Il teorema di Cartan-Dieudonné sulle simmetrie (riflessioni)

versione 9.4.08

Definizione 0.1 Una isometria di \mathbf{A}^n è una funzione $f: \mathbf{A}^n \to \mathbf{A}^n$ tale che $\forall P, Q \in \mathbf{A}^n$ si ha |Q - P| = |f(Q) - f(Q)|, cioè f conserva le distanze tra punti.

Le isometrie formano un gruppo, dove l'operazione è la composizione.

Definizione 0.2 Sia $H \subset \mathbf{A}^n$ un iperpiano e π_H la proiezione ortogonale su H. La simmetria rispetto a H è definita da $s_H(x) = -x + 2\pi_H(x)$ per $x \in \mathbf{A}^n$.

 s_H è una isometria, il cui luogo dei punti fissi è H stesso. Se l'equazione di H è ax - b = 0 allora abbiamo $s_H(x) = x - 2\frac{ax - b}{|a|^2}a$. In particolare $s_H(x) = Ax + c$ dove A è una matrice ortogonale e $c \in \mathbf{A}^n$.

Ricordiamo che l'asse di due punti distinti $P,Q \in \mathbf{A}^n$ è l'iperpiano H luogo dei punti equidistanti da P e Q. Precisamente abbiamo che $H = \frac{P+Q}{2} + < Q - P >^{\perp}$, cioè H è ortogonale a Q - P e passa per il punto medio $\frac{P+Q}{2}$. In particolare s_H porta P in Q e viceversa.

Proposizione 0.3 Una isometria $f: \mathbf{A}^n \to \mathbf{A}^n$ tale che Fix(f) = H è un iperpiano, è la simmetria rispetto a H.

Dimostrazione Se $P \notin H$, considero la retta r per P e la sua proiezione ortogonale $\pi_H(P)$. Siccome f fissa H, sarà fissata anche la direzione ortogonale a H, e quindi f(r) è ancora ortogonale a H e passa per $f(\pi_H(P)) = \pi_H(P)$, pertanto f(r) = r. Siccome f(P) e P sono equidistanti da $\pi_H(P)$, segue $P - \pi_H(P) = \pi_H(P) - f(P)$, da cui $f(P) = -P + 2\pi_H(P)$ come volevamo.

Teorema 0.4 Sia $f: \mathbf{A}^n \to \mathbf{A}^n$ una isometria tale che dim $Fix(f) \ge n-c$ per qualche $c \in \mathbf{N}$. Allora f è composizione di al più c simmetrie rispetto a iperpiani.

Dimostrazione Per c=1 è la proposizione precedente. Ragioniamo per induzione su c. Se f non è l'identitià allora esiste Q tale che $f(Q) \neq Q$. Sia H l'asse di Q e f(Q) e sia s la simmetria rispetto a H. Abbiamo per costruzione s(Q)=f(Q), da cui sf(Q)=Q, cioè $Q \in Fix(sf)$. Affermiamo che $Fix(f) \subseteq Fix(sf)$. Infatti se $Z \in Fix(f)$ abbiamo che Z è equidistante da Q e da f(Q), perché |f(Q)-Z|=|f(Q)-f(Z)=|Q-Z|. Quindi $Z \in H$, da cui s(Z)=Z e $Z \in Fix(sf)$. Pertanto $Fix(sf) \supseteq < Fix(f), Q) >$ che ha dimensione $\geq n-(c-1)$ e quindi per ipotesi induttiva $sf=s_1 \cdot s_2 \cdots s_t$ come volevamo dimostrare.

Teorema 0.5 (Cartan-Dieudonné) Sia $f: \mathbf{A}^n \to \mathbf{A}^n$ una isometria. Allora f è composizione di al più n+1 simmetrie rispetto a iperpiani.

Dimostrazione Possiamo applicare il teorema precedente per c = n + 1.

Corollario 0.6 Sia $f: \mathbf{A}^n \to \mathbf{A}^n$ una isometria. Allora f(x) = Ax + c dove $A \in \mathbb{R}^n$ una isometria.

(Seconda) Dimostrazione L'enunciato è vero per le riflessioni simmetrie e rimane vero per composizione.

Corollario 0.7 Sia $f: \mathbf{A}^n \to \mathbf{A}^n$ una isometria.

- (i) Per ogni $P, Q \in \mathbf{A}^n$ e per ogni $t \in \mathbf{R}$ vale f((1-t)P+tQ) = (1-t)f(P)+tf(Q).
- (ii) Più in generale per ogni $P_1, \ldots, P_k \in \mathbf{A}^n$ e per ogni $t_1, \ldots, t_k \in \mathbf{R}$ con $\sum_{i=1}^k t_i = 1$ vale $f(\sum_{i=1}^k t_i P_i) = \sum_{i=1}^k t_i f(P_i)$.
 - (iii) Il luogo dei punti fissi $Fix(f) = \{P|f(P) = P\}$ è un sottospazio affine.

Dimostrazione L'enunciato segue dal corollario precedente.

Corollario 0.8 (i) Sia $f: \mathbf{A}^2 \to \mathbf{A}^2$ una isometria. Allora f è composizione di al più 3 simmetrie assiali (riflessioni). Se f conserva l'orientazione allora è composizione di 2 simmetrie assiali oppure è l'identità.

(ii) Sia $f: \mathbf{A}^3 \to \mathbf{A}^3$ una isometria. Allora f è composizione di al più 4 simmetrie rispetto a piani. Se f non conserva l'orientazione allora è composizione di al più 3 simmetrie rispetto a piani.

Dimostrazione L'enunciato segue dal Teor. 0.5.