Special Session on Secant Varieties

and Related Topics

Giorgio Ottaviani

ottavian@math.unifi.it

www.math.unifi.it/users/ottavian

Content

 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties

Content

- 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties
- 2) Segre Varieties

Content

- 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties
- 2) Segre Varieties
- 3) Grassmann Varieties

Interpolation problem

• Fix k general points P_1, \ldots, P_k in the plane

Interpolation problem

- Fix k general points P_1, \ldots, P_k in the plane
- How many plane curves of degree d exist which are singular at P_1, \ldots, P_k ?

Interpolation problem

- Fix k general points P_1, \ldots, P_k in the plane
- How many plane curves of degree d exist which are singular at P₁,..., P_k?

The expected dimension of the linear system is $\max(\binom{d+2}{2} - 3k, 0)$

Campbell Theorem, 1892

Campbell Theorem
The dimension of the system of plane curves of degree *d*, singular at *k* general points, is max((^{d+2}₂) - 3k, 0) with the only exceptions

(d, k) = (2, 2) conics through two points
(d, k) = (4, 5) quartics through five points

Campbell Theorem, 1892

Campbell Theorem

The dimension of the system of plane curves of degree d, singular at k general points, is $\max(\binom{d+2}{2} - 3k, 0)$ with the only exceptions • (d, k) = (2, 2) conics through two points • (d, k) = (4, 5) quartics through five points

Campbell Theorem, 1892

Campbell Theorem

The dimension of the system of plane curves of degree d, singular at k general points, is $\max(\binom{d+2}{2} - 3k, 0)$ with the only exceptions • (d, k) = (2, 2) conics through two points • (d, k) = (4, 5) quartics through five points

Secant to Grassmann and Segre - p. 4/44

Terracini's work

 Campbell Theorem is reproved by Terracini (1913). Terracini's proof is a breakthrough.

Terracini's work

- Campbell Theorem is reproved by Terracini (1913). Terracini's proof is a breakthrough.
- Let $X_1, \ldots, X_s \subset \mathbf{P}^N$ be irreducible varieties. The join of X_1, \ldots, X_s is

$$J(X_1, \dots, X_s) := \bigcup_{x_i \in X_i} \langle x_1, \dots, x_s \rangle$$

where the overbar means Zariski closure.

Dimension of the join

Its virtual dimension is

Virt dim
$$J(X_1, ..., X_s) = \sum_{i=1}^s \dim X_i + (s-1)$$

and its expected dimension is

Exp dim
$$J(X_1, ..., X_s) = \min\{\sum_{i=1}^s \dim X_i + (s-1), N\}$$

 $\sigma_s(X) := \overline{J(sX)} = J(X, \dots, X)$ s times

$$\sigma_s(X) := J(sX) = J(\underbrace{X, \dots, X}_{s \text{ times}})$$

• Hence $\sigma_2(X)$ is the usual secant variety and we have the filtration $X = \sigma_1(X) \subset \sigma_2(X) \subset \sigma_3(X) \subset \dots$

$$\sigma_s(X) := J(sX) = J(\underbrace{X, \dots, X}_{s \text{ times}})$$

- Hence $\sigma_2(X)$ is the usual secant variety and we have the filtration $X = \sigma_1(X) \subset \sigma_2(X) \subset \sigma_3(X) \subset \dots$
- The minimal s such that $\sigma_s(X)$ fills the ambient space is called the typical rank and it is denoted by $\underline{R}(X)$.

$$\sigma_s(X) := J(sX) = J(\underbrace{X, \dots, X}_{s \text{ times}})$$

- Hence $\sigma_2(X)$ is the usual secant variety and we have the filtration $X = \sigma_1(X) \subset \sigma_2(X) \subset \sigma_3(X) \subset \dots$
- The minimal s such that $\sigma_s(X)$ fills the ambient space is called the typical rank and it is denoted by $\underline{R}(X)$.
- X is called defective if there exists a p such that $\dim \sigma_p(X) < \operatorname{Exp\,dim}(\sigma_p(X))$.

Terracini lemma

• Terracini Lemma Let $P_i \in X_i$ and $z \in P_1, \ldots, P_k > be general.$ Then

 $T_z J(X_1,\ldots,X_k) = \langle T_{x_1} X_1,\ldots,T_{x_k} X_k \rangle$

Terracini lemma

• Terracini Lemma Let $P_i \in X_i$ and $z \in P_1, \ldots, P_k > be general.$ Then

 $T_z J(X_1,\ldots,X_k) = \langle T_{x_1} X_1,\ldots,T_{x_k} X_k \rangle$

 Corollary Exceptional cases in polynomial interpolation correspond to defective Veronese varieties.

Alexander-Hirschowitz Theorem, (1995

Theorem[AH], Classification of defective Veronese varieties Let $d \ge 3$. $\sigma_s(v_d(\mathbf{P}^n))$ has the expected dimension with the only exceptions:

Equations of the exceptional cases, I

In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For φ ∈ S⁴V let A_φ: S²V[∨] → S²V be the contraction operator. Then det A_φ is the catalecticant invariant.

Equations of the exceptional cases, I

- In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For $\phi \in S^4V$ let $A_\phi: S^2V^{\vee} \to S^2V$ be the contraction operator. Then det A_ϕ is the catalecticant invariant.
- For n = 2 it has degree 6 and it gives the condition to express a homogeneous quartic polynomial in 3 variables as the sum of 5 fourth powers (Waring problem).

Equations of the exceptional cases, I

- In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For $\phi \in S^4V$ let $A_\phi: S^2V^{\vee} \to S^2V$ be the contraction operator. Then det A_ϕ is the catalecticant invariant.
- For n = 2 it has degree 6 and it gives the condition to express a homogeneous quartic polynomial in 3 variables as the sum of 5 fourth powers (Waring problem).
- Sketch of proof: If $\phi \in v_4(\mathbf{P}^2)$ then $rk(A_{\phi}) = 1$. If $\phi \in \sigma_5(v_4(\mathbf{P}^2))$ it follows that $rk(A_{\phi}) \leq 5$.

Equations of the exceptional cases, II

• In the case 4) let $\phi \in S^3 V$, where dim V = 5. Let $B_{\phi}: \Gamma^{2,2,1,1}V \to \Gamma^{2,1,1}V$ be the SL(V)-invariant contraction operator.

Equations of the exceptional cases, II

• In the case 4) let $\phi \in S^3V$, where dim V = 5. Let $B_{\phi}: \Gamma^{2,2,1,1}V \to \Gamma^{2,1,1}V$ be the SL(V)-invariant contraction operator.

Equations of the exceptional cases, II

• In the case 4) let $\phi \in S^3 V$, where dim V = 5. Let $B_{\phi}: \Gamma^{2,2,1,1}V \to \Gamma^{2,1,1}V$ be the SL(V)-invariant contraction operator.

• Theorem, arXiv:0712.2527 det $B_{\phi} = 2P(\phi)^3$ where P is the equation of $\sigma_7(v_3(\mathbf{P}^4))$, it has degree 15.

Waring problem for cubics

• Sketch of proof: If $\phi \in v_3(\mathbf{P}^4)$ then $rk(B_{\phi}) = 6$. If $\phi \in \sigma_7(v_3(\mathbf{P}^4))$ it follows that $rk(B_{\phi}) \leq 42$, while dim $\Gamma^{2,2,1,1}V = 45$.

Waring problem for cubics

- Sketch of proof: If $\phi \in v_3(\mathbf{P}^4)$ then $rk(B_{\phi}) = 6$. If $\phi \in \sigma_7(v_3(\mathbf{P}^4))$ it follows that $rk(B_{\phi}) \leq 42$, while dim $\Gamma^{2,2,1,1}V = 45$.
- $P(\phi) = 0$ gives the condition to express the homogeneous cubic polynomial ϕ in 5 variables as the sum of 7 cubes.

Sketch of proof of AH-Theorem,I

Let s = s' + s''. Specialize s' points on a hyperplane $X' = v_d(\mathbf{P}^{n-1}) \subset X = v_d(\mathbf{P}^n)$.

Sketch of proof of AH-Theorem,I

Let s = s' + s''. Specialize s' points on a hyperplane $X' = v_d(\mathbf{P}^{n-1}) \subset X = v_d(\mathbf{P}^n)$. Project from X' on $X'' = v_{d-1}(\mathbf{P}^n)$. Call π this projection.

Sketch of proof of AH-Theorem,I

Let s = s' + s''. Specialize s' points on a hyperplane $X' = v_d(\mathbf{P}^{n-1}) \subset X = v_d(\mathbf{P}^n)$. Project from X' on $X'' = v_{d-1}(\mathbf{P}^n)$. Call π this projection.

Sketch of proof of AH-Theorem,II

• Splitting Theorem for Veronese varieties If Dim J(s'X') = Virt Dim J(s'X') AND Dim J(s''X'', s'P) = Virt Dim J(s''X'', s'P)it follows that Dim J(sX) = Virt Dim J(sX).

Sketch of proof of AH-Theorem,II

- Splitting Theorem for Veronese varieties If Dim J(s'X') = Virt Dim J(s'X') AND Dim J(s''X'', s'P) = Virt Dim J(s''X'', s'P)it follows that Dim J(sX) = Virt Dim J(sX).
- May apply induction!

Sketch of proof of AH-Theorem,III

First difficulty: what is the starting case of the induction? Quadrics are defective. They correspond to the matrices of rank ≤ k inside the symmetric matrices of order n + 1. See next talk by C. Brambilla for a generalization to partial polynomial interpolation. Cubics become the starting case.

Sketch of proof of AH-Theorem,III

- First difficulty: what is the starting case of the induction? Quadrics are defective. They correspond to the matrices of rank ≤ k inside the symmetric matrices of order n + 1. See next talk by C. Brambilla for a generalization to partial polynomial interpolation. Cubics become the starting case.
- If we show that cubics are not defective for $n \ge 5$, then the inductive procedure shows that $\underline{\mathsf{R}}(v_d(\mathbf{P}^n)) \sim \binom{n+d}{d}/(n+1)$ if $n \to \infty$ or $d \to \infty$. (weak asympt. version of AH-theor.)

The tropical approach

- There is a nice tropical approach to the proof of A-H theorem.
 Draisma, Sullivant (tiling),
 - Miranda-Dimitrescu, Brannetti, ...

The tropical approach

- There is a nice tropical approach to the proof of A-H theorem.
 - Draisma, Sullivant (tiling), Miranda-Dimitrescu, Brannetti, ...
- As far as I know, at present the proof works for $n \leq 3$.

The case of Segre Varieties

• $\sigma_4(\mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2)$ and $\sigma_3(\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1)$ (four qubits) are the first defective cases.

The case of Segre Varieties

- $\sigma_4(\mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2)$ and $\sigma_3(\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1)$ (four qubits) are the first defective cases.
- In 1985, Lickteig completes previous work by Strassen and shows that

 $\mathbf{P}^n \times \mathbf{P}^n \times \mathbf{P}^n$

cant to Grassmann and Segre – p. 17/44

is never defective for $n \ge 3$.

Some cases where equations are known

• Landsberg and Manivel (2003) show that $\sigma_2(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k})$ is defined by the cubics of the various flattening, algebraically for k = 3 and set-theoretically for $k \ge 4$.

Some cases where equations are known

- Landsberg and Manivel (2003) show that $\sigma_2(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k})$ is defined by the cubics of the various flattening, algebraically for k = 3 and set-theoretically for $k \ge 4$.
- Allman and Rhodes (2004) extend the algebraic statement to k ≤ 5. Garcia, Sturmfels and Sullivant conjecture that this is true ∀k.

Some cases where equations are known

- Landsberg and Manivel (2003) show that $\sigma_2(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k})$ is defined by the cubics of the various flattening, algebraically for k = 3 and set-theoretically for $k \ge 4$.
- Allman and Rhodes (2004) extend the algebraic statement to k ≤ 5. Garcia, Sturmfels and Sullivant conjecture that this is true ∀k.
- Landsberg and Weyman (2006) have found equations for $\sigma_k(\mathbf{P}^1 \times \mathbf{P}^{n_2} \times \mathbf{P}^{n_3})$, $\sigma_2(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \mathbf{P}^{n_3} \times \mathbf{P}^{n_4})$ and $\sigma_3(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \mathbf{P}^{n_3})$

The unbalanced case

• Definition Let $n_1 \leq n_2 \leq \ldots \leq n_k$. $\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$ is called *balanced* if $\sum_{i=1}^k n_i \leq \prod_{i=1}^{k-1} (n_i + 1)$. Otherwise is called *unbalanced*.

The unbalanced case

- Definition Let $n_1 \leq n_2 \leq \ldots \leq n_k$. $\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$ is called *balanced* if $\sum_{i=1}^k n_i \leq \prod_{i=1}^{k-1} (n_i + 1)$. Otherwise is called *unbalanced*.
- Unbalanced means $n_i \ll n_k$

The unbalanced case

- Definition Let $n_1 \leq n_2 \leq \ldots \leq n_k$. $\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$ is called *balanced* if $\sum_{i=1}^k n_i \leq \prod_{i=1}^{k-1} (n_i + 1)$. Otherwise is called *unbalanced*.
- Unbalanced means $n_i \ll n_k$
- Catalisano-Geramita-Gimigliano (2006) find, in the unbalanced case, equations for $\sigma_s(\mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k})$ when *s* is sufficiently large and describe exactly which σ_s are defective. Unbalanced implies defective.

Many copies of \mathbf{P}^1

• Catalisano-Geramita-Gimigliano in 2005 prove that $\sigma_s(\mathbf{P}^1 \times \mathbf{P}^1 \times \ldots \times \mathbf{P}^1)$ is never defective, with at most one exception for any such variety.

Many copies of \mathbf{P}^1

- Catalisano-Geramita-Gimigliano in 2005 prove that $\sigma_s(\mathbf{P}^1 \times \mathbf{P}^1 \times \ldots \times \mathbf{P}^1)$ is never defective, with at most one exception for any such variety.
- The only known defective case is $\sigma_3(\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1)$ which has codimension 2, while the expected codimension is 1.

Inductive technique for Segre varieties

• Let $X = \mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$. Fix a linear subspace $\mathbf{P}^{n'_1} \subset \mathbf{P}^{n_1}$. Specialize s' points on $X' = \mathbf{P}^{n'_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$ and project from X' on $X'' = \mathbf{P}^{n''_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$, where $(n'_1 + 1) + (n''_1 + 1) = (n_1 + 1)$.

Inductive technique for Segre varieties

- Let $X = \mathbf{P}^{n_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$. Fix a linear subspace $\mathbf{P}^{n'_1} \subset \mathbf{P}^{n_1}$. Specialize s' points on $X' = \mathbf{P}^{n'_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$ and project from X' on $X'' = \mathbf{P}^{n''_1} \times \mathbf{P}^{n_2} \times \ldots \times \mathbf{P}^{n_k}$, where $(n'_1 + 1) + (n''_1 + 1) = (n_1 + 1)$.
- The difficulty is that, even if a point is not specialized, its tangent space meets < X' >.

The tangent spaces of Segre varieties

• The tangent space at $v_1 \otimes v_2 \otimes v_3$ is $V_1 \otimes v_2 \otimes v_3 + v_1 \otimes V_2 \otimes v_3 + v_1 \otimes v_2 \otimes V_3$. The three summands are $E(Q_1)$, $E(Q_2)$, $E(Q_3)$, where Q_i is the *i*-th quotient bundle and $E(Q_i)$ is the Poincaré dual of the Euler class of Q_i .

The splitting Theorem[AOP]

• Splitting Theorem for Segre Varieties [AOP] Let s = s' + s'', $a_i = a'_i + a''_i$. If

Dim $J(s'X', (a_1 + s'')E(Q_1'), a_2'E(Q_2), a_3'E(Q_3)) =$ Virt Dim $J(\ldots)$

AND

 $\text{Dim } J(s''X'', (a_1 + s')E(Q_1''), a_2''E(Q_2), a_3''E(Q_3)) = \text{Virt Dim } J(\ldots)$

then

Dim $J(sX, a_1E(Q_1), a_2E(Q_2), a_3E(Q_3)) =$ Virt Dim J(...)

The splitting Theorem[AOP]

• Splitting Theorem for Segre Varieties [AOP] Let s = s' + s'', $a_i = a'_i + a''_i$. If

Dim $J(s'X', (a_1 + s'')E(Q_1'), a_2'E(Q_2), a_3'E(Q_3)) =$ Virt Dim $J(\ldots)$

AND

Dim $J(s''X'', (a_1 + s')E(Q_1''), a_2''E(Q_2), a_3''E(Q_3)) =$ Virt Dim $J(\ldots)$

then

Dim $J(sX, a_1E(Q_1), a_2E(Q_2), a_3E(Q_3)) =$ Virt Dim J(...)

The same is true if the joins fill their ambient space.

Notation for statement T

The statement

 $Dim J(sX, a_1E(Q_1), a_2E(Q_2), a_3E(Q_3)) = ExpDim J(...)$ is denoted by

 $T(n_1, n_2, n_3; s; a_1, a_2, a_3)$

The goal is to prove $T(n_1, n_2, n_3; s; 0, 0, 0)$ for as many s as possible.

Example: $\sigma_6(\mathbf{P}^3 \times \mathbf{P}^3 \times \mathbf{P}^3)$

Example: $\sigma_6(\mathbf{P}^3 \times \mathbf{P}^3 \times \mathbf{P}^3)$ T(3, 3, 3; 6; 0, 0, 0)

Example: $\sigma_6(\mathbf{P}^3 \times \mathbf{P}^3 \times \mathbf{P}^3)$ T(3, 3, 3; 6; 0, 0, 0) \uparrow 2T(1, 3, 3; 3; 3, 0, 0)

```
Example: \sigma_6(\mathbf{P}^3 \times \mathbf{P}^3 \times \mathbf{P}^3)

T(3,3,3;6;0,0,0)

\uparrow

2T(1,3,3;3;3,0,0) \leftarrow 2T(1,1,3;1;2,2,0)

\uparrow

2T(1,1,3;2;1,1,0)
```

Example: $\sigma_6(\mathbf{P}^3 \times \mathbf{P}^3 \times \mathbf{P}^3)$ T(3, 3, 3; 6; 0, 0, 0) $2T(1,3,3;3;3,0,0) \leftarrow 2T(1,1,3;1;2,2,0)$ $2T(1, 1, 3; 2; 1, 1, 0) \leftarrow 2T(1, 1, 1; 1; 0, 1, 1)$

starting cases, I

• $X = P^1 \times P^1 \times P^1$ Up to permutation of the three factors the list of defective cases is (0; 0, 1, 3), (1; 0, 0, 2)

starting cases, I

- $X = \mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1$ Up to permutation of the three factors the list of defective cases is (0; 0, 1, 3), (1; 0, 0, 2)
- Why (1; 0, 0, 2) is defective ? Consider X as a pencil of smooth quadrics parametrized by the third factor. A point of X is a point of one of these quadrics, say Q. The two lines meet Q in two disjoint points, and the line spanned by these points meets every tangent plane of Q.

starting cases, II

• $P^1 \times P^1 \times P^2$ Up to permutation of the first two factors the list of minimal defective cases is (0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),(1; 0, 0, 2)

starting cases, II

- $P^1 \times P^1 \times P^2$ Up to permutation of the first two factors the list of minimal defective cases is (0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),(1; 0, 0, 2)
- We have also the lists for ${\bf P}^1\times {\bf P}^2\times {\bf P}^2$ and ${\bf P}^2\times {\bf P}^2\times {\bf P}^2$

starting cases, II

- $P^1 \times P^1 \times P^2$ Up to permutation of the first two factors the list of minimal defective cases is (0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),(1; 0, 0, 2)
- We have also the lists for ${\bf P}^1\times {\bf P}^2\times {\bf P}^2$ and ${\bf P}^2\times {\bf P}^2\times {\bf P}^2$
- Examples of applications of the inductive technique are $\underline{R(2^3)} = 5, \underline{R(2^4)} = 9, \underline{R(2^5)} = 23, \underline{R(3^3)} = 7,$ $\underline{R(3^4)} = 20, \underline{R(3^5)} = 64, \underline{R(3^6)} = 215,$

Asymptotic behaviour is non defective

Theorem [Abo, O., Peterson] Let X = (Pⁿ)^k, k ≥ 3. Let s_k := [^{(n+1)^k}/_{nk+1}] and δ_k := s_k mod (n + 1).
(i) If s ≤ s_k - δ_k then σ_s(X) has the expected dimension.
(ii) If s ≥ s_k - δ_k + n + 1 then σ_s(X) fills the ambient space.

Asymptotic behaviour is non defective

- Theorem [Abo, O., Peterson] Let X = (Pⁿ)^k, k ≥ 3. Let s_k := ⌊(n+1)^k/nk+1</sub>] and δ_k := s_k mod (n + 1).
 (i) If s ≤ s_k - δ_k then σ_s(X) has the expected dimension.
 (ii) If s ≥ s_k - δ_k + n + 1 then σ_s(X) fills the ambient space.
- Corollary on typical rank $\underline{\mathbf{R}}(n^k) \sim \frac{(n+1)^k}{nk+1}$ if $n \to \infty$ or $k \to \infty$.

A Conjecture on Segre varieties

Conjecture Let $d \ge 3$. $\sigma_s(\mathbf{P}^{n_1} \times \ldots \times \mathbf{P}^{n_d})$ has the expected dimension with the only exceptions:

		codim	exp. codim
1)	unbalanced		
2)	$\sigma_{rac{3n}{2}+1}(\mathbf{P}^2 imes\mathbf{P}^n imes\mathbf{P}^n), n ext{ even}$	1	0
3)	$\sigma_{2n+1}(\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^n \times \mathbf{P}^n)$	2	1
4)	$\sigma_5(\mathbf{P}^2 imes \mathbf{P}^3 imes \mathbf{P}^3)$	4	3

Conjecture true for $k \leq 6$

Theorem [Abo,O., Peterson] The conjecture for σ_k (Segre) is true if $k \le 6$.

Equations in the defective cases, I

In the unbalanced case([CGG]), and in the case $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^n \times \mathbf{P}^n$ ([CGG], Carlini), the flattening technique works.

Equations in the defective cases, II

- Consider the case $\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n = \mathbf{P}(U) \times \mathbf{P}(V) \times \mathbf{P}(V')$. For every $\phi \in U \otimes V \otimes V'$ define the contraction $A_{\phi}: U \otimes V^{\vee} \to \wedge^2 U \otimes V'$

Equations in the defective cases, II

- Consider the case $\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n = \mathbf{P}(U) \times \mathbf{P}(V) \times \mathbf{P}(V')$. For every $\phi \in U \otimes V \otimes V'$ define the contraction $A_{\phi}: U \otimes V^{\vee} \to \wedge^2 U \otimes V'$
- If P, Q, R are the three $(n+1) \times (n+1)$ slices of ϕ , the matrix representing A_{ϕ} is

$$\begin{bmatrix} 0 & P & -Q \\ -P & 0 & R \\ Q & -R & 0 \end{bmatrix}$$

Equations in the defective cases, III

• Theorem(Strassen, 1983, but in a different form) For n even, $det(A_{\phi})$ is the equation of $\sigma_{\frac{3n}{2}+1}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$, which has degree 3(n+1).

Equations in the defective cases, III

- Theorem(Strassen, 1983, but in a different form) For n even, $det(A_{\phi})$ is the equation of $\sigma_{\frac{3n}{2}+1}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$, which has degree 3(n+1).
- Sketch of proof: If $\phi \in \mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n$ then $rk(A_{\phi}) = 2$. If $\phi \in \sigma_{\frac{3n}{2}+1}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$ it follows that $rk(A_{\phi}) \leq 3n+2$, while $\dim U \otimes V^{\vee} = 3(n+1)$.

Equations in the defective cases, III

- Theorem(Strassen, 1983, but in a different form) For n even, $det(A_{\phi})$ is the equation of $\sigma_{\frac{3n}{2}+1}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$, which has degree 3(n+1).
- Sketch of proof: If $\phi \in \mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n$ then $rk(A_{\phi}) = 2$. If $\phi \in \sigma_{\frac{3n}{2}+1}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$ it follows that $rk(A_{\phi}) \leq 3n+2$, while $\dim U \otimes V^{\vee} = 3(n+1)$.
- When n is odd, the above determinant vanishes on $\sigma_{\frac{3n+1}{2}}(\mathbf{P}^2 \times \mathbf{P}^n \times \mathbf{P}^n)$, which has bigger codimension.

A Conjecture for Grassmannians

• Conjecture I Let $k \ge 2$. $\sigma_s(Gr(k, n))$ has the expected dimension with the only exceptions:

		codim	exp. codim
1)	$\sigma_3(Gr(2,6))$	1	0
2)	$\sigma_3(Gr(3,7))$	20	19
2')	$\sigma_4(Gr(3,7))$	6	2
3)	$\sigma_4(Gr(2,8))$	10	8

A Conjecture for Grassmannians

• Conjecture I Let $k \ge 2$. $\sigma_s(Gr(k, n))$ has the expected dimension with the only exceptions:

		codim	exp. codim
1)	$\sigma_3(Gr(2,6))$	1	0
2)	$\sigma_3(Gr(3,7))$	20	19
2')	$\sigma_4(Gr(3,7))$	6	2
3)	$\sigma_4(Gr(2,8))$	10	8

 All the examples have been written by Catalisano, Geramita, Gimigliano (2002), with the help of Catalano-Johnson.

Evidence for the conjecture

• Theorem The conjecture is true by Montecarlo computations for $n \le 14$ (McGillivray 2005) $n \le 16$ (Draisma 2006)

Evidence for the conjecture

- Theorem The conjecture is true by Montecarlo computations for $n \le 14$ (McGillivray 2005) $n \le 16$ (Draisma 2006)
- Theorem [Abo,O., Peterson] The conjecture for σ_k (Grassmann) is true if $k \leq 6$.

The inductive step for Grassmannians

• Let X = Gr(k, n). Specialize some points on X' = Gr(k, n-1) and project to X'' = Gr(k-1, n-1).

The inductive step for Grassmannians

- Let X = Gr(k, n). Specialize some points on X' = Gr(k, n-1) and project to X'' = Gr(k-1, n-1).
- Let U and Q be the universal and the quotient bundle on Gr(k, n). Let E(Q) be the Poincaré dual of the Euler class of Q, namely $E(Q) = \{\mathbf{P}^k | \mathbf{P}_0^{k-1} \subset \mathbf{P}^k\} \simeq \mathbf{P}^{n-k}$ for a fixed \mathbf{P}_0^{k-1} .

Splitting Theorem for Grassmannians

Splitting Theorem for Grassmann varieties[AOP] Let s = s' + s'', a = a' + a'', b = b' + b''. Let P be the class of a point. If Dim $J(s'Gr(k, n - 1), (s'' + a')E(Q), b'E(U^{\vee}), b''P) =$ Virt Dim J(...)

AND

Dim $J(s''Gr(k-1, n-1), a''E(Q), (s'+b'')E(U^{\vee}), a'P) =$ Virt Dim J(...)

then

 $\operatorname{Dim} J(sGr(k,n), aE(Q), bE(U^{\vee}) = \operatorname{Virt} \operatorname{Dim} J(\ldots)$

A stronger Conj. for Grassmannians

Conjecture II Let $k \ge 2$. $J(sGr(k, n), a\mathbf{P}^{n-k}, b\mathbf{P}^{k+1})$ has the expected dimension with the only exceptions for (s, a, b, k, n), up to duality:

- (2,0,1,2,6) (2,0,2,2,6) (2,1,1,2,6) $(2,2,0,2,6) (\underline{3,0,0,2,6})$
- (3, 1, 0, 2, 7)
- $\begin{array}{c|c} \underline{(3,0,0,3,7)} & (3,0,1,3,7) & (3,0,2,3,7) & (3,0,3,3,7) \\ \hline (3,1,1,3,7) & (3,1,2,3,7) & \underline{(4,0,0,3,7)} & (4,0,1,3,7) \end{array}$

• (4, 0, 0, 2, 8) (4, 0, 1, 2, 8) (4, 0, 2, 2, 8) (4, 1, 0, 2, 8)

Starting case for Grassmannians

We still need to manage with the starting case of the induction. It is Gr(2, n), Grassmannians of planes. It turns out that the technique given in [Brambilla-O.], to prove the cubic case in AH-theorem, works also for Gr(2, n).

• Cubics in \mathbf{P}^n have dim $f(n) = \frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_i (it is an integer if $n \neq 2 \mod 3$)

- Cubics in \mathbf{P}^n have dim $f(n) = \frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_i (it is an integer if $n \neq 2 \mod 3$)
- Let *L* be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on *L* and leave n+1 points at their place.

- Cubics in \mathbf{P}^n have dim $f(n) = \frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_i (it is an integer if $n \neq 2 \mod 3$)
- Let *L* be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on *L* and leave n+1 points at their place.

- Cubics in P^n have dim $f(n) = \frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_i (it is an integer if $n \neq 2 \mod 3$)
- Let *L* be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on *L* and leave n + 1 points at their place.

Applying induction we reduce to cubics in \mathbf{P}^n containing *L*. They have dim $\Delta_3 f(n) = f(n) - f(n-3) = \frac{3n^2}{2} + \frac{3n}{2} + 1$

Applying induction we reduce to cubics in \mathbf{P}^n containing *L*. They have dim $\Delta_3 f(n) = f(n) - f(n-3) = \frac{3n^2}{2} + \frac{3n}{2} + 1$ Let *M* be a second codimension 3 linear subspace

Applying induction we reduce to cubics in \mathbf{P}^n containing *L*. They have dim $\Delta_3 f(n) = f(n) - f(n-3) = \frac{3n^2}{2} + \frac{3n}{2} + 1$ Let *M* be a second codimension 3 linear subspace

Applying induction we reduce to cubics in \mathbf{P}^n containing *L*. They have dim $\Delta_3 f(n) = f(n) - f(n-3) = \frac{3n^2}{2} + \frac{3n}{2} + 1$ Let *M* be a second codimension 3 linear subspace

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M$. They have dim $\Delta_3 \Delta_3 f(n) = 9(n-1)$

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M$. They have dim $\Delta_3 \Delta_3 f(n) = 9(n-1)$ Let N be a third codimension 3 linear subspace.

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M$. They have dim $\Delta_3 \Delta_3 f(n) = 9(n-1)$ Let N be a third codimension 3 linear subspace.

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M$. They have dim $\Delta_3 \Delta_3 f(n) = 9(n-1)$ Let N be a third codimension 3 linear subspace.

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M \cup N$. They have dim $\Delta_3 \Delta_3 \Delta_3 f(n) = 27$

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M \cup N$. They have dim $\Delta_3 \Delta_3 \Delta_3 f(n) = 27$

Applying induction we reduce to cubics in \mathbf{P}^n containing $L \cup M \cup N$. They have dim $\Delta_3 \Delta_3 \Delta_3 f(n) = 27$

It is enough to compute the rank of a 27×27 matrix. It is 27 and the cubic case is proved.

Grassmann and Segre

Typical rank for Grassm. of planes

- The same technique works for Grassmannians, with Gr(2, n-6) at the place of L.

Typical rank for Grassm. of planes

- The same technique works for Grassmannians, with Gr(2, n-6) at the place of L.
- Ehrenborg proved (1999) that $\underline{R}(Gr(2,n)) \leq \frac{n^2}{12} + O(n)$

Typical rank for Grassm. of planes

- The same technique works for Grassmannians, with Gr(2, n-6) at the place of L.
- Ehrenborg proved (1999) that $\underline{R}(Gr(2,n)) \leq \frac{n^2}{12} + O(n)$
- Application of the technique: Theorem[AOP] $\underline{R}(Gr(2,n)) \sim \frac{n^2}{18}$ (sharp asymptotical value)