Introduction to Tensor Spaces Doctoral course in Mathematics, 2024/25 University of Florence

Choose and solve 3 exercises among the following.

- 1. Let $f = x^3 \pm 12xy^2$. Compute the apolar ideal f^{\perp} and decompose f as the sum of two cubes over \mathbb{C} . Is the construction possible over \mathbb{R} or modifications are needed ?
- 2. Let $V_{n-1} \subset \mathbb{C}^n$ be the standard representation of the symmetric group Σ_n . Find a basis of V_{n-1} in terms of the canonical basis of \mathbb{C}^n . Compute the character $\chi_{V_{n-1}} \colon \Sigma_n \to \mathbb{C}$ of the standard representation.
- 3. Let $\lambda = \begin{bmatrix} 1 & 2 \\ 3 \end{bmatrix}$. Compute the symmetrizer c_{λ} and its square c_{λ}^2 as elements of the group algebra $\mathbb{C}\Sigma_3$.
- 4. Let V be a complex vector space of dimension 5 with basis e_i , i = 0, ..., 4. Consider the variety

$$Gr(\mathbb{P}^1, \mathbb{P}(V)) \subset \mathbb{P}(\wedge^2 V)$$

consisting of decomposable tensors. For any $\omega \in \wedge^2 V$ consider the map $C_{\omega} \colon V^{\vee} \to V$ given by the natural contraction. Prove that C_{ω} is skew-symmetric and that $[\omega] \in Gr(\mathbb{P}^1, \mathbb{P}(V))$ if and only if the rank of C_{ω} is ≤ 2 . For any Young diagram λ describe the Schubert cells $X_{\lambda} \subset Gr(\mathbb{P}^1, \mathbb{P}(V))$, that is describe its representatives as 2×5 matrices and the dimension of intersection $[\omega] \cap \langle e_i, \ldots, e_4 \rangle$ for $i = 1, \ldots, 4$.