
APOLARITY THEORY

GIORGIO OTTAVIANI

Abstract. Apolarity Theory, starting from binary froms, including equations for
secant varieties to rational normal curves.

1. The dual ring

Let V be an n + 1 dimensional C-vector space and denote its dual by V ∨.
We also consider the symmetric algebras S = C[x0, . . . , xn] := Sym(V ) and T =
C[∂0, . . . , ∂n] := Sym(V ∨). As the labeling of the variables suggests we let T act
linearly on S by formal differentiation. This action will be indicated by a dot, e.g.,
g · f for f ∈ S and g ∈ T . We note that g1 · (g2 · f) = (g1g2) · f for all f ∈ S
and all g1, g2 ∈ T . Moreover, given multi-indices α = (α0, . . . , αn) ∈ (Z≥0)

n+1 and
β = (β0, . . . , βn) ∈ (Z≥0)

n+1 we introduce the shortcuts

∂α := ∂α0
0 ∂α1

1 · · · ∂αn
n and xβ := xβ0

0 xβ1

1 · · ·xβn
n

as well as

|α| :=
n∑

i=0

αi , α! :=
n∏

i=0

αi! and

(
d

α

)
:=

d!

α!
=

d!

α0! · · ·αn!
,

where in the latter d = |α|.

Lemma 1.1. Let α and β be multi-indices with |α| = |β|, then

∂α · xβ =

{
α! if α = β

0 if α ̸= β

Proof. Clearly, ∂α · xα = α! by the rules of formal differentiation. On the other
hand, if α ̸= β then |α| = |β| yields some j such that αj > βj. The latter implies
∂α · xβ = 0. □

Let us point out a direct consequence of Lemma 1.1. The bilinear map

(1.1) Symd(V ∨)× Symd(V ) → C, (g, f) 7→ g · f

is a dual pairing. It gives an isomorphism Symd(V ∨) ∼=
(
Symd(V )

)∨
under which

(∂α)|α|=d becomes the dual basis of
(
(α!)−1xα

)
|α|=d

.

Lemma 1.2. Let g ∈ Td = Symd(V ∨) and let l =
∑n

i=0 cixi ∈ S1 = Sym1(V ) = V ,
where ci ∈ C. Then g · ld = d! g(c0, c1, . . . , cn).

1
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Proof. The multinomial theorem gives

ld =
∑
|β|=d

(
d

β

)
cβxβ and we can write g =

∑
|α|=d

gα∂
α

with gα ∈ C. Applying Lemma 1.1 we conclude

g · ld =
∑
|α|=d

gαc
αα!

(
d

α

)
=

∑
|α|=d

gαc
αd! = d! g(c0, c1, . . . , cn) ,

which is the claim. □

2. Generalities and Apolarity Theory for binary forms

Definition 2.1. The annihilator or apolar ideal of f ∈ Symd(V ) is the homoge-
neous ideal

f⊥ :=
{
g ∈ Sym(V ∨) | g · f = 0

}
of Sym(V ∨). Its d-th homogeneous part (f⊥)d is called the socle of f⊥. Moreover,
as f⊥ is homogeneous, we can consider the graded ring

Af := Sym(V ∨)/(f⊥) =
∞⊕
e=0

Syme(V ∨)/(f⊥)e ,

which is called the apolar ring of f .

The notation Af is quite common in the literature. To avoid confusion, let us
point out that the apolar ring is not related to localization at all.

Remark 2.2. Let f ∈ Sd = Symd(V ), f ̸= 0.

(1) The socle (f⊥)d has codimension one in the C-vector space Symd(V ∨).
(2) If k > d, then (f⊥)k = Symk(V ∨).
(3) By part (2) the graded C-algebra Af is Artinian, because (Af )k = 0 for all

k > d and (Af )e is finite dimensional for all e ≤ d.

The following proposition will be needed to prove the Apolarity Lemma, Theo-
rem 2.13.

Proposition 2.3. Let f ∈ Symd(V ). The apolar ideal f⊥ is determined by its socle
(f⊥)d, namely for all e < d

(f⊥)e =
[
(f⊥)d : Md−e

]
e
:=

{
g ∈ Te | ∀h ∈ Md−e : (gh) · f = 0

}
,

where M := (∂0, . . . , ∂n) is the irrelevant ideal of T .

Proof. Since f⊥ is an ideal, the inclusion (f⊥)e ⊆ [(f⊥)d : Md−e]e follows immedi-
ately. Conversely, for g ∈ [(f⊥)d : Md−e]e we have (g ∂α) · f = ∂α · (g · f) = 0 for
all multi-indices α with |α| = d− e. Together with Lemma 1.1 this implies that all
coefficients of g · f ∈ Sd−e are zero. Thus g · f = 0, i.e., g ∈ (f⊥)e. □

The next proposition is equivalent to saying that Af is a Gorenstein Artinian
ring.
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Proposition 2.4. Let f ∈ Symd(V ) and e ∈ {0, 1, . . . , d}. The multiplication

(Af )e × (Af )d−e → (Af )d ∼= C
is a perfect pairing, that is, given [g] ∈ (Af )e, if [gt] = 0 ∀[t] ∈ (Af )d−e then [g] = 0.
In particular, dimC(Af )e = dimC(Af )d−e.

Proof. We write [g] for the equivalence class of g ∈ T in Af = T/(f⊥). By symmetry,
it is enough to show that the pairing is non-degenerate in one component. Let
[t] ∈ (Af )e with [tu] = 0 in (Af )d for all [u] ∈ (Af )d−e. In particular, tu ∈ (f⊥)d
for all u ∈ Md−e ⊆ Td−e, i.e., t ∈ [(f⊥)d : Md−e]e. Finally, Proposition 2.3 implies
t ∈ (f⊥)e, i.e., [t] = 0 in (Af )e. □

The above proposition says that any graded Artinian ring of socle dimension one
is Gorenstein. Macaulay Theorem states that any graded Artinian ring of socle
dimension one is isomorphic to Af for some f . Moreover Af is isomorphic to Ag if
and only if f and g differ by a scalar multiple. Indeed f can be recovered (up to
scalar multiple) by the ring structure of Af from the composition

SymdV ∨ −→ Symd(Af )1−→ (Af )d ≃ C
which corresponds to f , seen as multilinear map. In the same way any Artinian ring
A of socle dimension one gives a polynomial f by the same construction, namely
the composition

SymdV ∨ −→ Symd(A)1−→ (A)d ≃ C.

Example 2.5. Let f = xα ∈ S be a monomial for some multi-index α. Then

f⊥ =
(
∂α0+1
0 , . . . , ∂αn+1

n

)
and Af = C[∂0, . . . , ∂n]/(∂α0+1

0 , . . . , ∂αn+1
n ) .

Since Af has Krull dimension zero and is generated by homogeneous elements of
degree one, it holds that degAf = dimC Af = (α0 + 1)(α1 + 1) · · · (αn + 1).

Next, we turn to the main result of this section, the Apolarity Lemma. It was
a smart idea due to Sylvester to link the differential operators killing f with the
decompositions of f as sum of powers of linear forms.

To formulate the statement, recall that we identify Symd(V ∨) with the space
of homogeneous polynomials on V , compare Remark ?? b). Therefore, we view
Sym(V ∨) as the homogeneous coordinate ring of P(V ). For a closed subscheme
Z ⊆ P(V ) let IZ ⊆ Sym(V ∨) denote the unique saturated ideal corresponding to Z;
it is the vanishing ideal of Z.

Now, we state the reduced version of the Apolarity Lemma.

Theorem 2.6 (Apolarity Lemma, reduced version).
Let Z = {[l1], . . . , [lk]} ⊆ P(V ) be a subscheme of closed reduced points with vanishing
ideal IZ ⊆ Sym(V ∨). Then, for f ∈ Symd(V )\{0},

IZ ⊆ f⊥ ⇔ ∃ ci ∈ C : f =
k∑

i=1

cil
d
i .

This is a particular case of next Theorem 2.13 and we wait for the proof until we
prove Theorem 2.13.
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Theorem 2.7 (Reduced Apolarity Lemma for binary forms).
Let f ∈ C[x, y]d and pick distinct (αi : βi) ∈ P1 for i = 1, . . . , k. Then

k∏
i=1

(βi∂x − αi∂y) · f = 0 ⇔ ∃ ci ∈ C : f =
k∑

i=1

ci(αix+ βiy)
d .

Since C is algebraically closed, we may write cil
d
i = (l′i)

d, where l′i a linear form
with [li] = [l′i], by taking a d-th root of ci.

It is well known that the solutions of the wave equation

fxx − fyy = 0

have the form

(2.1) f = g(x− y) + h(x+ y)

for functions g, h. The key point to get these solutions is the factorization

(2.2) ∂xx − ∂yy = (∂x + ∂y)(∂x − ∂y)

where the two factors of (2.2) correspond to the two summands of (2.1). When
the space of solutions is given by homogeneous polynomials of degree d, we get the
expression

f = c1(x− y)d + c2(x+ y)d

The following result generalizes this fact to any polynomial homogeneous differ-
ential equation in two variables.

Theorem 2.8 (Apolarity Lemma for binary forms).
Let f ∈ C[x, y]d, pick distinct (αi : βi) ∈ P1 and integers 1 ≤ mi ≤ d for i = 1, . . . , k.
Then

k∏
i=1

(βi∂x − αi∂y)
mi · f = 0

⇐⇒ ∃ ci(x, y) ∈ C[x, y]mi−1 : f =
k∑

i=1

ci(x, y)(αix+ βiy)
d−mi+1 .

Proof. ⇐= is straightforward since the summand ci(x, y)(αix + βiy)
d−mi+1 is killed

by (βi∂x − αi∂y)
mi , indeed

(βi∂x − αi∂y)
[
ci(x, y)(αix+ βiy)

d−mi+1
]
= (βi(ci)x − αi(ci)y) (αix + βiy)

d−mi+1

and so on for higher powers until the first parenthesis vanishes by degree reasons.
=⇒ follows by dimensional reasons.
Indeed, let δ =

∑k
i=1mi. It is clear that the contraction

SymdC2 → Symd−δC2

f 7→
∏k

i=1(βi∂x − αi∂y)
mi · f

is surjective since every linear term (βi∂x −αi∂y) gives a surjective contraction. We
need to prove that

dim

{
k∑

i=1

ci(x, y)(αix+ βiy)
d−mi+1| deg ci = mi − 1

}
= δ
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***give above details on osculating spaces

The space corresponds to the osculating space
∑

Tmi−1
(βix−αiy)

.

We compute its orthogonal(∑
Tmi−1
(βix−αiy)

)⊥
=

⋂(
Tmi−1
(βix−αiy)

)⊥
=

(⋂
(βix− αiy)

mi

)
d

which has dimension d− δ+1 since it is the space of polynomials of degree d having
the root (αi, βi) of order ≥ mi. □

***Example Harmonic polynomials in two variables (give later with SO-action...)

Lemma 2.9. Let ϕ1, ϕ2 ∈ C[x, y] = S be polynomials without common factors.

(1) The ideal I = (ϕ1, ϕ2) fills the polynomial ring in degree ≥ deg ϕ1+deg ϕ2−1
and has codimension 1 in degree deg ϕ1 + deg ϕ2 − 2 =: d.

(2) The whole ideal can be reconstructed by its top piece Id by the formula

Ie =
[
Id : Md−e

]
e

where M := (x, y) is the irrelevant ideal of S.

Proof. Let di = deg ϕi for i = 1, 2. (1) is straightforward by the exact sequence

0−→R(−d1 − d2)−→R(−d1)⊕R(−d2)−→ I −→ 0

(2) Let g ∈
[
Id : Md−e

]
e
, then g ·Md−e ∈ Id For e = d− 1 the assumption amounts

to gx = αϕ1 + βϕ2, gy = γϕ1 + δϕ2 for certain forms α, β, γ, δ. We get (αy −
γx)ϕ1 + (βy − δx)ϕ2 = 0, this polynomial has degree d + 1 = d1 + d2 − 1, hence
there are no syzygies of ϕ1, ϕ2 in such degree and we get αy− γx = 0, βy− δx = 0,
hence x divides α and β, so that g ∈ Ie. We iterate this argument. For e = d − 2
let g of degree e such that gx2, gxy, gy2 belong to Ie+2, hence gx and gy belong to
Ie+1 and g ∈ Ie. The same argument works for anyl smaller e. □

Remark 2.10. Lemma 2.9 holds for any regular sequence of n elements (ϕ1, . . . , ϕn) ∈
C[x1, . . . , xn], the socle degree is

∑
(deg ϕi − 1).

Theorem 2.11. The apolar ideal f⊥ is the complete intersection (ϕ1, ϕ2) with ϕi

without common factors, such that deg ϕ1 + deg ϕ2 = d+ 2.

Proof. Let ϕ1 ∈ f⊥ of minimal degree, let ϕ2 ∈ f⊥ \ (ϕ1), of minimal degree. we
denote di = deg ϕi for i = 1, 2, hence by our construction d1 ≤ d2. We first observe
that the symmetry property of Proposition 2.4 implies

(2.3) d2 ≤ d− d1 + 2.

Indeed the Hilbert function of f⊥ (namely the sequence dim(Af )i) coincides with the
Hilbert function of (ϕ1) in degree < d2 and the Hilbert function of (ϕ1) (starting from
degree 0 until degree d2−1) is 1, 2, . . . , d1, d1, . . . , d1 and if we have d2 > d−d1+2, the
symmetry fails since the sequence of d1 should continue only until degree d−(d1−1).

Assume now that ϕ1, ϕ2 have a common factor of positive degree, so we may
write ϕ1 = ϕ0h0, ϕ1 = ϕ0h1 with deg ϕ0 = q ≥ 1 and h0, h1 without common
factor. Note that ϕ0f is killed by both h0 and h1. By Lemma 2.9 all differential
operators of degree (d1 − q) + (d2 − q) − 1 kill ϕ0f . Since ϕ0f is nonzero by the
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minimality of ϕ1, it follows (d1 − q) + (d2 − q)− 1 > deg(ϕ0f) = d− q which implies
d1 + d2 ≥ d + q + 2 which contradicts (2.3), so we have that q = 0 and ϕ1, ϕ2 have
no common factors. Repeating the same argument with ϕ0 scalar (so that q = 0)
gives the sought equality d1 + d2 = d+ 2.
By the Lemma (2.9) the ideal (ϕ1, ϕ2) has codimension 1 in degree d, and it is

contained in f⊥, which has also codimension 1 in degree d by Proposition 2.4. It
follows that (ϕ1, ϕ2)d = f⊥

d , so that by Lemma 2.9 (2) and Proposition 2.3 the ideals
(ϕ1, ϕ2) and f⊥ coincide in any degree as we wanted. □

Corollary 2.12. A general binary form of odd degree d has a canonical form
∑ d+1

2
i=1 ldi

Proof. The minimal generator of f⊥ is unique by Theorem 2.11 since d + 2 is odd.
Then apply Theorem 2.8 to this minimal generator. □

*** Computation of rank, rank strata and closure
*** (k+1)-Minors of catalecticant as equations for k-secant
*** Singularities of k-secant
*** Exercise: polynomials in more variables such that f⊥ is a complete inter-

section. Likely GL(V)-equivalent to monomials, that is split with only n+1 linear
forms. But maybe something more, think at binary forms. —compare work by
Peterson “apolar ideal of a product of linear forms” —Boij, Migliore, Mirò-Roig,
NonLefschetz locus

2.1. Apolarity theory in more variables.

Theorem 2.13 (Apolarity Lemma, scheme version).
Let Z ⊆ P(V ) be a closed zero-dimensional subscheme with vanishing ideal IZ ⊆
Sym(V ∨) and let νd : P(V ) → P(Symd(V )), [l] 7→ [ld] be the Veronese embedding.
Then, for f ∈ Symd(V )\{0},

IZ ⊆ f⊥ ⇔ [f ] ∈ ⟨νd(Z)⟩ .

In general, if X ⊆ PN is a closed reduced subscheme, then ⟨X⟩ is given by the
usual projective linear span of the closed points of X. Thus, if Z (and hence νd(Z))
is reduced in Theorem 2.13 we obtain Theorem 2.6.

Proof of Theorem 2.13. First, we note that the coordinate ring of P(Symd(V )) is
R := Sym

(
(Symd(V ))∨

)
. In particular, R1 = (Symd(V ))∨. It is a property of the

Veronese embedding that linear forms vanishing on νd(Z) correspond to homoge-
neous forms of degree d vanishing on Z, i.e.,

(2.4) R1 ∩ Iνd(Z) = (Symd(V ))∨ ∩ Iνd(Z)
∼= Symd(V ∨) ∩ IZ .

We can make this explicit as follows.
Viewing g ∈ Symd(V ∨) as a linear form on Symd(V ) via the dual pairing from

Equation (1.1), we have that ⟨g, f ′⟩ = g ·f ′, where ⟨g, f ′⟩ denotes the function value
of g at f ′ ∈ Symd(V ). In particular, ⟨g, f⟩ = g · f . This identification is allowed,
i.e., it respects (2.4), because for l =

∑
i cixi ∈ V we have ⟨g, ld⟩ = g · ld = 0 if and

only if g(l) = g(c0, . . . , cn) = 0, by Lemma 1.2.
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Now, [f ] ∈ ⟨νd(Z)⟩ if and only if every linear form in R1 = (Symd(V ))∨, that
vanishes on νd(Z) also vanishes on f . Using the identification (2.4) via the action
of differential forms, we have argued that [f ] ∈ ⟨νd(Z)⟩ if and only if (IZ)d ⊆ (f⊥)d.
We end the proof by showing that (IZ)d ⊆ (f⊥)d is equivalent to IZ ⊆ f⊥. Clearly,

the latter implies the former. For the converse recall that for all e > d, (f⊥)e =
Syme(V ∨) and hence (IZ)e ⊆ (f⊥)e. Using (IZ)d ⊆ (f⊥)d and then Proposition 2.3
yields for all 1 ≤ e < d

(IZ)e ⊆
[
(IZ)d : Md−e

]
e
⊆

[
(f⊥)d : Md−e

]
e
= (f⊥)e .

Altogether, we have IZ ⊆ f⊥ as desired. □

The scheme-theoretic version of the Apolarity Lemma is used to characterize a
notion, which was of increasing importance during the last years. Namely, the cactus
rank of a symmetric tensor f ∈ Symd(V ) is the least length of any zero-dimensional
subscheme Z ⊆ Pn with IZ ⊆ f⊥. Actually, cactus rank already appeared as scheme
length in [2] and a generalization of the above definition is due to Buczynska and
Buczynski in [1].
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