a linear system Φ of a�ne dimension n− rank(TLn,k) of (n− 1)−secant
ℙn−2 to the rational normal curve Cn in ℙn;

ii) the curve of degree n projected from L ∼= ℙk−1 has Tℙn−k∣�k(Cn)
∼= O(n +

1)n−rank(T
L
n,k)⊕O(n+1+B)A−k+B⋅A⊕O(n+2+B)k−B⋅A), where we have indicated

A = rank(TLn,k)− k and B = ⌊ k
rank(TL

n,k)−k
⌋.

See corollary 2.5.19 for a more complete statement about the irreducibility and

codimension of the varieties above.

The structure of the thesis is the following.

In chapter one we give preliminaries about general theory of vector bundle on

projective spaces and about apolarity theory.

In chapter two we deal with the problem of rational curves with �xed splitting type

of its Restricted Tangent Bundle.

In chapter three we deal with the problem of rational curves with �xed splitting

type of its Normal Bundle.

So our basic objects of study in this thesis are the subvarieties Nn
n−k(n1, ..., nn−k−1)

and T nn−k(t1, ..., tn−k) formed by the linear spaces L ∈ Gr(ℙk−1,ℙn) such that the normal

bundle (respectively the restricted tangent bundle) of the rational curves projected by

L is isomorphic to ⊕iOℙ1(ni) (respectively ⊕iOℙ1(ti)).



Chapter 1

Preliminaries

1.1 Vector Bundles on Projective Space

We will establish the notations and the most important facts about the cohomology

of projective spaces with coe�cients in an analytic cohorent sheaf (for example see

[Okonek et al., 1980], [Le Potier, 1997]). Let V be an (n+1)-dimensional complex vec-

tor space, we denote by ℙn = ℙ(V ) the associated projective space of lines in V with

a natural structure as compact complex manifold. Let X be a complex space with

structure sheaf OX and let F be a holomorphic vector bundle over X. Then we have

a sheaf OX(F ) of germs of holomorphic sections in F . It is a locally free sheaf of rank

equal to the rank of F . In what follow we shall not distinguish between a vector bundle

F and the associated locally free sheaf OX(F ).

As usual we shall denote by Oℙn(1) the hyperplane bundle over ℙn. The dual bundle
Oℙn(1)∨ of Oℙn(1) will be denoted by Oℙn(−1), it is the tautological line bundle over

ℙn:
Oℙn(−1) = {(l, v) ∈ ℙn × ℂn+1 such that v ∈ [l]}.

For any coherent analytic sheaf F over ℙn we de�ne F (r) = F ⊗Oℙn Oℙn(r), where

for r ∈ ℤ we denoted by:

Oℙn(r) =

{
Oℙn(1)⊗r for r ≥ 0,

Oℙn(−1)⊗∣r∣ for r ≤ 0

The sections of the line bundle Oℙn(r), when r ≥ 0, can be identi�ed with the homoge-

neous polynomial P ∈ ℂ[z0, ..., zn] of degree r, or in equivalent way H0(ℙn,Oℙn(r)) ∼=

1
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Symr V = SrV and:

H i(ℙn,Oℙn(r)) = 0 for 0 < i < n ∀r ∈ ℤ.

The zero loci of sections of Oℙn(r) are exactly the hypersurfaces of degree r. The zero

loci of a general section of Oℙn(r1)⊕ ...⊕Oℙn(rk) is called a complete intersection. It

is important to underline that Hom(Oℙn(a),Oℙn(b)) ∼= Sb−aV ∨, moreover a morphism

⊕iOℙn(ai) → ⊕jOℙn(bj) is represented by a matrix whose entries are homogeneous

polynomials.

We get an exact sequence:

(1.1) 0 // Oℙn(−1) // On+1
ℙn

// Q // 0 ,

regarding Oℙn(−1) as subbundle of On+1
ℙn , where Q is called the quotient bundle

and has rank n. More invariant way we can rephrased above as:

(1.2) 0 // Oℙn(−1) // On+1
ℙn ⊗ V // Q // 0 .

It is well known (for example see [Okonek et al., 1980] pg.6, [Gri�ths and Harris, 1994]

pg.409, [Harris, 1995] pg.201, [Ottaviani and Vallès, 2001] pg.29) that :

Q ∼= Tℙn(−1),

the twisted holomorphic tangent bundle.

The exact short sequence:

(1.3) 0 // Oℙn // On+1
ℙn (1) // Tℙn // 0 ,

is called the Euler sequence. Let Ωp
ℙn be the sheaf of germs of holomorphic p−forms

on ℙn, so:

Ω1
ℙn
∼= (Tℙn)∨, Ωp

ℙn
∼=

p⋀
Ω1

ℙn .

Dualizing the Euler sequence and taking the p−th exterior power one gets the following
exact sequence:

(1.4) 0 // Ωp
ℙn(p) // O(n+1

p )
ℙn

// Ωp−1
ℙn (p) // 0 ,

For the canonical bundle !ℙn ∼= Ωn
ℙn = det Ω1

ℙn , we have that !ℙn ∼= Oℙn(−n− 1).
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Theorem 1.1.1 (Serre duality). If X is an n−dimensional projective algebraic complex
manifold with canonical line bundle !X , then we have for any holomorphic vector bundle

E over X:

Hq(X,E)∗ ∼= Hn−q(X,E∗ ⊗ !X).

The above Serre duality implies:

ℎq(ℙn,Ωp
ℙn(r)) = ℎn−q(ℙn,Ωn−p

ℙn (−r)).

Moreover we have the following theorem.

Theorem 1.1.2 (Bott formula).

ℎq(ℙn,Ωp
ℙn(r)) =

⎧⎨⎩

(
r+n−p

r

)(
r−1
p

)
for q = 0 0 ≤ p ≤ n, r > p

1 for r = 0, 0 ≤ p = q ≤ n(−r+p
−r

)(−r−1
n−p

)
for q = n 0 ≤ p ≤ n, r < p− n

0 otherwise .

In particular for p = 0 we have:

(1.5) ℎq(ℙn,Oℙn(r)) =

⎧⎨⎩
(
r+n
r

)
for q = 0 r ≥ 0( −r−1

−r−1−n

)
for q = n r ≤ −n− 1

0 otherwise .

De�nition 1.1.3. A coherent analytic sheaf F over ℙn is said to be generated by

global sections if the canonical homomorphism of sheaves:

' : H0(ℙn, F )⊗ℂ Oℙn → F, 'x(s⊗ ℎ) = ℎsx, x ∈ ℙn,

is surjective.

Theorem 1.1.4 (A). For every coherent analytic sheaf F over ℙn there is a r0 ∈ ℤ so

that for r ≥ r0 the sheaf F (r) is generated by global sections.

Theorem 1.1.5 (B). For every coherent analytic sheaf F over ℙn there is a r0 ∈ ℤ
such that for r ≥ r0 and all q > 0:

Hq(ℙn, F (r)) = 0.

De�nition 1.1.6. A vector bundle E over X is called spanned if there are global

sections s1, ..., sk such that for all x ∈ X the vectors s1(x), ..., sk(x) span the �ber

�−1(x) where � : E → X is the surjective morphism associated to E.



CHAPTER 1. PRELIMINARIES 4

Let E be a spanned vector bundle of rank r over X. We denote by s1, ..., sr−p+1

some r − p+ 1 generic sections of E. The subvariety:

(1.6) {x ∈ X : s1(x), ..., sr−p+1(x) are linearly dependents }

has codimension p and its homology class in H2n−2p(X,ℤ) does not depend on the

sections.

De�nition 1.1.7. The Chern classes cp(E) ∈ H2p(X,ℤ) of a spanned vector bundle

E are de�ned as the Poincaré dual of the class in (1.6).

Observation 1.1.8. i) If p = r in (1.6) we get the zero locus of a generic section

of E.

ii) If p = 1 in (1.6) we get that c1(E) = c1(detE).

iii) If X = ℙ1 we get that c1(Oℙ1(a)) = a, we will indicate with degE = c1(E).

When E is not spanned there is a way to supply the de�nition of Chern classes.

This is to tensor E with some ample line bundle L in order to get E ⊗L spanned and

then use the formula:

ck(E ⊗ L) =
k∑
i=0

(
r − i
k − i

)
ci(E)ci(L)k−i,

in particular c1(E ⊗L) = c1(E) + rc1(L). The Chern polynomial is the formal expres-

sion:

cE(t) := c0(E) + c1(E)t+ c2(E)t2 + ...

In the case X = ℙn we have ci(E) ∈ ℤ and cE(t) ∈ ℤ[t]/tn+1.

If we have the following exact sequence of vector bundle:

(1.7) 0 // E // F // G // 0 ,

the Whitney formula is:

(1.8) cE(t)cG(t) = cF (t),

in particular we have:

c1(F ) = c1(E) + c1(G),

c2(F ) = c2(E) + c1(E)c1(G) + c2(G).
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Theorem 1.1.9 (Gauss-Bonnet). For any compact complex variety of dimension n we

have:

�(X,ℤ) = cn(TX).

The Thom-Porteous formula allows to compute the homology class and even the

class in the Chow ring of the degeneracy locus of a map between two vector bundles. Let

� : E → F be a sheaf map between vector bundles of rank e and f . The k−degeneracy
locus is Dk(�) := {x ∈ X∣ rank(�x) ≤ k}. We have:

codimDk(�) ≤ (e− k)(f − k),

in the generic case. Assume that codimDk(�) = (e−k)(f−k), then the Thom-Porteous

formula is:

[Dk(�)] = det(cf−k+j−i(F − E)1≤i,j≤e−k),

where ci(E − F ) is the i−th coe�cient in the expansion of the quotient cE/cF (ci = 0

if i < 0) and [Dk(�)] is the fundamental class of Dk(�).

Segre �rst and Grothendieck then prove that a rank r vector bundle on ℙ1 splits in

r line bundles:

Theorem 1.1.10 (Grothendieck-Segre, [Grothendieck, 1957],[Ghione and Ottaviani, 1992]).

Every holomorphic vector bundle E of rank k over ℙ1 has the form:

E ∼= Oℙ1(a1)⊕ ...⊕Oℙ1(ak),

with uniquely determined numbers a1, ..., ak ∈ ℤ with degE = a1 + ... + ak and a1 ≤
... ≤ ak.

De�nition 1.1.11. We de�ne the splitting type of vector bundle E the above twisting

factors and we indicate it with (a1, ..., ak).

Theorem 1.1.12. The tangent bundle Tℙn on ℙn splits on any line as Oℙn(1)n−1 ⊕
Oℙn(2) and its generic section vanishes in n+ 1 points.
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1.2 Statement of the Problem and Known Results

The aim of our work is to study the varieties which parametrize the subschemes of the

Hilbert scheme of algebraic rational curves with �xed splitting type of Normal Bundle

and also which ones with �xed splitting type of Restricted Tangent Bundle. We are

also interested on case when both are �xed.

1.2.1 Known Results on Normal Bundle of Rational Curves

In the case of rational space curves C of degree n the normal bundle has rank 2 and it

has the splitting Oℙ1(2n−1−�)⊕Oℙ1(2n−1+�) with 0 ≤ � ≤ n−3. We can observe

that the extreme case � = n− 3 is achieved only if we allow singularities, while in the

smooth case we have 0 ≤ � ≤ n− 4.

The �rst studied case is the space rational quartic curve, it has only one possibility

for the splitting type, which one balanced:

Theorem 1.2.1 ([Ghione and Sacchiero, 1980]). Let C be a nonsingular rational quar-

tic curve in ℙ3. Then the normal bundle of C is isomorphic to Oℙ1(7)⊕Oℙ1(7).

Also the rational curve contained in a smooth quadric has normal bundle balanced:

Theorem 1.2.2 ([Eisenbud and Van de Ven, 1981]). A smooth rational space curve C

of degree n ≥ 3 which is contained in a smooth quadric has normal bundle NC;ℙ3 =

Oℙ1(2n− 1)⊕Oℙ1(2n− 1).

Instead the extreme case � = n− 3 is achieved only if we allow singularities:

Theorem 1.2.3 ([Ghione and Sacchiero, 1980]). C is contained in a quadratic cone

and has a (n− 2)−fold point in its vertex if and only if � = n− 3.

In order to address the problem we need to choose a parametrization of rational

space curves. The most natural way to parametrize the rational space curves of degree

n is maybe the Hilbert scheme Hilbn ℙ3, as chosen by Eisenbud and Van de Ven.

De�nition 1.2.4. The scheme H3,n de�ned as the component of the Hilbert scheme

Hilbn ℙ3 of rational space curves of degree n containing the smooth curves as an open

subset, has dimension 4(n + 1) − 4 = 4n. One can de�ne subschemes Nn
3 ((2n − 1 −

�), (2n− 1 + �)) = Nn
3 (�) of Hilbn ℙ3 such that the normal bundle of curves in Nn

3 (�)

splits exactly as Oℙ1(2n − 1 − �) ⊕ Oℙ1(2n − 1 + �) and we indicate with N n
3 (�) the

analogous one formed by smooth rational space curves.
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Theorem 1.2.5 ([Eisenbud and Van de Ven, 1981]). The sets N n
3 (�) form a strati�ca-

tion of H3,n by non empty, locally closed subsets for 0 ≤ � ≤ n−4. N n
3 (�) is irreducible

of codimension 2�− 1 for 1 ≤ � ≤ n− 4.

Ghione and Sacchiero solve the problem in the case of rational space curves with

ordinary singularity. They consider the parametrization ℙ1 → ℙ3 as given by 4 homo-

geneous polynomials of degree n in two variables, which make a rational variety V 3,n

of dimension 4(n + 1) − 1 = 4n + 3. We point out that H3,n is a quotient of an open

subset of V 3,n by the action of SL(2), identifying di�erent parametrizations when give

the same curve.

V 3,n is the Zariski open set of ℙ4n+3 corresponding to the 4−tuples of polynomials

which give curves with at most ordinary singularity. Instead we indicate with V3,n the

4−tuples of polynomials which give an embedding of ℙ1 in ℙ3, i.e. V3,n is formed by

the smooth rational space curves of degree n.

Theorem 1.2.6 ([Ghione and Sacchiero, 1980]). There exists an hypersurface V 3,n
0 of

V 3,n ⊂ ℙ4n+3 such that if  ∈ V 3,n ∖ V 3,n
0 then N (ℙ1);ℙ3 = Oℙ1(2n− 1)2.

We consider the subsets of V 3,n:

V 3,n
� = { ∈ V 3,n : �( ) ≥ �} 0 ≤ � ≤ n− 3,

where �( ) is the integer which determine the splitting of the normal bundle of  (ℙ1)

i.e. N (ℙ1);ℙ3 = Oℙ1(2n− 1 + �( (ℙ1))⊕Oℙ1(2n− 1− �( (ℙ1)).

Theorem 1.2.7 ([Sacchiero, 1982]). There exists a strati�cation of V 3,n (resp. V3,n):

∅ ∕= V 3,n
n−3 ⊂ V 3,n

n−4 ⊂ ... ⊂ V 3,n
� ⊂ ... ⊂ V 3,n

1 ⊂ V 3,n;

(resp. ∅ ∕= V3,n
n−3 ⊂ V

3,n
n−4 ⊂ ... ⊂ V3,n

� ⊂ ... ⊂ V3,n
1 ⊂ V3,n) such that:

1) C ∈ V 3,n
� (resp. C ∈ V3,n

� ), 1 ≤ � ≤ n − 3 (resp. 1 ≤ � ≤ n − 4) if and only if

NC;ℙ3
∼= Oℙ1(2n− 1− �)⊕Oℙ1(2n− 1 + �) with � ≥ �.

2) V 3,n
� (resp. V3,n

� ), for 1 ≤ � ≤ n− 3 (resp. 1 ≤ � ≤ n− 4), is a quasi-projective,

integral, Cohen-Macaulay variety of codimension 2�− 1.
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1.2.2 Normal Bundle of Rational Curves in ℙn−k

Only few facts are known for rational curves in ℙn−k. In this section we will explain

the technique used by Sacchiero and his main result obtained in that way. At the end

we present our approach use in this thesis.

Let C ⊂ ℙn−k, n − k − 1 ≥ 1, be a rational curve of degree n with only ordinary

singularities. We can write NC;ℙn−k =
⊕n−k−1

i=1 O(n + di). On the other hand we have

c1(NC;ℙn−k) = (n − k + 1)n − 2, so
∑n−k−1

i=1 di = 2n − 2. Let t0, t1 ∈ Γ(ℙ1,Oℙ1(m))

be two section and A =
⊕

m≥0Am. Let  : ℙ1 → ℙn−k be the morphism de�ned by

 i ∈ Γ(ℙ1,Oℙ1(n)). Let C =  (ℙ1), we suppose that it has only ordinary singularities,

i.e. the map of di�erential �bre bundles Ω :  ∗Ωℙn−k → Ωℙ1 is surjective.

As made for rational curves in ℙ3 we may look at the parametrizations ℙ1 → ℙm

as given by m+ 1 homogeneous polynomials of degree n in two variables, which make

a rational variety V m,n.

Lemma 1.2.8 ([Sacchiero, 1980]). Let ! = ((∂ i/∂(t0, t1)))i=0,...,n−k be the Jacobian

matrix. Then we have the following exact sequence:

0 // N∨
C;ℙn−k

// On−k+1(−n)
! // O2(−1) // 0.

From the above exact sequence we can give the following one:

0 //
⊕

m∈ℤ Γ(C,N∨
C;ℙn−k(m)) // An−k+1(−n)

! // A2(−1),

which gives in degree n+ d:

0 // Γ(C,N∨C;ℙr+1(n+ d)) // An−k+1
d

!n+d // A2
n+d−1.

So ker!n+d = Γ(C,N∨
C;ℙn−k(n + d)) and if dℎ ≤ d < dℎ+1 we have dim ker!n+d =

ℎ(d+ 1)−
∑ℎ

i=1 di.

Proposition 1.2.9. (see [Sacchiero, 1980]) We have:

i) di ∕= 1 for all i = 1, 2, ..., n− k − 1;

ii) dim ker!n = ℎ if and only if C ⊂ ℙn−k−ℎ.

Lemma 1.2.10 (see [Sacchiero, 1980]). Let 2n − 2 = �r + � with 0 ≤ � < n − k − 1.

Let

V n−k,n
d = {C ∈ V n−k,n : rank(!n+d(C)) is not maximum }

W n−k,n = V n−k,n
�−1 ∪ V n−k,n

�

be subset of V n−k,n. Then:
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i) C ∈ V n−k,n
�−1 if and only if d1(C) ≤ � − 1;

ii) C ∈ V n−k,n
� if and only if dim ker!n+�(C) > n− k − 1− �;

iii) V n−k,n
�−1 , V n−k,n

� , W n−k,n are proper closed subset of V n−k,n;

iv) C ∈ V n−k,n ∖W n−k,n if and only if d1(C) = d2(C) = ... = dn−k−1−�(C) = � and

dn−k−1−�+1(C) = ... = dn−k−1(C) = � + 1.

Theorem 1.2.11 ([Sacchiero, 1980]). If C is a generic rational curve of degree n in

ℙn−k and 2n − 2 = �(n − k − 1) + � with 0 ≤ � < n − k − 1, then NC;ℙn−k ≃
O(n+ �)n−k−� ⊕O(n+ � + 1)�.

In this thesis we consider the rational normal curve Cn ⊂ ℙn and we obtain our

degree n rational curves in ℙn−k as projections from a linear space L = ℙk−1.
As in the work of Ghione and Sacchiero (see [Ghione and Sacchiero, 1980]) we are

interested to the case with ordinary singularities.

De�nition 1.2.12. For rational curves of degree n in ℙm we de�ne the scheme Hm,n as

the component of the Hilbert scheme Hilbn ℙm of rational curves of degree n in ℙm con-

taining the smooth curves as an open subset. Moreover we denote withNn
m(n1, ..., nm−1)

is the subscheme of curves with splitting type of normal bundle is (n1, ..., nm−1) and

with T nm(t1, ..., tm) is the subscheme of curves with splitting type of restricted tangent

bundle is (t1, ..., tm).

Note that SL(m + 1) acts on both Hm,n and V m,n, and that the subschemes

Nn
m(n1, ..., nm−1) are invariant under this action. Furthermore the general isotropy sub-

group of this action onMm,n is SL(2). The action of SL(m+1) is free on V m,n and an

open subscheme of the quotient V m,n//SL(m+1). An open subscheme of the quotient

of V m,n for SL(m+1) has dimension (n+1)(m+1)−1−((m+1)2−1) = (m+1)(n−m).

Indeed this quotient is isomorphic to an open subset of the Grassmannian Gr(ℙk−1,ℙn)

for m = n− k.
So in this thesis we choose to work directly on the Grassmannian Gr(ℙk−1,ℙn).

One advantage of working directly on the Grassmannian Gr(ℙk−1,ℙn) is that the

irreducible components and the codimension of the varieties Nn
m(n1, ..., nm−1)/SL(m+

1) (parametrizing subspaces L such that the curve obtained by projecting from L has

normal bundle isomorphic to
⊕m−1

i=1 Oℙ1(ni) ) remain the same of Nn
m(n1, ..., nm−1) and

similarly for T nm(t1, ..., tm). Then we can study directly the basic structures of these

subvarieties in the Grassmannian. Since now the dimension of the Grassmannian is
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lower than the dimension of the Hilbert scheme, this allows easier computations, also

with the help of a computer (we bene�t through this thesis by the software Macaulay2).

But the main advantage of this approach is that we can relate the splitting of the

normal bundle of the projected curve to geometric properties of the subspace L.

1.2.3 Known Results on Restricted Tangent Bundle on Ratio-

nal Curves

Some results for rational curves contained in a smooth quadric are proved by Eisenbud

and Van de Ven about restricted tangent bundle:

Theorem 1.2.13 ([Eisenbud and Van de Ven, 1981]). A smooth rational space-curve

C of degree n ≥ 3 is contained in a smooth quadric if and only if Tℙ3 ∣C≃ O(2n− 2)⊕
O(n+ 1)⊕O(n+ 1).

The main result was obtained by Verdier (see [Verdier, 1983]), but he does not

write down a proof, which is shown later on by Ramella (see [Ramella, 1990]). If a ∈ ℤ
we indicate a+ = max{0, a}, if (a1, ..., am) is a sequence of integers we will indicate

�(a1, ..., am) =
∑

i,j(ai − aj − 1)+. We can observe that if Tℙm(−1) ∣C∼=
⊕m

i=1O(ai),

then dimExt1(Tℙm(−1) ∣C , Tℙm(−1) ∣C) = �(a1, ..., am).

It seems natural to conjecture that the same applies to normal bundle of rational

curves in ℙm. In fact, in this thesis there are only cases that verify this conjecture.

Theorem 1.2.14 ([Verdier, 1983]/[Ramella, 1990]). Let V m,d be the family of mor-

phisms f : ℙ1 → ℙm of degree n. For every sequence of integers (a1, ..., am) such

that a1 ≥ ... ≥ am and
∑m

i=1 ai = n we indicate with V m,n(a1, ..., am) the family of

morphisms f ∈ V m,n such that the splitting type of the �bre bundle f ∗(Tℙm(−1)) is

(a1, ..., am). Then:

i) V m,n(a1, ..., am) = ∅ if am < 0;

ii) V m,n(a1, ..., am) is a subvariety non empty of V m,n smooth and connected of codi-

mension �(a1, ..., am).

We point out that Ramella prove the above theorem using a result on the Shatz

strati�cation (see [Drezet and Le Potier, 1985] and [Bruguières, 1985]). In particular

Ramella prove the following result:
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Proposition 1.2.15 ([Ramella, 1990]). The natural morphism ' : V m,n × ℙ1 → ℙm

and the vector bundle Tℙm(−1) give a family of vector bundles of rank m and degree

n on ℙ1 parametrized by V m,n.

For all f ∈ V m,n the Kodaira-Spencer morphism:

ks(f) : Tf (V
m,n)→ Ext1(f ∗(Tℙm(−1)), f ∗(Tℙm(−1))),

is surjective.

An other interesting thing is shown by Ramella is a necessary and su�cient condi-

tion for rational curve in ℙm to stay on a r−plane:

Theorem 1.2.16 ([Ramella, 1990]). Let f be an embedding of ℙ1 in ℙm. The splitting
type of f ∗(Tℙm(−1)) is (a1, ..., am) with ai = 0 for all i ≥ r+ 1 if and only if the curve

f(ℙ1) is on an r−plane.

1.2.4 Relation Between Normal and Restricted Tangent Bundle

Only few results are known in the relation between both splitting type. We will indicate

with T n3 (t1, t2, t3) (respectively Nn
3 (n1, n2)) the family of the smooth curves C in H3,n

with the splitting type (t1, t2, t3) of Tℙ3∣C (respectively with the splitting type (n1, n2)

of NC;ℙ3).

Theorem 1.2.17 ([Ramella, 1993]). i) The normal bundle of the general curve of

T n3 (t1, t2, t3) is of general type, i.e. in every T n3 (t1, t2, t3) there is a general curve

belonging to Nn
3 (2n− 1, 2n− 1).

ii) If C belongs to Nn
3 (n1, n2) with n2 ≤ n+6

4
− n, then the maximum degree of sub-

�bre bundle of Tℙ3∣C is 4n+ 2− 2n2.

iii) If t3 +n2 ≥ 3n, then T n3 (t1, t2, t3) intersects Nn
3 (n1, n2) on a subscheme which has

an irreducible component with right dimension, i.e. 4n− �(t1, t2, t3)− �(n1, n2).

iv) If t3 ≥ n2, then T n3 (t1, t2, t3) does not intersect Nn
3 (n1, n2).
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1.3 Apolarity and Waring's Problem

1.3.1 Catalecticant and Apolarity Setup

In the following section we want to �x the notation and remark principal results about

connection with apolarity theory, catalecticant homomorphism and secant varieties of

rational normal curve (see [Iarrobino and Kanev, 1999]).

Contraction Action and Catalecticant Morphism

Let V be a complex vector space dimℂ V = r + 1 with basis x0, ..., xr, we consider

the ring of homogeneous polynomial S =
⊕

i≥0 Symi V , where Symi V is the i−th
symmetric power of V . The dual basis of V ∨ can be denoted by ∂0 = ∂

∂x0
, ..., ∂r = ∂

∂xr

and T =
⊕

i≥0 S
iV ∨ is the dual ring of S, so that ∂i is an operator acting on xj, as

well xi is an operator acting on ∂j:

(1.9) Symp V ⊗ Symq V ∨ → Symp−q V for p ≥ q

(f, �) 7→ � ∘ f

,

or

(1.10) Symp V ⊗ Symq V ∨ → Symq−p V ∨ for q ≥ p

(f, �) 7→ f ∘ �

,

this is called the contraction action. Both maps can be de�ned for any p, q with the

convention that Symi V is zero for negative i.

De�nition 1.3.1. If we �xed a form f ∈ Symn V we have the catalecticant homomor-

phism for all 1 ≤ e ≤ n− 1:

Cf (e, n− e) : Symn−e V ∨ → Syme V �→ � ∘ f,

the relative matrix is called catalecticant matrix Catf (e, n−e; r+1) with basis for S of

power monomials x[E] = 1
e0!...er!

xe0 ...xer with E = (e0, ..., er) ∈ ℕr+1 and e0+...+er = e.

Observation 1.3.2. Clearly the transpose Catf (e, n− e; r + 1)t satis�es:

Catf (e, n− e; r + 1)t = Catf (n− e, e; r + 1).
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De�nition 1.3.3. We de�ne the determinantal loci of catalecticant Us(e, n−e; r+1) ⊂
Vs(e, n− e; r + 1) as:

Us(e, n− e; r + 1) = {f ∈ Symn V ∣ rank Catf (e, n− e; r + 1) = s},

Vs(e, n− e; r + 1) = {f ∈ Symn V ∣ rank Catf (e, n− e; r + 1) ≤ s}.

We denote by Vs(e, n−e; r+1) the scheme de�ned by the ideal Is+1(Catf (e, n−e; r+1))

generated by the (s+1)×(s+1) minors of Catf (e, n−e; r+1) and by Us(e, n−e; r+1) its

open subscheme whose closed points are those forms f for which Catf (e, n− e; r + 1)

has rank exactly s. We call the Vs(e, n − e; r + 1) catalecticant varieties and the

Vs(e, n− e; r + 1) catalecticant schemes.

De�nition 1.3.4. If f ∈ Symn V , we denoted by Se(f) the space Symn−e V ∨ ∘ f =

{�∘f ∣� ∈ Symn−e V ∨}, by de�nition it is the image of the catalecticant homomorphism

Cf (e, n − e). We let Sf = ⊕0≤i≤nSi(f), which is an T−submodule of S. Let si(f) =

dimℂ Si(f) and denote by Hf the sequence:

Hf = (s0(f), ..., si(f), ..., sn(f)).

Observation 1.3.5. The determinantal locus Vs(e, n− e; r+ 1) equals the set of forms

of degree n in r + 1 variables, whose (n− e)−th partial derivatives span a subspace of

dimension ≤ s in Te. It's clear that:

s0 = 1, s1 ≤ r + 1 and sn−i(f) = si(f).

De�nition 1.3.6. To each element f ∈ Sn one associates the ideal If = Ann(f) in

T consisting of polynomials � such that � ∘ f = 0 and we call � and f apolar to each

other, If is the apolar ideal of f .

One associates to f also the quotient algebra Af = T/If . Macaulay called such

an ideal a principal system, but we know them as Gorenstein ideals, since Af is a

Gorenstein Artin algebra. If p = (a0, ..., ar) ∈ ℂr+1, let Lp denote the linear form:

Lp = a0x0 + ...+ arxr ∈ S1.

Observation 1.3.7. We have the following useful equality:

� ∘ L[N ]
p = �(p)L[N−E]

p ,

for all � ∈ Te, e ≤ n and any Lp. Abusing notation we will write �(Lp) for �(p).



CHAPTER 1. PRELIMINARIES 14

De�nition 1.3.8. Consider the forms f ∈ Sn that can be written as a sum:

f = L
[N ]
1 + ...+ L[N ]

s ,

for some choice of linear forms L1, ..., Ls ∈ S1. They form the image of the regular

map:

� :

s−times︷ ︸︸ ︷
S1 × ...× S1 → Sn,

de�ned by �(L1, ..., Ls) = L
[N ]
1 + ...L

[N ]
s . Let us denote by PS(s, n; r+1) this image. Its

algebraic closure is an irreducible a�ne variety and it is invariant under multiplication

by elements of ℂ∗.

Observation 1.3.9. If we consider the Veronese variety �n(ℙr), ℙr = ℙ(S1) and if

s ≤ dimℂ Tn =
(
n+r
r

)
then for general enough forms L1, ..., Ls the projectivization of

the span < L[N ]1 , ..., L
[N ]
s > is an (s − 1)−plane that intersects the Veronese variety

in the points �n(< Li >) =< L
[N ]
i >, i = 1, .., s. Thus ℙPS(s, n; r + 1) is exactly the

s−secant variety to the Veronese variety �s(�n(ℙr)).

Observation 1.3.10. If f ∈ PS(s, n; r + 1) and f = L
[N ]
1 + ...+ L

[N ]
s , then for e ≤ n

and every � ∈ Tn−e, we have:

� ∘ f = �(L1)L
[E]
1 + ...+ �(Ls)L

[E]
s .

This shows that Se(f) the image of the catalecticant homomorphism Cf (e, n − e) has

dimension ≤ s. Hence the (s + 1) × (s + 1) minors of the catalecticant matrices

Catf (e, n− e; r + 1) vanish on PS(s, n; r + 1).

Lemma 1.3.11 (Apolarity Lemma [Iarrobino and Kanev, 1999]). Let p1, ..., ps ∈ ℙr,
let Li = Lpi, let P = {[p1], ..., [ps]} ⊂ ℙr and let ℐP be the homogeneous ideal in T of

polynomials vanishing on P . Then:

i) For every � ∈ Re:

� ∘ (L
[N ]
1 + ...+ L[N ]

s ) = �(p1)L
[N−E]
1 + ...+ �(ps)L

[N−E]
s .

ii) With respect to the contraction paring Tn × Sn → ℂ one has:

((ℐP )n)⊥ =< L
[N ]
1 , ..., L[N ]

s > .

iii) The points [p1], ..., [ps] ⊂ ℙr impose independent conditions on the linear system

∣Oℙn(j)∣ if and only if L[N ]
1 , ..., L

[N ]
s are linearly independent.
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iv) Suppose s ≤ dimℂ Tn−e and the linear forms L[N ]
1 , ..., L

[N ]
s have the property that

the corresponding set P imposes independent conditions on the linear system

∣Oℙr(n − e)∣. Let f = L
[N ]
1 + ... + L

[N ]
s . Then we have for the apolar forms to f

of degree e the equality:

Ann(f)e = (ℐP )e.

Theorem 1.3.12 ([Landsberg and Teitler, 2010]). Every f ∈ Sd = Symdℂr+1 has an

additive decomposition of length s no longer then
(
r+d
d

)
− r.

Lemma 1.3.13. If L1, ..., Ls are su�ciently general linear forms Li =
∑

j �ijxj in S1,

then F = L
[N ]
1 + ...+L

[N ]
s satis�es, Hf = H(s, n; r+1). If s ≤ min{dimℂ Ti, dimℂ Tn−i}

we have:

Ti ∘ f =< L
[N−I]
1 , ..., L[N−I]

s > .

Theorem 1.3.14 (O.Porras). Let n ≥ 2, 1 ≤ s ≤ r − 1, the following properties hold:

i) the variety Vs(1, n− 1; r + 1) is normal, Cohen-Macaulay with rational singular-

ities;

ii) its ideal is generated by the (s + 1) × (s + 1) minors of the catalecticant matrix

Catf (1, n− 1; r + 1);

iii) the singular locus of Vs(1, n− 1; r + 1) equals Vs−1(1, n− 1; r + 1).

Waring's Problem

The Waring's Problem can be formulated as follow:

Problem 1.3.15 (Waring's Problem). What is the minimum integer s such that a

general form of degree n in r + 1 variables can be represented as sum of powers as:

f = Ln1 + ...+ Lns ?

This was only recently solved by J. Alexander and A.Hirschowitz:

Theorem 1.3.16 ([Alexander and Hirschowitz, 1995]). Let n ≥ 3. Then we have

dimℂ PS(s, n; r + 1) = min((r + 1)s, dimℂ Tn), except for the four triples (s, n, r +

1) = (5, 4, 3), (9, 4, 4), (14, 4, 5) and (7, 3, 5) where the dimension is one less, equal to

dimℂ Tn − 1.
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Corollary 1.3.17 (Waring's Problem for General Forms). Suppose n ≥ 3, then a

su�ciently general homogeneous form f(x0, ..., xr) of degree n can be represented as a

sum of s powers of linear forms:

f = Ln1 + ...+ Lns ,

where s = ⌈ 1
r+1

(
n+r
r

)
⌉ except the cases (n, r + 1) = (4, 3), (4, 4), (4, 5) where we needs

s = 6, 10, 15 respectively and in the case (n, r + 1) = (3, 5) where one needs s = 8.

1.3.2 Binary Forms

For a binary form f ∈ Symn V with dimℂ V = 2:

f = a0x
n
0 + ...+

(
n

d

)
adx

n−d
0 xd1 + ...+ anx

n
1 ,

the relative e−th catalecticant matrix is :

Catf (e, n− e) := Catf (e, n− e; 2) =

⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 ⋅ ⋅ ⋅ an−e−1 an−e

a1 a2 ⋅ ⋅ ⋅ an−e an−e+1

...
...

. . .
...

...

ae−1 ae ⋅ ⋅ ⋅ an−2 an−1

ae ae+1 ⋅ ⋅ ⋅ an−1 an

⎞⎟⎟⎟⎟⎟⎟⎠ .

Observation 1.3.18. Clearly we have V1(1, n − 1; 2) = �n(ℙ1) which is the rational

normal curve Cn in ℙn.

Observation 1.3.19. We observe that if L ∈ S1, then:

L = �x0 + �x1 ↔ L⊥ = −�∂0 + �∂1 L⊥ ∘ L = 0.

Let Li be distinct for i = 1, ..., e. There are ci ∈ ℂ such that f =
∑e

i=1 ciL
n
i if and only

if (L⊥1 ∘ ... ∘ L⊥e )f = 0.

De�nition 1.3.20. Let f ∈ Sn be a binary form of degree n. Let L1, ..., Lm be a linear

forms. A representation of f as a sum:

(1.11) f = G1L
n−g1+1
1 + ...+GsL

n−gm+1
m ,

where Gi ∈ Sgi−1, is called a generalized additive decomposition (GAD) of f . A GAD

is called normalized if no pair L�, L� is proportional to each other and none of the Gi

is divisible by Li. Its length is by de�nition
∑m

i=1 gi.
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If all gi = 1 we obtain the classical additive decomposition:

(1.12) f = c1L
n
1 + ...+ csL

n
s ,

with ci ∈ ℂ.
The length of a binary form f is the minimum length of a GAD of f , we denote it

by l(f).

Lemma 1.3.21 ([Iarrobino and Kanev, 1999]). Let � =
∏m

i=1(bi∂0−ai∂1)gi be a prime

decomposition of a nonzero form in Ts. Let Li = aix0 + bix1. Then a form f ∈ Sn with

n ≥ s has a GAD as 1.11 if and only if � is apolar to f . If all roots of � are simple,

then this is an additive decomposition.

Lemma 1.3.22 ([Iarrobino and Kanev, 1999]). Let n = 2t or n = 2t + 1, let f ∈ Sn.
Then l(f) ≤ t + 1. If If = Ann(f) is the ideal of forms apolar to f , then l(f) equals

the order d (i.e. the initial degree) of the graded ideal If = (If )d + (If )d+1 + ....

Lemma 1.3.23 (Jordan's Lemma). Suppose that the linear forms Li, i = 1, ...,m are

not proportional to each other and:

0 = G1L
n−g1+1
1 + ...+GsL

n−gm+1
m ,

with
∑m

i=1 gi ≤ n+ 1. Then Gi = 0 for every i.

Proposition 1.3.24 (Uniqueness of GAD). Suppose n = 2t or n = 2t+ 1. Let:

f = G1L
n−g1+1
1 + ...+GmL

n−gm+1
m ,

be a normalized GAD of f ∈ Sn of length s =
∑m

i=1 gi ≤ t + 1. Then f has no other

GAD of length ≤ n+1−s and l(f) = s. In particular if s ≤ t or if s = t+1, n = 2t+1

(equivalently 2s ≤ n + 1), then the above is the unique normalized GAD of f having

length ≤ t+ 1.

De�nition 1.3.25. Let f ∈ Sn and let 2l(f) ≤ n + 1. Then the unique normalized

GAD of length s = l(f) is called the canonical form of f .

Theorem 1.3.26 (Sylvester). i) For odd n = 2t + 1, the general f ∈ Sn has a

unique decomposition as a sum of t+ 1 n−th powers of linear forms.

ii) For even n = 2d, the general f ∈ Sn has in�nitely many decompositions as a sum
of t+ 1 n−th powers of linear forms.



CHAPTER 1. PRELIMINARIES 18

Theorem 1.3.27. Let n = 2t or 2t+ 1, let f ∈ Sn.

i) Let s = rank Catf (n − t, t; 2). Then l(f) = s. If 2s ≤ n + 1, then f has a

unique generalized additive decomposition of length s. and no other GADs of

length ≤ t+ 1.

ii) For every pair of integers s, e with 1 ≤ s ≤ e ≤ n − e + 1, if l(f) = s, then

l(f) = s = rank Catf (n− e, e; 2).

Theorem 1.3.28 ([Iarrobino and Kanev, 1999]). Let f be a binary form of degree

n = 2t or 2t+ 1 and If = Ann(f) be the ideal of forms apolar to f . Let Af = S/If be

the associated Gorenstein Artin algebra. Let s = max{dim(Af )i}. Then:

i. s = l(f) and the Hilbert function of Af satis�es:

H(Af ) = (1, 2, ..., s− 1,
s− 1

s
, s, ...,

n− s+ 1

s
, s− 1, ..., 2, 1);

ii. Suppose 2s ≤ n + 1. Then dim Is = 1, Is =< � > and for every integer v with

s ≤ v ≤ n− s+ 1 one has Iv = Sv−s ∘ �;

iii. The apolar ideal If is generated by two homogeneous polynomials � ∈ (If )s and

� ∈ (If )n+2−s.

Equivalently the ring Af is a complete intersection of generator degrees s, n+2−s.
The two polynomials above have no common zeros.

1.3.3 The Grassmannians of secant varieties of curves

We report also a result due to Chiantini and Ciliberto (see [Chiantini and Ciliberto, 2002])

that will be useful in our thesis. It is well known that curves C in ℙn are not defec-

tive (see for example [Zak, 1993]) i.e the secant varieties �r(C) all have the expected

dimension min{n, 2r + 1}. The start point is the following well known result (see for

example [Harris, 1995]):

Proposition 1.3.29. A smooth, non degenerate n−dimensional projective variety X ⊂
ℙn is projected isomorphically from a point p ∈ ℙn to ℙn−1 if and only if p does not

belong to the secant variety �1(X) of X.

It is natural to consider projection of curves from some linear subspace. In this

case if a linear span H of r + 1 points of X contains the center of projection, then it
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determines a (r+1)−secant space for the image X ′ of dimension less then r. In analogy

with the theory of secant varieties �r(X) one may ask about the expected dimension

of these Grassmannians of secant varieties.

De�nition 1.3.30. Let C ⊂ ℙn be an irreducible non degenerate curve. We de�ne

the secant varieties as:

Gr(C) = {H ⊂ ℙn : H is the span of r + 1 independent points of C},

and

�r = {p ∈ ℙn : p ∈ H for some H ∈ Gr(C)},

Since C is irreducible, then Gr(C) is irreducible of dimension r + 1.

If one considers, in the incidence variety of Gr(ℙr,ℙn)× ℙn the subsets:

I(C) = {(H, p) : p ∈ H,H is spanned by r + 1 independent points of C},

then Gr(C), �r(C) correspond to the closures of the two natural projections I(C) →
Gr(ℙr,ℙn) and I(C)→ ℙn. In particular dim I(C) = 2r + 1 and the result above says

that the map I(C) → ℙn is generically �nite when 2r + 1 ≤ n, while otherwise it has

general �bers of dimension 2r + 1− n.

De�nition 1.3.31. We denote by Gs,r(C) the following subset of Gr(ℙs,ℙn):

Gs,r(C) = {ℎ ∈ Gr(ℙs,ℙn) : ℎ ⊂ H for some H ∈ Gr(C)}.

These objects are the Grassmannians of secant varieties of C. Observe that G0,r(C)

coincides with �r(C).

The elements of Gs,r(C) are contained in the Grassmannian of s−planes of some

k−plane H ∈ Gr(C). Thus we always have:

dimGs,r(C) ≤ dimGr(ℙs,ℙr) +Gr(C) = (s+ 1)(r − s) + k + 1.

Furthermore:

dimGs,r(C) ≤ dimGr(ℙs,ℙn) = (s+ 1)(n− s).

De�nition 1.3.32. We de�ne the expected dimension of Gs,r(C) as:

expdim(Gs,r(C) = min{(s+ 1)(n− s), (s+ 1)(r − s) + r + 1}.
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Chiantini and Ciliberto prove that the actual dimension of Gs,r(C) is always equal

to the expected one.

Theorem 1.3.33 ([Chiantini and Ciliberto, 2002]). The dimension of Gs,r(C) is equal

to the expected dimension:

min{(s+ 1)(n− s), (s+ 1)(r − s) + r + 1}.



Chapter 2

Restricted Tangent Bundle of

Rational Curves

2.1 Restricted Tangent Bundle of Rational Curves in

ℙ3

Let Cn ⊂ ℙn be the rational normal curve of degree n with �n : ℙ1 → ℙn and �n(ℙ1) =

Cn, where �n is the Veronese map. Let �n−3(Cn) the rational curve obtained from Cn

by projection from a (n − 4)-dimensional linear subspace L ⊂ ℙn on complementary

ℙ3 ⊂ ℙn, we will suppose that �n−3(Cn) has only ordinary singularities. In particular

we want to exclude the case of L ∩ Cn ∕= ∅, otherwise the rational curve projected has

degree one less and the case that L intersects a tangent line, otherwise we have a cusp,

but these requests are not very restrictive.

Proposition 2.1.1 ([Harris, 1995],[Zak, 1993]). Let �2(Cn) be the Secant Variety of

Cn.

i) If L ∩ (�2(Cn)) = ∅, then �n−3(Cn) is smooth.

ii) If L meets a secant line r, which is secant to Cn in two distinct points p, q ∈ r,
then �n−3(p) = �n−3(q) and �n−3(Cn) has a node.

iii) If L meets a tangent line, then �n−3(Cn) has a cusp.

The Euler exact sequence (see [Hartshorne, 1977], [Okonek et al., 1980]) on Cn and

on �n−3(Cn) are respectively :

(2.1) 0 // Oℙ1
�n// OCn(n)n+1 Syz(�n)// OCn(n+ 1)n // 0,

21
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(2.2) 0 // Oℙ1

�n−3∘�n// O�n−3(Cn)(n)4
Syz(�n−3∘�n)// Tℙ3∣�n−3(Cn)

// 0,

where

Syz(�n) =

⎛⎜⎜⎜⎜⎜⎜⎝
t −s 0 0 . . . . . . 0

0 t −s 0 . . . . . . 0

0 0 t −s 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . t −s

⎞⎟⎟⎟⎟⎟⎟⎠
is a n× (n+ 1) matrix.

Let p1 = [a10, ..., a
1
n], ..., pn−3 = [a10, ..., a

1
n] be n − 3 points which generate L, so we

have the following exact sequence:

(2.3) 0 // OCn(n)n−3
P // OCn(n)n+1 // OCn(n)4 // 0,

where:

P =
[
pt1 . . . ptn−3

]
.

Therefore we have:

(2.4) 0

��
On−3Cn

(n)

P
��

0 // Oℙ1
�n // OCn(n)n+1

��

Syz(�n)// OCn(n+ 1)n // 0

0 // Oℙ1

�n−3∘�n// O�n−3(Cn)(n)4

��

// Tℙ3∣�n−3(Cn)
// 0

0 .
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By the above diagram we can obtain:

(2.5) 0

��

0

��
On−3Cn

(n)

P
��

∼= // On−3Cn
(n)

(T L
n,n−3)

t

��
0 // Oℙ1

�n // OCn(n)n+1

��

Syz(�n)// OCn(n+ 1)n

��

// 0

0 // Oℙ1

�n−3∘�n// O�n−3(Cn)(n)4

��

// Tℙ3∣�n−3(Cn)

��

// 0

0 0 ,

where the map (T Ln,n−3)t is:

(T Ln,n−3)t = Syz(�n) ⋅

⎛⎜⎝ a10 . . . an−30
...

. . .
...

a1n . . . an−3n

⎞⎟⎠ =

⎛⎜⎝ a10t− a11s a11t− a12s . . . a1n−1t− a1ns
...

...
. . .

...

an−30 t− an−31 s an−31 t− an−32 s . . . an−3n−1t− an−3n s

⎞⎟⎠
t

.

It is a n× (n− 3) matrix. The last exact column of (2.5):

(2.6) 0 // Oℙ1(n)n−3
(T L

n,n−3)
t

// O�n−3(Cn)(n+ 1)n // Tℙ3∣�n−3(Cn)
// 0

gives us some information on the splitting type of Tℙ3∣�n−3(Cn):

Lemma 2.1.2. If �n−3(Cn) has only ordinary singularities, then the splitting type of

Tℙ3∣�n−3(Cn) must be (t1, t2, t3) with n+1 ≤ t1 ≤ t2 ≤ t3 ≤ 2n−2 and t1+t2+t3 = 4 ⋅n.

Moreover the exact sequence 2.6 gives rise by duality and tensorizing by Oℙ1(n+1):

(2.7) 0 // (Tℙ3∣�n−3(Cn))
∨(n+ 1) // On�n−3(Cn)

T L
n,n−3// Oℙ1(1)n−3 // 0 .

If we pass to the exact cohomology sequence we get:

0 // H0((Tℙ3∣�n−3(Cn))
∨(n+ 1))) // H0(On�n−3(Cn)

)
TL
n,n−3// H0(Oℙ1(1)n−3) // ⋅ ⋅ ⋅
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⋅ ⋅ ⋅ // H1((Tℙ3∣�n−3(Cn))
∨(n+ 1))) // 0 ,

where we have indicated with TLn,n−3 the 2(n− 3)× n matrix:

TLn,n−3 =

⎛⎜⎜⎜⎜⎜⎜⎝
a10 . . . a1n−1
−a11 . . . −a1n
...

. . .
...

an−30 . . . an−3n−1

−an−31 . . . −an−3n

⎞⎟⎟⎟⎟⎟⎟⎠ .

Observation 2.1.3. The rank of TLn,n−3 does not depend from the points generating L.

Observation 2.1.4. Let Fpi be the binary form of degree n which corresponds to the

point pi ∈ ℙn. If we indicate with CatFpi
(1, n − 1; 2) the Hankel matrix 2 × n corre-

sponding to Fpi, then the matrix TLn,n−3 has rank:

rankTLn,n−3 = rank

⎛⎜⎝ CatFp1
(1, n− 1; 2)
...

CatFpn−3
(1, n− 1; 2)

⎞⎟⎠ .

Therefore we have that:

rankTLn,n−3 ≥ 2,

otherwise each point belongs to Cn, which is impossible for our assumption on allowable

singularities.

Observation 2.1.5. We have that deg((Tℙ3∣�n−3(Cn))
∨(n+ 1)) = −n+ 3 and

ℎ0((Tℙ3∣�n−3(Cn))
∨(n+ 1)) = n− rank(TLn,n−3) = dim ker(TLn,n−3).

Therefore we have:

2 ≤ rank(TLn,n−3) ≤ min{n, 2(n− 3)},

so

n−min{n, 2(n− 3)} ≤ ℎ0((Tℙ3∣�n−3(Cn))
∨(n+ 1)) ≤ n− 2,

but as rank((Tℙ3∣�n−3(Cn))
∨(n+ 1)) = 3 we have that

(Tℙ3∣�n−3(Cn))
∨(n+ 1) splits in O(t′1)⊕O(t′2)⊕O(t′3)

by Grothendieck-Segre's theorem (see [Grothendieck, 1957]) with

−n+ 3 ≤ t′1 ≤ t′2 ≤ t′3 ≤ 0 and t′1 + t′2 + t′3 = −n+ 3.
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So we have that:

rankTLn,n−3 ≥ n− 2,

otherwise some t′i should be ≥ 1, which is impossible as seen above.

Remark 2.1.6. It's clear from the above consideration that the value of rank(TLn,n−3)

corresponds to some splitting types of Tℙ3∣�n−3(Cn).

We can distinguish two cases:

A) min{n, 2(n− 3)} = 2(n− 3), so n = 3, 4, 5, 6;

B) min{n, 2(n− 3)} = n, so n ≥ 6.

These two cases will be the subject of our studies in the next two sections.

2.1.1 Case 3 ≤ n ≤ 6

Rational Curves of degree 3 in ℙ3

Proposition 2.1.7. The restricted tangent bundle of rational normal curve C3 of degree

3 is (Tℙ3∣C3) = O(4)⊕O(4)⊕O(4).

Proof. Immediate from above.

Rational Curves of degree 4 in ℙ3

We observe that rankT p4,1 = rankCatFp(1, 3) where p ∈ ℙ4 is the centre of projection

�1, therefore we have:

Observation 2.1.8. rank(T p4,1) = 2 if and only if p /∈ C4.

Proposition 2.1.9. p /∈ C4 if and only if (Tℙ3∣�1(C4))
∨ = O(6)⊕O(5)⊕O(5).

Proof. Immediate from above.

Rational Curves of degree 5 in ℙ3

In the case of n = 5 we have:

TL5,2 =

⎛⎜⎜⎜⎝
a10 . . . a14
−a11 . . . −a15
a20 . . . a24
−a21 . . . −a25

⎞⎟⎟⎟⎠ .
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so ℎ0((Tℙ3∣�2(C5))
∨(6)) ≥ 1.

We can analyze every possible value of rankTL5,2:

i) If rank(TL5,2) = 4 we have that (Tℙ3∣�2(C5))
∨(6) = O(−1)⊕O(−1)⊕O.

ii) If rank(TL5,2) = 3 there are two possibilities or (Tℙ3∣�2(C5))
∨(6) = O(−2)⊕O⊕O

or (Tℙ3∣�2(C5))
∨(6) = O(−2)⊕O(−1)⊕O(1), the last one is impossible by Lemma

2.1.2.

iii) Finally we have that (Tℙ3∣�2(C5))
∨(6) = O(−3)⊕O⊕O(1) if and only if rank(T5,2) =

2, but this is impossible by Lemma 2.1.2.

Proposition 2.1.10. Let �2(C5) be a space rational curve of degree 5 with only ordinary

singularities:

i) rank(TL5,2) = 4 if and only if Tℙ3∣�2(C5) = O(7) ⊕ O(7) ⊕ O(6), this case is the

general one;

ii) rank(TL5,2) = 3 if and only if Tℙ3∣�2(C5) = O(8)⊕O(6)⊕O(6).

Lemma 2.1.11. If the centre of projection L ∼= ℙ1 belongs to a pencil of 4−secant ℙ3 to

the rational normal curve C5 in ℙ5, then rankTL5,2 = 3. The coverse is true generically

.

Proof. ⇒ Let L be a line belongs to a pencil Φ = {�� ∼= ℙ3 : �� = �0�0+�1�1, ∀� =

[�0, �1] ∈ ℙ1} of 4−secant ℙ3 to the rational normal curve C5 in ℙ5, where �0, �1
are two 4−secant ℙ3. Let qi1, ..., q

i
4 ∈ C5 be the points which generate �i. Then

there exist two points p1, p2 which generate L, such that each pi belongs to ��
for all � ∈ ℙ1 and �� =< q1,�, ..., q4,� >. By Observation 1.3.9 the binary forms

fi corresponding to pi can be decomposed as:

fi = ci1,�L
5
1,� + ...+ ci4,�L

5
4,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., 4. So by Lemma 1.3.11 for each � ∈ ℙ1 there exists a di�erential

form �� ∈ T4 such that �� ∘ fi = 0. Therefore there exist two di�erential forms

�1, �2 ∈ T4 which for each � ∈ ℙ1 we have �� = �0�1 + �1�2 and in particular

�1 ∘ fi = 0 = �2 ∘ fi, so rankTL5,2 = 3.
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⇐ If rankTL5,2 = 3, then there exist two binary form �1, �2 ∈ T4 such that however we
consider two generating points p1, p2 ∈ ℙ5 of L it is �� ∘ fi = (�0�1 +�1�2) ∘ fi =

0 for all � = [�0, �1] ∈ ℙ1 and i = 1, 2, where fi ∈ S5 is the binary form

corresponding to pi. If we consider the primary decomposition of �� =
∏4

l=1 �
l
�

and we indicate with (Ll,�)⊥ = �l�, then f1, f2 can be decomposed in∞1 di�erent

simultaneously ways, i.e.:

fi = ci1,�L
5
1,� + ...+ ci4,�L

5
4,�,

for all � = [�0, �1] ∈ ℙ1 or in other words L belongs to a pencil Φ = {�� ∼=
ℙ3 : �� = �0�0 + �1�1, ∀� = [�0, �1] ∈ ℙ1} of 4−secant ℙ3 to the rational

normal curve C5 in ℙ5. Clearly this is true generically, it can happen that some

�i which generate the linear system have multiple roots, so we have all possible

degeneration of that linear system.

Lemma 2.1.12. The variety of lines L that belong to a pencil is an irreducible variety

of codimension 2 in Gr(ℙ1,ℙ5).

Proof. We can observe that a pencil of 4−secant ℙ3 to the rational normal curve

C5 in ℙ5 corresponds to a linear system of dimension two of quartic binary forms,

therefore the set of these pencils corresponds to Gr(ℙ1,ℙ4) which is irreducible and

dimGr(ℙ1,ℙ4) = 6. Each projection line L belongs to one and only one of these

pencils, so the variety of lines L that belong to a pencil is an irreducible variety of

codimension 2 in Gr(ℙ1,ℙ5). The above calculation is e�ective thanks to the result of

Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties

of curves (see [Chiantini and Ciliberto, 2002]).

Observation 2.1.13. By Theorem 1.2.14 (see [Verdier, 1983]) T 5
3 (6, 6, 8) is an irre-

ducible variety of codim(T 5
3 (6, 6, 8)) = 2.

By Theorem 1.2.14[Verdier, 1983] and the above lemmas we have:

Theorem 2.1.14. The centre of projection L ∼= ℙ1 belongs to a pencil of 4−secant ℙ3

to the rational normal curve C5 in ℙ5 if and only if :

Tℙ3∣�2(C5)
∼= O(6)2 ⊕O(8).

Corollary 2.1.15. The variety of lines L that, as centre of projection, give a rational

curve of degree 5 in ℙ3 which has Tℙ3
�2(C5),ℙ3

∼= O(6) ⊕ O(6) ⊕ O(8) is an irreducible

variety of codimension 2 in Gr(ℙ1,ℙ5) formed by the lines L belonging to a pencil of

4−secant ℙ3 to the rational normal curve C5 in ℙ5.
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Rational Curves of degree 6 in ℙ3

Proposition 2.1.16. Let �3(C6) be a space rational curve of degree 6 with only ordinary

singularities:

i) rank(TL6,3) = 6 if and only if Tℙ3∣�3(C6) = O(8) ⊕ O(8) ⊕ O(8), this case is the

generic one;

ii) rank(TL6,3) = 5 if and only if Tℙ3∣�3(C6) = O(9)⊕O(8)⊕O(7).

iii) rank(TL6,3) = 4 if and only if Tℙ3∣�3(C6) = O(10)⊕O(7)⊕O(7).

Case rankTL6,3 = 5

Lemma 2.1.17. rankTL6,3 = 5 if and only if the forms fi of degree n corresponding to

the points pi generating L can be represented by similar GAD, i.e. :

fi = Gi1L
6−g1+1
1 + ...+GimL

6−gm+1
m .

Proof. ⇒ If rankTL6,3 = 5, then there exists an element � ∈ T5 such that for all

forms fi corresponding to the points pi generating L we have � ∘ fi = 0. So we

can consider the primary decomposition of � =
∏m

i=1(�i)
gi , with �i ∈ T1 and∑

i gi = 5, so every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
6−g1+1
1 + ...+GimL

6−gm+1
m ,

where (Lj)
⊥ = �j for all j = 1, ..,m and Gij ∈ Sgj−1 for all i = 1, 2, 3 and

j = 1, ...,m.

⇐ On the other hand if every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
6−g1+1
1 + ...+GimL

6−gm+1
m ,

then we can consider � =
∏m

i=1((Li)
⊥)gi . By de�nition of GAD representation

we have � ∘ fi = 0 for all i = 1, 2, 3, so � ∈ kerTL6,3 and rankTL6,3 = 5.

Observation 2.1.18. We can observe that if we �x L1, ..., L5 ∈ S1 and for 1 ≤ m ≤ 5

with
∑m

i=1 gi = 5, then the spaces:

{G1L
6−g1+1
1 + ...+GmL

6−gm+1
m for all G1 ∈ Sg1−1, ..., Gm ∈ Sgm−1}

are all possible degenerations of a 5−secant ℙ4 to vary m and gm.
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Lemma 2.1.19. The codimension in Gr(ℙ5,ℙ6) of the variety of all L ∼= ℙ2 in ℙ6

belonging to some 5-secant ℙ4 to the rational normal curve in ℙ6 is 1.

Proof. We can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙ2,ℙ6), � ∈ S, L ⊂
S} where S is the set of all 5-secant ℙ4 to the rational normal curve in ℙ6. In the

usual way we can compute the codimension of the image of this incidence variety in

Gr(ℙ2,ℙ6). We will indicated with �1 and �2 the natural projections:

IS
�1

zztttttttttt
�2

��?
??

??
??

?

Gr(ℙ2,ℙ6) S,

so the codimension inGr(ℙ2,ℙ6) of �1(IS) is equal to dimGr(ℙ2,ℙ6)−dimS−dim�−12 (S) =

3(7− 3)− 5− 3(5− 3) = 1. The above calculation is e�ective thanks to the result of

Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties

of curves (see [Chiantini and Ciliberto, 2002]).

Observation 2.1.20. By Theorem 1.2.14 (see [Verdier, 1983]) T 6
3 (7, 8, 9) is an irre-

ducible variety of codim(T 6
3 (7, 8, 9)) = 1.

By Theorem 1.2.14[Verdier, 1983] and the above lemmas we have:

Theorem 2.1.21. The centre of projection L ∼= ℙ2 belongs to some 5−secant ℙ4 to the

rational normal curve C6 in ℙ6 if and only if:

Tℙ3∣�3(C6)
∼= O(7)⊕O(8)⊕O(9).

Corollary 2.1.22. The variety of linear spaces L ∼= ℙ2 that, as centre of projec-

tion, give a rational curve of degree 6 in ℙ3 which has the restricted tangent bundle

Tℙ3
�3(C6),ℙ3

∼= O(7)⊕O(8)⊕O(9) is an irreducible variety of codimension 1 in Gr(ℙ2,ℙ6)

formed by the linear spaces L belong to some 4−secant ℙ3.

Case rankTL6,3 = 4

Lemma 2.1.23. If the centre of projection L ∼= ℙ2 belongs to some 4−secant ℙ3 to the

rational normal curve C6 in ℙ6, then we have rankTL6,3 = 4.

Proof. If L ∼= ℙ2 belongs to some 4−secant ℙ3, then there exist 3 points p1, p2, p3 ∈ L
which generate L and the corresponding binary forms fi have the apolar ideal respec-

tively Ann(fi) = (�, �i) with deg(�) = 4, � has only simple roots and deg(�i) = 4

without common zeros with �. We have dim(�)n−1 = 2 and dim
∩
i(�, �i)5 ≥ 2, so

rankTL6,3 = 6− dim
∩
i(�, �i)5 ≤ 4.
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Lemma 2.1.24. The codimension in Gr(ℙ2,ℙ6) of the variety of all L ∼= ℙ2 in ℙ6

belonging to some 4-secant ℙ3 to the rational normal curve in ℙ6 is 5.

Proof. We can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙ2,ℙ6), � ∈ S, L ⊂
S} where S is the set of all 4-secant ℙ3 to the rational normal curve in ℙ6. In the

usual way we can compute the codimension of the image of this incidence variety in

Gr(ℙ2,ℙ6). We will indicated with �1 and �2 the natural projections:

IS
�1

zztttttttttt
�2

��?
??

??
??

?

Gr(ℙ2,ℙ6) S,

so the codimension inGr(ℙ2,ℙ6) of �1(IS) is equal to dimGr(ℙ2,ℙ6)−dimS−dim�−12 (S) =

3(7− 3)− 4− 3(4− 3) = 5. The above calculation is e�ective thanks to the result of

Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties

of curves (see [Chiantini and Ciliberto, 2002]).

Observation 2.1.25. By Theorem 1.2.14 (see [Verdier, 1983]) T 6
3 ((7)2, 10) is an ir-

reducible variety of codim(T 6
3 ((7)2, 10)) = 4.

Theorem 2.1.26. If the centre of projection L ∼= ℙ2 belongs to some 4−secant ℙ3 to

the rational normal curve C6 in ℙ6, then:

Tℙ3∣�3(C6)
∼= O(7)⊕O(7)⊕O(10).

Corollary 2.1.27. The variety of linear spaces L ∼= ℙ2 that, as centre of projec-

tion, give a rational curve of degree 6 in ℙ3 which has the restricted tangent bun-

dle Tℙ3
�3(C6),ℙ3

∼= O(7)2 ⊕ O(10) has an irreducible subvariety of codimension 5 in

Gr(ℙ2,ℙ6) formed by the linear spaces L belong to some 4−secant ℙ3.

Lemma 2.1.28. If the centre of projection L ∼= ℙ2 belongs to a pencil of 5−secant
ℙ4 to the rational normal curve C6 in ℙ6, then rankTL6,3 = 4. The converse is true

generically.

Proof. ⇒ Let L be a ℙ2 belongs to a pencil Φ = {�� ∼= ℙ4 : �� = �0�0 +�1�1, ∀� =

[�0, �1] ∈ ℙ1} of 5−secant ℙ3 to the rational normal curve C6 in ℙ6, where �0, �1
are 5−secant ℙ4. Let qi1, ..., q

i
5 ∈ C6 be the points which generate �i. Then there

exist three points p1, p2, p3 which generate L, such that each pi belongs to �� for
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all � ∈ ℙ1 and �� =< q1,�, ..., q5,� >. By Observation 1.3.9 the binary forms fi
corresponding to pi can be decomposed as:

fi = ci1,�L
6
1,� + ...+ ci5,�L

6
5,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., 5. So by Lemma 1.3.11 for each � ∈ ℙ1 there exists a di�erential

forms �� ∈ T5 such that �� ∘ fi = 0. Moreover there exist two di�erential forms

�0, �1 ∈ T5 which for each � ∈ ℙ1 we have �� = �0�0 + �1�1, in particular

�j ∘ fi = 0 for all j = 0, 1 and i = 1, ..., 3, so rankTL6,3 = 4.

⇐ If rankTL6,3 = 4, then there exist two binary form �1, �2 ∈ T5 such that however we
consider two generating points p1, p2 ∈ ℙ5 of L it is �� ∘ fi = (�0�1 +�1�2) ∘ fi =

0 for all � = [�0, �1] ∈ ℙ1 and i = 1, 2, where fi ∈ S6 is the binary form

corresponding to pi. If we consider the primary decomposition of �� =
∏5

l=1 �
l
�

and we indicate with (Ll,�)⊥ = �l�, then f1, f2 can be decomposed in∞1 di�erent

simultaneously ways, i.e.:

fi = ci1,�L
6
1,� + ...+ ci5,�L

6
5,�,

for all � = [�0, �1] ∈ ℙ1 or in other words L belongs to a pencil Φ = {�� ∼=
ℙ3 : �� = �0�0 + �1�1, ∀� = [�0, �1] ∈ ℙ1} of 5−secant ℙ4 to the rational

normal curve C6 in ℙ6. Clearly this is true generically, it can happen that some

�i which generate the linear system have multiple roots, so we have all possible

degenerations of that linear system.

Lemma 2.1.29. The variety of planes L ∼= ℙ2 that belong to a pencil Φ of 5−secant
ℙ4 to the rational normal curve C6 in ℙ6 is an irreducible variety of codimension 4.

Proof. We can observe that the pencil Φ of 5−secant ℙ4 to the rational normal curve

C6 in ℙ6 correspond to the linear system of dimension 2 of binary forms of degree 5,

therefore the set of these linear system corresponds to Gr(ℙ1,ℙ5) which is irreducible

and dimGr(ℙ1,ℙ5) = 8. Each centre of projection L belongs to a one and only one

pencil therefore the variety of planes L that belong to a pencil Φ is an irreducible

variety of codimension 4 in Gr(ℙ2,ℙ6). The above calculation is e�ective thanks to the

result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant

varieties of curves (see [Chiantini and Ciliberto, 2002]).
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Theorem 2.1.30. The centre of projection L ∼= ℙ2 belongs to a pencil Φ of 5−secant
ℙ4 to the rational normal curve C6 in ℙ6 if and only if Tℙ3∣�3(C6)

∼= O(7)2 ⊕O(10).

Corollary 2.1.31. T 6
3 (7, 7, 10) is an irreducible variety of codimension 4 formed by the

planes L ∼= ℙ2 that belong to a pencil Φ of 5−secant ℙ4 to the rational normal curve

C6 in ℙ6.

2.1.2 Case n > 6

Lemma 2.1.32. We have only three di�erent possibilities:

a) rank(TLn,n−3) = n if and only if

Tℙ3∣�n−3(Cn) = O(t1)⊕O(t2)⊕O(t3),

where n+ 2 ≤ t1 ≤ t2 ≤ t3 ≤ 2n− 4 and t1 + t2 + t3 = 4n.

b) rank(TLn,n−3) = n− 1 if and only if

Tℙ3∣�n−3(Cn) = O(t1)⊕O(t2)⊕O(n+ 1),

where n+ 2 ≤ t1 ≤ t2 ≤ 2n− 3 and t1 + t2 = 3n− 1.

c) rank(TLn,n−3) = n− 2 if and only if

Tℙ3∣�n−3(Cn) = O(2n− 2)⊕O(n+ 1)⊕O(n+ 1).

No other possibilities can happen by conditions on ti (see Lemma 2.1.2, Observation

2.1.5).

Unfortunately the a) and b) cases are formed by several possible splitting types,

but we can study the rank of the following maps in order to discriminate the exact

splitting:

0 // H0((Tℙ3∣�n−3(Cn))
∨(n+ 2))) // H0(O�n−3(Cn)(1)

n)
TL
n,n−3(1)// H0(Oℙ1(2)n−3) // . . .

. . . // H1((Tℙ3∣�n−3(Cn))
∨(n+ 2))) // 0 ,
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where we have indicated with TLn,n−3(1) the 3(n− 3)× 2n matrix:

TLn,n−3(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−1 0 . . . 0

−a11 . . . −a1n a10 . . . a1n−1
0 . . . 0 −a11 . . . −a1n
...

. . .
...

an−30 . . . an−3n−1 0 . . . 0

−an−31 . . . −an−3n an−30 . . . an−3n−1

0 . . . 0 −an−31 . . . −an−3n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and so on:

0 // H0((Tℙ3∣�n−3(Cn))
∨(n+ 1 + d))) // H0(O�n−3(Cn)(d)

n)
TL
n,n−3(d)// H0(Oℙ1(d+ 1)n−3) // . . .

. . . // H1((Tℙ3∣�n−3(Cn))
∨(n+ 1 + d))) // 0 .

Where we have indicate with:

TLn,n−3(d) =

⎛⎜⎝ T p1n,1(d)
...

T
pn−3

n,1 (d)

⎞⎟⎠ ,

the matrix of dimensions (d + 2)(n − 3) × n(d + 1) form by the following matrices of

dimensions (d+ 2)× n(d+ 1):

(T pin,n−3(d))t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(T pin,1)
t

d︷ ︸︸ ︷
0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...

0 0 ⋅ ⋅ ⋅ 0

0
...

0

(T pin,1)
t

0 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
...

...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
...

...
...

...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0
...

. . .
...

...

0 ⋅ ⋅ ⋅ 0 0

(T pin,1)
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭

n(d+ 1)
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Observation 2.1.33. We can observe that:

rankT pin,1(d) = rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Catpi(n− 1, 1)

d︷ ︸︸ ︷
0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...

0 0 ⋅ ⋅ ⋅ 0

0
...

0

Catpi(n− 1, 1)

0 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
...

...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
...

...
...

...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 0
...

. . .
...

...

0 ⋅ ⋅ ⋅ 0 0

Catpi(n− 1, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭

n(d+ 1)

2.1.3 Rational Curves of degree 7 in ℙ3

Lemma 2.1.34. a) rank(TL7,4) = 7 if and only if Tℙ3∣�4(C7) = O(9)⊕O(9)⊕O(10);

b) rank(TL7,4) = 6 if and only if

Tℙ3∣�4(C7) = O(8)⊕O(t1)⊕O(t2),

where 9 ≤ t1 ≤ t2 ≤ 11 and t1 + t2 = 20.

c) rank(TL7,4) = 5 if and only if

Tℙ3∣�4(C7) = O(8)⊕O(8)⊕O(12).

No other possibilities can happen by conditions on ti (see Lemma 2.1.2, Observation

2.1.5).

So case b) is formed by two possible splitting types :

b.1) (8, 10, 10);

b.2) (8, 9, 11).
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To distinguish what it is we have to look at the following exact cohomology sequence

and its relative map TL7,4(1) (14× 12 matrix):

0 // H0((Tℙ3∣�4(C7))
∨(9))) // H0(O�4(C7)(1)7)

TL
7,4(1) // H0(Oℙ1(2)4) // . . .

. . . // H1((Tℙ3∣�4(C7))
∨(9))) // 0 .

Proposition 2.1.35. The splitting type of Tℙ3∣�4(C7) is:

b.1) (8, 10, 10) if and only if rankTL7,4(1) = 12;

b.2) (8, 9, 11) if and only if rankTL7,4(1) = 11.

2.2 Varieties Parametrizing Subschemes of Hilbn ℙ3

We de�ne the varieties which parametrize the subscheme of the Hilbert scheme T n3 (t1, t2, t3)

as intersection of some of the following varieties:

V (TLn,n−3(d))r := {L ∈ Gr(ℙn−4,ℙn) : rankTLn,n−3(d) ≤ r}.

These are subvarieties of Gr(ℙn−4,ℙn).

Since the rank condition is invariant under the action of SL(n− 3,ℂ) we are inter-

ested to study the determinantal varieties in Hom(H0(On(d)), H0(On−3(d+ 1)):

D(TLn,n−3(d))r = {p1, ..., pn−3 ∈ ℙn : rankTLn,n−3(d) ≤ r}.

Proposition 2.2.1. We can compute the maximal codimension of the above varieties:

codimV (TLn,n−3(d))r = codimV (TLn,n−3(d))r ≤ ((d+ 2)(n− 3)− r)(n(d+ 1)− r).

2.3 Restricted Tangent Bundle of Rational Curves in

Codim k

We can obtain as in the case of rational curves in ℙ3 the following diagram for a

projection �k from ℙn in a ℙn−k determined by a linear space L ∼= ℙk−1 generated by
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k points p1 = (a10, ..., a
1
n), ..., pk = (ak0, ..., a

k
n) ∈ ℙn :

(2.8) 0

��

0

��
OkCn

(n)

��

∼= // OkCn
(n)

(T L
n,k)

t

��
0 // Oℙ1

�n // OCn(n)n+1

��

Syz(�n)// OCn(n+ 1)n

��

// 0

0 // Oℙ1
�k∘�n// O�n−k+1

n−3 (Cn)
(n)

��

// Tℙn−k∣�k(Cn)

��

// 0

0 0 .

The last exact column of (2.8):

(2.9) 0 // OCn(n)k // OCn(n+ 1)n // Tℙn−k∣�k(Cn)
// 0 ,

gives rise by duality and tensorizing by O(n+ 1):

(2.10) 0 // (Tℙn−k∣�k(Cn))
∨(n+ 1) // OnCn

T L
n,k// OCn(1)k // 0 .

We indicate with TLn,k the 2k × n matrix:

TLn,k =

⎛⎜⎜⎜⎜⎜⎜⎝
a10 . . . a1n−1
−a11 . . . −a1n
...

. . .
...

ak0 . . . akn−1
−ak1 . . . −akn

⎞⎟⎟⎟⎟⎟⎟⎠ .

So we have that deg((Tℙn−k∣�k(Cn))
∨(n+ 1)) = −k and

ℎ0((Tℙn−k∣�k(Cn))
∨(n+ 1)) = n− rank(TLn,k) = dim ker(TLn,k).

As rank((Tℙn−k∣�k(Cn))
∨(n + 1)) = n − k we have that (Tℙn−k∣�k(Cn))

∨(n + 1) splits

in O(t′1) ⊕ ... ⊕ O(t′n−k) by Grothendieck-Segre's theorem (see [Grothendieck, 1957])

with t′1 ≤ ... ≤ t′n−k ≤ 0 and t′1 + ..+ t′n−k = −k.
Therefore we have that:

rankTLn,k ≥ k + 1,

otherwise some t′i must be ≥ 1 which is impossible.

By the considerations above it's clear that:
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Proposition 2.3.1. Tℙn−k∣�k(Cn)
∼= O(n+1)n−rank(T

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(TLn,k)− k on ℙ1 and deg(ℱ∨(n+ 1)) = −k such that ℱ ∼=
⊕rank(TL

n,k)−k
i=1 O(li)

with li ≥ n+ 2.

We de�ne the varieties which parametrize the subscheme of the Hilbert scheme

T nn−k(t1, ..., tn−k) as intersection of some of the following varieties:

V (TLn,k(d))r := {L ∈ Gr(ℙk−1,ℙn) : rankTLn,k(d) ≤ r}.

These are subvarieties of Gr(ℙk−1,ℙn).

Since the rank condition is invariant under the action of SL(k,ℂ) we are interested

to study the determinantal varieties in Hom(H0(On(d)), H0(Ok(d+ 1)):

D(TLn,k(d))r = {p1, ..., pk ∈ ℙn : rankTLn,k(d) ≤ r}.

About the matrix TLn,k we note that are two possible cases:

I) k < n
2
;

II) k ≥ n
2
.

These two cases will be the subject of our studies in the next two sections.
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2.4 Codimension k, for 1 ≤ k < n
2

Observation 2.4.1. Since we want to consider only the projections with only ordinary

singularities, it is:

2 ≤ rank(TLn,k) ≤ 2k,

otherwise if rankTLn,k = 1, then p1, ..., pk ∈ Cn. Instead for conditions on splitting type

of restricted tangent bundle:

rank(TLn,k) > k,

so we have:

k < rank(TLn,k) ≤ 2k,

Proposition 2.4.2. Tℙn−k∣�k(Cn)
∼= O(n+1)n−rank(T

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(TLn,k)− k on ℙ1 and deg(ℱ∨(n+ 1)) = −k such that ℱ ∼=
⊕rank(TL

n,k)−k
i=1 O(li)

with li ≥ n+ 2.

In this case we have four possibilities:

1. ℱ ∼= O(n+ 2)k if and only if rank(TLn,2) = 2k;

2. ℱ ∼= O(n+ 2)k−2 ⊕O(n+ 3) if and only if rank(TLn,k) = 2k − 1;

3. ℱ ∼= O(n + 2)k−2r ⊕ ℱ ′ if and only if rank(TLn,k) = 2k − r with 1 ≤ r ≤ k − 2,

rank(ℱ ′) = r and deg(ℱ ′∨(n+ 1)) = −k;

4. ℱ ∼= O(n+ 1 + k) if and only if rank(TLn,k) = k + 1.

We can rephrased the above proposition as:

Proposition 2.4.3. We have four possibilities:

1. �k(Cn) ∈ T nn−k((n+ 1)n−2k, (n+ 2)k) if and only if L ∈ V (TLn,k)
2k, this case is the

generic one;

2. �k(Cn) ∈ T nn−k((n+ 1)n−2k+1, (n+ 2)k−2, (n+ 3)) if and only if L ∈ V (TLn,k)
2k−1;

3. �k(Cn) ∈ T nn−k((n + 1)n−2k+r, (n + 2)k−2, spt(ℱ ′)), where spt(ℱ ′) is the splitting

type of ℱ ′ with 1 ≤ r ≤ k − 2, rank(ℱ ′) = r and deg(ℱ ′∨(n + 1)) = −k, if and
only if L ∈ V (TLn,k)

2k−r with 1 ≤ r ≤ k − 2 ;

4. �k(Cn) ∈ T nn−k((n+ 1)n−k−1, (n+ 1 + k)) if and only if L ∈ V (TLn,k)
k+1.
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For the rest of this thesis we will write secant without further explanation meaning

secant to the rational normal curve.

Observation 2.4.4. We can observe that if L belong to a (n-1)-secant ℙn−2 generated
by q1, ..., qn−1 ∈ ℙn, then there exists an element � ∈ H0(On�k(Cn)

) ∼= Sn−1V ∨ = Tn−1

such that � ∈ ker(TLn,k) =
∩
i ker(Catfi(1, n−1)), in fact we can take � =

∏n
i=1(L

⊥
qi

)n−1,

clearly this happens every time since dim kerTLn,k ≥ 1.

Unfortunately this condition is empty for 2k < n − 1, in fact we can compute

the codimension of the variety of every ℙk−1 which belong to some (n-1)-secant ℙn−2

constructing an incidence variety:

IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈ S, L ⊂ S},

where S is the variety of all (n-1)-secant ℙn−2 to Cn. In the usual way we can com-

pute the codimension of the image of this incidence variety in Gr(ℙk−1,ℙn). We will

indicated with �1 and �2 the natural projections:

IS
�1

yyrrrrrrrrrrr
�2

��?
??

??
??

?

Gr(ℙk−1,ℙn) S,

so the codimension in Gr(ℙk−1,ℙn) of �1(IS) is equal to dimGr(ℙk−1,ℙn) − dimS −
dim�−12 (S) = k(n+1−k)−n+1−k(n−1−k). The above calculation is e�ective thanks

to the result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians

of secant varieties of curves (see [Chiantini and Ciliberto, 2002]). We have that this

variety has codimension 2k − n + 1, but we are in the hypothesis 2k < n − 1, so

2k − n+ 1 < 0.

For 2k = n− 1 the condition gives codim = 0, so it is veri�ed for all L.

Case rankTLn,k = 2k − 1

Lemma 2.4.5. Let 2k < n ≤ 3k − 1. If the centre of projection L ∼= ℙk−1 belongs to

a linear system of a�ne dimension n− 2k + 1 of (n− 1)−secant ℙn−2 to the rational

normal curve Cn in ℙn, then rankTLn,k = 2k − 1. The converse is generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−2 : �� =

�0�0 + ...+ �n−2k�n−2k, ∀� = [�0, ..., �n−2k] ∈ ℙn−2k} of (n− 1)−secant ℙn−2 to
the rational normal curve Cn in ℙn, where �0, ..., �n−2k are (n− 1)−secant ℙn−2.
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Let qi1, ..., q
i
n−1 ∈ Cn be the points which generate �i. Then there exist k points

p1, ..., pk which generate L, such that each pi belongs to �� for all � ∈ ℙn−2k and
�� =< q1,�, ..., qn−1,� >. By Observation 1.3.9 the binary forms fi corresponding

to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n − 1. This means that L belongs to a ℙn−2(n−2k+1) = ℙ4k−n−2, this is

possible by the condition n ≤ 3k − 1. So by Lemma 1.3.11 for each � ∈ ℙn−2k

there exists a di�erential forms �� ∈ Tn−1 such that �� ∘ fi = 0. Moreover there

exist n−2k+1 di�erential forms �0, ..., �n−2k ∈ Tn−1 which for each � ∈ ℙn−2k we
have �� = �0�0 + ....+�n−2k�n−2k, in particular �j ∘fi = 0 for all j = 0, ..., n−2k

and i = 1, ..., k, so rankTLn,k = 2k − 1.

⇐ If rankTLn,k = 2k− 1, then there exist n− 2k+ 1 binary form �0, ..., �n−2k ∈ Tn−1
such that however we consider the generating points p1, ..., pk ∈ ℙn of L, it is

�� ∘ fi = (�0�0 + ...+ �n−2k�n−2k) ∘ fi = 0 for all � = [�0, ..., �n−2k] ∈ ℙn−2k and
i = 1, ..., k, where fi ∈ Sn is the binary form corresponding to pi. In particular

�j ∘ fi = 0. We can consider the primary decomposition of �� =
∏n−1

l=1 �
l
� and

we indicate with (Ll,�)⊥ = �l�. Therefore f1, ..., fk can be decompose in ∞n−2k

di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

for all � = [�0, ..., �n−2k] ∈ ℙn−2k, so L belongs to a ℙ4k−n−2. In other words L

belongs to a linear system Φ = {�� ∼= ℙn−2 : �� = �0�0 + ...+ �n−2k�n−2k, ∀� =

[�0, ..., �n−2k] ∈ ℙn−2k} of (n − 1)−secant ℙn−2 to the rational normal curve Cn
in ℙn. Clearly it can happen that some �i have multiple roots, so we have all

possible degenerations of the linear system Φ

Observation 2.4.6. By Theorem 1.2.14 (see [Verdier, 1983]) T nn−k((n+1)n−2k+1, (n+

2)k−2, n+ 3) is an irreducible variety of codim(T nn−k((n+ 1)n−2k+1, (n+ 2)k−2, n+ 3) =

n− 2k + 1.

Lemma 2.4.7. Let k− 1 ≤ 4k−n− 2 or equivalently 2k < n ≤ 3k− 1. The variety of

linear spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n− 2k+ 1

of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn is an irreducible variety

of codimension n− 2k + 1.
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Proof. We can observe that the linear system Φ of a�ne dimension n− 2k+ 1 of (n−
1)−secant ℙn−2 to the rational normal curve Cn in ℙn correspond to the linear system

of dimension n−2k+1 of binary forms of degree n−1, therefore the set of these linear

system corresponds to Gr(ℙn−2k,ℙn−1) which is irreducible and dimGr(ℙn−2k,ℙn−1) =

(n − 2k + 1)(2k − 1). Each projection linear space L belongs to a ℙ4k−n−2, so the

dimension of the �bre is k(3k−n−1), which is ≥ 0 with the condition k−1 ≤ 4k−n−2.

Therefore the variety of lines L that belong to a linear system Φ is an irreducible variety

of codimension n − 2k + 1 in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks

to the result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of

secant varieties of curves (see [Chiantini and Ciliberto, 2002]).

Theorem 2.4.8. Let 2k < n ≤ 3k− 1. The centre of projection L ∼= ℙk−1 belongs to a

linear system Φ of a�ne dimension n− 2k + 1 of (n− 1)−secant ℙn−2 to the rational

normal curve Cn in ℙn if and only if Tℙn−k∣�k(Cn)
∼= O(n+ 1)n−2k+1 ⊕O(n+ 2)k−2 ⊕

O(n+ 3).

Corollary 2.4.9. T nn−k((n+ 1)n−2k+1, (n+ 2)k−2, n+ 3) is an irreducible variety of

codim(T nn−k((n+ 1)n−2k+1, (n+ 2)k−2, n+ 3) = n− 2k + 1 formed by the linear spaces

L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n−2k+1 of (n−1)−secant
ℙn−2 to the rational normal curve Cn in ℙn.

Case rankTLn,k ≤ 2k − 1

Lemma 2.4.10. If the centre of projection L ∼= ℙk−1 belongs to some (2k− r)−secant
ℙ2k−r−1 to the rational normal curve Cn in ℙn, then we have rankTLn,k ≤ 2k − r for

1 ≤ r < k.

Proof. If L ∼= ℙk−1 belongs to some ℙ2k−r−1 (2k− r)−secant, then there exist k points

p1, ..., pk ∈ L which generate L and the corresponding binary forms fi are generating

by two forms Ann(fi) = (�, �i) with deg(�) = 2k − r, � has only simple roots and

deg(�i) = n−2k+r+2 without common zeros with �. We have dim(�)n−1 = n−2k+r

and dim
∩
i(�, �i)n−1 ≥ n− 2k + r, so rankTLn,k = n− dim

∩
i(�, �i)n−1 ≤ 2k − r.

Lemma 2.4.11. The codimension in Gr(ℙk−1,ℙn) of the variety of all L ∼= ℙk−1 in

ℙn belonging to some (2k − r)-secant ℙ2k−r−1 to the rational normal curve in ℙn is

k(n+ r − 1)− 2k2 + r.

Proof. In fact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈
S, L ⊂ S} where S is the set of all (2k− r)-secant ℙ2k−r−1 to the rational normal curve
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in ℙn. In the usual way we can compute the codimension of the image of this incidence

variety in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the result of Chi-

antini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties of

curves (see [Chiantini and Ciliberto, 2002]).

In particular for r = k − 1 we have:

Theorem 2.4.12. If the centre of projection L ∼= ℙk−1 belongs to some ℙk (k +

1)−secant to the rational normal curve Cn in ℙn, then we have:

Tℙn−k∣�k(Cn)
∼= O(n+ 1)n−k−1 ⊕O(n+ 1 + k).

Observation 2.4.13. By Theorem 1.2.14 (see [Verdier, 1983]) T nn−k((n+ 1)n−k−1, n+

1 + k) is an irreducible variety of codim(T nn−k((n+ 1)n−k−1, n+ 1 + k)) = (k − 1)(n−
k − 1) ≤ kn− k2 − k − 1.

Corollary 2.4.14. The variety of linear spaces L ∼= ℙk−1 that, as centre of projec-

tion, give a rational curve of degree n in ℙn−k which has the restricted tangent bundle

Tℙn−k
�k(Cn),ℙn−k

∼= O(n + 1)n−k−1 ⊕ O(n + 1 + k) has an irreducible subvariety of codi-

mension kn− k2− k− 1 in Gr(ℙk−1,ℙn) formed by the linear spaces L belong to some

(k + 1)−secant ℙk.

We can prove a more general result:

Lemma 2.4.15. Let 2k < n ≤ 3k − 2r + 1 and 2r < k + 1. If the centre of projection

L ∼= ℙk−1 belongs to a linear system of dimension n − 2k + r of (n − 1)−secant ℙn−2

to the rational normal curve Cn in ℙn, then rankTLn,k = 2k − r for 1 ≤ r < k. The

converse is generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−2 : �� =

�0�0 + ... + �n−2k+r−1�n−2k+r−1, ∀� = [�0, ..., �n−2k+r−1] ∈ ℙn−2k+r−1} of (n −
1)−secant ℙn−2 to the rational normal curve Cn in ℙn, where �0, ..., �n−2k+r−1
are (n − 1)−secant ℙn−2. Let qi1, ..., q

i
n−1 ∈ Cn be the points which generate �i.

Then there exist k points p1, ..., pk which generate L, such that each pi belongs

to �� for all � ∈ ℙn−2k+r−1 and �� =< q1,�, ..., qn−1,� >. By Observation 1.3.9 the

binary forms fi corresponding to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n − 1. This means that L belongs to a ℙn−2(n−2k+r) = ℙ4k−n−2r, this
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is possible by the condition n ≤ 3k − 2r + 1. So by Lemma 1.3.11 for each

� ∈ ℙn−2k+r−1 there exists a di�erential form �� ∈ Tn−1 such that �� ∘ fi = 0.

Moreover there exist n− 2k + r di�erential forms �0, ..., �n−2k+r−1 ∈ Tn−1 which
for each � ∈ ℙn−2k+r−1 we have �� = �0�0+....+�n−2k+r−1�n−2k+r−1, in particular

�j ∘ fi = 0 for all j = 0, ..., n− 2k and i = 1, ..., k, so rankTLn,k = 2k − r.

⇐ If rankTLn,k = 2k − r, then there exist n− 2k + r binary form �0, ..., �n−2k+r−1 ∈
Tn−1 such that however we consider the generating points p1, ..., pk ∈ ℙn of L, it is
��∘fi = (�0�0+ ...+�n−2k+r−1�n−2k+r−1)∘fi = 0 for all � = [�0, ..., �n−2k+r−1] ∈
ℙn−2k+r−1 and i = 1, ..., k, where fi ∈ Sn is the binary form corresponding to

pi. In particular �j ∘ fi = 0. We can consider the primary decomposition of

�� =
∏n−1

l=1 �
l
� and we indicate with (Ll,�)⊥ = �l�. Therefore f1, ..., fk can be

decomposed in ∞n−2k+r−1 di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

for all � = [�0, ..., �n−2k+r−1] ∈ ℙn−2k+r−1, so L belongs to a ℙ4k−n−2r. In other

words L belongs to a linear system Φ = {�� ∼= ℙn−2 : �� = �0�0 + ... +

�n−2k+r−1�n−2k+r−1, ∀� = [�0, ..., �n−2k+r−1] ∈ ℙn−2k+r−1} of (n − 1)−secant
ℙn−2 to the rational normal curve Cn in ℙn. Clearly it can happen that some

�i have any multiple roots, so we have all possible degenerations of the linear

system Φ.

Lemma 2.4.16. Let 2k < n ≤ 3k − 2r + 1 and 2r < k + 1. The variety of linear

spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n − 2k + r of

(n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn is an irreducible variety of

codimension r(n− 2k + r).

Proof. We can observe that the linear system Φ of a�ne dimension n − 2k + r of

(n − 1)−secant ℙn−2 to the rational normal curve Cn in ℙn corresponds to the linear

system of dimension n − 2k + r of binary forms of degree n − 1, therefore the set

of these linear system corresponds to Gr(ℙn−2k+r−1,ℙn−1) which is irreducible and

dimGr(ℙn−2k+r−1,ℙn−1) = (n−2k+r)(2k−r). Each projection linear space L belongs

to a ℙ4k−n−2r, so the dimension of the �bre is k(3k − n − 2r + 1), which is ≥ 0 with

the condition k − 1 ≤ 4k − n − 2r. Therefore the variety of linear spaces L that

belong to a linear system Φ is an irreducible variety of codimension r(n − 2k + r) in

Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the result of Chiantini and
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Ciliberto on the non-defectivity of the Grassmannians of secant varieties of curves (see

[Chiantini and Ciliberto, 2002]).

By Theorem 1.2.14[Verdier, 1983] we have:

Theorem 2.4.17. Let 2k < n ≤ 3k − 2r+ 1 and 2r < k + 1. The centre of projection

L ∼= ℙk−1 belongs to a linear system Φ of a�ne dimension n−2k+ r of (n−1)−secant
ℙn−2 to the rational normal curve Cn in ℙn if and only if Tℙn−k∣�k(Cn)

∼= O(n +

1)n−2k+r ⊕O(n+ 2)k−2r ⊕ℱ ′ with rank(ℱ ′) = r and deg(ℱ ′∨(n+ 1)) = −k.

Corollary 2.4.18. The union of all schemes T nn−k((n + 1)n−2k+r, (n + 2)k−2r, spt(ℱ ′)
with rank(ℱ ′) = r and

deg(ℱ ′∨(n + 1)) = −k is an irreducible variety of codimension r(n − 2k + r) formed

by the linear spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension

n− 2k + r of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn.

2.4.1 Restricted Tangent Bundle of Rational Curves in Codim

1

In the case of projections in codimension 1, i.e. from a point, we have:

(2.11) 0 // (Tℙn−1∣�1(Cn))
∨(n+ 1) // On�1(Cn)

T L
n,1 // Oℙ1(1) // 0 .

So we have that deg((Tℙn−1∣�1(Cn))
∨(n+ 1)) = −1 and

ℎ0((Tℙn−1∣�1(Cn))
∨(n+ 1)) = n− rank(TLn,1) = ker(TLn,1).

We have only two possibilities:

1. Tℙn−1∣�1(Cn)
∼= O(n+ 1)n−2 ⊕O(n+ 2) if and only if rank(TLn,1) = 2;

2. Tℙn−1∣�1(Cn)
∼= O(n+ 1)n−3 ⊕O(n)⊕O(n+ 3) if and only if rank(TLn,1) = 1,

but the second one is impossible by (2.9).

So we have only two possibilities or the projection point is on the rational normal

curve or it is not, but the �rst case does not happen by our preliminary hypothesis on

projected curve.

Theorem 2.4.19. The splitting type of restricted tangent bundle of a generic rational

curve of degree n− 1 in ℙn is ((n+ 1)n−2, n+ 2).
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2.4.2 Restricted Tangent Bundle of Rational Curves in Codim

2

In the case of projections in codimension 2, i.e. from a line, we have:

(2.12) 0 // (Tℙn−2∣�2(Cn))
∨(n+ 1) // On�2(Cn)

T L
n,2 // Oℙ1(1)2 // 0 .

So we have that deg((Tℙn−2∣�2(Cn))
∨(n+ 1)) = −2 and

ℎ0((Tℙn−2∣�2(Cn))
∨(n+ 1)) = n− rank(TLn,2) = ker(TLn,2).

In this case we have three possibility:

1. Tℙn−2∣�2(Cn)
∼= O(n+ 1)n−4 ⊕O(n+ 2)2 if and only if rank(TLn,2) = 4;

2. Tℙn−2∣�2(Cn)
∼= O(n+ 1)n−3 ⊕O(n+ 3) if and only if rank(TLn,2) = 3;

3. Tℙn−2∣�2(Cn)
∼= O(n+ 1)n−4 ⊕O(n)⊕O(n+ 4) if and only if rank(TLn,2) = 2.

But the last one is impossible by (2.9).

By Apolarity Lemma 1.3.11 we have an easy result:

Proposition 2.4.20. If there exist two points q1, q2 ∈ L each of them belongs to a

di�erent secant line, then:

ker(TLn,2) = (ℐP1 ∩ ℐP2)n−1 = (ℐP1∪P2)n−1,

where Pi is the set of points in ℙ1 corresponds to the linear forms in the additive

decomposition of fi which corresponds to qi.

Case rankTLn,2 = 3

Lemma 2.4.21. The codimension in Gr(ℙ1,ℙn) of the variety of all lines in ℙn be-

longing to some 3-secant ℙ2 to the rational normal curve in ℙn is 2n− 7.

Proof. In fact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(1, n), � ∈
S, L ⊂ S} where S is the set of all 3-secant ℙ2. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙ1,ℙn).

Theorem 2.4.22 (Case rankTLn,2 = 3). If the projection line L belongs to some

3−secant ℙ2, but it is not a secant line, then the splitting type of the restricted tangent

bundle Tℙn−2�2(Cn),ℙn−2 is:

((n+ 1)n−3, n+ 3).
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Proof. If L belongs to a 3−secant ℙ2, then there exist two points q1, q2 ∈ L such that

Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and deg(�) = 3

and �1 ∕= �2, deg(�1) = deg(�2) = n − 1, with �i ∈ T/ < � > . So dim < � >n−1=

n−3, dim(< �, �i >n−1= n−2 and n−2 ≥ dim(< �, �1 >n−1 ∩ < �, �2 >n−1) ≥ n−3.

Suppose dim(< �, �1 >n−1 ∩ < �, �2 >n−1) = n − 2, then < �, �1 >n−1=<

�, �2 >n−1, but this is impossible because this means that �1 ∈< �, �2 >n−1, so

�1 ∈ Ann(f2), which is impossible because otherwise q1 = q2, but it is must be L =<

q1, q2 >∼= ℙ1.

Therefore rank(TLn,2) = n− dim(< �, �1 >n−1 ∩ < �, �2 >n−1) = 3.

Observation 2.4.23. By Theorem 1.2.14[Verdier, 1983] T nn−2((n+ 1)n−3, n+ 3) is an

irreducible variety of codim(T nn−2((n+ 1)n−3, n+ 3)) = n− 3 < 2n− 7.

Corollary 2.4.24. The variety of lines that, as centre of projection, give a rational

curve of degree n in ℙn−2 which has the restricted tangent bundle Tℙn−2�2(Cn),ℙn−2
∼= O(n+

1)n−3 ⊕ O(n + 3) has an irreducible subvariety of codimension 2n − 7 in Gr(ℙ1,ℙn)

formed by the lines belong to some 3−secant ℙ2, but it is not a secant line.

Observation 2.4.25. If rank(Tn,2) = 3, then or L belongs to a 3−secant ℙ2 or to

(r + 1)−secant ℙr for r < n. In the second case there exist two points p1, p2 ∈ L

such that Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and

deg(�) = r+1 and �1 ∕= �2, deg(�1) = deg(�2) = n−r+1. So dim < � >n−1= n−r−1

and

n− 2 ≥ dim(< �, �1 >n−1 ∩ < �, �2 >n−1) ≥ n− r − 1.

Observation 2.4.26. By Theorem 1.2.14 (see [Verdier, 1983]) T nn−2((n+1)n−3, n+3)

is an irreducible variety of codim(T nn−2((n+ 1)n−3, n+ 3) = n− 3.

Theorem 2.4.27. The centre of projection L ∼= ℙ1 belongs to a pencil of (n−1)−secant
ℙn−2 to the rational normal curve Cn in ℙn if ad only if Tℙn−2∣�2(Cn)

∼= O(n+ 1)n−3⊕
O(n+ 3).

2.4.3 Restricted Tangent Bundle of Rational Curves in Codim

3

In the case of projections in codimension 3, i.e. from a line, we have:

(2.13) 0 // (Tℙn−3∣�3(Cn))
∨(n+ 1) // On�3(Cn)

T L
n,3 // Oℙ1(1)3 // 0 .
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So we have that deg((Tℙn−3∣�3(Cn))
∨(n+ 1)) = −3 and

ℎ0((Tℙn−3∣�3(Cn))
∨(n+ 1)) = n− rank(TLn,3) = ker(TLn,3).

In this case we have �ve possibilities:

1. Tℙn−3∣�3(Cn)
∼= O(n+ 1)n−6 ⊕O(n+ 2)3 if and only if rank(TLn,3) = 6;

2. Tℙn−3∣�2(Cn)
∼= ⊕O(n+ 1)n−5⊕O(n+ 2)⊕O(n+ 3) if and only if rank(TLn,3) = 5;

3. Tℙn−3∣�3(Cn)
∼= O(n+ 1)n−4 ⊕O(n+ 4) if and only if rank(TLn,3) = 4;

4. Tℙn−3∣�3(Cn)
∼= O(n)⊕O(n+ 1)n−5 ⊕O(n+ 4) if and only if rank(TLn,3) = 3;

5. Tℙn−3∣�3(Cn)
∼= O(n− 1)⊕O(n+ 1)n−5 ⊕O(n+ 4) if and only if rank(TLn,3) = 2.

But the last two are impossible by (2.9).

Case rankTLn,3 = 5

Lemma 2.4.28. The codimension in Gr(ℙ2,ℙn) of the variety of all lines in ℙn be-

longing to some 5-secant ℙ4 to the rational normal curve in ℙn is 3n− 17.

Proof. In fact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(2, n), � ∈
S, L ⊂ S} where S is the set of all 5-secant ℙ4. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙ2,ℙn). That calculation is

e�ective thanks to the result of Chiantini and Ciliberto on the non-defectivity of the

Grassmannians of secant varieties of curves (see [Chiantini and Ciliberto, 2002]).

Theorem 2.4.29 (Case rankTLn,3 = 5). If the projection line L belongs to some

5−secant ℙ4, but it is not a secant line, then we have rankTLn,3 = 5.

Proof. If L belongs to a ℙ4 5−secant, then there exist three points q1, q2, q3 ∈ L such

that Ann(fi) = (�, �i) with � has only simple roots and deg(�) = 5 and �1 ∕= �2 ∕=
�3, deg(�1) = deg(�2) = deg(�3) = n − 3, with �i ∈ T/ < � > . So dim < � >n−1=

n − 5, dim(< �, �i >n−1) = n − 2 and n − 2 ≥ dim(< �, �1 >n−1 ∩ < �, �2 >n−1) ≥
n− 5.

Instead by the theorem 2.4.17 we have:

Theorem 2.4.30. The centre of projection L ∼= ℙ2 belongs to a linear system Φ of

a�ne dimension n− 5 of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn

if and only if Tℙn−3∣�3(Cn)
∼= O(n+ 1)n−5 ⊕O(n+ 2)⊕O(n+ 3)).
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Corollary 2.4.31. T nn−3((n+1)n−5, n+2, n+3) is an irreducible variety of codimension

n − 5 formed by the linear spaces L ∼= ℙ2 that belong to a linear system Φ of a�ne

dimension n− 5 of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn.

Case rankTLn,3 = 4

Lemma 2.4.32. The codimension in Gr(ℙ2,ℙn) of the variety of the linear spaces in

ℙn belonging to some 4−secant ℙ3 to the rational normal curve in ℙn is 3n− 13.

Proof. In fact we can consider the incidence variety I = {(L, �) : L ∈ Gr(ℙ2,ℙn), � ∈
S, L ⊂ S} where S is the set of all 4-secant ℙ3. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙ2,ℙn). That calculation is

e�ective thanks to the result of Chiantini and Ciliberto on the non-defectivity of the

Grassmannians of secant varieties of curves (see [Chiantini and Ciliberto, 2002]).

Theorem 2.4.33 (Case rankTLn,3 = 4). If the projection line L belongs to some

4−secant ℙ3, but it is not a secant line, then the splitting type of the restricted tangent

bundle Tℙn−3�3(Cn),ℙn−3 is:

((n+ 1)n−4, n+ 4).

Proof. If L belongs to a 4−secant ℙ3, then there exist three points q1, q2, q3 ∈ L such

that Ann(fi) = (�, �i) with � has only simple roots and deg(�) = 4 and �1 ∕= �2 ∕=
�3, deg(�1) = deg(�2) = deg(�3) = n − 2, with �i ∈ T/ < � > . So dim < � >n−1=

n − 4, dim(< �, �i >n−1= n − 2 and n − 2 ≥ dim(< �, �1 >n−1 ∩ < �, �2 >n−1) ≥
n− 4.

Observation 2.4.34. By Theorem 1.2.14 (see [Verdier, 1983]) T nn−3((n+1)n−4, n+4)

is an irreducible variety of codim(T nn−3((n+ 1)n−4, n+ 4)) = 2(n− 4) < 3n− 13.

Theorem 2.4.35. The variety of linear spaces L ∼= ℙ2 that, as centre of projec-

tion, give a rational curve of degree n in ℙn−3 which has the restricted tangent bundle

Tℙn−3�3(Cn),ℙn−3
∼= O(n + 1)n−4 ⊕ O(n + 4) has an irreducible subvariety of codimension

3n− 13 in Gr(ℙ2,ℙn) formed by the linear spaces L belong to some 4−secant ℙ3.

By theorem 2.4.17 we have:

Theorem 2.4.36. The centre of projection L ∼= ℙ2 belongs to a linear system Φ of

a�ne dimension n− 4 of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn

if and only if Tℙn−3∣�3(Cn)
∼= O(n+ 1)n−4 ⊕O(n+ 4).



CHAPTER 2. RESTRICTED TANGENT BUNDLE OF RATIONAL CURVES 49

Corollary 2.4.37. T nn−3((n + 1)n−4, n + 4) is an irreducible variety of codimension

2(n− 4) formed by the linear spaces L ∼= ℙ2 that belong to a linear system Φ of a�ne

dimension n− 4 of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn.
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2.5 Codimension k, for n
2 ≤ k ≤ n− 3

Observation 2.5.1. Since we want to consider only the projections with only ordinary

singularities, it is:

2 ≤ rank(TLn,k) ≤ n,

otherwise if rankTLn,k = 1, then p1, ..., pk ∈ Cn. Moreover for conditions on splitting

type of restricted tangent bundle:

rank(TLn,k) > k,

so we have:

k < rank(TLn,k) ≤ n,

Proposition 2.5.2. Tℙn−k∣�k(Cn)
∼= O(n+1)n−rank(T

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(TLn,k)− k on ℙ1 and deg(ℱ∨(n+ 1)) = −k such that ℱ ∼=
⊕rank(TL

n,k)−k
i=1 O(li)

with li ≥ n+ 2.

If 2n− 2k ≥ k we have two possibilities:

1. ℱ ∼= O(n+2)2(n−k−r)−k⊕ℱ ′ with rank(ℱ ′) = n−r−2(n−k−r) and deg(ℱ ′∨(n+

1)) = −k+(2(n−k−r)−k) if and only if rank(TLn,k) = n−r and 2(n−k−r) ≥ k

for 0 ≤ r ≤ n− k − 2;

2. ℱ ∼= O(n+ 1 + k) if and only if rank(TLn,k) = k + 1.

However the last one is true also for 2n− 2k < k.

We can rephrased the above proposition as:

Proposition 2.5.3. If 2n− 2k ≥ k we have two possibilities:

1. �k(Cn) ∈ T nn−k((n+ 1)r, (n+ 2)2(n−k−r)−k, spt(ℱ ′)), where spt(ℱ ′) is the splitting
type of ℱ ′ with rank(ℱ ′) = n − r − 2(n − k − r) and deg(ℱ ′∨(n + 1)) = −k +

(2(n − k − r) − k) if and only if L ∈ V (TLn,k)
2k−r and 2(n − k − r) ≥ k for

0 ≤ r ≤ n− k − 2;

2. �k(Cn) ∈ T nn−k((n+ 1)n−k−1, (n+ 1 + k)) if and only if L ∈ V (TLn,k)
k+1.

However the last one is true also for 2n− 2k < k.
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Lemma 2.5.4. rankTLn,k ≤ n− 1 if and only if the forms fi of degree n corresponding

to the points pi generating L can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m .

Proof. ⇒ If rankTLn,k ≤ 2k − 1, then there exists at least an element � ∈ Tn−1 such
that for all forms fi corresponding to the points pi generating L we have �∘fi = 0.

So we can consider the primary decomposition of � =
∏m

i=1(�i)
gi , with �i ∈ T1

and
∑

i gi = n− 1, so every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m ,

where (Lj)
⊥ = �j for all j = 1, ..,m and Gij ∈ Sgj−1 for all i = 1, ..., k and

j = 1, ...,m.

⇐ On the other hand if every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m ,

then we can consider � =
∏m

i=1((Li)
⊥)gi . By de�nition of GAD representation

we have � ∘ fi = 0 for all i = 1, ..., k, so � ∈ kerTLn,k and rankTLn,k ≤ 2k − 1.

Observation 2.5.5. In particular we can observe that if L belong to a (n-1)-secant ℙn−1

generated by q1, ..., qn, then there exists an element � ∈ H0(On�k(Cn)
) ∼= Sn−1V ∨ = Tn−1

such that � ∈ ker(TLn,k) =
∩
i ker(Catfi(1, n−1)), in fact we can take � =

∏n
i=1(L

⊥
qi

)n−1.

We can compute the codimension of the variety of every ℙk which belong to some

n-secant ℙn−1 constructing an incidence variety:

IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈ S, L ⊂ S},

where S is the set of all n-secant ℙn−1 to Cn. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙk−1,ℙn). We will indicated

with �1 and �2 the natural projections:

IS
�1

yyrrrrrrrrrrr
�2

��?
??

??
??

?

Gr(ℙk−1,ℙn) S,

so the codimension in Gr(ℙk−1,ℙn) of �1(IS) is equal to dimGr(ℙk−1,ℙn) − dimS −
dim�−12 (S) = k(n + 1 − k) − n + 1 − k(n − 1 − k). We have that this variety has
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codimension 2k − n + 1. The above calculation is e�ective thanks to the result of

Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties

of curves (see [Chiantini and Ciliberto, 2002]).

Lemma 2.5.6. If the centre of projection L ∼= ℙk−1 belongs to some (n − r)−secant
ℙn−r−1 to the rational normal curve Cn in ℙn, then we have rankTLn,k ≤ n − r for

1 ≤ r < n− k.

Proof. If L ∼= ℙk−1 belongs to some (n − r)−secant ℙn−r−1, then there exist k points

p1, ..., pk ∈ L which generate L and the corresponding binary forms fi are generating by

two forms Ann(fi) = (�, �i) with deg(�) = n−r, � has only simple roots and deg(�i) =

r+2 without common zeros with �. We have dim(�)n−1 = r and dim
∩
i(�, �i)n−1 ≥ r,

so rankTLn,k = n− dim
∩
i(�, �i)n−1 ≤ n− r.

Lemma 2.5.7. The codimension in Gr(ℙk−1,ℙn) of the variety of L ∼= ℙk−1 in ℙn

belonging to some (n− r)-secant ℙn−r−1 to the rational normal curve in ℙn is k − n+

r + kr.

Proof. Infact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈
S, L ⊂ S} where S is the set of all (n− r)-secant ℙn−r−1 to the rational normal curve

in ℙn. In the usual way we can compute the codimension of the image of this incidence

variety in Gr(ℙk−1,ℙn). That calculation is e�ective thanks to the result of Chiantini

and Ciliberto on the non-defectivity of the Grassmannians of secant varieties of curves

(see [Chiantini and Ciliberto, 2002]).

In particular for r = n− k − 1 we have:

Theorem 2.5.8. If the centre of projection L ∼= ℙk−1 belongs to some (k + 2)−secant
ℙk+1 to the rational normal curve Cn in ℙn, then we have:

Tℙn−k∣�k(Cn)
∼= O(n+ 1)n−k−1 ⊕O(n+ 1 + k).

Lemma 2.5.9. If the centre of projection L ∼= ℙk−1 belongs to a pencil Φ of (n −
1)−secant ℙn−2 to the rational normal curve Cn in ℙn, then rankTLn,k = n − 2. The

converse is generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a pencil Φ = {�� ∼= ℙn−2 : �� = �0�0 +

�1�1, ∀� = [�0, �1] ∈ ℙ1} of (n − 1)−secant ℙn−2 to the rational normal curve

Cn in ℙn, where �0, �1 are (n − 1)−secant ℙn−2. Let qi1, ..., q
i
n−1 ∈ Cn be the
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points which generate �i. Then there exists k points p1, ..., pk which generate L,

such that each pi belongs to �� for all � ∈ ℙ1 and �� =< q1,�, ..., qn−1,� >. By

Observation 1.3.9 the binary forms fi corresponding to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n − 1, so L belongs to a ℙn−4. So by Lemma 1.3.11 for each � ∈ ℙn−2

there exists a di�erential form �� ∈ Tn−1 such that �� ∘ fi = 0. Moreover

there exist two di�erential forms �0, �1 ∈ Tn−1 which for each � ∈ ℙ1 we have

�� = �0�0 + �1�1, in particular �j ∘ fi = 0, so rankTLn,k = n− 2.

⇐ If rankTLn,k = n − 2, then there exist two binary form �0, �1 ∈ Tn−1 such that

however we consider the generating points p1, ..., pk ∈ ℙn of L, it is �� ∘ fi =

(�0�0 + �1�1) ∘ fi = 0 for all � = [�0, �1] ∈ ℙ1 and i = 1, ..., k, where fi ∈ Sn is

the binary form corresponding to pi. In particular �j ∘ fi = 0, so if we consider

the primary decomposition of �� =
∏n−1

l=1 �
l
� and we indicate with (Ll,�)⊥ = �l�.

Therefore f1, ..., fk can be decompose in ∞1 di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

for all � = [�0, �1] ∈ ℙ1, so L belongs to a ℙn−4.

In other words L belongs to a pencil Φ = {�� ∼= ℙn−2 : �� = �0�0 + �1�1, ∀� =

[�0, �1] ∈ ℙn−2} of (n − 1)−secant ℙn−2 to the rational normal curve Cn in ℙn.
Clearly it can happen that some �i have any multiple roots, so we have all possible

degeneration of the linear system Φ.

Lemma 2.5.10. The variety of linear spaces L ∼= ℙk−1 that belong to a pencil Φ of

(n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn is an irreducible variety of

codimension 4k − 2n+ 4.

Proof. We can observe that a pencil Φ of (n− 1)−secant ℙn−2 to the rational normal

curve Cn in ℙn corresponds to the linear system of dimension 2 of binary forms of

degree n − 1, therefore the set of these linear system corresponds to Gr(ℙ1,ℙn−1)
which is irreducible and dimGr(ℙ1,ℙn−1) = 2(n − 2). Each projection linear space L

belongs to a ℙn−4, so the dimension of the �bre is k(n− 3− k). Therefore the variety

of linear spaces L that belong to a pencil Φ is an irreducible variety of codimension
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4k − 2n+ 4 in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the result of

Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant varieties

of curves (see [Chiantini and Ciliberto, 2002]).

Observation 2.5.11. By Theorem 1.2.14 (see [Verdier, 1983]) T nn−k((n + 1)2, (n +

2)2n−3k−4, (n+3)2k−n+2) is an irreducile variety of codim(T nn−k((n+1)2, (n+2)2n−3k−4, (n+

3)2k−n+2) = 4k − 2n+ 4.

By Theorem 1.2.14[Verdier, 1983] we have:

Theorem 2.5.12. The centre of projection L ∼= ℙk−1 belongs to a pencil Φ of (n −
1)−secant ℙn−2 to the rational normal curve Cn in ℙn if and only if Tℙn−k∣�k(Cn)

∼=
O(n+ 1)2⊕ℱ , with ℱ a rank n−2−k vector bundle on ℙ1 and deg(ℱ∨(n+ 1)) = −k.

We can prove a more general result:

Lemma 2.5.13. If the centre of projection L ∼= ℙk−1 belongs to a linear system of

dimension r of (n − 1)−secant ℙn−2 to the rational normal curve Cn in ℙn, then

rankTLn,k = 2k − r for 1 ≤ r < k.

Proof. Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−2 : �� = �0�0 + ...+

�r−1�r−1, ∀� = [�0, ..., �r−1] ∈ ℙr−1} of (n − 1)−secant ℙn−2 to the rational normal

curve Cn in ℙn, where �0, ..., �r−1 are (n− 1)−secant ℙn−2. Let qi1, ..., qin−1 ∈ Cn be the
points which generate �i. Then there exist k points p1, ..., pk which generate L, such

that each pi belongs to �� for all � ∈ ℙr−1 and �� =< q1,�, ..., qn−1,� >. By Observation

1.3.9 the binary forms fi corresponding to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−1,�L

n
n−1,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for j =

1, ..., n − 1. This means that L belongs to a ℙn−2r. So by Lemma 1.3.11 for each

� ∈ ℙr−1 there exists a di�erential forms �� ∈ Tn−1 such that �� ∘ fi = 0. Moreover

there exist r di�erential form �0, ..., �r−1 ∈ Tn−1 which for each � ∈ ℙr−1 we have

�� = �0�0 + .... + �r−1�r−1, in particular �j ∘ fi = 0 for all j = 0, ..., r − 1 and

i = 1, ..., k, so rankTLn,k = 2k − r.

Lemma 2.5.14. Let n > 2k+ 2r−1.The variety of linear spaces L ∼= ℙk−1 that belong
to a linear system Φ of (n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn is

an irreducible variety of codimension r(2k − n+ 1).
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Proof. We can observe that the linear system Φ of a�ne dimension r of (n−1)−secant
ℙn−2 to the rational normal curve Cn in ℙn correspond to the linear system of dimension

r of binary forms of degree n−1, therefore the set of these linear system corresponds to

Gr(ℙr−1,ℙn−1) which is irreducible and dimGr(ℙr−1,ℙn−1) = r(n−r). Each projection
linear space L belongs to a ℙn−2r, so the dimension of the �bre is k(n − 2r − k + 1),

which is ≥ 0 with the condition n ≥ 2k + 2r − 1. Therefore the variety of lines L that

belong to a linear system Φ is an irreducible variety of codimension r(2k − n + 1) in

Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the result of Chiantini and

Ciliberto on the non-defectivity of the Grassmannians of secant varieties of curves (see

[Chiantini and Ciliberto, 2002]).

By Theorem 1.2.14[Verdier, 1983] we have:

Theorem 2.5.15. Let k < n− r + 1. The centre of projection L ∼= ℙk−1 belongs to a

linear system Φ of a�ne dimension r of (n − 1)−secant ℙn−2 to the rational normal

curve Cn in ℙn if and only if Tℙn−k∣�k(Cn)
∼= O(n+ 1)r ⊕ℱ , with ℱ a rank n− r − k

vector bundle on ℙ1 and deg(ℱ∨(n+ 1)) = −k for 0 ≤ r ≤ n− k − 2.

Corollary 2.5.16. Let k < n−r+1. The union of all schemes T nn−k((n+1)r, spt(ℱ)),

with spt(ℱ) is the splitting type of ℱ a rank rank(TLn,k) − k vector bundle on ℙ1 and

deg(ℱ∨(n+ 1)) = −k is an irreducible variety of codimension r(2k− n+ 1) formed by

the linear spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension r of

(n− 1)−secant ℙn−2 to the rational normal curve Cn in ℙn.
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Main Theorem for Restricted Tangent Bundle

Proposition 2.5.17. The generic splitting type of a vector bundle ℱ of rank rank(TLn,k)−

k on ℙ1 and deg(ℱ∨(n+ 1)) = −k such that ℱ ∼=
⊕rank(TL

n,k)−k
i=0 O(li) with li ≥ n+ 2 is

the following:

((n+ 1 +B)A−k+B⋅A, (n+ 2 +B)k−B⋅A).

where we have indicated A = rank(TLn,k)− k and B = ⌊ k
rank(TL

n,k)−k
⌋.

By Theorem 2.4.17 and Theorem 2.5.15 we have covered all the possible cases and

we can state the main result of this chapter, which is the following by the proposition

above:

Theorem 2.5.18 (Main Theorem for Restricted Tangent Bundle). The following con-

ditions are equivalent:

i) the centre of projection L is general in the (irreducible) variety of those ℙk−1 which
belongs to a linear system Φ of a�ne dimension n− rank(TLn,k) of (n−1)−secant
ℙn−2 to the rational normal curve Cn in ℙn;

ii) the curve of degree n projected from L = ℙk−1 has Tℙn−k∣�k(Cn)
∼= O(n +

1)n−rank(T
L
n,k)⊕O(n+1+B)A−k+B⋅A⊕O(n+2+B)k−B⋅A), where we have indicated

A = rank(TLn,k)− k and B = ⌊ k
rank(TL

n,k)−k
⌋.

Corollary 2.5.19. Let k < 2 rank(TLn,k) − n + 1. T nn−k((n + 1)n−rank(T
L
n,k), (n + 1 +

B)A−k+B⋅A, (n + 2 + B)k−B⋅A), where we have indicated A = rank(TLn,k) − k and B =

⌊ k
rank(TL

n,k)−k
⌋, is an irreducible variety of codimension:

(n− rankTLn,k)(2k − rankTLn,k),

formed by the linear spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne di-

mension n − rank(TLn,k) of (n − 1)−secant ℙn−2 to the rational normal curve Cn in

ℙn.
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2.5.1 Restricted Tangent Bundle of Rational Curves in Codim

n− 3

In the case of projections in codimension n− 3, i.e. we get a space curve, we have:

(2.14) 0 // (Tℙ3∣�n−3(Cn))
∨(n+ 1) // On�n−3(Cn)

T L
n,n−3// Oℙ1(1)n−3 // 0 .

So we have that deg((Tℙ3∣�n−3(Cn))
∨(n+ 1)) = −n+ 3 and

ℎ0((Tℙ3∣�n−3(Cn))
∨(n+ 1)) = n− rank(TLn,n−3) = ker(TLn,n−3).

In this case as shown in Lemma 2.1.32 we have three possibility:

a) rank(TLn,n−3) = n if and only if

Tℙ3∣�n−3(Cn) = O(t1)⊕O(t2)⊕O(t3),

where n+ 2 ≤ t1 ≤ t2 ≤ t3 ≤ 2n− 4 and t1 + t2 + t3 = 4n.

b) rank(TLn,n−3) = n− 1 if and only if

Tℙ3∣�n−3(Cn) = O(t1)⊕O(t2)⊕O(n+ 1),

where n+ 2 ≤ t1 ≤ t2 ≤ 2n− 3 and t1 + t2 = 3n− 1.

c) rank(TLn,n−3) = n− 2 if and only if

Tℙ3∣�n−3(Cn) = O(2n− 2)⊕O(n+ 1)⊕O(n+ 1).

In particular for case c):

Theorem 2.5.20. If the centre of projection L ∼= ℙn−4 belongs to some (n−2)−secant
ℙn−3 to the rational normal curve Cn in ℙn, then we have:

Tℙ3∣�n−3(Cn)
∼= O(n+ 1)2 ⊕O(2n− 2).

Lemma 2.5.21. The codimension in Gr(ℙn−4,ℙn) of the variety of all L ∼= ℙn−4 in ℙn

belonging to some (n−r)-secant ℙn−r−1 to the rational normal curve in ℙn is rn−2r−3.

Observation 2.5.22. By Theorem 1.2.14 (see [Verdier, 1983]) T n3 ((n+ 1)2, 2n− 2) is

an irreducible variety of codim(T n3 ((n+ 1)2, 2n− 2)) = 2(n− 4) ≤ 2n− 7.
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Corollary 2.5.23. The variety of linear spaces L ∼= ℙn−4 that, as centre of projec-

tion, give a rational curve of degree n in ℙ3 which has the restricted tangent bundle

Tℙ3
�n−3(Cn),ℙ3

∼= O(n + 1)2 ⊕ O(2n − 2) has an irreducible subvariety of codimension

2n − 7 in Gr(ℙn−4,ℙn) formed by the linear spaces L belong to some (n − 2)−secant
ℙn−3.

Lemma 2.5.24. The variety of linear spaces L ∼= ℙn−4 that belong to a linear system

Φ of (n−1)−secant ℙn−2 to the rational normal curve Cn in ℙn is an irreducible variety

of codimension 2(n− 5).

Theorem 2.5.25. The centre of projection L ∼= ℙk−1 belongs to a pencil Φ of (n −
1)−secant ℙn−2 to the rational normal curve Cn in ℙn if and only if Tℙ3

�n−3(Cn),ℙ3
∼=

O(n+ 1)2 ⊕O(2n− 2).



Chapter 3

Normal Bundle of Rational Curves

3.1 Normal Bundle of Rational Curves in ℙ3

Let Cn ⊂ ℙn be the rational normal curve of degree n with �n : ℙ1 → ℙn and �n(ℙ1) =

Cn, where �n is the Veronese map. Let �n−3(Cn) the rational curve obtained from Cn

by projection from a (n − 4)-dimensional linear subspace L ⊂ ℙn on complementary

ℙ3 ⊂ ℙn, we will suppose that �n−3(Cn) has only ordinary singularities. We denote by

f : ℙ1 → ℙ3 the composition morphism f := �n−3 ∘ �n. By Prop.1.1.9 and Def.3.4.5

[Sernesi, 2006] we have the following exact sequence:

(3.1) 0 // Tf(ℙ1) // Tℙ3 ∣f(ℙ1)
// N�n−3(Cn);ℙ3 // T 1

f(ℙ1)
// 0 ,

where T 1
f(ℙ1) is the �rst cotangent sheaf of ℙ

1 and Nf is the normal sheaf of f (see

[Sernesi, 2006]). If f is a closed immersion we have:

(3.2) 0 // Tℙ1 // Hom(f ∗Ω1
ℙ3 ,Oℙ1) // Nf

// 0 .

Moreover if f is smooth we have that Nf = 0 and also T 1
f(ℙ1) = 0.

Let N
′

f(ℙ1);ℙ3 = ker[Nf(ℙ1);ℙ3 → T 1
f(ℙ1)] be the equisingular normal sheaf of f(ℙ1) in

ℙ3, we have the short exact sequence:

(3.3) 0 // Tf(ℙ1) // Tℙ3 ∣f(ℙ1)
// N
′

f(ℙ1);ℙ3
// 0 .

Let J(�n) be the Jacobian matrix of �n:

J(�n) =

(
nsn−1 . . . tn−1 0

0 sn−1 . . . ntn−1

)t

.

59
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The Euler sequences for ℙ1 (see 2.1 with n = 1) and for ℙ3 restricted to �n−3(Cn) (see

2.2) and the exact sequence of the Equisingular Normal Bundle of �n−3(Cn):

(3.4) 0 // Oℙ1(2) // Tℙ3∣�n−3(Cn)
// N
′

�n−3(Cn);ℙ3
// 0 ,

give us the following diagram:

(3.5) 0

��

0

��
Oℙ1

��

∼= // O�n−3(Cn)

��
Oℙ1(1)2

��

O�n−3(Cn)(n)4

��

0 // Oℙ1(2)

��

// Tℙ3∣�n−3(Cn)

��

// N
′

�n−3(Cn);ℙ3
// 0

0 0 .

We can observe that the Jacobian matrix of �n−3 ∘ �n gives a map:

(3.6) O�n−3(Cn)(1)2
J(�n−3∘�n)// O�n−3(Cn)(n)4 .

So we can complete the previous diagram:

(3.7) 0

��

0

��
Oℙ1

��

∼= // OCn

��
Oℙ1(1)2

��

J(�n−3∘�n)// O�n−3(Cn)(n)4

��

0 // Oℙ1(2)

��

// Tℙ3∣�n−3(Cn)

��

// N
′

�n−3(Cn);ℙ3
// 0

0 0 .

By the above diagram (3.7) the following exact sequence holds:

(3.8) 0 // Oℙ1(1)2
J(�n−3∘�n)// O�n−3(Cn)(n)4 // N

′

�n−3(Cn);ℙ3
// 0 .
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By tensoring (3.8) with Oℙ1(−n), we obtain this exact sequence:

(3.9) 0 // Oℙ1(−n+ 1)2
J(�n−3∘�n)// O4

�n−3(Cn)
// N
′

�n−3(Cn);ℙ3(−n) // 0 .

Observation 3.1.1. We observe that degN ′�n−3(Cn);ℙ3 = 4n−2 and it is a vector bundle

of rank 2.

Moreover by Grothendieck-Segre's theorem (see [Grothendieck, 1957]) N�n−3(Cn);ℙ3

splits in:

O(n1)⊕O(n2) with n1, n2 ∈ ℤ such that n1 + n2 = 4n− 2,

where we abbreviate O�n−3(Cn) to O and without loss of generality we can take n1 ≤ n2.

Let us denote by:

Syz(J(�n)) =

⎛⎜⎜⎜⎜⎜⎜⎝
t2 −2st s2 0 0 0 . . . . . . 0

0 t2 −2st s2 0 0 . . . . . . 0

0 0 t2 −2st s2 0 . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . 0 t2 −2st s2

⎞⎟⎟⎟⎟⎟⎟⎠
the syzygy of the Jacobian matrix J(�n), where Syz(J(�n)) is a matrix (n − 1) ×

(n+ 1). So we have the following exact sequence for J(�n):

(3.10) 0 // Oℙ1(−n+ 1)2
J(�n) // On+1

Cn

Syz(J(�n))// OCn(2)n−1 // 0 ,

which is similar to 3.9.

Therefore and for sequence 2.3 twisted by O(−n):

(3.11) 0 // On−3Cn

P // On+1
Cn

// O4
Cn

// 0,

we can obtain:

(3.12) 0

��
On−3Cn

P
��

0 // Oℙ1(−n+ 1)2
J(�n) // On+1

Cn

��

Syz(J(�n))// OCn(2)n−1 // 0

0 // Oℙ1(−n+ 1)2
J(�n−3∘�n)// O4

�n−3(Cn)

��

// N ′�n−3(Cn);ℙ3(−n) // 0

0 ,
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from which we can complete to the following diagram:

(3.13) 0

��

0

��
On−3Cn

P
��

∼= // On−3Cn

(NL
n,n−3)

t

��
0 // Oℙ1(−n+ 1)2

J(�n) // On+1
Cn

��

Syz(J(�n))// OCn(2)n−1

��

// 0

0 // Oℙ1(−n+ 1)2
J(�n−3∘�n)// O4

�n−3(Cn)

��

// N ′�n−3(Cn);ℙ3(−n)

��

// 0

0 0.

where the map (N L
n,n−3)

t is:

(N L
n,n−3)

t = Syz(J(�n)) ⋅

⎛⎜⎝ a10 . . . an−30
...

. . .
...

a1n . . . an−3n

⎞⎟⎠ =

⎛⎜⎝ a10t
2 − 2a11ts+ a12s

2 a11t
2 − 2a12ts+ a13s

2 . . . a1n−2t
2 − 2a1n−1ts+ a1ns

2

...
...

. . .
...

an−30 t2 − 2an−31 ts+ an−32 s2 an−31 t2 − 2an−32 ts+ an−33 s2 . . . an−3n−2t
2 − 2an−3n−1ts+ an−3n s2

⎞⎟⎠
t

.

It is a (n− 1)× (n− 3) matrix. The last exact column of (3.13):

(3.14) 0 // On−3ℙ1

(NL
n,n−3)

t

// O�n−3(Cn)(2)n−1 // N ′�n−3(Cn);ℙ3(−n) // 0

gives us a boundary information on the splitting type of N ′�n−3(Cn),ℙ3 :

Lemma 3.1.2. If �n−3(Cn) has only ordinary singularities, then the splitting type of

N ′�n−3(Cn),ℙ3 must be (n1, n2) with n+ 2 ≤ n1 ≤ n2 ≤ 2n− 6 and n1 + n2 = 4n− 2.

Moreover the exact sequence 3.14 gives rise by duality and tensorizing by Oℙ1(2):

(3.15) 0 // N ′∨�n−3(Cn);ℙ3(n+ 2) // On−1�n−3(Cn)

NL
n,n−3// Oℙ1(2)n−3 // 0 .

Observation 3.1.3. We can observe that if �n−3(Cn) has only ordinary singularities,

then the map of sheaves of di�erentials is surjective, so we have:

N ′
∨
�n−3(Cn);ℙ3

∼= N∨�n−3(Cn);ℙ3 .
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If we pass to the exact cohomology sequence we get:

0 // H0(N∨�n−3(Cn);ℙ3(n+ 2)) // H0(On−1�n−3(Cn)
)
NL

n,n−3// H0(Oℙ1(2)n−3) // ⋅ ⋅ ⋅

⋅ ⋅ ⋅ // H1(N∨�n−3(Cn);ℙ3(n+ 2)) // 0 ,

where we have indicated with NL
n,n−3 the 3(n− 3)× n− 1 matrix:

NL
n,n−3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−2
−2a11 . . . −2a1n−1
a12 . . . a1n
...

. . .
...

an−30 . . . an−3n−2

−2an−31 . . . −2an−3n−1

an−32 . . . an−3n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observation 3.1.4. The rank of NL
n,n−3 does not depend from the points generating L.

Moreover let Fpi be the binary form of degree n which corresponds to the point pi ∈ ℙn.
If we indicate with CatFpi

(2, n− 2; 2) the Hankel matrix 3× n− 1 of Fpi we have:

rankNL
n,n−3 = rank

⎛⎜⎝ CatFp1
(2, n− 2; 2)
...

CatFpn−3
(2, n− 2; 2)

⎞⎟⎠ .

Observation 3.1.5. We have that deg(N∨�n−3(Cn);ℙ3(n+ 2)) = −2n+ 6 and

ℎ0(N∨�n−3(Cn);ℙ3(n+ 2)) = n− 1− rank(NL
n,n−3) = dim ker(NL

n,n−3).

Therefore we have:

2 ≤ rank(NL
n,n−3) ≤ min{n− 1, 3(n− 3)},

so

n− 1−min{n, 2(n− 3)} ≤ ℎ0(N∨�n−3(Cn);ℙ3(n+ 2)) ≤ n− 3,

but as rank(N∨�n−3(Cn);ℙ3(n+ 2)) = 2 we have that

N∨�n−3(Cn);ℙ3(n+ 2) splits in O(n′1)⊕O(n′2)

by Grothendieck-Segre's theorem (see [Grothendieck, 1957]) with

−2n+ 6 ≤ n′1 ≤ n′2 ≤ 0 and n′1 + n′2 = −2n+ 6.
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So we have that:

rank(NL
n,n−3) ≥ n− 2,

otherwise one n′i must be ≥ 1 which is impossible by above.

Remark 3.1.6. It's clear from the above consideration that the value of rank(NL
n,n−3)

corresponds to some splitting types of N ′�n−3(Cn);ℙ3 .

We can distinguish two cases:

A) min{n− 1, 3(n− 3)} = 3(n− 3), so n = 3, 4;

B) min{n− 1, 3(n− 3)} = n− 1, so n ≥ 4.

The cases above will be the subject of the next two sections.

3.1.1 Case n = 3, 4

Rational Curves of degree 3 in ℙ3

Proposition 3.1.7. The Normal Bundle of rational normal curve C3 of degree 3 is

N�n−3(Cn);ℙ3 = O(5)⊕O(5).

Proof. Immediate from above.

Rational Curves of degree 4 in ℙ3

Let C4 be a rational normal curve of degree 4 in ℙ4 with usual Veronese embedding �4 :

ℙ1 → ℙ4 and �1 : ℙ4 ∖ {p} → ℙ3 the projection from the point p = (a0, a1, a2, a3, a4) ∈
ℙ4. Thus we have:

0

��

0

��
OC4

��

∼= // OC4

(NL
4,1)

t

��
0 // Oℙ1(−3)2

J(�4) // O5
C4

��

Syz(J(�4))// OC4(2)3

��

// 0

0 // Oℙ1(−3)2
J(�1∘�4)// O4

�1(C4)

��

// N�1(C4);ℙ3(−4)

��

// 0

0 0.
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So N�1(C4);ℙ3(−4) = O(2)⊕O(4) if and only if these three quadrics:

⎛⎜⎝ t2 −2st s2 0 0

0 t2 −2st s2 0

0 0 t2 −2st s2

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

a3

a4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎝ a0t
2 − 2a1st+ a2s

2

a1t
2 − 2a2st+ a3s

2

a2t
2 − 2a3st+ a4s

2

⎞⎟⎠
are dependent. This is true if and only if

det

⎛⎜⎝ a0 a1 a2

−2a1 −2a2 −2a3

a2 a3 a4

⎞⎟⎠ = det

⎛⎜⎝ a0 a1 a2

a1 a2 a3

a2 a3 a4

⎞⎟⎠ = 0

Note that we have actually proved that if p does not belong to the Secant Variety

�1(C4) of C4:

�1(C4) = {z = (z0, z1, ..., z4) ∈ ℙ4 : rank

⎛⎜⎝ z0 z1 z2

z1 z2 z3

z2 z3 z4

⎞⎟⎠ = rankCatz(2, 4) < 3},

then N�1(C4);ℙ3 = O(7)⊕O(7).

Theorem 3.1.8. Let C4 ⊂ ℙ4 the normal rational curve of degree 4 and �1 : ℙ4∖{p} →
ℙ3 be the projection from a point p ∈ ℙ4. The rational curve �1(C4) ⊂ ℙ3 has normal

bundle balanced if and only if p /∈ �1(C4). This is equivalent to be smooth for �1(C4).
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3.1.2 Case n > 4

We have only three di�erent possibilities:

Lemma 3.1.9. a) rank(NL
n,n−3) = n− 1 if and only if

N�n−3(Cn);ℙ3 = O(n1)⊕O(n2),

where n+ 3 ≤ n1 ≤ n2 ≤ 2n− 8 and n1 + n2 = 4n− 2.

b) rank(NL
n,n−3) = n− 2 if and only if

N�n−3(Cn);ℙ3 = O(n+ 2)⊕O(3n− 4).

No other possibilities can happen by conditions on ni (see Lemma 3.1.2, Observation

3.1.5).

Unfortunately the a) case are formed by several possible splitting types, but we can

to study the rank of the following map in order to discriminate the exactly splitting

type:

0 // H0((N�n−3(Cn);ℙ3)∨(n+ 3))) // H0(On−1�n−3(Cn)
(1))

NL
n,n−3(1)// H0(On−3�n−3(Cn)

(3)) // . . .

. . . // H1((N�n−3(Cn);ℙ3)∨(n+ 3))) // 0 ,

where we have indicated with NL
n,n−3(1) the 4(n− 3)× 2(n− 1) matrix:

NL
n,n−3(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−2 0 . . . 0

−2a11 . . . −2a1n−1 a10 . . . a1n−2
a21 . . . a1n −2a11 . . . −2a1n−1
0 . . . 0 a12 . . . a1n
...

. . .
...

an−30 . . . an−3n−2 0 . . . 0

−2an−31 . . . −2an−3n−1 an−30 . . . an−3n−2

an−32 . . . an−3n −2an−31 . . . −2an−3n−1

0 . . . 0 an−32 . . . an−3n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and so on:

0 // H0((N�n−3(Cn);ℙ3)∨(n+ 2 + d))) // H0(O�n−3(Cn)(d)n−1)
NL

n,n−3(d)// H0(Oℙ1(d+ 2)n−3) // . . .
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. . . // H1((N�n−3(Cn))
∨(n+ 2 + d))) // 0 ,

with:

NL
n,n−3(d) =

⎛⎜⎝ Np1
n,1(d)
...

N
pn−3

n,1 (d)

⎞⎟⎠ ,

where:

(Npi
n,1(d))t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Npi
n,1)

t

d︷ ︸︸ ︷
0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...

0 0 ⋅ ⋅ ⋅ 0

0
...

0

(Npi
n,1)

t

0 ⋅ ⋅ ⋅ 0
...

. . .
...

0 ⋅ ⋅ ⋅ 0
... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
...

...
...

...
... ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ...
...

...
...

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ...

0 ⋅ ⋅ ⋅ 0 0
...

. . .
...

...

0 ⋅ ⋅ ⋅ 0 0

(Npi
n,1)

t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭

(d+ 1)(n− 1)

Observation 3.1.10. We can observe that NL
n,n−3(d) is a (d+3)(n−3)×(d+1)(n−1)

matrix, so:

ℎ0(N∨�n−3(Cn);ℙ3(d)) = (d+ 1)(n− 1)− rank(NL
n,n−3(d)) = dim ker(NL

n,n−3(d)),

and

rank(NL
n,n−3(d)) ≤ (d+ 1)(n− 1) if and only if d ≤ n− 4

Lemma 3.1.11. We have that:

ker(NL
n,n−3(d)) ∕= ∅ if and only if N�n−3(Cn);ℙ3

∼= O(2n−1−�)⊕O(2n−1+�) for n−3 ≤ � ≤ n−3+d.

On the other hand we have:

0 // H0((N�n−3(Cn);ℙ3)∨(2n− 2))) // H0(On−1�n−3(Cn)
(n− 4))

NL
n,n−3(n−4)// H0(On−3�n−3(Cn)

(n− 2)) // . . .

. . . // H1((N�n−3(Cn);ℙ3)∨(2n− 2))) // 0 ,

where we have indicated with NL
n,n−3(1) the 4(n− 3)× 2(n− 1) matrix.
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Observation 3.1.12. We can observe that deg(N∨�n−3;ℙ3(2n− 2)) = −2, so:

N∨�n−3;ℙ3(2n− 2) ∼= O(−1 + dim ker(NL
n,n−3(n− 4)))⊕O(−1 + dim ker(NL

n,n−3(n− 4)))

Lemma 3.1.13. We have that:

dim ker(NL
n,n−3(n−4)) ≥ k if and only if N�n−3(Cn);ℙ3

∼= O(2n−1−k)⊕O(2n−1+k),

or equivalently:

rank(NL
n,n−3(n− 4)) ≤ r if and only if

N�n−3(Cn);ℙ3
∼= O(2n− 1− �)⊕O(2n− 1 + �) for n− 3 ≤ � ≤ (n− 3)(n− 1)− r.

Observation 3.1.14. We can remark that for the above consideration that

� = dim ker(NL
n,n−3(n− 4)).

We de�ne the varieties which parametrize the subscheme of the Hilbert scheme

Nn
3 (n1, n2) as intersection of some of the following varieties:

V (NL
n,n−3(d))r := {L ∈ Gr(ℙn−4,ℙn) : rankNL

n,n−3(d) ≤ r}.

These are subvarieties of Gr(ℙn−4,ℙn).

Since the rank condition is invariant under the action of SL(n− 3,ℂ) we are inter-

ested to study the determinantal varieties in Hom(H0(On(d)), H0(On−3(d+ 2)):

D(NL
n,n−3(d))r = {p1, ..., pn−3 ∈ ℙn : rankNL

n,n−3(d) ≤ r}.

Proposition 3.1.15. We can compute the maximal codimension of the above varieties:

codimV (NL
n,n−3(d))r = codimV (NL

n,n−3(d))r ≤ ((d+ 3)(n− 3)− r)((d+ 1)(n− 1)− r).

By [Sacchiero, 1982] we have:

Theorem 3.1.16. There exists a strati�cation of Gr(ℙn−4,ℙn):

∅ ∕= V (NL
n,n−3)

n−2 ⊂ V (NL
n,n−3(1))2n−3 ⊂ ...

... ⊂ V (NL
n,n−3(d))(d+1)(n−1)−1 ⊂ ... ⊂ V (NL

n,n−3(n− 4))(n−3)(n−1)−1 ⊂ Gr(ℙk−1,ℙn),

or equivalently:

∅ ∕= V (NL
n,n−3(n− 4))(n−3)(n−2) ⊂ V (NL

n,n−3(n− 4))(n−3)(n−1)−(n−4) ⊂ ...

... ⊂ V (NL
n,n−3(n− 4))(n−3)(n−1)−� ⊂ ... ⊂ V (NL

n,n−3(n− 4))(n−3)(n−1)−1 ⊂ Gr(ℙk−1,ℙn)

such that:
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1) L ∈ V (NL
n,n−3)

(n−3)(n−1)−� (respectively L ∈ V (NL
n,n−3(d))(d+1)(n−1)−1 with d =

� − (n − 3)), for 1 ≤ � ≤ n − 3 if and only if N�n−3(Cn);ℙ3
∼= Oℙ1(2n − 1 − �) ⊕

Oℙ1(2n− 1 + �) with � ≥ �.

2) V (NL
n,n−3)

(n−3)(n−1)−� (respectively V (NL
n,n−3(d))(d+1)(n−1)−1), for 1 ≤ � ≤ n− 3 ,

is a quasi-projective, integral, Cohen-Macaulay variety.
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Invariant Approach

Let U be a vector complex space of dimension 2, we can write down the above diagram

as following:

ℂn−3 ⊗OCn

��

ℂn−3 ⊗OCn

��
0 // U ⊗Oℙ1(−n+ 1)

J(�n) // SnU ⊗OCn

��

Syz(J(�n))// Sn−2U ⊗OCn(2)

��

// 0

0 // U ⊗Oℙ1(−n+ 1)
J(�n−3∘�n)// SnU

ℂn−3 ⊗O�n−3(Cn)
// N�n−3(Cn);ℙ3(−n) // 0.

where the �rst row is SL(2)−invariant, but the second one is not.

By (3.15) we have the following diagram:

(3.16)

0 // H0(N∨�n−3(Cn);ℙ3(2n− 2))

��

// H0(On−1Cn
(n− 4))

��

// H0(On−3Cn
(n− 2)) // 0

H0(O4
�n−2(Cn)

(n− 2)) // H0(On+1
Cn

(n− 2))

55kkkkkkkkkkkkkk
,

that is:

(3.17) 0 // SmU

��

// Sn−4U∗ ⊗ Sn−2U

��

// Sn−2U∗ ⊗ Sn−4U // 0

Sn−2U∗ ⊗ S3U // Sn−2U∗ ⊗ SnU

55jjjjjjjjjjjjjjj
.

We can decompose the above spaces in invariant subspaces and we get:

(3.18) 0 // SmU

��

// ∑n−1
i=0 S

2n−6−2iU

��

// ∑n−1
i=0 S

2n−6−2iU // 0

∑3
i=0 S

n+1−2iU // ∑n−1
i=0 S

2n−2−2iU

55llllllllllllll
.

We observe that ℙ(S3U) is the projective space where we projected the normal rational

curve.

Rational Curves of degree 5 in ℙ3

Let C5 be a rational normal curve of degree 5 in ℙ5 with usual embedding �5 : ℙ1 → ℙ5

and �2 : ℙ5∖ < p1, p2 >→ ℙ3 the projection from the line L generated by two points

p1 = (a10, ..., a
1
5), p2 = (a20, ..., a

2
5) ∈ ℙ5. We have the following:
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(3.19) 0

��

0

��
O2
C5

��

∼= // O2
C5

��
0 // Oℙ1(−4)2

J(�5) // O6
C5

��

Syz(J(�5))// OC5(2)4

��

// 0

0 // Oℙ1(−4)2
J(�2∘�5)// O4

�2(C5)

��

// N ′�2(C5);ℙ3(−5)

��

// 0

0 0 ,

where N ′�2(C5);ℙ3 is the equisingular normal sheaf.

Observation 3.1.17. If L ∈ Gr(ℙ1,ℙ5) does not lie on the Chow Hypersurface of the

Secant Variety S(C5) then �n−3(C5) is smooth.

By dualizing the last exact column of (3.19) and tensorizing with Oℙ1(2), we get:

0 // N∨�2(C5);ℙ3(7) // O4
C5

// O2
C5

(2) // 0.

So that deg(N∨�2(C5);ℙ3(7)) = −4 and N∨�2(C5);ℙ3(7) = O ⊕ O(−4) if and only if

N�2(C5);ℙ3(−5) = O(2)⊕O(6). If we denote the following matrix as:

NL
5,2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 a11 a12 a13
−2a11 −2a12 −2a13 −2a14
a12 a13 a14 a15
a20 a21 a22 a23
−2a21 −2a22 −2a23 −2a24
a22 a23 a24 a25

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we have that N�2(C5);ℙ3(−5) = O(2)⊕O(6) if and only if rank(NL
5,2) = 3.

Proposition 3.1.18. The centre of projection L ∈ Gr(ℙ1,ℙ5) lies on a 3−secant plane
to the rational normal curve C5 if and only if N�2(C5);ℙ3 = O(7)⊕O(11).

Proof. ⇐ If L belongs to a 3−secant plane, then there exist two points p1, p2 ∈ L
such that the corresponding forms f1, f2 ∈ Sn have the same additive decompo-

sition of length 3:

fi = ci1(L1)
5 + ci2(L2)

5 + ci3(L3)
5,
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for i = 1, 2 and cij ∈ ℂ. Therefore we can construct a di�erential form � =∏3
j=1(Lj)

⊥ which generate kerNL
5,2, so rankNL

5,2 = 3.

⇒ If the rational curve of degree 5 projected from L has N�2(C5);ℙ3 = O(7)⊕O(11),

then rankNL
5,2 = 3. Therefore there exists a di�erential form � ∈ T3 apolar to

both forms f1, f2 ∈ S5 corresponding to the points p1, p2 ∈ ℙ5 which generate L.

It means that we have two possibilities or � has only simple roots or it has some

multiple roots. So we must analyse three cases:

i) � has three simple roots;

ii) � has a simple root and a double root;

iii) � has one triple root.

In the �rst case the primary decomposition is � =
∏3

j=1 �j, so we have that the

forms f1, f2 has similar additive decompositions:

fi = ci1(L1)
5 + ci2(L2)

5 + ci3(L3)
5,

for i = 1, 2 and cij ∈ ℂ, where Lj ∈ S1 and (Lj)
⊥ = �j for j = 1, 2, 3 and

L belongs to a 3−secant plane generated by q1, q2, q3 ∈ C5 corresponding to

(L1)
5, (L2)

5, (L3)
5 ∈ S5.

In the second case the primary decomposition is � = �1�
2
2 with deg �1 = deg �2 =

1, we have:

fi = ci1(L1)
5 +Gi,2(L2)

4,

for i = 1, 2 and ci1 ∈ ℂ, where Lj ∈ S1, (Lj)
⊥ = �j for j = 1, 2 and Gi,2 ∈ S1. This

means that L belongs to the plane generated by L5
1 and the line parametrized

by {G ⋅ L4
2 ∈ S5 for all G ∈ S1} i.e the plane generating by a point on C5 and

a tangent line to C5 in a di�erent point. But in this case L touches a tangent

line, so the projected curve have a cusp which is excluded by our preliminary

assumption on the singularities.

In the third case the primary decomposition is � = �3
1 with deg �1 = 1, we have:

fi = GiL
3,

where L ∈ S1, L⊥ = �1 and Gi ∈ S2. This means that L belongs to the plane

parametrized by {G ⋅ L3 ∈ S5 for all G ∈ S2} i.e the tangent plane to C5 in a

point q corresponding to L5 ∈ S5. But in this case L touches a tangent line, so
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the projected curve have a cusp which is excluded by our preliminary assumption

on the singularities.

Lemma 3.1.19. The variety of lines L ∈ Gr(ℙ1,ℙ5) lies on a 3−secant plane to the

rational normal curve C5 is an irreducible variety of codimension 3.

Proof. Infact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙ1,ℙ5), � ∈
S, L ⊂ S} where S is the set of all 3-secant planes to the rational normal curve in ℙ5.

In the usual way we can compute the codimension of the image of this incidence variety

in Gr(ℙ1,ℙ5). The above calculation is e�ective thanks to the result of Chiantini and

Ciliberto on the non-defectivity of the Grassmannians of secant varieties of curves (see

[Chiantini and Ciliberto, 2002]).

Theorem 3.1.20. N5
2 (7, 11) is an irreducible variety of codimension 3 formed by the

lines L ∼= ℙ1 that belong to a 3−secant plane to the rational normal curve C5.

Observation 3.1.21. If L ∈ Gr(ℙ1,ℙ5) lies on a 3−secant plane then it is contained

in the Chow Hypersurface associated to the Secant Variety �1(C5).

By dualizing the last exact column of (3.19) and tensorizing with Oℙ1(3), we get:

0 // N∨�2(C5);ℙ3(8) // O4
C5

(1) // O2
C5

(3) // 0,

and passing to the exact cohomology sequence, we have:

0 // H0(N∨�2(C5);ℙ3(8)) // H0(O4
C5

(1)) // H0(O2
C5

(3)) // . . .

. . . // H1(N∨�2(C5);ℙ3(8)) // 0.

So that deg(N∨�2(C5);ℙ3(8)) = −2 andN∨�2(C5);ℙ3(8) = O⊕O(−2) if and only ifN�2(C5);ℙ3(−5) =

O(3)⊕O(5). If we denote the following matrix as:

NL
5,2(1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 a11 a12 a13 0 0 0 0

−2a11 −2a12 −2a13 −2a14 a10 a11 a12 a13
a12 a13 a14 a15 −2a11 −2a12 −2a13 −2a14
0 0 0 0 a12 a13 a14 a15
a20 a21 a22 a23 0 0 0 0

−2a21 −2a22 −2a23 −2a24 a20 a21 a22 a23
a22 a23 a24 a25 −2a21 −2a22 −2a23 −2a24
0 0 0 0 a22 a23 a24 a25

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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we have that N�2(C5);ℙ3(−5) = O(3)⊕O(5) if and only if det(NL
5,2(1)) = 0.

By (3.17) we have:

0 // H0(N∨�2(C5);ℙ3(8))

��

// H0(O4
C5

(1))

tSyz(J(�5))

��

// H0(O2
C5

(3)) // 0

H0(O4
�2(C5)

(3)) // H0(O6
C5

(4))

77oooooooooooo
,

that is:

(3.20) 0 // SmU

��

// U∗ ⊗ S3U

��

M // S3U∗ ⊗ U // 0

S3U∗ ⊗ S3U // S3U∗ ⊗ S5U

66nnnnnnnnnnnn
.

We can decompose the above spaces in invariant subspaces and we get:

(3.21) 0 // SmU

��

//∑4
i=0 S

4−2iU

��

// ∑4
i=0 S

4−2iU // 0

∑3
i=0 S

6−2iU //∑4
i=0 S

8−2iU

77nnnnnnnnnnnn
,

where �2(C5) ⊂ ℙ(S3U).

If we denoted by

Npi
5,1(1) :=

⎛⎜⎜⎜⎝
ai0 ai1 ai2 ai3 0 0 0 0

−2ai1 −2ai2 −2ai3 −2ai4 ai0 ai1 ai2 ai3
ai2 ai3 ai4 ai5 −2ai1 −2ai2 −2ai3 −2ai4
0 0 0 0 ai2 ai3 ai4 ai5

⎞⎟⎟⎟⎠ ,

we can observe that :

NL
5,2(1) :=

(
Np1

5,1(1)

Np2
5,1(1)

)
,

so we can study the matrix Npi
5,1(1).

Observation 3.1.22. This is a map from H0(O4
C5

(1)) to H0(OC5(3)), that is

U∗ ⊗ S3U → S3U∗,

equivalently

ℙ(U∗ ⊗ S3U)→ ℙ(S3U∗).
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We observe that the Segre variety ℙ(U∗⊗S3U) = ℙ1×ℙ3 is bidual (see [Gel′fand et al., 1994]).

We can consider the dual of the kernel of Npi
5,1(1), that is the kernel of (Npi

5,1(1))t. The

ker((Npi
5,1(1))t) is a ℙ3 in ℙ1×ℙ3 so the rank condition on (NL

5,2(1)) is equivalent to ask

that the corresponding two ℙ3 span a ℙ6 instead a ℙ7.

We want also show what happens in the case of Castelnuovo's Curve of degree 5 in

ℙ3.

Example 3.1.23 (Castelnuovo's Curve of degree 5 in ℙ3). Let S be a ruled quadric

surface in ℙ3 and CC ⊂ S be the Castelnuovo's curve on S. It has degree 5 and

arithmetic genus 2, so it has two singular point of type node.

Thus we have the following exact sequence:

0 // TCc // Tℙ3∣CC
// NCC ;ℙ3 // ℂ⊕ ℂ // 0.

Let f : C̃C → CC ∈ ℙ3 be the normalization of Cc and df : TC̃c → TCC . We have

the following exact sequence (see [Ciliberto, 1987]):

0 // TC̃c
// f ∗(Tℙ3∣CC

) // Nf
// 0,

where Nf is the normal sheaf to the map f (see [Ciliberto, 1987]). So we have the

following diagram:

0

��

0

��

0

��
0 // TC̃c

��

// f ∗(Tℙ3∣CC
)

��

// Nf

��

// 0

0 // TCc

��

// Tℙ3∣CC

��

// NCC ;ℙ3

��

// ℂ⊕ ℂ // 0

ℂ⊕ ℂ ℂ3 ⊕ ℂ3 ℂ2 ⊕ ℂ2 .

CC is a type (2, 3) curve i.e. CC = 2F1 + 3F2 where F1, F2 are the two fundamental

divisor on S, so C.C = 12. Therefore we have that deg(NCC
) = 12 and deg(NS∣CC

) =

10. At the other hand we have the following exact sequence:

0 // NCc ;S // NCC ;ℙ3 // NS∣CC
// 0,

so NCC ;ℙ3 = O(10)⊕O(12).
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Rational Normal Curve of degree 6 in ℙ3

Let C6 be a rational normal curve of degree 6 in ℙ6 with usual morphism �6 : ℙ1 → ℙ6

and �3 : ℙ6∖ < p1, p2, p3 >→ ℙ3 the projection from the space generated by three

points pi = (ai0, ..., a
i
6) ∈ ℙ6 for i = 1, 2, 3. Thus we have the following:

(3.22) 0

��

0

��
O3
C6

��

∼= // O3
C6

NL
6,3

��
0 // Oℙ1(−5)2

J(�6) // O7
C6

��

Syz(J(�6))// OC6(2)5

��

// 0

0 // Oℙ1(−5)2
J(�3∘�6)// O4

�3(C6)

��

// N�3(C6);ℙ3(−6)

��

// 0

0 0.

By dualizing the last exact column of (3.22) and tensorizing with Oℙ1(2), we get:

0 // N∨�3(C6);ℙ3(8) // O5
C6

// O3
C6

(2) // 0.

So that deg(N∨�3(C6);ℙ3(8)) = −6 andN∨�3(C6);ℙ3(9) = O⊕O(−6) if and only ifN�3(C6);ℙ3(−6) =

O(2)⊕O(8). If we denote the following matrix as:

NL
5,2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 a11 a12 a13 a14
−2a11 −2a12 −2a13 −2a14 −2a15
a12 a13 a14 a15 a16
a20 a21 a22 a23 a24
−2a21 −2a22 −2a23 −2a24 −2a25
a22 a23 a24 a25 a26
a30 a31 a23 a33 a34
−2a31 −2a32 −2a33 −2a34 −2a35
a32 a33 a34 a35 a36

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we have that N∨�3(C6);ℙ3(8) = O ⊕O(−6) if and only if rank(NL
5,3) = 5.

By dualizing the last exact column of (3.22) and tensorizing with Oℙ1(3), we get:

0 // N∨�3(C6);ℙ3(9) // O5
C6

(1)
NL

6,3(1)// O3
C6

(3) // 0.
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So that deg(N∨�3(C6);ℙ3(9)) = −4 andN∨�3(C6);ℙ3(9) = O⊕O(−4) if and only ifN�3(C6);ℙ3(−6) =

O(3)⊕O(7). If we denote the following matrix as:

NL
6,3(1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 a11 a12 a13 a14 0 0 0 0 0

−2a11 −2a12 −2a13 −2a14 −2a15 a10 a11 a12 a13 a14
a12 a13 a14 a15 a16 −2a11 −2a12 −2a13 −2a14 −2a15
0 0 0 0 0 a12 a13 a14 a15 a16
a20 a21 a22 a23 a24 0 0 0 0 0

−2a21 −2a22 −2a23 −2a24 −2a25 a20 a21 a22 a23 a24
a22 a23 a24 a25 a26 −2a21 −2a22 −2a23 −2a24 −2a25
0 0 0 0 0 a22 a23 a24 a25 a26
a30 a31 a32 a33 a34 0 0 0 0 0

−2a31 −2a32 −2a33 −2a34 −2a35 a30 a31 a32 a33 a34
a32 a33 a34 a35 a36 −2a31 −2a32 −2a33 −2a34 −2a35
0 0 0 0 0 a32 a33 a34 a35 a36

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have that N∨�3(C6);ℙ3(9) = O ⊕O(−4) if and only if rank(NL
6,3)(1) = 9.

Instead by tensorizing with Oℙ1(4), we get:

0 // N∨�3(C6);ℙ3(10) // O5
C6

(2)
NL

6,3(2)// O3
C6

(4) // 0.

So that deg(N∨�3(C6);ℙ3(10)) = −2 and N∨�3(C6);ℙ3(10) = O ⊕ O(−2) if and only if

N�3(C6);ℙ3(−6) = O(4)⊕O(6).

We have that N∨�3(C6);ℙ3(10) = O ⊕O(−2) if and only if det(NL
6,3(2)) = 0.
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3.2 Normal Bundle of Rational Curves in codimen-

sion k

Let Cn ⊂ ℙn be the rational normal curve of degree n and �n : ℙ1 → ℙn be the

Veronese map and we will indicate with Cn = �n(ℙ1) the image. Let J(�n) be the

Jacobian matrix of �n:

J(�n) =

(
nsn−1 . . . tn−1 0

0 sn−1 . . . ntn−1

)
and let �k(Cn) the rational curve obtained from Cn by projection from a (k − 1)-

dimensional linear subspace L ⊂ ℙn on ℙn−k ⊂ ℙn. Obviously we restrict our attention
at the case k < n− 2.

In the following we will indicate with pi = (ai0, ..., a
i
n) ∈ ℙn, for i = 0, . . . , k− 1, the

k points which generate the (k − 1)−dimensional linear subspace L ⊂ ℙn .

So the Euler's exact sequence on ℙn−k restricted to �k(Cn) (see [Hartshorne, 1977],

[Okonek et al., 1980]):

0→ OCn → O�k(Cn)(n)n−k+1 → Tℙn−k∣�k(Cn) → 0,

and the usual one for Normal Bundle on �k(Cn) give rise to the following diagram:

0

��

0

��
Oℙ1

��

= // OCn

��
Oℙ1(1)2

��

J(�k∘�n)// O�k(Cn)(n)n−k+1

��

0 // Oℙ1(2)

��

// Tℙn−k∣�k(Cn)

��

// N�k(Cn);ℙn−k // 0

0 0 .

Therefore the following exact sequence holds:

(3.23) 0 // Oℙ1(1)2
J(�k∘�n)// O�k(Cn)(n)n−k+1 // N�k(Cn);ℙn−k // 0 .

By tensoring (3.23) with Oℙ1(−n), we obtain this exact sequence:

(3.24) 0 // Oℙ1(−n+ 1)2
J(�k∘�n) // On−k+1

�k(Cn)
// N�k(Cn);ℙn−k(−n) // 0 .
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Observation 3.2.1. We observe that degN ′�n−3(Cn);ℙ3(−n) = 2n − 2, equivalently

degN ′�n−3(Cn);ℙ3 = n2 − (k − 1)n− 2. It is a vector bundle of rankn− k − 1.

Moreover by Grothendieck-Segre's theorem (see [Grothendieck, 1957]) N�n−3(Cn);ℙ3

splits in:

n−k−1⊕
i=1

O(ni) with ni ∈ ℤ such that
n−k−1∑
i=1

ni = n2 − (k − 1)n− 2,

where we abbreviate O�n−3(Cn) to O and without loss of generality we can take n1 ≤
⋅ ⋅ ⋅ ≤ nn−k−1.

Let us denote by:

Syz(J(�n)) =

⎛⎜⎜⎜⎜⎜⎜⎝
t2 −2st s2 0 0 0 . . . . . . 0

0 t2 −2st s2 0 0 . . . . . . 0

0 0 t2 −2st s2 0 . . . . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 . . . . . . . . . . . . 0 t2 −2st s2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

the syzygy of the Jacobian matrix J(�n), where Syz(J(�n)) is a matrix n−1×n+1.

So we have the following sequence for J(�n):

(3.25) 0 // Oℙ1(−n+ 1)2
J(�n) // On+1

Cn

Syz(J(�n))// OCn(2)n−1 // 0 ,

which is similar to 3.24.

Moreover we have an exact sequence similar to 2.3 twisted by O(−n):

(3.26) 0 // OkCn

P // On+1
Cn

// On−k+1
Cn

// 0,

where:

P =
[
p1 ⋅ ⋅ ⋅ pk

]
,
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therefore we obtain:

(3.27) 0

��
OkCn

P
��

0 // Oℙ1(−n+ 1)2
J(�n) // On+1

Cn

��

Syz(J(�n))// OCn(2)n−1 // 0

0 // Oℙ1(−n+ 1)2
J(�k∘�n) // On−k+1

�k(Cn)

��

// N ′
�k(Cn);ℙn−k(−n) // 0

0 ,

which we can complete to the following diagram:

(3.28) 0

��

0

��
OkCn

P
��

∼= // OkCn

(NL
n,k)

t

��
0 // Oℙ1(−n+ 1)2

J(�n) // On+1
Cn

��

Syz(J(�n))// OCn(2)n−1

��

// 0

0 // Oℙ1(−n+ 1)2
J(�n−3∘�n)// On−k+1

�k(Cn)

��

// N ′
�k(Cn);ℙn−k(−n)

��

// 0

0 0.

where the map (N L
n,k)

t is:

(N L
n,k)

t = Syz(J(�n)) ⋅

⎛⎜⎝ a10 . . . ak0
...

. . .
...

a1n . . . akn

⎞⎟⎠ =

⎛⎜⎝ a10t
2 − 2a11ts+ a12s

2 a11t
2 − 2a12ts+ a13s

2 . . . a1n−2t
2 − 2a1n−1ts+ a1ns

2

...
...

. . .
...

ak0t
2 − 2ak1ts+ ak2s

2 ak1t
2 − 2ak2ts+ ak3s

2 . . . akn−2t
2 − 2akn−1ts+ akns

2

⎞⎟⎠
t

.
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It is a (n− 1)× k matrix. The last exact column of (3.28):

(3.29) 0 // Okℙ1

(NL
n,k)

t

// O�n−k(Cn)(2)n−1 // N ′�k(Cn);ℙn−k(−n) // 0

gives us some information about the splitting type of N ′�k(Cn),ℙn−k :

Lemma 3.2.2. If �k(Cn) has only ordinary singularities, then the splitting type of

N ′�k(Cn),ℙn−k must be (n1, ..., nn−k−1) with n+ 2 ≤ n1 ≤ ... ≤ nn−k−1 ≤ n+ 2 + 2k.

Moreover the exact sequence 3.29 gives rise by duality and tensorizing by Oℙ1(2):

(3.30) 0 // N ′∨�k(Cn);ℙn−k(n+ 2) // On−1�k(Cn)

NL
n,k // Oℙ1(2)k // 0 .

Observation 3.2.3. We can observe that if �k(Cn) has only ordinary singularities,

then the map of di�erential is surjective, so:

N ′
∨
�k(Cn);ℙn−k

∼= N∨�k(Cn);ℙn−k .

Therefore we will not distinguish between N ′�k(Cn);ℙn−k and N�k(Cn);ℙn−k , where it is

clear what we must consider.

If we pass to the exact cohomology sequence we get:

0 // H0(N∨
�k(Cn);ℙn−k(n+ 2)) // H0(On−1�k(Cn)

)
NL

n,k // H0(Oℙ1(2)k) // ⋅ ⋅ ⋅

⋅ ⋅ ⋅ // H1(N∨
�k(Cn);ℙn−k(n+ 2)) // 0 ,

where we have indicated with NL
n,k the 3k × (n− 1) matrix:

NL
n,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−2
−2a11 . . . −2a1n−1
a12 . . . a1n
...

. . .
...

ak0 . . . akn−2
−2ak1 . . . −2akn−1
ak2 . . . akn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observation 3.2.4. The rank of NL
n,k does not depend from the points generating L.

Let Fpi be the binary form of degree n which corresponds to the point pi ∈ ℙn. If we
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indicate with CatFpi
(2, n− 2; 2) or Catpi(2, n− 2; 2) the Hankel matrix 3× (n− 1) of

Fpi we have:

rankNL
n,k = rank

⎛⎜⎝ CatFp1
(2, n− 2; 2)
...

CatFpk
(2, n− 2; 2)

⎞⎟⎠ .

Observation 3.2.5. We have that deg(N∨
�k(Cn);ℙn−k(n+ 2)) = −2k and

ℎ0(N∨�k(Cn);ℙn−k(n+ 2)) = n− 1− rank(NL
n,k) = dim ker(NL

n,k).

Therefore we have:

2 ≤ rank(NL
n,k) ≤ min{n− 1, 3k},

so

0 ≤ ℎ0(N∨�k(Cn);ℙn−k(n+ 2)) ≤ n− k − 1,

but as rank(N∨
�k(Cn);ℙn−k(n+ 2)) = n− k − 1 we have that

N∨�k(Cn);ℙn−k(n+ 2) splits in
n−k−1⊕
i=1

O(n′i)

by Grothendieck-Segre's theorem (see [Grothendieck, 1957]) with

−2k ≤ n′1 ≤ ... ≤ n′n−k−1 ≤ 0 and n′1 + ...+ n′n−k−1 = −2k.

Remark 3.2.6. It's clear from the above consideration that the value of rank(NL
n,k)

corresponds to some splitting types of N ′�k(Cn);ℙn−k .

Observation 3.2.7. We have that rank(NL
n,k) = min{n−1, 3k} ⇔ ℎ0(N∨

�k(Cn);ℙn−k(n+

2)) = 0 ⇔ N∨
�k(Cn);ℙn−k(n + 2) = O(n′0) ⊕ ... ⊕ O(n′n−k−2), with all n′i ∕= 0. In-

stead rank(NL
n,k) = r < min{n − 1, 3k} ⇔ ℎ0(N∨

�k(Cn);ℙn−k(n + 2)) = n − 1 − r ⇔
N∨
�k(Cn);ℙn−k(n + 2) = On−1−r ⊕ ℱ∨(n + 2) with rank(ℱ) = r − k until k ≤ r, and

deg(ℱ∨(n + 2)) = −2k or equivalently deg(ℱ) = (r − k)(n + 2) + 2k. If r < k, then

n−1− r > n−1−k, so the situation is more complicated, we will see something about

that after. On the other hand we have:

rank(NL
n,k) ≥ k + 1,

otherwise some n′i must be ≥ 1, so we have that some ni must be ≤ n + 1, but this is

impossible by Lemma 3.2.2.
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Proposition 3.2.8. N�k(Cn);ℙn−k
∼= O(n+2)n−1−rank(N

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(NL
n,k)−k on ℙ1 and deg(ℱ∨(n+2)) = −2k such that ℱ ∼=

⊕rank(NL
n,k)−k

i O(li)

with li ≥ n+ 3.

We de�ne the varieties which parametrize the subscheme of the Hilbert scheme

Nn
n−k(n1, ..., nn−k−1) as intersection of some of the following varieties:

V (NL
n,k(d))r := {L ∈ Gr(ℙk−1,ℙn) : rankNL

n,k(d) ≤ r}.

These are subvarieties of Gr(ℙk−1,ℙn).

Since the rank condition is invariant under the action of SL(k,ℂ) we are interested

to study the determinantal varieties in Hom(H0(On(d)), H0(Ok(d+ 2)):

D(NL
n,k(d))r = {p1, ..., pk ∈ ℙn : rankNL

n,k(d) ≤ r}.

About the matrix NL
n,k we note that are two possible cases:

i) 3k ≥ n− 1, so n−1
3
≤ k < n− 3.

ii) 3k < n− 1, so k < n−1
3
.

These two cases will be the subject of our studies in the next two sections.

3.3 Codimension k, for k < n−1
3

Observation 3.3.1. k + 1 ≤ rankNL
n,k = n− 1− ℎ0(N∨

�k(Cn),ℙn−k(n+ 2)) ≤ 3k

Proposition 3.3.2. N�k(Cn);ℙn−k
∼= O(n+2)n−1−rank(N

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(NL
n,k)−k on ℙ1 and deg(ℱ∨(n+2)) = −2k such that ℱ ∼=

⊕rank(NL
n,k)−k

i O(li)

with li ≥ n+ 3.

In this case we have three possibilities:

1. ℱ ∼= O(n+ 3)2k if and only if rank(NL
n,2) = 3k;

2. ℱ ∼= O(n+ 3)2k−2 ⊕O(n+ 4) if and only if rank(NL
n,k) = 3k − 1;

3. ℱ ∼= O(n + 3)2k−2r ⊕ ℱ ′ with rank(ℱ ′) = r and deg(ℱ ′∨(n + 2)) = −2k if and

only if rank(NL
n,k) = 3k − r with 1 < r ≤ 2k − 1;

4. ℱ ∼= O(n+ 2 + 2k) if and only if rank(NL
n,k) = k + 1.
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Observation 3.3.3. If L ∼= ℙk−1, as centre of projection, belongs to a (k + 1)−secant
ℙk, then there exist k points q1, .., qk ∈ L such that Ann(f1) = (�, �1), ..., Ann(fk) =

(�, �r) with � has only simple roots and deg(�) = k + 1 and �1 ∕= ... ∕= �k, deg(�1) =

... = deg(�k) = n−k+1. So dim < � >n−2= n−k−2 and dim < �i >n−2= k, therefore

n− k − 1 ≤ rank(NL
n,k) = n− 1− dim(< �, �1 >n−2 ∩...∩ < �, �k >n−2) ≤ k + 1.

Observation 3.3.4. We can observe that if L belongs to a (n − 2)−secant ℙn−3 gen-

erated by q1, ..., qn−1, then there exists an element � ∈ H0(On�k(Cn)
) ∼= Sn−1V ∨ = Tn−1

such that � ∈ ker(NL
n,k) =

∩
i ker(Catfi(2, n − 2)), in fact we can take � =

∏n
i=1 L

⊥
qi
,

clearly this happen every time since dim kerNL
n,k ≥ 1.

Unfortunately this condition is empty for 3k < n − 2, in fact we can compute

the codimension of the variety of every ℙk−1 which belong to some (n-2)-secant ℙn−3

constructing an incidence variety:

IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈ S, L ⊂ S},

where S is the set of all (n-2)-secant ℙn−3 to Cn. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(k − 1, n). We will indicated

with �1 and �2 the natural projections:

IS
�1

yyrrrrrrrrrrr
�2

��?
??

??
??

?

Gr(ℙk−1,ℙn) S,

so the codimension in Gr(ℙk−1,ℙn) of �1(IS) is equal to dimGr(ℙk−1,ℙn) − dimS −
dim�−12 (S) = k(n+1−k)−n+2−k(n−2−k). That calculation is e�ective thanks to the

result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant

varieties of curves (see [Chiantini and Ciliberto, 2002]). We have that this variety has

codimension 3k − n+ 1, but we are in the hypothesis 3k < n− 1, so 3k − n+ 1 < 0.

For 3k = n− 1 the condition gives codim = 0, so it is veri�ed for all L.

Case rankNL
n,k = 3k − 1

Lemma 3.3.5. Let 3k − 1 < n < 4k + 1. If the centre of projection L ∼= ℙk−1 belongs
to a linear system of dimension n− 3k of (n− 2)−secant ℙn−3 to the rational normal

curve Cn in ℙn, then rankNL
n,k = 3k − 1. The converse is generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−3 : �� = �0�0 +

...+�n−3k−1�n−3k−1, ∀� = [�0, ..., �n−3k−1] ∈ ℙn−3k−1} of (n−2)−secant ℙn−3 to
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the rational normal curve Cn in ℙn, where �0, ..., �n−3k−1 are (n−2)−secant ℙn−3.
Let qi1, ..., q

i
n−2 ∈ Cn be the points which generate �i. Then there exists k points

p1, ..., pk which generate L, such that each pi belongs to �� for all � ∈ ℙn−3k−1 and
�� =< q1,�, ..., qn−2,� >. By Observation 1.3.9 the binary forms fi corresponding

to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n − 2, so L belongs to a ℙn−3(n−3k) = ℙ9k−2n, this is possible thanks

to the condition n < 4k + 1. So by Lemma 1.3.11 for each � ∈ ℙn−3k−1 there

exists a di�erential form �� ∈ Tn−2 such that �� ∘ fi = 0. Moreover there exist

n−3k di�erential form �0, ..., �n−3k−1 ∈ Tn−2 which for each � ∈ ℙn−3k−1 we have
�� = �0�0+....+�n−3k−1�n−3k−1, in particular �j∘fi = 0 for all j = 0, ..., n−3k−1

and i = 1, ..., k, so rankNL
n,k = 3k − 1.

⇐ If rankNL
n,k = 3k − 1, then there exist n− 3k binary form �0, ..., �n−3k−1 ∈ Tn−2

such that however we consider the generating points p1, ..., pk ∈ ℙn of L, it is

�� ∘ fi = (�0�0 + ... + �n−3k−1�n−3k−1) ∘ fi = 0 for all � = [�0, ..., �n−3k−1] ∈
ℙn−3k−1 and i = 1, ..., k, where fi ∈ Sn is the binary form corresponding to

pi. In particular �j ∘ fi = 0, so if we consider the primary decomposition of

�� =
∏n−2

l=1 �
l
� and we indicate with (Ll,�)⊥ = �l�. Therefore f1, ..., fk can be

decomposed in ∞n−3k−1 di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,

for all � = [�0, ..., �n−3k−1] ∈ ℙn−3k−1 or in other words L belongs to a linear sys-

tem Φ = {�� ∼= ℙn−2 : �� = �0�0 + ...+ �n−3k−1�n−3k−1, ∀� = [�0, ..., �n−3k−1] ∈
ℙn−3k−1} of (n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn. So L be-

longs to a ℙn−3(n−3k) = ℙ9k−2n, this is possible thanks to the condition n < 4k+1.

Clearly it can happen that some �i have any multiple roots, so we have all possible

degenerations of the linear system Φ.

Theorem 3.3.6. Let 3k−1 < n < 4k+ 1. If the centre of projection L ∼= ℙk−1 belongs
to a linear system Φ of a�ne dimension n− 3k of (n− 2)−secant ℙn−3 to the rational

normal curve Cn in ℙn, then N�k(Cn);ℙn−k
∼= O(n+ 2)n−3k ⊕O(n+ 3)2k−2 ⊕O(n+ 4).
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Corollary 3.3.7. Let k − 1 ≤ 4k − n − 2 or equivalently n ≤ 4k − 1. The variety of

linear spaces L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n− 3k of

(n−2)−secant ℙn−3 to the rational normal curve Cn in ℙn is an irreducible component

of codimension n− 3k of the subscheme Nn
n−k((n+ 2)n−3k, (n+ 3)2k−2, (n+ 4)).

Proof. We can observe that the linear systems Φ of dimension n−3k of (n−2)−secant
ℙn−3 to the rational normal curve Cn in ℙn correspond to the linear systems of dimen-

sion n − 3k of binary forms of degree n − 2, therefore the set of these linear system

corresponds to Gr(ℙn−3k−1,ℙn−2) which is irreducible and dimGr(ℙn−3k−1,ℙn−2) =

(n− 3k)(3k − 1). Each projection linear space L belongs to a ℙn−3(n−3k) = ℙ9k−2n, so

the dimension of the �ber is k(8k−2n+1) with the condition k−1 ≤ 9k−n. Therefore
the variety of linear spaces L that belong to a linear system Φ is an irreducible variety

of codimension n− 3k in Gr(ℙk−1,ℙn).

Case rankNL
n,k ≤ 3k − 1

Lemma 3.3.8. Let n ≤ 8k−3r+3
2

with 1 ≤ r ≤ 2k−1. The centre of projection L ∼= ℙk−1

belongs to a linear system Φ of a�ne dimension n− 3k+ r− 1 of (n− 2)−secant ℙn−3

to the rational normal curve Cn in ℙn, then rankNL
n,k = 3k − r. The converse is

generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−3 : �� =

�0�0 + ... + �n−3k+r−2�n−3k+r−2, ∀� = [�0, ..., �n−3k+r−2] ∈ ℙn−3k+r−2} of (n −
2)−secant ℙn−3 to the rational normal curve Cn in ℙn, where �0, ..., �n−3k+r−2
are (n − 2)−secant ℙn−3. Let qi1, ..., q

i
n−2 ∈ Cn be the points which generate �i.

Then there exist k points p1, ..., pk which generate L, such that each pi belongs

to �� for all � ∈ ℙn−3k+r−2 and �� =< q1,�, ..., qn−2,� >. By Observation 1.3.9 the

binary forms fi corresponding to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,

where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n − 2, so L belongs to a ℙn−3(n−3k+r−1) = ℙ9k−3r−2n+3, this is possible

thanks to the condition n ≤ 8k−3r+3
2

. So by Lemma 1.3.11 for each � ∈ ℙn−3k+r−2

there exists a di�erential form �� ∈ Tn−2 such that �� ∘ fi = 0. Moreover

there exist n − 3k + r − 1 di�erential form �0, ..., �n−3k+r−2 ∈ Tn−2 which for

each � ∈ ℙn−3k+r−2 we have �� = �0�0 + .... + �n−3k+r−2�n−3k+r−2, in particular

�j ∘ fi = 0 for all j = 0, ..., n− 3k + r − 1 and i = 1, ..., k, so rankNL
n,k = 3k − r.
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⇐ If rankNL
n,k = 3k−r, then there exist n−3k+r−1 binary form �0, ..., �n−3k+r−2 ∈

Tn−2 such that however we consider the generating points p1, ..., pk ∈ ℙn of L, it is
��∘fi = (�0�0+ ...+�n−3k+r−2�n−3k+r−2)∘fi = 0 for all � = [�0, ..., �n−3k+r−2] ∈
ℙn−3k+r−2 and i = 1, ..., k, where fi ∈ Sn is the binary form corresponding to

pi. In particular �j ∘ fi = 0, so if we consider the primary decomposition of

�� =
∏n−2

l=1 �
l
� and we indicate with (Ll,�)⊥ = �l�. Therefore f1, ..., fk can be

decomposed in ∞n−3k+r−2 di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,

for all � = [�0, ..., �n−3k+r−2] ∈ ℙn−3k+r−2 or in other words L belongs to a

linear system Φ = {�� ∼= ℙn−2 : �� = �0�0 + ... + �n−3k+r−2�n−3k+r−2, ∀� =

[�0, ..., �n−3k+r−2] ∈ ℙn−3k+r−2} of (n − 2)−secant ℙn−3 to the rational normal

curve Cn in ℙn. So L belongs to a ℙn−3(n−3k+r−1) = ℙ9k−2n−3r+3, this is possible

thanks to the condition n ≤ 8k−3r+3
2

. Clearly it can happen that the binary

di�erential forms �i have any multiple roots, so we have all possible degenerations

of the linear system Φ.

Theorem 3.3.9. Let n ≤ 8k−3r+3
2

with 1 < r ≤ 2k − 2. If the centre of projection

L ∼= ℙk−1 belongs to to a linear system Φ of a�ne dimension n − 3k + r − 1 of

(n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn, then N�k(Cn);ℙn−k
∼= O(n+

2)n−1−3k+r ⊕O(n+ 3)2k−2r ⊕ℱ ′ with rank(ℱ ′) = r and deg(ℱ ′∨(n+ 2)) = −2k.

Corollary 3.3.10. Let n ≤ 8k−3r+3
2

with 1 < r ≤ 2k − 2. The variety of linear spaces

L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n − 3k + r − 1 of

(n−2)−secant ℙn−3 to the rational normal curve Cn in ℙn is an irreducible component

of codimension r(n − 3k − 1 + r) of Nn
n−k((n + 2)n−1−3k+r, (n + 3)2k−2r, spt(ℱ ′)) with

spt(ℱ ′) is the splitting type, rank(ℱ ′) = r and deg(ℱ ′∨(n+ 2)) = −2k.

Proof. We can observe that the linear system Φ of a�ne dimension n− 3k + r − 1 of

(n − 2)−secant ℙn−3 to the rational normal curve Cn in ℙn corresponds to the linear

system of dimension n − 3k + r − 1 of binary forms of degree n − 2, therefore the

set of these linear system corresponds to Gr(ℙn−3k+r−2,ℙn−2) which is irreducible and

dimGr(ℙn−3k+r−2,ℙn−2) = (n − 3k + r − 1)(3k − r). Each projection linear space L

belongs to a ℙn−3(n−3k+r−1) = ℙ9k−3r−2n+3, so the dimension of the �bre is k(8k− 3r−
2n + 4) with the condition k − 1 ≤ 9k − 3r − 2n + 3. Therefore the variety of linear

spaces L that belong to a linear system Φ is an irreducible variety of codimension
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r(n − 3k − 1 + r) in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the

result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant

varieties of curves (see [Chiantini and Ciliberto, 2002]).

Theorem 3.3.11. Let n ≤ 2k + 3. If the centre of projection L ∼= ℙk−1 belongs to to

a linear system Φ of a�ne dimension n− k− 2 of (n− 2)−secant ℙn−3 to the rational

normal curve Cn in ℙn, then N�k(Cn);ℙn−k
∼= O(n+ 2)n−k−2 ⊕O(n+ 2 + 2k).

Corollary 3.3.12. The variety of linear spaces L ∼= ℙk−1 that belong to a linear system
Φ of a�ne dimension n−k−2 of (n−2)−secant ℙn−3 to the rational normal curve Cn
in ℙn is an irreducible component of codimension (2k− 1)(n− k− 2) of the subscheme

Nn
n−k((n+ 2)n−k−2, (n+ 2 + 2k)).

3.3.1 Normal Bundle of Rational Curves in Codimension 1

Theorem 3.3.13. Let Cn ⊂ ℙn the normal rational curve of degree n and �1 : ℙn ∖
{p} → ℙn be the projection from a point p ∈ ℙn. The rational curve �1(Cn) ⊂ ℙn−1

has normal bundle N�1(Cn);ℙn−1 = O(n + 2)n−4 ⊕ O(n + 3)2 if and only if p /∈ �2(Cn).

This is equivalent to be smooth for �1(Cn).

Proof. Let Cn be a rational normal curve of degree n in ℙn with usual embedding �n :

ℙ1 → ℙn and �1 : ℙn∖ < p >→ ℙn−1 the projection from the point p = (a0, ..., an) ∈ ℙn.
We have the following:

(3.31) 0

��

0

��
OCn

��

∼= // OCn

��
0 // Oℙ1(−n+ 1)2

J(�n) // On+1
Cn

��

Syz(J(�n))// OCn(2)n−1

��

// 0

0 // Oℙ1(−n+ 1)2
J(�1∘�n) // On�1(Cn)

��

// N�1(Cn);ℙn−1(−n)

��

// 0

0 0.

Since the map OCn(2)n−1 → N�1(Cn);ℙn−1(−n) is surjective, it follows that 2 ≤ l0 ≤
... ≤ ln−3 and l0 + ... + ln−3 = 2n− 2, where N�1(Cn);ℙn−1(−n) = O(l0)⊕ ...⊕O(ln−3).
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But we can write li = l1i + 2, so l10 + ...+ l1n−3 = 2. Therefore we have l0 = ... = ln−5 = 2

and ln−4 = 2, 3 ln−3 = 4, 3 respectively, so it is either

N�1(Cn);ℙn−1(−n) = O(2)n−3 ⊕O(4) or

N�1(Cn);ℙ4(−n) = O(2)n−4 ⊕O(3)2,

not any other case occurred if the projection has only ordinary singularities .

By dualizing the last exact column of (3.31) and tensorizing with Oℙ1(2), we get:

0 // N∨�1(Cn);ℙn−1(n+ 2) // On−1Cn
// OCn(2) // 0,

and we have deg(N∨�1(Cn);ℙn−1(n+ 2)) = −2. Now either N�1(Cn);ℙn−1(−n) = O(2)n−4 ⊕
O(3)2 if and only if N∨�1(C5);ℙ4(n+2) = On−2⊕O(−1)2 or N�1(Cn);ℙn−1(−n) = O(2)n−3⊕
O(4) if and only if N∨�1(Cn);ℙn−1(n+ 2) = On−3 ⊕O(−2) .

If we denote the following matrix as:

Np
n,1 :=

⎛⎜⎝ a0 . . . an−2

−2a1 . . . −2an−1

a2 . . . an

⎞⎟⎠ ,

the smoothness condition corresponds to rank(Np
n,1) = 3, so the second case above is

impossible.

Example 3.3.14 (Rational Curve of degree 5 in ℙ4). Let C5 be a rational normal curve

of degree 5 in ℙ5 with usual embedding �5 : ℙ1 → ℙ5 and �1 : ℙ5∖ < p >→ ℙ4 the

projection from the point p = (a0, a1, a2, a3, a4, a5) ∈ ℙ5. We have the following:

(3.32) 0

��

0

��
OC5

��

∼= // OC5

��
0 // Oℙ1(−4)2

J(�5) // O6
C5

��

Syz(J(�5))// OC5(2)4

��

// 0

0 // Oℙ1(−4)2
J(�1∘�5)// O5

�1(C5)

��

// N�1(C5);ℙ4(−5)

��

// 0

0 0.

Since the map OC5(2)4 → N�1(C5);ℙ4(−5) is surjective, it follows that 2 ≤ x ≤ y ≤ z.

Therefore it is either N�1(C5);ℙ4(−5) = O(2)2⊕O(4) or N�1(C5);ℙ4(−5) = O(2)⊕O(3)2,

not any other case occurred if the projection is smooth.
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By dualizing the last exact column of (3.32) and tensorizing with Oℙ1(2), we get:

0 // N∨�1(C5);ℙ4(7) // O4
C5

// OC5(2) // 0,

and we have deg(N∨�1(C5);ℙ4(7)) = −2. Now either N�1(C5);ℙ4(−5) = O(2) ⊕ O(3)2 if

and only if N∨�1(C5);ℙ4(7) = O ⊕ O(−1)2 or N�1(C5);ℙ4(−5) = O(2)2 ⊕ O(4) if and only

if N∨�1(C5);ℙ4(7) = O2 ⊕O(−2) .

If we denote the following matrix as:

Np
5,1 :=

⎛⎜⎝ a0 . . . a3

−2a1 . . . −2a4

a2 . . . a5

⎞⎟⎠ ,

the smoothness condition correspond to rank(Np
5,1) = 3, so the second case above is

impossible.

Theorem 3.3.15. Let C5 ⊂ ℙ5 the normal rational curve of degree 5 and �1 : ℙ5 ∖{p} →
ℙ4 be the projection from a point p ∈ ℙ5. The rational curve �1(C5) ⊂ ℙ4 has normal

bundle N�1(C5);ℙ4 = O(7) ⊕ O(8)2 if and only if p /∈ �2(C5). This is equivalent to be

smooth for �1(C5).

Codimension 1, non-degenerate case, n ≥ 5

Splitting Type of Rank of Geometric Codimension Degree

Tℙn−1∣�1(Cn) TLn,1 Meaning

(

n−3︷ ︸︸ ︷
n+ 1, ..., n+ 1, n+ 1, n+ 2) 2

(

n−3︷ ︸︸ ︷
n+ 1, ..., n+ 1, n, n+ 3) 1 Impossible

Splitting of Rank of Geometric Codimension Degree

N�1(Cn),ℙn−1 NL
n,1 Meaning

(

n−4︷ ︸︸ ︷
n+ 2, ..., n+ 2, n+ 3, n+ 3) 3 p /∈ �2(Cn)

(

n−4︷ ︸︸ ︷
n+ 2, ..., n+ 2, n+ 2, n+ 4) 2 p ∈ �2(Cn) n-3 n(n−1)

2

3.3.2 Normal Bundle of Rational Curves in Codimension 2

Let Cn be a rational normal curve of degree n in ℙn with Veronese embedding �n :

ℙ2 → ℙn and �2 : ℙn∖ < p1, p2 >→ ℙn−2 be the projection from the line generated by

p1 = (a10, ..., a
1
n), p2 = (a20, ..., a

2
n) ∈ ℙn. We have the following:
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(3.33) 0

��

0

��
O2
Cn

��

∼= // O2
Cn

��
0 // Oℙ1(−n+ 1)2

J(�n) // On+1
Cn

��

Syz(J(�n))// OCn(2)n−1

��

// 0

0 // Oℙ1(−n+ 1)2
J(�1∘�n) // On−1�2(Cn)

��

// N�2(Cn);ℙn−2(−n)

��

// 0

0 0.

Since the map OCn(2)n−1 → N�2(Cn);ℙn−2(−n) is surjective, it follows that 2 ≤ n′0 ≤
... ≤ n′n−4 and n′0+...+n′n−4 = 2n−2, whereN�2(Cn);ℙn−2(−n) = O(n′0)⊕...⊕O(n′n−4).

But we can write n′i = n′′i + 2, so n′′0 + ...+ n′′n−4 = 4.

Therefore we have n′0 = ... = n′n−8 = 2, if we can write:

N�2(Cn);ℙn−2 = O(n+ 2)n−7 ⊕ℱ ;

where ℱ is a rank 4 vector bundle on ℙ1. Hence we must study the splitting of ℱ , if
we indicate with ℱ = O(f0)⊕ ...⊕O(f3), where f0 + ... + f3 = 4n + 14. Therefore it

is one of the following cases:

1. ℱ = O(n+ 5)4 =: ℱ1;

2. ℱ = O(n+ 4)⊕O(n+ 5)2 ⊕O(n+ 6) =: ℱ2;

3. ℱ = O(n+ 4)2 ⊕O(n+ 6)2 =: ℱ3;

4. ℱ = O(n+ 4)2 ⊕O(n+ 5)⊕O(n+ 7) =: ℱ4;

5. ℱ = O(n+ 4)3 ⊕O(n+ 8) =: ℱ5;

not any other case occurred if the projection has only ordinary singularities.

By dualizing the last exact column of (3.33) and tensorizing with Oℙ1(2), we get:

0 // N∨�2(Cn);ℙn−2(n+ 2) // On−1Cn

NL
n,2 // O2

Cn
(2) // 0,

and we have deg(N∨�2(Cn);ℙn−2(n+2)) = −2. But N∨�2(Cn);ℙn−2(n+2) = On−7⊕ℱ∨(n+2),

so ℎ0(N∨�2(Cn);ℙn−2(n + 2)) = n − 7 + ℎ0(ℱ∨(n + 2)). Therefore we have that 0 ≤
ℎ0(ℱ∨(n+ 2)) ≤ 3, where we have:
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a) ℎ0(ℱ∨(n+ 2)) = 0⇔ ℱ = ℱ1;

b) ℎ0(ℱ∨(n+ 2)) = 1⇔ ℱ = ℱ2;

c) ℎ0(ℱ∨(n+ 2)) = 2⇔ ℱ = ℱ3 or ℱ4;

d) ℎ0(ℱ∨(n+ 2)) = 3⇔ ℱ = ℱ5.

If we denote the following matrix as:

Npi
n,2 :=

⎛⎜⎝ ai0 . . . ain−2
−2ai1 . . . −2ain−1
ai2 . . . ain

⎞⎟⎠ ,

we have the following matrix:

NL
n,2 =

(
Np1
n

Np2
n

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a1n−2
−2a11 . . . −2a1n−1
a12 . . . a1n
a20 . . . a2n−2
−2a21 . . . −2a2n−1
a22 . . . a2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So we have the following cases:

A) rank(Nn,2) = 6⇔ ℎ0(ℱ∨(2)) = 0⇔ ℱ = ℱ1;

B) rank(Nn,2) = 5⇔ ℎ0(ℱ∨(2)) = 1⇔ ℱ = ℱ2;

C) rank(Nn,2) = 4⇔ ℎ0(ℱ∨(2)) = 2⇔ ℱ = ℱ3 or ℱ4;

D) rank(Nn,2) = 3⇔ ℎ0(ℱ∨(2)) = 3⇔ ℱ = ℱ5.

If we consider the following exact sequence:

0 // N∨�2(Cn);ℙn−2(n+ 3) // On−1Cn
(1)

NL
n,2 // O2

Cn
(3) // 0,

and we have that:

C1) rank(NL
n,2(1)) = 3⇔ ℎ0(ℱ∨(3)) = 8⇔ ℱ = ℱ3;

C2) rank(NL
n,2(1)) ≤ 4⇔ ℎ0(ℱ∨(3)) = 7⇔ ℱ = ℱ4.



CHAPTER 3. NORMAL BUNDLE OF RATIONAL CURVES 93

Example 3.3.16 (Rational Curve of degree 7 in ℙ5). In the table at the end of this section

we have summarize the codimensions of the determinantal varieties which parametrize

the splitting type of normal bundle for rational curves in ℙ5 of degree 7 obtained by

projection from the rational normal curve C7 of degree 7. We will denote by NL
7,2 the

following matrix:

NL
7,2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a15
−2a11 . . . −2a16
a12 . . . a17
a20 . . . a25
−2a21 . . . −2a26
a22 . . . a27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the map of the following exact sequence:

0 // H0(N∨�2(C7);ℙ5(9)) // H0(O6
C7

)
NL

7,2 // H0(O2
C7

(2)) // H1(N∨�2(C7);ℙ5(9)) // 0,

so that ℎ0(N∨�2(C7);ℙ5(9)) = 6− rankNL
7,2.

We denote by NL
7,2(1) the following matrix:

NL
7,2(1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a15 0 . . . 0

−2a11 . . . −2a16 a10 . . . a15
a12 . . . a17 −2a11 . . . −2a16
0 . . . 0 a12 . . . a17
a20 . . . a25 0 . . . 0

−2a21 . . . −2a26 a20 . . . a25
a22 . . . a27 −2a21 . . . −2a26
0 . . . 0 a22 . . . a27

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the map of the following exact sequence:

0 // H0(N∨�2(C7);ℙ5(10)) // H0(O6
C7

(1))
NL

7,2(1)// H0(O2
C7

(3)) // H1(N∨�2(C7);ℙ5(10)) // 0,

so that ℎ0(N∨�2(C7);ℙ5(10)) = 12− rankNL
7,2(1).

We will indicate with ExpCodim the codimension of the general determinantal

variety of the same type, with ConjCodim the following one:∑
i,j

max{ni − nj − 1, 0},

where (n1, n2, n3, n4) is the splitting type of N�2(C7),ℙ5 and with Total Codim we will

indicate the intersection of the two determinantal varieties from NL
7,2 and N

L
7,2(1).



CHAPTER 3. NORMAL BUNDLE OF RATIONAL CURVES 94

Proposition 3.3.17. The splitting type of the normal bundle N�2(C7),ℙ4 is:

i) (10, 10, 10, 10) if and only if rank(NL
7,2) = 6;

ii) (11, 10, 10, 9) if and only if rank(NL
7,2) = 5;

iii) (11, 11, 9, 9) if and only if rank(NL
7,2) = 4 and rank(NL

7,2(1)) = 8;

iv) (12, 10, 9, 9) if and only if rank(NL
7,2) = 4 and rank(NL

7,2(1)) = 7;

v) (13, 9, 9, 9) if and only if rank(NL
7,2) = 3;

Splitting of Rank of Codim Rank of Codim Total Codim ExpCodim ConjCodim

N�2(C7),ℙ5 NL
7,2 with M2 NL

7,2(1) with M2 with M2

(10, 10, 10, 10) 6 8

(11, 10, 10, 9) 5 1 8 1 1 1

(11, 11, 9, 9) 4 4 8 4 4 4

(12, 10, 9, 9) 4 4 7 4 5 5 5

(13, 9, 9, 9) 3 7 6 6 9 9

Remark 3.3.18. If we consider the generic determinantal variety Mm×n
k made of the

m× n matrix of rank k it's well known that:

codim(Mm×n
k ) = (m− k)(n− k),

deg(Mm×n
k ) =

n−k−1∏
i=0

(
m+i
k

)(
k+i
k

)
Splitting of Rank of Codim in ExpCodim Degree

Tℙn−2∣�2(Cn) TLn,2 Hom(H0(On), H0(O2(1)))

((n + 1)n−4, (n + 2)2) 4

((n + 1)n−4, n + 1, n + 3) 3 n-3 n-3
(
n
3

)
((n + 1)n−4, n, n + 4) 2 Impossible

Splitting of Rank of Rank of Codim in ExpCodim ConjCodim Deg

N
�2(Cn),ℙn−2 NLn,2 NLn,2(1) Hom(H0(On−1), H0(O2(2)))

((n + 2)n−7, (n + 3)4) 6

((n + 2)n−7, n + 2, (n + 3)2, n + 4) 5 n-6 n-6 n-6
(
n
5

)
((n + 2)n−7, (n + 2)2, (n + 4)2) 4 8 2(n-5) 2(n-5) 2(n-5)

((n + 2)n−7, (n + 2)2, n + 3, n + 5) 4 7 2(n-5)+1 2n-9 2(n-5)+1

((n + 2)n−7, (n + 2)2, n + 6) 3 3(n-4) 3(n-4) 3(n-4)

Proposition 3.3.19. If there exist two points q1, q2 ∈ L each of them belongs to a

di�erent 3−secant ℙ2, then:

ker(NL
n,2) = (ℐP1 ∩ ℐP2)n−2 = (ℐP1∪P2)n−2,

where Pi is the set of points in ℙ1 corresponds to the linear forms in the additive

decomposition of fi which corresponds to qi.
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Case rankNL
n,2 = 3

Lemma 3.3.20. The splitting type of the normal bundle N�2(Cn),ℙn−2 is:

((n+ 2)n−4, n+ 6)

if and only if rank(NL
n,2) = 3.

Theorem 3.3.21 (Case Rank 3). If the projection line L belongs to some 3−secant
ℙ2, but it is not a secant line, then the splitting type of the normal bundle N�2(Cn),ℙn−2

is:

((n+ 2)n−4, n+ 6).

Proof. If L belongs to a 3−secant ℙ2, then there exist two points q1, q2 ∈ L such

that Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and

deg(�) = 3 and �1 ∕= �2, deg(�1) = deg(�2) = n − 1. So dim < � >n−2= n − 4

and < �, �1 >n−2=< �, �2 >n−2=< � >n−2. Therefore rank(NL
n,2) = n − 1 − dim(<

�, �1 >n−2 ∩ < �, �2 >n−2) = 3.

Corollary 3.3.22. The variety of lines that, as centre of projection, gives a rational

curve of degree n in ℙn−2 which has the splitting type of the normal bundle N�2(Cn),ℙn−2:

((n+ 2)n−4, n+ 6)

has an irreducible subvariety of codimension 2n− 7 in Gr(ℙ1,ℙn) formed by the lines

belonging to some 3−secant ℙ2, but they are not a secant line.

Case rankNL
n,2 = 4

Lemma 3.3.23. The codimension in Gr(ℙ1,ℙn) of the variety of all lines in ℙn be-

longing to some 4-secant ℙ3 to the rational normal curve in ℙn is 2n− 10

Proof. In fact we can consider the incidence variety I = {(L, �) : L ∈ Gr(ℙ1,ℙn), � ∈
S, L ⊂ S} where S is the set of all 4-secant ℙ3. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙ1,ℙn). That calculation is

e�ective thanks to the result of Chiantini and Ciliberto on the non-defectivity of the

Grassmannians of secant varieties of curves (see [Chiantini and Ciliberto, 2002]).
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Lemma 3.3.24. If the splitting type of the normal bundle N�2(Cn),ℙn−2 is:

((n+ 2)n−5, (n+ 4)2),

then rank(NL
n,2) = 4. Moreover the codimension of the variety which parametrize the

above splitting is 2(n− 5) in Gr(ℙ1,ℙn).

Theorem 3.3.25 (Case Rank 4). If the projection line L belongs to some 4−secant
ℙ3, but it does not belong to some 3−secant ℙ2, then the splitting type of the normal

bundle N�2(Cn),ℙn−2 is:

((n+ 2)n−5, (n+ 4)2).

Proof. If L belongs to a 4−secant ℙ3, then there exist two points q1, q2 ∈ L such

that Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and

deg(�) = 4 and �1 ∕= �2, deg(�1) = deg(�2) = n − 2. So dim < � >n−2= n − 5

and dim(< �1 >n−2 ∩ < �2 >n−2) = 0 otherwise �1 = �2 and q1 = q2, but this is

impossible. Therefore rank(NL
n,2) = n− 1− dim(< �, �1 >n−2 ∩ < �, �2 >n−2) = 4.

Corollary 3.3.26. The variety of lines that, as centre of projection, give a rational

curve of degree n in ℙn−2 which has the splitting of the normal bundle N�2(Cn),ℙn−2:

((n+ 2)n−5, (n+ 4)2)

has an irreducible component formed by the lines belonging to some 4−secant ℙ3, but

they don't belong to some 3−secant ℙ2.

Case rankNL
n,2 = 5

Lemma 3.3.27. The splitting type of the normal bundle N�2(Cn),ℙn−2 is:

((n+ 2)n−6, (n+ 3)2, n+ 4)

if and only if rank(NL
n,2) = 5.

Observation 3.3.28. If L belongs to a 5−secant ℙ4, then there exist two points q1, q2 ∈
L such that Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and

deg(�) = 5 and �1 ∕= �2, deg(�1) = deg(�2) = n − 3. So dim < � >n−2= n − 6, so

rank(NL
n,2) = n− 1− dim(< �, �1 >n−2 ∩ < �, �2 >n−2) ≤ 5.

Observation 3.3.29. If rank(NL
n,2) = 5, then or L ⊂ ℙ4 which is 5−secant to Cn or

L ⊂ ℙk which is (k + 1)−secant. In the second case there exist two points q1, q2 ∈ L
such that Ann(f1) = (�, �1) and Ann(f2) = (�, �2) with � has only simple roots and

deg(�) = k + 1 and �1 ∕= �2, deg(�1) = deg(�2) = n− k + 1.
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3.3.3 Normal Bundle of Rational Curves in Codimension 3

Case rankNL
n,3 = 6, 5

Observation 3.3.30. If L ∼= ℙ2, as centre of projection, belongs to a 6−secant ℙ5, then

there exist three points q1, q2, q3 ∈ L such that Ann(f1) = (�, �1), Ann(f2) = (�, �2)

and Ann(f3) = (�, �3) with � has only simple roots and deg(�) = 6 and �1 ∕= �2 ∕=
�3, deg(�1) = deg(�2) = deg(�3) = n− 4. So dim < � >n−2= n− 7, so rank(NL

n,2) =

n− 1− dim(< �, �1 >n−2 ∩ < �, �2 >n−2) ≤ 6.

Observation 3.3.31. If L ∼= ℙ2, as centre of projection, belongs to a 5−secant ℙ4, then

there exist three points q1, q2, q3 ∈ L such that Ann(f1) = (�, �1), Ann(f2) = (�, �2)

and Ann(f3) = (�, �3) with � has only simple roots and deg(�) = 5 and �1 ∕= �2 ∕=
�3, deg(�1) = deg(�2) = deg(�3) = n− 3. So dim < � >n−2= n− 6, so rank(NL

n,2) =

n− 1− dim(< �, �1 >n−2 ∩ < �, �2 >n−2) ≤ 5.

Case rankNL
n,3 = 4

Proposition 3.3.32. If the L ∼= ℙ2 as a centre of projection plane belongs to a

4−secant ℙ3, but it is not a 3−secant ℙ2, then the splitting type of the normal bundle

N�3(Cn),ℙn−3 is:

((n+ 2)n−5, n+ 8).

This is an irreducible component of the varieties of projection planes which give the

splitting type above of codimension 3n− 13.

Proof. If L ∼= ℙ2, as centre of projection, belongs to a 4−secant ℙ3, then there

exist three points q1, q2, q3 ∈ L such that Ann(f1) = (�, �1), Ann(f2) = (�, �2)

and Ann(f3) = (�, �3) with � has only simple roots and deg(�) = 4 and �1 ∕=
�2 ∕= �3, deg(�1) = deg(�2) = deg(�3) = n − 2. So dim < � >n−2= n − 5, so

rank(NL
n,3) = n− 1−dim(< �, �1 >n−2 ∩ < �, �2 >n−2 ∩ < �, �3 >n−2) = 4, otherwise

�1 = �2 = �3, but this is impossible.

Example 3.3.33 (Rational Curve of degree 7 in ℙ4). In the table at the end of this section

we have summarize the codimensions of the determinantal varieties those parametrize

the splitting type of normal bundle for rational curves in ℙ4 of degree 7 obtained by

projection from the rational normal curve C7 in ℙ7.
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We will denote by NL
7,3 the following matrix:

NL
7,3 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a15
−2a11 . . . −2a16
a12 . . . a17
a20 . . . a25
−2a21 . . . −2a26
a22 . . . a27
a30 . . . a35
−2a31 . . . −2a36
a32 . . . a37

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the map of the following exact sequence:

0 // H0(N∨�3(C7);ℙ4(9)) // H0(O6
C7

)
NL

7,3 // H0(O3
C7

(2)) // H1(N∨�3(C7);ℙ4(9)) // 0,

so that ℎ0(N∨�3(C7);ℙ4(9)) = 6− rankNL
7,3.

Again we will denote by NL
7,3(1) the following matrix:

NL
7,3(1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a15 0 . . . 0

−2a11 . . . −2a16 a10 . . . a15
a12 . . . a17 −2a11 . . . −2a16
0 . . . 0 a12 . . . a17
a20 . . . a25 0 . . . 0

−2a21 . . . −2a26 a20 . . . a25
a22 . . . a27 −2a21 . . . −2a26
0 . . . 0 a22 . . . a27
a30 . . . a35 0 . . . 0

−2a31 . . . −2a36 a30 . . . a35
a32 . . . a37 −2a31 . . . −2a36
0 . . . 0 a32 . . . a37

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is the map of the following exact sequence:

0 // H0(N∨�3(C7);ℙ4(10)) // H0(O6
C7

(1))
N7,3(1)// H0(O3

C7
(3)) // H1(N∨�3(C7);ℙ4(10)) // 0,

so that ℎ0(N∨�3(C7);ℙ4(10)) = 12− rankNL
7,3(1).
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Moreover we will denote by NL
7,3(2) the following matrix:

NL
7,3(2) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a15 0 . . . 0 0 . . . 0

−2a11 . . . −2a16 a10 . . . a15 0 . . . 0

a12 . . . a17 −2a11 . . . −2a16 a10 . . . a15
0 . . . 0 a12 . . . a17 −2a11 . . . −2a16
0 . . . 0 0 . . . 0 a12 . . . a17
a20 . . . a25 0 . . . 0 0 . . . 0

−2a21 . . . −2a26 a20 . . . a25 0 . . . 0

a22 . . . a27 −2a21 . . . −2a26 a20 . . . a25
0 . . . 0 a22 . . . a27 −2a21 . . . −2a26
0 . . . 0 0 . . . 0 a22 . . . a27
a30 . . . a35 0 . . . 0 0 . . . 0

−2a31 . . . −2a36 a30 . . . a35 0 . . . 0

a32 . . . a37 −2a31 . . . −2a36 a30 . . . a35
0 . . . 0 a32 . . . a37 −2a31 . . . −2a36
0 . . . 0 0 . . . 0 a32 . . . a37

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is the map of the following exact sequence:

0 // H0(N∨�3(C7);ℙ4(10)) // H0(O6
C7

(2))
NL

7,3(2)// H0(O3
C7

(4)) // H1(N∨�3(C7);ℙ4(10)) // 0,

so that ℎ0(N∨�3(C7);ℙ4(10)) = 18− rankNL
7,3(2).

Proposition 3.3.34. The splitting type of the normal bundle N�3(C7),ℙ4 is:

i) (11, 11, 11) if and only if rank(NL
7,3) = 6;

ii) (10, 11, 12) if and only if rank(NL
7,3) = 6 and rank(NL

7,3(1)) = 11;

iii) (10, 10, 13) if and only if rank(NL
7,3) = 6, rank(NL

7,3(1)) = 10 and rank(NL
7,3(2)) =

14;

iv) (9, 12, 12) if and only if rank(NL
7,3) = 5, rank(NL

7,3(1)) = 10 and rank(NL
7,3(2)) =

15;

v) (9, 11, 13) if and only if rank(NL
7,3) = 5, rank(NL

7,3(1)) = 10 and rank(NL
7,3(2)) =

14;

vi) (9, 10, 14) if and only if rank(NL
7,3) = 5, rank(NL

7,3(1)) = 9 and rank(NL
7,3(2)) =

13;



CHAPTER 3. NORMAL BUNDLE OF RATIONAL CURVES 100

vii) (9, 9, 15) if and only if rank(NL
7,3) = 4, rank(NL

7,3(1)) = 8 and rank(NL
7,3(2)) = 12.

Splitting of Rank of Codim Rank of Rank of ExpCodim ConjCodim

N�3(C7),ℙ4 NL
7,3 with M2 NL

7,3(1) NL
7,3(2)

(11, 11, 11) 6 12 15

(10, 11, 12) 6 11 15 1 1

(10, 10, 13) 6 10 14 4 4

(9, 12, 12) 5 4 10 15 4 4

(9, 11, 13) 5 4 10 14 4 5

(9, 10, 14) 5 4 9 13 10 7

(9, 9, 15) 4 8 8 12 18 10

(9, 8, 16) 3 Impossible

Codimension 3, non-degenerate case, n ≥ 10

Splitting of Rank of Codim in

Tℙn−3∣�3(Cn) TLn,3 Hom(H0(On), H0(O3(1)))

((n + 1)n−6, (n + 2)3) 6

((n + 1)n−6, n + 1, n + 2, n + 3) 5 n-5

((n + 1)n−6, (n + 1)2, n + 4) 4 2(n-4)

Splitting of Rank of Rank of Rank of Codim in ExpCodim ConjCodim

N
�3(Cn),ℙn−3 NLn,3 NLn,3(1) NLn,3(2)

((n + 2)n−10, (n + 3)6) 9 12 15

((n + 2)n−10, n + 2, (n + 3)4, n + 4) 8 12 15 n-9 n-9 n-9

((n + 2)n−10, (n + 2)2, (n + 3)3, n + 5) 7 11 15 2(n-8)+3 2(n-8)+3 2(n-8)+3

((n + 2)n−10, (n + 2)2, (n + 3)2, (n + 4)2) 7 12 15 2(n-8) 2(n-8) 2(n-8)

((n + 2)n−10, (n + 2)3, (n + 4)3) 6 12 15 3(n-7) 3(n-7) 3(n-7)

((n + 2)n−10, (n + 2)3, n + 3, n + 4, n + 5) 6 11 15 3(n-7)+1

((n + 2)n−10, (n + 2)3, (n + 3)2, n + 6) 6 10 14 3(n-7)+4 3(n-7)+4 3(n-7)+4

((n + 2)n−10, (n + 2)4, (n + 5)2) 5 10 15 4(n-6) 4(n-6) 4(n-6)

((n + 2)n−10, (n + 2)4, n + 4, n + 6) 5 10 14 4(n-6)+1

((n + 2)n−10, (n + 2)4, n + 3, n + 7) 5 9 13 4(n-6)+3 4(n-6)+3 4(n-6)+3

((n + 2)n−10, (n + 2)5, n + 8) 4 8 12
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3.4 Codimension k, for n−1
3 ≤ k ≤ n− 3

Observation 3.4.1. k ≤ rankNL
n,k = n− 1− ℎ0(N∨

�k(Cn),ℙn−k(n+ 2)) ≤ n− 1

Proposition 3.4.2. N�k(Cn);ℙn−k
∼= O(n+2)n−1−rank(N

L
n,k)⊕ℱ , with ℱ a vector bundle of

rank rank(NL
n,k)−k on ℙ1 and deg(ℱ∨(n+2)) = −2k such that ℱ ∼=

⊕rank(NL
n,k)−k

i=0 O(li)

with li ≥ n+ 3.

If 2(n− k) ≥ 2k we have two possibilities:

1. N�k(Cn);ℙn−k
∼= O(n + 2)r−1 ⊕O(n + 3)2(n−k−r)−2k ⊕ ℱ ′ with rank(ℱ ′) = n− r −

2(n− k − r) + k and deg(ℱ ′∨(n+ 2)) = −2k + 2(2(n− k − r)− 2k) if and only

if rank(NL
n,k) = n− r and 2(n− k − r) ≥ 2k for 1 ≤ r ≤ n− k − 2;

2. N�k(Cn);ℙn−k
∼= O(n+ 2)n−k−2 ⊕O(n+ 2 + 2k) if and only if rank(NL

n,k) = k + 1.

However the last one is true also for 2n− 2k < 2k.

We can rephrased the above proposition as:

Proposition 3.4.3. If 2(n− k) ≥ 2k we have two possibilities:

1. �k(Cn) ∈ Nn
n−k((n+2)r−1, (n+3)2(n−k−r)−k, spt(ℱ ′)), where spt(ℱ ′) is the splitting

type of ℱ ′ with rank(ℱ ′) = n − r − 2(n − k − r) and deg(ℱ ′∨(n + 2)) = −2k +

2(2(n − k − r) − 2k) if and only if L ∈ V (NL
n,k)

n−r and 2(n − k − r) ≥ 2k for

1 ≤ r ≤ n− k − 2;

2. �k(Cn) ∈ Nn
n−k((n+ 2)n−k−1, (n+ 2 + k)) if and only if L ∈ V (NL

n,k)
k+1.

However the last one is true also for 2n− 2k < 2k.

Lemma 3.4.4. rankNL
n,k ≤ n− 2 if and only if the forms fi of degree n corresponding

to the points pi generating L can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m .

Proof. ⇒ If rankNL
n,k ≤ n− 2, then there exists at least an element � ∈ Tn−2 such

that for all forms fi corresponding to the points pi generating L we have �∘fi = 0.

So we can consider the primary decomposition of � =
∏m

i=1(�i)
gi , with �i ∈ T1

and
∑

i gi = n− 2, so every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m ,

where (Lj)
⊥ = �j for all j = 1, ..,m and Gij ∈ Sgj−1 for all i = 1, ..., k and

j = 1, ...,m.
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⇐ On the other hand if every fi can be represented by the similar GAD, i.e. :

fi = Gi1L
n−g1+1
1 + ...+GimL

n−gm+1
m ,

then we can consider � =
∏m

i=1((Li)
⊥)gi . By de�nition of GAD representation

we have � ∘ fi = 0 for all i = 1, ..., k, so � ∈ kerNL
n,k and rankNL

n,k ≤ n− 2.

Observation 3.4.5. In particular we can observe that if L belong to a (n-2)-secant ℙn−3

generated by q1, ..., qn−2, then there exists an element � ∈ H0(On−1�k(Cn)
) ∼= Sn−2V ∨ =

Tn−2 such that � ∈ ker(NL
n,k) =

∩
i ker(Catfi(2, n − 2)), in fact we can take � =∏n−2

i=1 L
⊥
qi
.

We can compute the codimension of the variety of every ℙk−1 which belongs to some
(n− 2)−secant ℙn−3 constructing an incidence variety:

IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈ S, L ⊂ S},

where S is the set of all (n−2)-secant ℙn−3 to Cn. In the usual way we can compute the

codimension of the image of this incidence variety in Gr(ℙk−1,ℙn). We will indicated

with �1 and �2 the natural projections:

IS
�1

yyrrrrrrrrrrr
�2

��?
??

??
??

?

Gr(ℙk−1,ℙn) S,

so the codimension in Gr(ℙk−1,ℙn) of �1(IS) is equal to dimGr(ℙk−1,ℙn) − dimS −
dim�−12 (S) = k(n+1−k)−n+2−k(n−2−k). The above calculation is e�ective thanks

to the result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians

of secant varieties of curves (see [Chiantini and Ciliberto, 2002]). We have that this

variety has codimension 3k−n+ 2 which is the codimension expected as determinantal

variety.

In general we can prove:

Lemma 3.4.6. If the centre of projection L ∼= ℙk−1 belongs to some (n−1−r)−secant
ℙn−r−2 to the rational normal curve Cn in ℙn, then we have rankNL

n,k ≤ n − r for

1 ≤ r < n− k − 1.
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Proof. If L ∼= ℙk−1 belongs to some (n−r−1)−secant ℙn−r−2, then there exist k points

p1, ..., pk ∈ L which generate L and the corresponding binary forms fi are generating

by two forms Ann(fi) = (�, �i) with deg(�) = n − r − 1, � has only simple roots

and deg(�i) = r + 3 without common zeros with �. We have dim(�)n−2 = r and

dim
∩
i(�, �i)n−2 ≥ r, so rankNL

n,k = n− 1− dim
∩
i(�, �i)n−2 ≤ n− r − 1.

Lemma 3.4.7. The codimension in Gr(ℙk−1,ℙn) of the variety of all L ∼= ℙk−1 in

ℙn belonging to some (n − r − 1)-secant ℙn−r−2 to the rational normal curve in ℙn is

2k + kr − n+ r + 1.

Proof. Infact we can consider the incidence variety IS = {(L, �) : L ∈ Gr(ℙk−1,ℙn), � ∈
S, L ⊂ S} where S is the set of all (n − r − 1)-secant ℙn−r−2 to the rational normal

curve in ℙn. In the usual way we can compute the codimension of the image of this

incidence variety in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the

result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant

varieties of curves (see [Chiantini and Ciliberto, 2002]).

In particular for r = n− k − 1 we have:

Theorem 3.4.8. If the centre of projection L ∼= ℙk−1 belongs to some (k + 2)−secant
ℙk+1 to the rational normal curve Cn in ℙn, then we have:

N�k(Cn);ℙn−k
∼= O(n+ 2)n−k−2 ⊕O(n+ 1 + 2k).

We can prove a more strong result:

Lemma 3.4.9. If the centre of projection L ∼= ℙk−1 belongs to a linear system Φ of

a�ne dimension r of (n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn, then
rankNL

n,k = n− r − 1 for 1 ≤ r < n− k. The converse is generically true.

Proof. ⇒ Let L be a ℙk−1 belongs to a linear system Φ = {�� ∼= ℙn−3 : �� =

�0�0 + ... + �r−1�r−1, ∀� = [�0, ..., �r−1] ∈ ℙr−1} of (n − 2)−secant ℙn−3 to

the rational normal curve Cn in ℙn, where �0, ..., �r−1 are (n − 2)−secant ℙn−3.
Let qi1, ..., q

i
n−1 ∈ Cn be the points which generate �i. Then there exists k points

p1, ..., pk which generate L, such that each pi belongs to �� for all � ∈ ℙr−1 and
�� =< q1,�, ..., qn−2,� >. By Observation 1.3.9 the binary forms fi corresponding

to pi can be decomposed as:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,
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where Lj,� is the linear binary form corresponding in the usual way to qj,� for

j = 1, ..., n− 1. This means that L belongs to a ℙn−3r. So by Lemma 1.3.11 for

each � ∈ ℙr−1 there exists a di�erential forms �� ∈ Tn−2 such that �� ∘ fi = 0.

Moreover there exist r di�erential form �0, ..., �r−1 ∈ Tn−2 which for each � ∈ ℙr−1

we have �� = �0�0 + ....+�r−1�r−1, in particular �j ∘fi = 0 for all j = 0, ..., r−1

and i = 1, ..., k, so rankNL
n,k = n− r − 1.

⇐ If rankNL
n,k = n − 1 − r, then there exist r binary form �0, ..., �r−1 ∈ Tn−2

such that however we consider the generating points p1, ..., pk ∈ ℙn of L, it is

�� ∘ fi = (�0�0 + ... + �r−1�r−1) ∘ fi = 0 for all � = [�0, ..., �r−1] ∈ ℙr−1 and

i = 1, ..., k, where fi ∈ Sn is the binary form corresponding to pi. In particular

�j ∘ fi = 0, so if we consider the primary decomposition of �� =
∏n−2

l=1 �
l
� and

we indicate with (Ll,�)⊥ = �l�. Therefore f1, ..., fk can be decomposed in ∞r−1

di�erent simultaneously ways, i.e.:

fi = ci1,�L
n
1,� + ...+ cin−2,�L

n
n−2,�,

for all � = [�0, ..., �r−1] ∈ ℙr−1 or in other words L belongs to a linear system

Φ = {�� ∼= ℙn−2 : �� = �0�0 + ... + �r−1�r−1, ∀� = [�0, ..., �r−1] ∈ ℙr−1} of
(n − 2)−secant ℙn−3 to the rational normal curve Cn in ℙn. So L belongs to a

ℙn−3r, this is possible thanks to the condition n ≤ k + 3r − 1. Clearly it can

happen that the binary di�erential forms �i have any multiple roots, so we have

all possible degenerations of the linear system Φ.

Theorem 3.4.10. If the centre of projection L ∼= ℙk−1 belongs to a linear system Φ of

a�ne dimension r of (n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn, then
N�k(Cn);ℙn−k

∼= O(n + 2)r ⊕ ℱ , with ℱ a vector bundle of rank rank(NL
n,k) − k on ℙ1

and deg(ℱ∨(n+ 2)) = −2k such that ℱ ∼=
⊕rank(NL

n,k)−k
i=0 O(li) with li ≥ n+ 3.

Corollary 3.4.11. Let n ≥ k + 3r − 1.The variety of linear spaces L ∼= ℙk−1 that

belong to a linear system Φ of a�ne dimension r of (n−2)−secant ℙn−3 to the rational
normal curve Cn in ℙn is an irreducible component of codimension r(3k + r − n + 1)

of the union of all subschemes Nn
n−k((n+ 2)r, spt(ℱ)), with ℱ a vector bundle of rank

rank(NL
n,k) − k on ℙ1 and deg(ℱ∨(n + 2)) = −2k such that ℱ ∼=

⊕rank(NL
n,k)−k

i=0 O(li)

with li ≥ n+ 3.
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Proof. We can observe that the linear system Φ of a�ne dimension r of (n−2)−secant
ℙn−3 to the rational normal curve Cn in ℙn corresponds to the linear system of dimen-

sion r of binary forms of degree n − 1, therefore the set of these linear system corre-

sponds to Gr(ℙr−1,ℙn−2) which is irreducible and dimGr(ℙr−1,ℙn−2) = r(n− 1− r).
Each projection linear space L belongs to a ℙn−3r, so the dimension of the �bre is

k(n−3r+1−k), which is ≥ 0 with the condition n ≥ k+3r−1. Therefore the variety

of lines L that belong to a linear system Φ is an irreducible variety of codimension

r(3k + r − n + 1) in Gr(ℙk−1,ℙn). The above calculation is e�ective thanks to the

result of Chiantini and Ciliberto on the non-defectivity of the Grassmannians of secant

varieties of curves (see [Chiantini and Ciliberto, 2002]).

Example 3.4.12 (Rational Curve of degree 6 in ℙ4). Let C6 be a rational normal curve

of degree 6 in ℙ6 with Veronese embedding �6 : ℙ1 → ℙ6 and �2 : ℙ6∖ < p1, p2 >→ ℙ4

the projection from the point p1 = (a10, ..., a
1
6), p2 = (a20, ..., a

2
6) ∈ ℙ6. We have the

following:

(3.34) 0

��

0

��
O2
C6

��

∼= // O2
C6

��
0 // Oℙ1(−5)2

J(�6) // O7
C6

��

Syz(J(�6))// OC6(2)5

��

// 0

0 // Oℙ1(−5)2
J(�2∘�6)// O5

�2(C6)

��

// N�2(C6);ℙ4(−6)

��

// 0

0 0.

Since the map OCn(2)5 → N�2(C6);ℙ4(−6) is surjective, it follows that n + 2 ≤ n1 ≤
n2 ≤ n3. Therefore it can happen one of these four cases:

i) N�2(C6);ℙ4 = O(8)⊕O(8)⊕O(12);

ii) N�2(C6);ℙ4 = O(8)⊕O(9)⊕O(11);

iii) N�2(C6);ℙ4 = O(8)⊕O(10)⊕O(10);

vi) N�2(C6);ℙ4 = O(9)⊕O(9)⊕O(10).
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Not any other case occurred if the projection is with only ordinary singularities.

By dualizing the last exact column of (3.34) and tensorizing with Oℙ1(2), we get:

0 // N∨�2(C6);ℙ4(8) // O5
C6

NL
6,2 // O2

C6
(2) // 0,

and we have deg(N∨�2(C6);ℙ4(8)) = −4. Now we have:

i) N�2(C6);ℙ4 = O(8)⊕O(8)⊕O(12) ⇐⇒ N∨�2(C6);ℙ4(8) = O ⊕O ⊕O(−4);

ii) N�2(C6);ℙ4 = O(8)⊕O(9)⊕O(11) ⇐⇒ N∨�2(C6);ℙ4(8) = O(−3)⊕O(−1)⊕O;

iii) N�2(C6);ℙ4 = O(8)⊕O(10)⊕O(10) ⇐⇒ N∨�2(C6);ℙ4(8) = O(−2)⊕O(−2)⊕O;

iv) N�2(C6);ℙ4 = O(9)⊕O(9)⊕O(10)⇐⇒ N∨�2(C6);ℙ4(8) = O(−1)⊕O(−1)⊕O(−2) .

We will denote by NL
6,2 the following matrix:

NL
6,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 . . . a14
−2a11 . . . −2a15
a12 . . . a16
a20 . . . a24
−2a21 . . . −2a25
a22 . . . a26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the map of the following exact sequence:

0 // H0(N∨�2(C6);ℙ4(8)) // H0(O5
C6

)
NL

6,2 // H0(O2
C6

(2)) // H1(N∨�2(C6);ℙ4(8)) // 0,

so that ℎ0(N∨�2(C6);ℙ4(8)) = 5− rankNL
6,2.

By dualizing the last exact column of (3.34) and tensorizing with Oℙ1(3), we get:

0 // N∨�2(C6);ℙ4(9) // O5
C6

(1)
NL

6,2 // O2
C6

(3) // 0,

and we have deg(N∨�2(C6);ℙ4(9)) = −1. Now we have :

i) N�2(C6);ℙ4 = O(8)⊕O(8)⊕O(14) ⇐⇒ N∨�2(C6);ℙ4(9) = O(1)⊕O(1)⊕O(−3);

ii) N�2(C6);ℙ4 = O(8)⊕O(9)⊕O(13) ⇐⇒ N∨�2(C6);ℙ4(9) = O(−2)⊕O ⊕O(1);

iii) N�2(C6);ℙ4 = O(8)⊕O(10)⊕O(10) ⇐⇒ N∨�2(C6);ℙ4(9) = O(−1)⊕O(−1)⊕O(1);

iv) N�2(C6);ℙ4(−6) = O(9)⊕O(9)⊕O(10) ⇐⇒ N∨�2(C6);ℙ4(9) = O(−1)⊕O ⊕O.
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Again we will denote by NL
6,2(1) the following matrix:

NL
6,2(1) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10 a11 a12 a13 a14 0 0 0 0 0

−2a11 −2a12 −2a13 −2a14 −2a15 a10 a11 a12 a13 a14
a12 a13 a14 a15 a16 −2a11 −2a12 −2a13 −2a14 −2a15
0 0 0 0 0 a12 a13 a14 a15 a16
a20 a21 a22 a23 a24 0 0 0 0 0

−2a21 −2a22 −2a23 −2a24 −2a25 a20 a21 a22 a23 a24
a22 a23 a24 a25 a26 −2a21 −2a22 −2a23 −2a24 −2a25
0 0 0 0 0 a22 a23 a24 a25 a26

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the map of the following exact sequence:

0 // H0(N∨�2(C6);ℙ4(9)) // H0(O5
C6

(1))
NL

6,2(1)// H0(O2
C6

(3)) // H1(N∨�2(C6);ℙ4(9)) // 0,

so that ℎ0(N∨�2(C6);ℙ4(9)) = 10− rankNL
6,2(1).

Proposition 3.4.13. The splitting type of the normal bundle N�2(C6),ℙ4 is:

i) (9, 9, 10) if and only if rank(NL
6,2) = 5;

ii) (8, 10, 10) if and only if rank(NL
6,2) = 4 and rank(NL

6,2(1)) = 8;

iii) (8, 9, 11) if and only if rank(NL
6,2) = 4 and rank(NL

6,2(1)) = 7;

iv) (8, 8, 12) if and only if rank(NL
6,2) = 3.

Theorem 3.4.14. If the centre of projection L ∼= ℙ1 belongs to a pencil of 4−secant ℙ3

to the rational normal curve C6 in ℙ6, then N�2(C6);ℙ4
∼= O(9)2 ⊕O(10).

We will indicate with ExpCodim the codimension of the general determinantal

variety of the same type and with ConjCodim the following one:∑
i,j

max{ni − nj − 1, 0},

where (n1, n2, n3) is the splitting type of N�2(C6),ℙ3 . In the �fth column of the fol-

lowing matrix we have indicated the codimension calculated by Macaulay2 symbolic

calculation software.
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Splitting of Rank of Rank of Codim ExpCodim ConjCodim Degree

N�2(C6),ℙ3 NL
6,2 NL

6,2(1) with M2

(9, 9, 10) 5

(8, 10, 10) 4 8 2 2 2
(
6
4

)
(8, 9, 11) 4 7 3 3 3

(
6
4

)
⋅
(
10
7

)
(8, 8, 12) 3 6 6 6 1
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Main Theorem for Normal Bundle

Proposition 3.4.15. The generic splitting type of a vector bundle ℱ of rank rank(NL
n,k)−

k on ℙ1 and deg(ℱ∨(n + 2)) = −2k such that ℱ ∼=
⊕rank(NL

n,k)−k
i=0 O(li) with li ≥ n + 3

is the following:

((n+ 2 +B)A−2k+B⋅A, (n+ 3 +B)2k−B⋅A).

where we have indicated A = rank(NL
n,k)− k and B = ⌊ 2k

rank(NL
n,k)−k

⌋.

By Theorem 3.3.9 and Theorem 3.4.10 we have covered all the possible cases and

we can state the main result of this chapter, which is the following by the above

proposition:

Theorem 3.4.16 (Main Theorem for Normal Bundle). The following conditions are

equivalent:

i) the centre of projection L ∼= ℙk−1 is general in the (irreducible) variety of those

ℙk−1 which belongs to a linear system Φ of a�ne dimension n − 1 − rank(NL
n,k)

of (n− 2)−secant ℙn−3 to the rational normal curve Cn in ℙn;

ii) the curve of degree n projected from L = ℙk−1 has N�k(Cn);ℙn−k
∼= O(n+2)n−1−rank(N

L
n,k)⊕

O(n + 2 + B)A−2k+B⋅A ⊕ O(n + 3 + B)2k−B⋅A, where we have indicated A =

rank(NL
n,k)− k and B = ⌊ 2k

rank(NL
n,k)−k

⌋.

Corollary 3.4.17. Let n ≥ k + 3(n− 1− rank(NL
n,k))− 1.The variety of linear spaces

L ∼= ℙk−1 that belong to a linear system Φ of a�ne dimension n − 1 − rank(NL
n,k) of

(n−2)−secant ℙn−3 to the rational normal curve Cn in ℙn is an irreducible component

of codimension:

(n− 1− rankNL
n,k)(3k − rankNL

n,k),

of Nn
n−k((n + 2)n−1−rank(N

L
n,k), (n + 2 + B)A−2k+B⋅A, (n + 3 + B)2k−B⋅A), where we have

indicated A = rank(NL
n,k)− k and B = ⌊ 2k

rank(NL
n,k)−k

⌋.

Theorem 3.4.18. The varieties of rational curves C of degree n in ℙn−k whose normal
bundle NC,ℙn−k has the summand OC(n+ 2)� for 0 ≤ � ≤ n− k − 2 are irreducible.
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3.5 Further Questions

At the end of this thesis we want to introduce some interesting open problems:

i) What happens geometrically in the unknown cases?

ii) What is the geometric meaning of NL
n,k(d) and TLn,k(d)?

iii) Is it true that codimNn
n−k(n1, ..., nn−k−1) = �(n1, ..., nn−k−1) in all cases?

iv) What happens if both splittings are �xed?

v) What happens in the Elliptic Case?

The �rst two questions are clearly related and they are very important to complete

the classi�cation of the subschemes of Hilbert Scheme of rational curves with �xed de-

gree and splitting type of normal bundle, unfortunately we have only few clue obtained

with software Macaulay2.

We stress that in our thesis we have found only cases for which the codimension of

variety Nn
n−k(n1, ..., nn−k−1) is the same of the conjectured codimension on the third

question. We don't have any counterexample yet, so it seems very hopeful.

The fourth question was investigated by Ramella (see [Ramella, 1993]), but only in

the case of rational space curves, no much it is known for general case.

For the last we note that the situation of the splitting of vector bundle on elliptic

curves is more complicated, an analogous result as Grothendieck-Segre theorem is the

Atiyah teorem (see [Atiyah, 1957]). The splitting type of normal bundle to elliptic

curve was investigated by several mathematicians (see [Ellingsrud and Laksov, 1981],

[Hulek, 1983],[Hulek and Sacchiero, 1983]), but mostly for space elliptic curve. More-

over it is not known if the varieties where the splitting of the normal bundle is �xed

are irreducible.

We point out that the approach in the work of Ellingsrud and Laksov and in the

work of Hulek is to project the elliptic normal curve in some subspace, so it seems very

hopeful to look at the problem in similar way as made for rational curves.



Acknowledgements

I am very grateful to my advisor Professor Giorgio Ottaviani for the pa-

tience and the ability with which he followed me in this work giving very

useful advices and suggestions. I would also like to thank Professor Enrique

Arrondo for inviting me to Madrid and for his warm hospitality.

I would also like to thank my family and my friends for supporting me

all this time.



Bibliography

[Alexander and Hirschowitz, 1995] Alexander, J. and Hirschowitz, A. (1995). Polyno-

mial interpolation in several variables. J. Algebraic Geom., 4(2):201�222.

[Ascenzi, 1986] Ascenzi, M.-G. (1986). The restricted tangent bundle of a rational

curve on a quadric in P3. Proc. Amer. Math. Soc., 98(4):561�566.

[Atiyah, 1957] Atiyah, M. F. (1957). Vector bundles over an elliptic curve. Proc.

London Math. Soc. (3), 7:414�452.

[Bruguières, 1985] Bruguières, A. (1985). Filtration de Harder-Narasimhan et strati-

�cation de Shatz. In Moduli of stable bundles over algebraic curves (Paris, 1983),

volume 54 of Progr. Math., pages 81�104. Birkhäuser Boston, Boston, MA.

[Brun and Hirschowitz, 1984] Brun, J. and Hirschowitz, A. (1984). Variété des droites

sauteuses du �bré instanton général. Compositio Math., 53(3):325�336. With an

appendix by J. Bingener.

[Carlini, 2002] Carlini, E. (2002). Varieties of simultaneous sums of power for binary

forms. Matematiche (Catania), 57(1):83�97 (2004).

[Carlini and Chipalkatti, 2003] Carlini, E. and Chipalkatti, J. (2003). On Waring's

problem for several algebraic forms. Comment. Math. Helv., 78(3):494�517.

[Chiantini and Ciliberto, 2002] Chiantini, L. and Ciliberto, C. (2002). The Grassman-

nians of secant varieties of curves are not defective. Indag. Math. (N.S.), 13(1):23�28.

[Ciliberto, 1987] Ciliberto, C. (1987). On the Hilbert scheme of curves of maximal

genus in a projective space. Math. Z., 194(3):351�363.

[Dionisi and Fontanari, 2001] Dionisi, C. and Fontanari, C. (2001). Grassman defec-

tivity à la Terracini. Matematiche (Catania), 56(2):245�255 (2003). PRAGMATIC,

2001 (Catania).

112



BIBLIOGRAPHY 113

[Drezet and Le Potier, 1985] Drezet, J.-M. and Le Potier, J. (1985). Fibrés stables et

�brés exceptionnels sur P2. Ann. Sci. École Norm. Sup. (4), 18(2):193�243.

[Eisenbud, 1988] Eisenbud, D. (1988). Linear sections of determinantal varieties.

Amer. J. Math., 110(3):541�575.

[Eisenbud, 2005] Eisenbud, D. (2005). The geometry of syzygies, volume 229 of Grad-

uate Texts in Mathematics. Springer-Verlag, New York. A second course in commu-

tative algebra and algebraic geometry.

[Eisenbud et al., 2005] Eisenbud, D., Green, M., Hulek, K., and Popescu, S. (2005).

Restricting linear syzygies: algebra and geometry. Compos. Math., 141(6):1460�1478.

[Eisenbud and Van de Ven, 1981] Eisenbud, D. and Van de Ven, A. (1981). On the

normal bundles of smooth rational space curves. Math. Ann., 256(4):453�463.

[Eisenbud and Van de Ven, 1982] Eisenbud, D. and Van de Ven, A. (1982). On the

variety of smooth rational space curves with given degree and normal bundle. Invent.

Math., 67(1):89�100.

[Ellingsrud and Laksov, 1981] Ellingsrud, G. and Laksov, D. (1981). The normal bun-

dle of elliptic space curves of degree 5. In 18th Scandinavian Congress of Mathe-

maticians (Aarhus, 1980), volume 11 of Progr. Math., pages 258�287. Birkhäuser

Boston, Mass.

[Ellingsrud and Strømme, 1996] Ellingsrud, G. and Strømme, S. A. (1996). Bott's

formula and enumerative geometry. J. Amer. Math. Soc., 9(1):175�193.

[Gel′fand et al., 1994] Gel′fand, I. M., Kapranov, M. M., and Zelevinsky, A. V. (1994).

Discriminants, resultants, and multidimensional determinants. Mathematics: The-

ory & Applications. Birkhäuser Boston Inc., Boston, MA.

[Ghione, 1977] Ghione, F. (1977). Quelques exemples de courbes de P3 dont le �bré

normal ne se décompose pas. C. R. Acad. Sci. Paris Sér. A-B, 285(5):A375�A377.

[Ghione and Ottaviani, 1992] Ghione, F. and Ottaviani, G. (1992). A tribute to Cor-

rado Segre. In Complex projective geometry (Trieste, 1989/Bergen, 1989), volume

179 of London Math. Soc. Lecture Note Ser., pages 175�188. Cambridge Univ. Press,

Cambridge.



BIBLIOGRAPHY 114

[Ghione and Sacchiero, 1980] Ghione, F. and Sacchiero, G. (1980). Normal bundles of

rational curves in P3. Manuscripta Math., 33(2):111�128.

[Gri�ths and Harris, 1994] Gri�ths, P. and Harris, J. (1994). Principles of algebraic

geometry. Wiley Classics Library. John Wiley & Sons Inc., New York. Reprint of

the 1978 original.

[Grothendieck, 1957] Grothendieck, A. (1957). Sur la classi�cation des �brés holomor-

phes sur la sphère de Riemann. Amer. J. Math., 79:121�138.

[Gruson et al., 1983] Gruson, L., Lazarsfeld, R., and Peskine, C. (1983). On a theorem

of Castelnuovo, and the equations de�ning space curves. Invent. Math., 72(3):491�

506.

[Harris, 1995] Harris, J. (1995). Algebraic geometry, volume 133 of Graduate Texts in

Mathematics. Springer-Verlag, New York. A �rst course, Corrected reprint of the

1992 original.

[Hartshorne, 1977] Hartshorne, R. (1977). Algebraic geometry. Springer-Verlag, New

York. Graduate Texts in Mathematics, No. 52.

[Hein, 1997] Hein, G. (1997). The tangent bundle of P2 restricted to plane curves. In

Complex analysis and geometry (Trento, 1995), volume 366 of Pitman Res. Notes

Math. Ser., pages 137�140. Longman, Harlow.

[Hein and Kurke, 1996] Hein, G. and Kurke, H. (1996). Restricted tangent bundle on

space curves. In Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry

(Ramat Gan, 1993), volume 9 of Israel Math. Conf. Proc., pages 283�294, Ramat

Gan. Bar-Ilan Univ.

[Hirschowitz, 1987] Hirschowitz, A. (1987). Rank techniques and jump strati�cations.

In Vector bundles on algebraic varieties (Bombay, 1984), volume 11 of Tata Inst.

Fund. Res. Stud. Math., pages 159�205. Tata Inst. Fund. Res., Bombay.

[Hulek, 1983] Hulek, K. (1983). Projective geometry of elliptic curves. In Algebraic

geometry�open problems (Ravello, 1982), volume 997 of Lecture Notes in Math.,

pages 228�266. Springer, Berlin.

[Hulek and Sacchiero, 1983] Hulek, K. and Sacchiero, G. (1983). On the normal bundle

of elliptic space curves. Arch. Math. (Basel), 40(1):61�68.



BIBLIOGRAPHY 115

[Iarrobino and Kanev, 1999] Iarrobino, A. and Kanev, V. (1999). Power sums, Goren-

stein algebras, and determinantal loci, volume 1721 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin. Appendix C by Iarrobino and Steven L. Kleiman.

[Ilardi et al., 2009] Ilardi, G., Supino, P., and Vallès, J. (2009). Geometry of syzygies

via Poncelet varieties. Boll. Unione Mat. Ital. (9), 2(3):579�589.

[Kaji, 1985] Kaji, H. (1985). On the normal bundles of rational space curves. Math.

Ann., 273(1):163�176.

[Landsberg and Ottaviani, 2010a] Landsberg, J. M. and Ottaviani, G. (2010a). Equa-

tions for secant varieties to Veronese varieties. ArXiv e-prints.

[Landsberg and Ottaviani, 2010b] Landsberg, J. M. and Ottaviani, G. (2010b). Equa-

tions for secant varieties via vector bundles. ArXiv e-prints.

[Landsberg and Teitler, 2010] Landsberg, J. M. and Teitler, Z. (2010). On the ranks

and border ranks of symmetric tensors. Found. Comput. Math., 10(3):339�366.

[Lazarsfeld, 1980] Lazarsfeld, R. (1980). A Barth-type theorem for branched coverings

of projective space. Math. Ann., 249(2):153�162.

[Le Potier, 1997] Le Potier, J. (1997). Lectures on vector bundles, volume 54 of Cam-

bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

Translated by A. Maciocia.

[Macaulay, 1994] Macaulay, F. S. (1994). The algebraic theory of modular systems.

Cambridge Mathematical Library. Cambridge University Press, Cambridge. Revised

reprint of the 1916 original, With an introduction by Paul Roberts.

[Nakano, 1955] Nakano, S. (1955). Tangential vector bundle and Todd canonical sys-

tems of an algebraic variety. Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math., 29:145�149.

[Okonek et al., 1980] Okonek, C., Schneider, M., and Spindler, H. (1980). Vector bun-

dles on complex projective spaces, volume 3 of Progress in Mathematics. Birkhäuser

Boston, Mass.

[Ottaviani, 1987] Ottaviani, G. (1987). A class of n-bundles on Gr(k, n). J. Reine

Angew. Math., 379:182�208.



BIBLIOGRAPHY 116

[Ottaviani and Vallès, 2001] Ottaviani, G. and Vallès, J. (2001). Moduli of vector

bundles and group action. Lecture notes for 24rd Autumn School in Algebraic

Geometry, Poland.

[Papantonopoulou, 1977] Papantonopoulou, A. (1977). Curves in Grassmann varieties.

Nagoya Math. J., 66:121�137.

[Peternell and Sommese, 2000] Peternell, T. and Sommese, A. J. (2000). Ample vec-

tor bundles and branched coverings. Comm. Algebra, 28(12):5573�5599. With an

appendix by Robert Lazarsfeld, Special issue in honor of Robin Hartshorne.

[Peternell and Sommese, 2004] Peternell, T. and Sommese, A. J. (2004). Ample vector

bundles and branched coverings. II. In The Fano Conference, pages 625�645. Univ.

Torino, Turin.

[Piene, 1977] Piene, R. (1977). Numerical characters of a curve in projective n-space. In

Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos.

Math., Oslo, 1976), pages 475�495. Sijtho� and Noordho�, Alphen aan den Rijn.

[Ramanathan, 1983] Ramanathan, A. (1983). Deformations of principal bundles on

the projective line. Invent. Math., 71(1):165�191.

[Ramella, 1990] Ramella, L. (1990). La strati�cation du schéma de Hilbert des courbes

rationnelles de Pn par le �bré tangent restreint. C. R. Acad. Sci. Paris Sér. I Math.,

311(3):181�184.

[Ramella, 1993] Ramella, L. (1993). Sur les schémas dé�nissant les courbes rationnelles

lisses de P3 ayant �bré normal et �bré tangent restreint �xés. Mém. Soc. Math.

France (N.S.), 54:ii+74.

[Ran, 2007] Ran, Z. (2007). Normal bundles of rational curves in projective spaces.

Asian J. Math., 11(4):567�608.

[Ranestad and Schreyer, 2000] Ranestad, K. and Schreyer, F.-O. (2000). Varieties of

sums of powers. J. Reine Angew. Math., 525:147�181.

[Sacchiero, 1980] Sacchiero, G. (1980). Normal bundles of rational curves in projective

space. Ann. Univ. Ferrara Sez. VII (N.S.), 26:33�40 (1981).

[Sacchiero, 1982] Sacchiero, G. (1982). On the varieties parametrizing rational space

curves with �xed normal bundle. Manuscripta Math., 37(2):217�228.



BIBLIOGRAPHY 117

[Sernesi, 2006] Sernesi, E. (2006). Deformations of algebraic schemes, volume 334 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-

ematical Sciences]. Springer-Verlag, Berlin.

[Simonis, 1971] Simonis, J. (1971). A class of indecomposable algebraic vector bundles.

Math. Ann., 192:262�278.

[Verdier, 1983] Verdier, J. (1983). Two dimensional �-models and harmonic maps from

S2 to S2n. In Serdaroglu, M. and Ínönü, E., editors, Group Theoretical Methods in

Physics, volume 180 of Lecture Notes in Physics, pages 136�141. Springer Berlin /

Heidelberg.

[Zak, 1993] Zak, F. L. (1993). Tangents and secants of algebraic varieties, volume

127 of Translations of Mathematical Monographs. American Mathematical Society,

Providence, RI. Translated from the Russian manuscript by the author.


