APOLARITY THEORY

GIORGIO OTTAVIANI

ABSTRACT. Applarity Theory, starting from binary froms, including equations for secant varieties to rational normal curves.

1. The dual ring

Let V be an n+1 dimensional C-vector space and denote its dual by V^{\vee} . We also consider the symmetric algebras $S = \mathbb{C}[x_0, \ldots, x_n] := \text{Sym}(V)$ and T = $\mathbb{C}[\partial_0,\ldots,\partial_n] := \operatorname{Sym}(V^{\vee})$. As the labeling of the variables suggests we let T act linearly on S by formal differentiation. This action will be indicated by a dot, e.g., $g \cdot f$ for $f \in S$ and $g \in T$. We note that $g_1 \cdot (g_2 \cdot f) = (g_1g_2) \cdot f$ for all $f \in S$ and all $g_1, g_2 \in T$. Moreover, given multi-indices $\alpha = (\alpha_0, \ldots, \alpha_n) \in (\mathbf{Z}_{>0})^{n+1}$ and $\beta = (\beta_0, \ldots, \beta_n) \in (\mathbf{Z}_{\geq 0})^{n+1}$ we introduce the shortcuts

$$\partial^{\alpha} := \partial_0^{\alpha_0} \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} \quad \text{and} \quad x^{\beta} := x_0^{\beta_0} x_1^{\beta_1} \cdots x_n^{\beta_n}$$

as well as

$$|\alpha| := \sum_{i=0}^{n} \alpha_i, \quad \alpha! := \prod_{i=0}^{n} \alpha_i! \quad \text{and} \quad \begin{pmatrix} d \\ \alpha \end{pmatrix} := \frac{d!}{\alpha!} = \frac{d!}{\alpha_0! \cdots \alpha_n!},$$

where in the latter $d = |\alpha|$.

Lemma 1.1. Let α and β be multi-indices with $|\alpha| = |\beta|$, then

$$\partial^{\alpha} \cdot x^{\beta} = \begin{cases} \alpha! & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta \end{cases}$$

Proof. Clearly, $\partial^{\alpha} \cdot x^{\alpha} = \alpha!$ by the rules of formal differentiation. On the other hand, if $\alpha \neq \beta$ then $|\alpha| = |\beta|$ yields some j such that $\alpha_j > \beta_j$. The latter implies $\partial^{\alpha} \cdot x^{\beta} = 0.$ \square

Let us point out a direct consequence of Lemma 1.1. The bilinear map

(1.1)
$$\operatorname{Sym}^{d}(V^{\vee}) \times \operatorname{Sym}^{d}(V) \to \mathbb{C}, \quad (g, f) \mapsto g \cdot f$$

is a dual pairing. It gives an isomorphism $\operatorname{Sym}^d(V^{\vee}) \cong (\operatorname{Sym}^d(V))^{\vee}$ under which $(\partial^{\alpha})_{|\alpha|=d}$ becomes the dual basis of $((\alpha!)^{-1}x^{\alpha})_{|\alpha|=d}$.

Lemma 1.2. Let $g \in T_d = \text{Sym}^d(V^{\vee})$ and let $l = \sum_{i=0}^n c_i x_i \in S_1 = \text{Sym}^1(V) = V$, where $c_i \in \mathbb{C}$. Then $g \cdot l^{\overline{d}} = d! g(c_0, c_1, \dots, c_n)$.

Proof. The multinomial theorem gives

$$l^d = \sum_{|\beta|=d} {d \choose \beta} c^{\beta} x^{\beta}$$
 and we can write $g = \sum_{|\alpha|=d} g_{\alpha} \partial^{\alpha}$

with $g_{\alpha} \in \mathbb{C}$. Applying Lemma 1.1 we conclude

$$g \cdot l^d = \sum_{|\alpha|=d} g_{\alpha} c^{\alpha} \alpha! \binom{d}{\alpha} = \sum_{|\alpha|=d} g_{\alpha} c^{\alpha} d! = d! g(c_0, c_1, \dots, c_n),$$

which is the claim.

2. Generalities and Apolarity Theory for binary forms

Definition 2.1. The **annihilator** or **apolar ideal** of $f \in \text{Sym}^d(V)$ is the homogeneous ideal

$$f^{\perp} := \left\{ g \in \operatorname{Sym}(V^{\vee}) \mid g \cdot f = 0 \right\}$$

of Sym (V^{\vee}) . Its *d*-th homogeneous part $(f^{\perp})_d$ is called the **socle** of f^{\perp} . Moreover, as f^{\perp} is homogeneous, we can consider the graded ring

$$A_f := \operatorname{Sym}(V^{\vee})/(f^{\perp}) = \bigoplus_{e=0}^{\infty} \operatorname{Sym}^e(V^{\vee})/(f^{\perp})_e,$$

which is called the **apolar ring** of f.

The notation A_f is quite common in the literature. To avoid confusion, let us point out that the apolar ring is *not* related to localization at all.

Remark 2.2. Let $f \in S_d = \text{Sym}^d(V)$, $f \neq 0$.

- (1) The socle $(f^{\perp})_d$ has codimension one in the \mathbb{C} -vector space $\operatorname{Sym}^d(V^{\vee})$.
- (2) If k > d, then $(f^{\perp})_k = \operatorname{Sym}^k(V^{\vee})$.
- (3) By part (2) the graded \mathbb{C} -algebra A_f is Artinian, because $(A_f)_k = 0$ for all k > d and $(A_f)_e$ is finite dimensional for all $e \leq d$.

The following proposition will be needed to prove the Apolarity Lemma, Theorem 2.13.

Proposition 2.3. Let $f \in \text{Sym}^d(V)$. The apolar ideal f^{\perp} is determined by its socle $(f^{\perp})_d$, namely for all e < d

$$(f^{\perp})_e = \left[(f^{\perp})_d : \mathcal{M}^{d-e} \right]_e := \left\{ g \in T_e \mid \forall h \in \mathcal{M}^{d-e} \colon (gh) \cdot f = 0 \right\},$$

where $\mathcal{M} := (\partial_0, \ldots, \partial_n)$ is the irrelevant ideal of T.

Proof. Since f^{\perp} is an ideal, the inclusion $(f^{\perp})_e \subseteq [(f^{\perp})_d : \mathcal{M}^{d-e}]_e$ follows immediately. Conversely, for $g \in [(f^{\perp})_d : \mathcal{M}^{d-e}]_e$ we have $(g \partial^{\alpha}) \cdot f = \partial^{\alpha} \cdot (g \cdot f) = 0$ for all multi-indices α with $|\alpha| = d - e$. Together with Lemma 1.1 this implies that all coefficients of $g \cdot f \in S_{d-e}$ are zero. Thus $g \cdot f = 0$, i.e., $g \in (f^{\perp})_e$. \Box

The next proposition is equivalent to saying that A_f is a *Gorenstein* Artinian ring.

APOLARITY THEORY

Proposition 2.4. Let $f \in \text{Sym}^d(V)$ and $e \in \{0, 1, \dots, d\}$. The multiplication $(A_f)_e \times (A_f)_{d-e} \to (A_f)_d \cong \mathbb{C}$

is a perfect pairing, that is, given $[g] \in (A_f)_e$, if $[gt] = 0 \ \forall [t] \in (A_f)_{d-e}$ then [g] = 0. In particular, $\dim_{\mathbb{C}}(A_f)_e = \dim_{\mathbb{C}}(A_f)_{d-e}$.

Proof. We write [g] for the equivalence class of $g \in T$ in $A_f = T/(f^{\perp})$. By symmetry, it is enough to show that the pairing is non-degenerate in one component. Let $[t] \in (A_f)_e$ with [tu] = 0 in $(A_f)_d$ for all $[u] \in (A_f)_{d-e}$. In particular, $tu \in (f^{\perp})_d$ for all $u \in \mathcal{M}^{d-e} \subseteq T_{d-e}$, i.e., $t \in [(f^{\perp})_d : \mathcal{M}^{d-e}]_e$. Finally, Proposition 2.3 implies $t \in (f^{\perp})_e$, i.e., [t] = 0 in $(A_f)_e$.

The above proposition says that any graded Artinian ring of socle dimension one is Gorenstein. Macaulay Theorem states that any graded Artinian ring of socle dimension one is isomorphic to A_f for some f. Moreover A_f is isomorphic to A_g if and only if f and g differ by a scalar multiple. Indeed f can be recovered (up to scalar multiple) by the ring structure of A_f from the composition

$$\operatorname{Sym}^d V^{\vee} \longrightarrow \operatorname{Sym}^d (A_f)_1 \longrightarrow (A_f)_d \simeq \mathbb{C}$$

which corresponds to f, seen as multilinear map. In the same way any Artinian ring A of socle dimension one gives a polynomial f by the same construction, namely the composition

$$\operatorname{Sym}^{d} V^{\vee} \longrightarrow \operatorname{Sym}^{d}(A)_{1} \longrightarrow (A)_{d} \simeq \mathbb{C}.$$

Example 2.5. Let $f = x^{\alpha} \in S$ be a monomial for some multi-index α . Then

$$f^{\perp} = \left(\partial_0^{\alpha_0+1}, \dots, \partial_n^{\alpha_n+1}\right) \text{ and } A_f = \mathbb{C}[\partial_0, \dots, \partial_n]/(\partial_0^{\alpha_0+1}, \dots, \partial_n^{\alpha_n+1}).$$

Since A_f has Krull dimension zero and is generated by homogeneous elements of degree one, it holds that deg $A_f = \dim_{\mathbb{C}} A_f = (\alpha_0 + 1)(\alpha_1 + 1)\cdots(\alpha_n + 1)$.

Next, we turn to the main result of this section, the Apolarity Lemma. It was a smart idea due to Sylvester to link the differential operators killing f with the decompositions of f as sum of powers of linear forms.

To formulate the statement, recall that we identify $\operatorname{Sym}^d(V^{\vee})$ with the space of homogeneous polynomials on V, compare Remark ?? b). Therefore, we view $\operatorname{Sym}(V^{\vee})$ as the homogeneous coordinate ring of $\mathbb{P}(V)$. For a closed subscheme $Z \subseteq \mathbb{P}(V)$ let $I_Z \subseteq \operatorname{Sym}(V^{\vee})$ denote the unique saturated ideal corresponding to Z; it is the vanishing ideal of Z.

Now, we state the reduced version of the Apolarity Lemma.

Theorem 2.6 (Apolarity Lemma, reduced version). Let $Z = \{[l_1], \ldots, [l_k]\} \subseteq \mathbb{P}(V)$ be a subscheme of closed reduced points with vanishing ideal $I_Z \subseteq \text{Sym}(V^{\vee})$. Then, for $f \in \text{Sym}^d(V) \setminus \{0\}$,

$$I_Z \subseteq f^{\perp} \quad \Leftrightarrow \quad \exists c_i \in \mathbb{C} \colon f = \sum_{i=1}^k c_i l_i^d.$$

This is a particular case of next Theorem 2.13 and we wait for the proof until we prove Theorem 2.13.

GIORGIO OTTAVIANI

Theorem 2.7 (Reduced Apolarity Lemma for binary forms). Let $f \in \mathbb{C}[x, y]_d$ and pick distinct $(\alpha_i : \beta_i) \in \mathbb{P}^1$ for i = 1, ..., k. Then

$$\prod_{i=1}^{k} (\beta_i \partial_x - \alpha_i \partial_y) \cdot f = 0 \quad \Leftrightarrow \quad \exists c_i \in \mathbb{C} \colon f = \sum_{i=1}^{k} c_i (\alpha_i x + \beta_i y)^d.$$

Since \mathbb{C} is algebraically closed, we may write $c_i l_i^d = (l_i')^d$, where l_i' a linear form with $[l_i] = [l_i']$, by taking a *d*-th root of c_i .

It is well known that the solutions of the wave equation

$$f_{xx} - f_{yy} = 0$$

have the form

(2.1)
$$f = g(x - y) + h(x + y)$$

for functions g, h. The key point to get these solutions is the factorization

(2.2)
$$\partial_{xx} - \partial_{yy} = (\partial_x + \partial_y)(\partial_x - \partial_y)$$

where the two factors of (2.2) correspond to the two summands of (2.1). When the space of solutions is given by homogeneous polynomials of degree d, we get the expression

$$f = c_1(x - y)^d + c_2(x + y)^d$$

The following result generalizes this fact to any polynomial homogeneous differential equation in two variables.

Theorem 2.8 (Apolarity Lemma for binary forms). Let $f \in \mathbb{C}[x, y]_d$, pick distinct $(\alpha_i : \beta_i) \in \mathbb{P}^1$ and integers $1 \le m_i \le d$ for $i = 1, \ldots, k$. Then

$$\prod_{i=1}^{k} (\beta_i \partial_x - \alpha_i \partial_y)^{m_i} \cdot f = 0$$

$$\iff \exists c_i(x, y) \in \mathbb{C}[x, y]_{m_i - 1} \colon f = \sum_{i=1}^{k} c_i(x, y) (\alpha_i x + \beta_i y)^{d - m_i + 1}.$$

Proof. \Leftarrow is straightforward since the summand $c_i(x, y)(\alpha_i x + \beta_i y)^{d-m_i+1}$ is killed by $(\beta_i \partial_x - \alpha_i \partial_y)^{m_i}$, indeed

 $(\beta_i\partial_x - \alpha_i\partial_y) \left[c_i(x,y)(\alpha_i x + \beta_i y)^{d-m_i+1} \right] = (\beta_i(c_i)_x - \alpha_i(c_i)_y) (\alpha_i x + \beta_i y)^{d-m_i+1}$ and so on for higher powers until the first parenthesis vanishes by degree reasons.

 \implies follows by dimensional reasons.

Indeed, let $\delta = \sum_{i=1}^{k} m_i$. It is clear that the contraction

$$\begin{array}{rcl} \operatorname{Sym}^{d} \mathbb{C}^{2} & \to & \operatorname{Sym}^{d-\delta} \mathbb{C}^{2} \\ f & \mapsto & \prod_{i=1}^{k} (\beta_{i} \partial_{x} - \alpha_{i} \partial_{y})^{m_{i}} \cdot f \end{array}$$

is surjective since every linear term $(\beta_i \partial_x - \alpha_i \partial_y)$ gives a surjective contraction. We need to prove that

$$\dim\left\{\sum_{i=1}^{k} c_i(x,y)(\alpha_i x + \beta_i y)^{d-m_i+1} | \deg c_i = m_i - 1\right\} = \delta$$

***give above details on osculating spaces

The space corresponds to the osculating space $\sum T_{(\beta_i x - \alpha_i y)}^{m_i - 1}$.

We compute its orthogonal

$$\left(\sum T^{m_i-1}_{(\beta_i x - \alpha_i y)}\right)^{\perp} = \bigcap \left(T^{m_i-1}_{(\beta_i x - \alpha_i y)}\right)^{\perp} = \left(\bigcap (\beta_i x - \alpha_i y)^{m_i}\right)_d$$

which has dimension $d - \delta + 1$ since it is the space of polynomials of degree d having the root (α_i, β_i) of order $\geq m_i$.

***Example Harmonic polynomials in two variables (give later with SO-action...)

Lemma 2.9. Let $\phi_1, \phi_2 \in \mathbb{C}[x, y] = S$ be polynomials without common factors.

- (1) The ideal $I = (\phi_1, \phi_2)$ fills the polynomial ring in degree $\geq \deg \phi_1 + \deg \phi_2 1$ and has codimension 1 in degree $\deg \phi_1 + \deg \phi_2 - 2 =: d$.
- (2) The whole ideal can be reconstructed by its top piece I_d by the formula

$$I_e = \left[I_d \colon \mathcal{M}^{d-e} \right]_e$$

where $\mathcal{M} := (x, y)$ is the irrelevant ideal of S.

Proof. Let $d_i = \deg \phi_i$ for i = 1, 2. (1) is straightforward by the exact sequence

$$0 \longrightarrow R(-d_1 - d_2) \longrightarrow R(-d_1) \oplus R(-d_2) \longrightarrow I \longrightarrow 0$$

(2) Let $g \in [I_d: \mathcal{M}^{d-e}]_e$, then $g \cdot \mathcal{M}^{d-e} \in I_d$ For e = d - 1 the assumption amounts to $gx = \alpha \phi_1 + \beta \phi_2$, $gy = \gamma \phi_1 + \delta \phi_2$ for certain forms α , β , γ , δ . We get $(\alpha y - \gamma x)\phi_1 + (\beta y - \delta x)\phi_2 = 0$, this polynomial has degree $d + 1 = d_1 + d_2 - 1$, hence there are no syzygies of ϕ_1 , ϕ_2 in such degree and we get $\alpha y - \gamma x = 0$, $\beta y - \delta x = 0$, hence x divides α and β , so that $g \in I_e$. We iterate this argument. For e = d - 2let g of degree e such that gx^2 , gxy, gy^2 belong to I_{e+2} , hence gx and gy belong to I_{e+1} and $g \in I_e$. The same argument works for anyl smaller e.

Remark 2.10. Lemma 2.9 holds for any regular sequence of n elements $(\phi_1, \ldots, \phi_n) \in \mathbb{C}[x_1, \ldots, x_n]$, the socle degree is $\sum (\deg \phi_i - 1)$.

Theorem 2.11. The apolar ideal f^{\perp} is the complete intersection (ϕ_1, ϕ_2) with ϕ_i without common factors, such that deg $\phi_1 + \text{deg } \phi_2 = d + 2$.

Proof. Let $\phi_1 \in f^{\perp}$ of minimal degree, let $\phi_2 \in f^{\perp} \setminus (\phi_1)$, of minimal degree. we denote $d_i = \deg \phi_i$ for i = 1, 2, hence by our construction $d_1 \leq d_2$. We first observe that the symmetry property of Proposition 2.4 implies

$$(2.3) d_2 \le d - d_1 + 2.$$

Indeed the Hilbert function of f^{\perp} (namely the sequence $\dim(A_f)_i$) coincides with the Hilbert function of (ϕ_1) in degree $< d_2$ and the Hilbert function of (ϕ_1) (starting from degree 0 until degree d_2-1) is $1, 2, \ldots, d_1, d_1, \ldots, d_1$ and if we have $d_2 > d-d_1+2$, the symmetry fails since the sequence of d_1 should continue only until degree $d-(d_1-1)$.

Assume now that ϕ_1 , ϕ_2 have a common factor of positive degree, so we may write $\phi_1 = \phi_0 h_0$, $\phi_1 = \phi_0 h_1$ with deg $\phi_0 = q \ge 1$ and h_0 , h_1 without common factor. Note that $\phi_0 f$ is killed by both h_0 and h_1 . By Lemma 2.9 all differential operators of degree $(d_1 - q) + (d_2 - q) - 1$ kill $\phi_0 f$. Since $\phi_0 f$ is nonzero by the

GIORGIO OTTAVIANI

minimality of ϕ_1 , it follows $(d_1 - q) + (d_2 - q) - 1 > \deg(\phi_0 f) = d - q$ which implies $d_1 + d_2 \ge d + q + 2$ which contradicts (2.3), so we have that q = 0 and ϕ_1 , ϕ_2 have no common factors. Repeating the same argument with ϕ_0 scalar (so that q = 0) gives the sought equality $d_1 + d_2 = d + 2$.

By the Lemma (2.9) the ideal (ϕ_1, ϕ_2) has codimension 1 in degree d, and it is contained in f^{\perp} , which has also codimension 1 in degree d by Proposition 2.4. It follows that $(\phi_1, \phi_2)_d = f_d^{\perp}$, so that by Lemma 2.9 (2) and Proposition 2.3 the ideals (ϕ_1, ϕ_2) and f^{\perp} coincide in any degree as we wanted.

Corollary 2.12. A general binary form of odd degree d has a canonical form $\sum_{i=1}^{\frac{d+1}{2}} l_i^d$

Proof. The minimal generator of f^{\perp} is unique by Theorem 2.11 since d + 2 is odd. Then apply Theorem 2.8 to this minimal generator.

*** Computation of rank, rank strata and closure

- *** (k+1)-Minors of catalecticant as equations for k-secant
- *** Singularities of k-secant

*** Exercise: polynomials in more variables such that f^{\perp} is a complete intersection. Likely GL(V)-equivalent to monomials, that is split with only n+1 linear forms. But maybe something more, think at binary forms. —compare work by Peterson "apolar ideal of a product of linear forms" —Boij, Migliore, Mirò-Roig, NonLefschetz locus

2.1. Applarity theory in more variables.

Theorem 2.13 (Apolarity Lemma, scheme version).

Let $Z \subseteq \mathbb{P}(V)$ be a closed zero-dimensional subscheme with vanishing ideal $I_Z \subseteq Sym(V^{\vee})$ and let $\nu_d \colon \mathbb{P}(V) \to \mathbb{P}(Sym^d(V)), [l] \mapsto [l^d]$ be the Veronese embedding. Then, for $f \in Sym^d(V) \setminus \{0\}$,

$$I_Z \subseteq f^{\perp} \quad \Leftrightarrow \quad [f] \in \langle \nu_d(Z) \rangle \,.$$

In general, if $X \subseteq \mathbb{P}^N$ is a closed reduced subscheme, then $\langle X \rangle$ is given by the usual projective linear span of the closed points of X. Thus, if Z (and hence $\nu_d(Z)$) is reduced in Theorem 2.13 we obtain Theorem 2.6.

Proof of Theorem 2.13. First, we note that the coordinate ring of $\mathbb{P}(\text{Sym}^d(V))$ is $R := \text{Sym}((\text{Sym}^d(V))^{\vee})$. In particular, $R_1 = (\text{Sym}^d(V))^{\vee}$. It is a property of the Veronese embedding that linear forms vanishing on $\nu_d(Z)$ correspond to homogeneous forms of degree d vanishing on Z, i.e.,

(2.4)
$$R_1 \cap I_{\nu_d(Z)} = (\operatorname{Sym}^d(V))^{\vee} \cap I_{\nu_d(Z)} \cong \operatorname{Sym}^d(V^{\vee}) \cap I_Z.$$

We can make this explicit as follows.

Viewing $g \in \text{Sym}^d(V^{\vee})$ as a linear form on $\text{Sym}^d(V)$ via the dual pairing from Equation (1.1), we have that $\langle g, f' \rangle = g \cdot f'$, where $\langle g, f' \rangle$ denotes the function value of g at $f' \in \text{Sym}^d(V)$. In particular, $\langle g, f \rangle = g \cdot f$. This identification is allowed, i.e., it respects (2.4), because for $l = \sum_i c_i x_i \in V$ we have $\langle g, l^d \rangle = g \cdot l^d = 0$ if and only if $g(l) = g(c_0, \ldots, c_n) = 0$, by Lemma 1.2.

APOLARITY THEORY

Now, $[f] \in \langle \nu_d(Z) \rangle$ if and only if every linear form in $R_1 = (\text{Sym}^d(V))^{\vee}$, that vanishes on $\nu_d(Z)$ also vanishes on f. Using the identification (2.4) via the action of differential forms, we have argued that $[f] \in \langle \nu_d(Z) \rangle$ if and only if $(I_Z)_d \subset (f^{\perp})_d$.

of differential forms, we have argued that $[f] \in \langle \nu_d(Z) \rangle$ if and only if $(I_Z)_d \subseteq (f^{\perp})_d$. We end the proof by showing that $(I_Z)_d \subseteq (f^{\perp})_d$ is equivalent to $I_Z \subseteq f^{\perp}$. Clearly, the latter implies the former. For the converse recall that for all e > d, $(f^{\perp})_e = \operatorname{Sym}^e(V^{\vee})$ and hence $(I_Z)_e \subseteq (f^{\perp})_e$. Using $(I_Z)_d \subseteq (f^{\perp})_d$ and then Proposition 2.3 yields for all $1 \leq e < d$

$$(I_Z)_e \subseteq \left[(I_Z)_d : \mathcal{M}^{d-e} \right]_e \subseteq \left[(f^{\perp})_d : \mathcal{M}^{d-e} \right]_e = (f^{\perp})_e.$$

Altogether, we have $I_Z \subseteq f^{\perp}$ as desired.

The scheme-theoretic version of the Apolarity Lemma is used to characterize a notion, which was of increasing importance during the last years. Namely, the *cactus* rank of a symmetric tensor $f \in \text{Sym}^d(V)$ is the least length of any zero-dimensional subscheme $Z \subseteq \mathbb{P}^n$ with $I_Z \subseteq f^{\perp}$. Actually, cactus rank already appeared as *scheme* length in [2] and a generalization of the above definition is due to Buczynska and Buczynski in [1].

References

- W. Buczyńska, J. Buczyński, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes J. Algebraic Geom, 23 (2014), no. 1, 63–90
- [2] A. Iarrobino, V. Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, 1721. Springer-Verlag, Berlin, 1999.

DIPARTIMENTO DI MATEMATICA E INFORMATICA "ULISSE DINI", UNIVERSITY OF FLORENCE, VIALE MORGAGNI 67/A, I-50134, FLORENCE, ITALY

 $Email \ address: \ \tt{giorgio.ottaviani} @unifi.it$