Special Session on Secant Varieties

Secant Varieties of Grassmann and Segre Varieties

Giorgio Ottaviani
ottavian@math.unifi.it

www.math.unifi.it/users/ottavian

Content

- 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties

Content

- 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties
- 2) Segre Varieties

Content

- 1) Historical perspective, the Alexander-Hirschowitz Theorem for the Veronese Varieties
- 2) Segre Varieties
- 3) Grassmann Varieties

Interpolation problem

- Fix k general points P_{1}, \ldots, P_{k} in the plane

Interpolation problem

- Fix k general points P_{1}, \ldots, P_{k} in the plane
- How many plane curves of degree d exist which are singular at P_{1}, \ldots, P_{k} ?

Interpolation problem

- Fix k general points P_{1}, \ldots, P_{k} in the plane
- How many plane curves of degree d exist which are singular at P_{1}, \ldots, P_{k} ?

The expected dimension of the linear system is $\max \left(\binom{d+2}{2}-3 k, 0\right)$

Camploell Theorem, 1892

The dimension of the system of plane curves of degree d, singular at k general points, is $\max \left(\binom{d+2}{2}-3 k, 0\right)$ with the only exceptions

- $(d, k)=(2,2)$ conics through two points
- $(d, k)=(4,5)$ quartics through five points

Campbell Theorem, 1892

The dimension of the system of plane curves of degree d, singular at k general points, is $\max \left(\binom{d+2}{2}-3 k, 0\right)$ with the only exceptions

- $(d, k)=(2,2)$ conics through two points
- $(d, k)=(4,5)$ quartics through five points

Camploell Theorem, 1892

The dimension of the system of plane curves of degree d, singular at k general points, is $\max \left(\binom{d+2}{2}-3 k, 0\right)$ with the only exceptions

- $(d, k)=(2,2)$ conics through two points
- $(d, k)=(4,5)$ quartics through five points

Terracini's work

- Campbell Theorem is reproved by Terracini (1913). Terracini's proof is a breakthrough.

Terracini's work

- Campbell Theorem is reproved by Terracini (1913). Terracini's proof is a breakthrough.
- Let $X_{1}, \ldots, X_{s} \subset \mathrm{P}^{N}$ be irreducible varieties. The join of X_{1}, \ldots, X_{s} is

$$
J\left(X_{1}, \ldots, X_{s}\right):=\overline{\bigcup_{x_{i} \in X_{i}}<x_{1}, \ldots, x_{s}>}
$$

where the overbar means Zariski closure.

Dimension of the join

- Its virtual dimension is
$\operatorname{Virtdim} J\left(X_{1}, \ldots, X_{s}\right)=\sum_{i=1}^{s} \operatorname{dim} X_{i}+(s-1)$ and its expected dimension is

Exp $\operatorname{dim} J\left(X_{1}, \ldots, X_{s}\right)=\min \left\{\sum_{i=1}^{s} \operatorname{dim} X_{i}+(s-1), N\right\}$

The higher secant variety

$$
\sigma_{s}(X):=J(s X)=J(\underbrace{X, \ldots, X}_{s \text { times }})
$$

The higher secant variety

$$
\sigma_{s}(X):=J(s X)=J(\underbrace{X, \ldots, X}_{s \text { times }})
$$

- Hence $\sigma_{2}(X)$ is the usual secant variety and we have the filtration

$$
X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \sigma_{3}(X) \subset \ldots
$$

The higher secant variety

$$
\sigma_{s}(X):=J(s X)=J(\underbrace{X, \ldots, X}_{s \text { times }})
$$

- Hence $\sigma_{2}(X)$ is the usual secant variety and we have the filltration

$$
X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \sigma_{3}(X) \subset \ldots
$$

- The minimal s such that $\sigma_{s}(X)$ fills the ambient space is called the typical rank and it is denoted by $\underline{R}(X)$.

The higher secant variety

$$
\sigma_{s}(X):=J(s X)=J(\underbrace{X, \ldots, X}_{s \text { times }})
$$

- Hence $\sigma_{2}(X)$ is the usual secant variety and we have the filtration

$$
X=\sigma_{1}(X) \subset \sigma_{2}(X) \subset \sigma_{3}(X) \subset \ldots
$$

- The minimal s such that $\sigma_{s}(X)$ fills the ambient space is called the typical rank and it is denoted by $\underline{R}(X)$.
- X is called defective if there exists a p such that $\operatorname{dim} \sigma_{p}(X)<\operatorname{Exp} \operatorname{dim}\left(\sigma_{p}(X).\right)$.

Terracini lemma

- Terracini Lemma Let $P_{i} \in X_{i}$ and $z \in<P_{1}, \ldots, P_{k}>$ be general. Then

$$
T_{z} J\left(X_{1}, \ldots, X_{k}\right)=<T_{x_{1}} X_{1}, \ldots, T_{x_{k}} X_{k}>
$$

Terracini lemma

- Terracini Lemma Let $P_{i} \in X_{i}$ and $z \in<P_{1}, \ldots, P_{k}>$ be general. Then

$$
T_{z} J\left(X_{1}, \ldots, X_{k}\right)=<T_{x_{1}} X_{1}, \ldots, T_{x_{k}} X_{k}>
$$

Exceptional cases in polynomial interpolation correspond to defective Veronese varieties.

Alexander-Hirschowitz Theorem, (1995

Let $d \geq 3$. $\sigma_{s}\left(v_{d}\left(\mathbf{P}^{n}\right)\right)$ has the expected dimension with the only exceptions:

		codim	exp. codim
1$)$	$\sigma_{5}\left(v_{4}\left(\mathbf{P}^{2}\right)\right)$	1	0
2$)$	$\sigma_{9}\left(v_{4}\left(\mathbf{P}^{3}\right)\right)$	1	0
3$)$	$\sigma_{14}\left(v_{4}\left(\mathbf{P}^{4}\right)\right)$	1	0
4$)$	$\sigma_{7}\left(v_{3}\left(\mathbf{P}^{4}\right)\right)$	1	0

Equations of the exceptional cases, I

- In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For $\phi \in S^{4} V$ let $A_{\phi}: S^{2} V^{\vee} \rightarrow S^{2} V$ be the contraction operator. Then $\operatorname{det} A_{\phi}$ is the catalecticant invariant.

Equations of the exceptional cases, I

- In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For $\phi \in S^{4} V$ let $A_{\phi}: S^{2} V^{\mathrm{V}} \rightarrow S^{2} V$ be the contraction operator. Then det A_{ϕ} is the catalecticant invariant.
- For $n=2$ it has degree 6 and it gives the condition to express a homogeneous quartic polynomial in 3 variables as the sum of 5 fourth powers (Waring problem).

Equations of the exceptional cases, I

- In the cases 1), 2), 3), the equation of the 'last' secant variety is the catalecticant invariant (Clebsch). For $\phi \in S^{4} V$ let $A_{\phi}: S^{2} V^{\vee} \rightarrow S^{2} V$ be the contraction operator. Then $\operatorname{det} A_{\phi}$ is the catalecticant invariant.
- For $n=2$ it has degree 6 and it gives the condition to express a homogeneous quartic polynomial in 3 variables as the sum of 5 fourth powers (Waring problem).
- Sketch of proof: If $\phi \in v_{4}\left(\mathbf{P}^{2}\right)$ then $r k\left(A_{\phi}\right)=1$. If $\phi \in \sigma_{5}\left(v_{4}\left(\mathrm{P}^{2}\right)\right)$ it followṣ that $r k\left(A_{\phi}\right) \leq 5$.

Equations of the exceptional cases, II

- In the case 4) let $\phi \in S^{3} V$, where $\operatorname{dim} V=5$. Let $B_{\phi}: \Gamma^{2,2,1,1} V \rightarrow \Gamma^{2,1,1} V$ be the $S L(V)$-invariant contraction operator.

Equations of the exceptional cases, II

- In the case 4) let $\phi \in S^{3} V$, where $\operatorname{dim} V=5$. Let $B_{\phi}: \Gamma^{2,2,1,1} V \rightarrow \Gamma^{2,1,1} V$ be the $S L(V)$-invariant contraction operator.

Equations of the exceptional cases, II

- In the case 4) let $\phi \in S^{3} V$, where $\operatorname{dim} V=5$. Let $B_{\phi}: \Gamma^{2,2,1,1} V \rightarrow \Gamma^{2,1,1} V$ be the $S L(V)$-invariant contraction operator.

$$
\operatorname{det} B_{\phi}=2 P(\phi)^{3}
$$

where P is the equation of $\sigma_{7}\left(v_{3}\left(\mathrm{P}^{4}\right)\right)$, it has degree 15 .

Waring problem for cubics

- Sketch of proof: If $\phi \in v_{3}\left(\mathbf{P}^{4}\right)$ then $r k\left(B_{\phi}\right)=6$. If $\phi \in \sigma_{7}\left(v_{3}\left(\mathrm{P}^{4}\right)\right)$ it follows that $r k\left(B_{\phi}\right) \leq 42$, while $\operatorname{dim} \Gamma^{2,2,1,1} V=45$.

Waring problem for cubics

- Sketch of proof: If $\phi \in v_{3}\left(\mathbf{P}^{4}\right)$ then $r k\left(B_{\phi}\right)=6$. If $\phi \in \sigma_{7}\left(v_{3}\left(\mathrm{P}^{4}\right)\right)$ it follows that $r k\left(B_{\phi}\right) \leq 42$, while $\operatorname{dim} \Gamma^{2,2,1,1} V=45$.
- $P(\phi)=0$ gives the condition to express the homogeneous cubic polynomial ϕ in 5 variables as the sum of 7 cubes.

Sketch of proof of AH-Theorem,I

Let $s=s^{\prime}+s^{\prime \prime}$. Specialize s^{\prime} points on a hyperplane $X^{\prime}=v_{d}\left(\mathbf{P}^{n-1}\right) \subset X=v_{d}\left(\mathbf{P}^{n}\right)$.

Sketch of proof of AH-Theorem,I

Let $s=s^{\prime}+s^{\prime \prime}$. Specialize s^{\prime} points on a hyperplane $X^{\prime}=v_{d}\left(\mathbf{P}^{n-1}\right) \subset X=v_{d}\left(\mathbf{P}^{n}\right)$. Project from X^{\prime} on $X^{\prime \prime}=v_{d-1}\left(\mathbf{P}^{n}\right)$. Call π this projection.

Sketch of proof of AH-Theorem,I

Let $s=s^{\prime}+s^{\prime \prime}$. Specialize s^{\prime} points on a hyperplane $X^{\prime}=v_{d}\left(\mathrm{P}^{n-1}\right) \subset X=v_{d}\left(\mathrm{P}^{n}\right)$. Project from X^{\prime} on $X^{\prime \prime}=v_{d-1}\left(\mathrm{P}^{n}\right)$. Call π this projection.

Sketch of proof of AH-Theorem,II

If $\operatorname{Dim} J\left(s^{\prime} X^{\prime}\right)=\operatorname{Virt} \operatorname{Dim} J\left(s^{\prime} X^{\prime}\right)$ AND
$\operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime}, s^{\prime} P\right)=\operatorname{Virt} \operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime}, s^{\prime} P\right)$
it follows that
$\operatorname{Dim} J(s X)=\operatorname{Virt} \operatorname{Dim} J(s X)$.

Sketch of proof of AH-Theorem,II

If $\operatorname{Dim} J\left(s^{\prime} X^{\prime}\right)=\operatorname{Virt} \operatorname{Dim} J\left(s^{\prime} X^{\prime}\right)$ AND
$\operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime}, s^{\prime} P\right)=\operatorname{Virt} \operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime}, s^{\prime} P\right)$
it follows that
$\operatorname{Dim} J(s X)=\operatorname{Virt} \operatorname{Dim} J(s X)$.

- May apply induction!

Sketch of proof of AH-Theorem,III

- First difficulty: what is the starting case of the induction? Quadrics are defective. They correspond to the matrices of rank $\leq k$ inside the symmetric matrices of order $n+1$. See next talk by C. Brambilla for a generalization to partial polynomial interpolation. Cubics become the starting case.

Sketch of proof of AH-Theorem,III

- First difficulty: what is the starting case of the induction? Quadrics are defective. They correspond to the matrices of rank $\leq k$ inside the symmetric matrices of order $n+1$. See next talk by C . Brambilla for a generalization to partial polynomial interpolation. Cubics become the starting case.
- If we show that cubics are not defective for $n \geq 5$, then the inductive procedure shows that $\underline{\mathrm{R}}\left(v_{d}\left(\mathbf{P}^{n}\right)\right) \sim\binom{n+d}{d} /(n+1)$ if $n \rightarrow \infty$ or $d \rightarrow \infty$. (weak asympt. version of AH-theor.)

The tropical approach

- There is a nice tropical approach to the proof of A-H theorem.

Draisma, Sullivant (tiling), Miranda-Dimitrescu, Brannetti, ...

The tropical approach

- There is a nice tropical approach to the proof of A-H theorem.

Draisma, Sullivant (tiling), Miranda-Dimitrescu, Brannetti, ...

- As far as I know, at present the proof works for $n \leq 3$.

The case of Segre Varieties

- $\sigma_{4}\left(\mathbf{P}^{2} \times \mathbf{P}^{2} \times \mathbf{P}^{2}\right)$ and $\sigma_{3}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ (four qubits) are the first defective cases.

The case of Segre Varieties

- $\sigma_{4}\left(\mathbf{P}^{2} \times \mathbf{P}^{2} \times \mathbf{P}^{2}\right)$ and $\sigma_{3}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ (four qubits) are the first defective cases.
- In 1985, Lickteig completes previous work by Strassen and shows that

$$
\mathbf{P}^{n} \times \mathbf{P}^{n} \times \mathbf{P}^{n}
$$

is never defective for $n \geq 3$.

Some cases where equations are known

- Landsberg and Manivel (2003) show that $\sigma_{2}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}\right)$ is defined by the cubics of the various flattening, algebraically for $k=3$ and set-theoretically for $k \geq 4$.

Some cases where equations are known

- Landsberg and Manivel (2003) show that $\sigma_{2}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}\right)$ is defined by the cubics of the various flattening, algebraically for $k=3$ and set-theoretically for $k \geq 4$.
- Allman and Rhodes (2004) extend the algebraic statement to $k \leq 5$. Garcia, Sturmfels and Sullivant conjecture that this is true $\forall k$.

Some cases where equations are known

- Landsberg and Manivel (2003) show that $\sigma_{2}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}\right)$ is defined by the cubics of the various flattening, algebraically for $k=3$ and set-theoretically for $k \geq 4$.
- Allman and Rhodes (2004) extend the algebraic statement to $k \leq 5$. Garcia, Sturmfels and Sullivant conjecture that this is true $\forall k$.
- Landsberg and Weyman (2006) have found equations for $\sigma_{k}\left(\mathbf{P}^{1} \times \mathbf{P}^{n_{2}} \times \mathbf{P}^{n_{3}}\right)$, $\sigma_{2}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \mathbf{P}^{n_{3}} \times \mathbf{P}^{n_{4}}\right)$ and $\sigma_{3}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \mathbf{P}^{n_{3}}\right)$

The unbalanced case

$$
\begin{aligned}
& \text { Definition Let } n_{1} \leq n_{2} \leq \ldots \leq n_{k} \text {. } \\
& \mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}} \text { is called balanced if } \\
& \sum_{i=1}^{k} n_{i} \leq \prod_{i=1}^{k-1}\left(n_{i}+1\right) \text {. Otherwise is called } \\
& \text { unbalanced. }
\end{aligned}
$$

The unbalanced case

$$
\text { Let } n_{1} \leq n_{2} \leq \ldots \leq n_{k}
$$

$\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$ is called balanced if $\sum_{i=1}^{k} n_{i} \leq \prod_{i=1}^{k-1}\left(n_{i}+1\right)$. Otherwise is called unbalanced.

- Unbalanced means $n_{i} \ll n_{k}$

The unbalanced case

$$
\begin{aligned}
& \text { Definition Let } n_{1} \leq n_{2} \leq \ldots \leq n_{k} \text {. } \\
& \mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}} \text { is called balanced if } \\
& \sum_{i=1}^{k} n_{i} \leq \prod_{i=1}^{k-1}\left(n_{i}+1\right) \text {. Otherwise is called } \\
& \text { unbalanced. }
\end{aligned}
$$

- Unbalanced means $n_{i} \ll n_{k}$
- Catalisano-Geramita-Gimigliano (2006) find, in the unbalanced case, equations for $\sigma_{s}\left(\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}\right)$ when s is sufficiently large and describe exactly which σ_{s} are defective. Unbalanced implies defective.

Many copies of P^{1}

- Catalisano-Geramita-Gimigliano in 2005 prove that $\sigma_{s}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}\right)$ is never defective, with at most one exception for any such variety.

Many copies of P^{1}

- Catalisano-Geramita-Gimigliano in 2005 prove that $\sigma_{s}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}\right)$ is never defective, with at most one exception for any such variety.
- The only known defective case is $\sigma_{3}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}\right)$ which has codimension 2 , while the expected codimension is 1 .

Inductive technique for Segre varieties

- Let $X=\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$. Fix a linear subspace $\mathbf{P}^{n_{1}^{\prime}} \subset \mathbf{P}^{n_{1}}$. Specialize s^{\prime} points on $X^{\prime}=\mathbf{P}^{n_{1}^{\prime}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$ and project from X^{\prime} on $X^{\prime \prime}=\mathbf{P}^{n_{1}^{\prime \prime}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$, where $\left(n_{1}^{\prime}+1\right)+\left(n_{1}^{\prime \prime}+1\right)=\left(n_{1}+1\right)$.

Inductive technique for Segre varieties

- Let $X=\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$. Fix a linear subspace $\mathbf{P}^{n_{1}^{\prime}} \subset \mathbf{P}^{n_{1}}$. Specialize s^{\prime} points on $X^{\prime}=\mathbf{P}^{n_{1}^{\prime}} \times \mathrm{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$ and project from X^{\prime} on $X^{\prime \prime}=\mathbf{P}_{1}^{n_{1}^{\prime \prime}} \times \mathrm{P}^{n_{2}} \times \ldots \times \mathbf{P}^{n_{k}}$, where $\left(n_{1}^{\prime}+1\right)+\left(n_{1}^{\prime \prime}+1\right)=\left(n_{1}+1\right)$.
- The difficulty is that, even if a point is not specialized, its tangent space meets $<X^{\prime}>$.

The tangent spaces of Segre varieties

- The tangent space at $v_{1} \otimes v_{2} \otimes v_{3}$ is $V_{1} \otimes v_{2} \otimes v_{3}+v_{1} \otimes V_{2} \otimes v_{3}+v_{1} \otimes v_{2} \otimes V_{3}$. The three summands are $E\left(Q_{1}\right), E\left(Q_{2}\right), E\left(Q_{3}\right)$, where Q_{i} is the i-th quotient bundle and $E\left(Q_{i}\right)$ is the Poincaré dual of the Euler class of Q_{i}.

The splitting Theorem[AOP]

Let $s=s^{\prime}+s^{\prime \prime}, a_{i}=a_{i}^{\prime}+a_{i}^{\prime \prime}$. If

$$
\operatorname{Dim} J\left(s^{\prime} X^{\prime},\left(a_{1}+s^{\prime \prime}\right) E\left(Q_{1}^{\prime}\right), a_{2}^{\prime} E\left(Q_{2}\right), a_{3}^{\prime} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)
$$

AND

$$
\operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime},\left(a_{1}+s^{\prime}\right) E\left(Q_{1}^{\prime \prime}\right), a_{2}^{\prime \prime} E\left(Q_{2}\right), a_{3}^{\prime \prime} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)
$$

then
$\operatorname{Dim} J\left(s X, a_{1} E\left(Q_{1}\right), a_{2} E\left(Q_{2}\right), a_{3} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)$

The splitting Theorem[AOP]

Let $s=s^{\prime}+s^{\prime \prime}, a_{i}=a_{i}^{\prime}+a_{i}^{\prime \prime}$. If

$$
\operatorname{Dim} J\left(s^{\prime} X^{\prime},\left(a_{1}+s^{\prime \prime}\right) E\left(Q_{1}^{\prime}\right), a_{2}^{\prime} E\left(Q_{2}\right), a_{3}^{\prime} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)
$$

AND

$$
\operatorname{Dim} J\left(s^{\prime \prime} X^{\prime \prime},\left(a_{1}+s^{\prime}\right) E\left(Q_{1}^{\prime \prime}\right), a_{2}^{\prime \prime} E\left(Q_{2}\right), a_{3}^{\prime \prime} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)
$$

then
$\operatorname{Dim} J\left(s X, a_{1} E\left(Q_{1}\right), a_{2} E\left(Q_{2}\right), a_{3} E\left(Q_{3}\right)\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)$

- The same is true if the joins fill their ambient space.

Notation for statement T

The statement
$\operatorname{Dim} J\left(s X, a_{1} E\left(Q_{1}\right), a_{2} E\left(Q_{2}\right), a_{3} E\left(Q_{3}\right)\right)=\operatorname{ExpDim} J(\ldots)$
is denoted by

$$
T\left(n_{1}, n_{2}, n_{3} ; s ; a_{1}, a_{2}, a_{3}\right)
$$

The goal is to prove $T\left(n_{1}, n_{2}, n_{3} ; s ; 0,0,0\right)$ for as many s as possible.

The inductive procedure at work

Example: $\sigma_{6}\left(\mathbf{P}^{3} \times \mathbf{P}^{3} \times \mathbf{P}^{3}\right)$

The inductive procedure at work

Example: $\sigma_{6}\left(\mathbf{P}^{3} \times \mathbf{P}^{3} \times \mathbf{P}^{3}\right)$
$T(3,3,3 ; 6 ; 0,0,0)$

The inductive procedure at work

Example: $\sigma_{6}\left(\mathrm{P}^{3} \times \mathrm{P}^{3} \times \mathrm{P}^{3}\right)$
$T(3,3,3 ; 6 ; 0,0,0)$
\uparrow
$2 T(1,3,3 ; 3 ; 3,0,0)$

The inductive procedure at work

Example: $\sigma_{6}\left(\mathrm{P}^{3} \times \mathrm{P}^{3} \times \mathrm{P}^{3}\right)$

$$
\begin{aligned}
& T(3,3,3 ; 6 ; 0,0,0) \\
& \uparrow \\
& 2 T(1,3,3 ; 3 ; 3,0,0) \leftarrow 2 T(1,1,3 ; 1 ; 2,2,0) \\
& \uparrow \\
& 2 T(1,1,3 ; 2 ; 1,1,0)
\end{aligned}
$$

The inductive procedure at work

Example: $\sigma_{6}\left(\mathrm{P}^{3} \times \mathrm{P}^{3} \times \mathrm{P}^{3}\right)$
$T(3,3,3 ; 6 ; 0,0,0)$
$\uparrow \quad 2 T(1,1,1 ; 1 ; 1,1,0)$
$2 T(1,3,3 ; 3 ; 3,0,0) \leftarrow 2 T(1,1,3 ; 1 ; 2,2,0)$ \uparrow
$2 T(1,1,1 ; 0 ; 1,1,1)$
$2 T(1,1,3 ; 2 ; 1,1,0) \leftarrow 2 T(1,1,1 ; 1 ; 0,1,1)$
\uparrow
$2 T(1,1,1 ; 1 ; 1,0,1)$

starting cases, I

- $X=\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \quad$ Up to permutation of the three factors the list of defective cases is

starting cases, I

- $X=\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{1} \quad$ Up to permutation of the three factors the list of defective cases is
- Why $(1 ; 0,0,2)$ is defective ? Consider X as a pencil of smooth quadrics parametrized by the third factor. A point of X is a point of one of these quadrics, say Q. The two lines meet Q in two disjoint points, and the line spanned by these points meets every tangent plane of Q.

starting cases, II

- $\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{2} \quad$ Up to permutation of the first two factors the list of minimal defective cases is
(0;0,1,3),
(1; 0, 0, 2)

starting cases, II

- $\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{2} \quad$ Up to permutation of the first two factors the list of minimal defective cases is
(0; 0, 1, 3),
J
(1; 0, 0, 2)
- We have also the lists for $\mathrm{P}^{1} \times \mathrm{P}^{2} \times \mathrm{P}^{2}$ and $\mathbf{P}^{2} \times \mathbf{P}^{2} \times \mathbf{P}^{2}$

starting cases, II

- $\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{2} \quad$ Up to permutation of the first two factors the list of minimal defective cases is
(0;0, 1, 3),
(1; 0, 0, 2)
- We have also the lists for $\mathrm{P}^{1} \times \mathrm{P}^{2} \times \mathrm{P}^{2}$ and $\mathbf{P}^{2} \times \mathbf{P}^{2} \times \mathbf{P}^{2}$
- Examples of applications of the inductive technique are

$$
\begin{aligned}
& R\left(2^{3}\right), \underline{R}\left(2^{4}\right)=9, \underline{R}\left(2^{5}\right)=23, \underline{R}\left(3^{3}\right)=7, \\
& \underline{R}\left(3^{4}\right)=20, \underline{R}\left(3^{5}\right)=64, \underline{R}\left(3^{6}\right)=215, .
\end{aligned}
$$

Asymptotic behaviour is non defective

$$
\text { Let } X=\left(\mathrm{P}^{n}\right)^{k} \text {, }
$$

$k \geq 3$. Let $s_{k}:=\left\lfloor\frac{(n+1)^{k}}{n k+1}\right\rfloor$ and $\delta_{k}:=s_{k} \bmod (n+1)$.
(i) If $s \leq s_{k}-\delta_{k}$ then $\sigma_{s}(X)$ has the expected dimension.
(ii) If $s \geq s_{k}-\delta_{k}+n+1$ then $\sigma_{s}(X)$ fills the ambient space.

Asymptotic behaviour is non defective

$$
\text { Let } X=\left(\mathbf{P}^{n}\right)^{k} \text {, }
$$

$k \geq 3$. Let $s_{k}:=\left\lfloor\frac{(n+1)^{k}}{n k+1}\right\rfloor$ and $\delta_{k}:=s_{k} \bmod (n+1)$.
(i) If $s \leq s_{k}-\delta_{k}$ then $\sigma_{s}(X)$ has the expected dimension.
(ii) If $s \geq s_{k}-\delta_{k}+n+1$ then $\sigma_{s}(X)$ fills the ambient space.

$$
\underline{\mathrm{R}}\left(n^{k}\right) \sim \frac{(n+1)^{k}}{n k+1} \text { if }
$$

$n \rightarrow \infty$ or $k \rightarrow \infty$.

A Conjecture on Segre varieties

Conjecture Let $d \geq 3 . \sigma_{s}\left(\mathbf{P}^{n_{1}} \times \ldots \times \mathbf{P}^{n_{d}}\right)$ has the expected dimension with the only exceptions:

		codim	exp. codim
1$)$	unbalanced	\ldots	\ldots
2$)$	$\sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right), n$ even	1	0
3$)$	$\sigma_{2 n+1}\left(\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$	2	1
4$)$	$\sigma_{5}\left(\mathbf{P}^{2} \times \mathbf{P}^{3} \times \mathbf{P}^{3}\right)$	4	3

Conjecture true for $k \leq 6$

The conjecture for σ_{k} (Segre) is true if $k \leq 6$.

Equations in the defective cases, I

In the unbalanced case([CGG]), and in the case $\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{n} \times \mathrm{P}^{n}$ ([CGG], Carlini), the flattening technique works.

Equations in the defective cases, II

- Consider the case $\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}=\mathbf{P}(U) \times \mathbf{P}(V) \times \mathbf{P}\left(V^{\prime}\right)$. For every $\phi \in U \otimes V \otimes V^{\prime}$ define the contraction $A_{\phi}: U \otimes V^{\mathrm{V}} \rightarrow \wedge^{2} U \otimes V^{\prime}$

Equations in the defective cases, II

- Consider the case $\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}=\mathbf{P}(U) \times \mathbf{P}(V) \times \mathbf{P}\left(V^{\prime}\right)$. For every $\phi \in U \otimes V \otimes V^{\prime}$ define the contraction $A_{\phi}: U \otimes V^{\vee} \rightarrow \wedge^{2} U \otimes V^{\prime}$
- If P, Q, R are the three $(n+1) \times(n+1)$ slices of ϕ, the matrix representing A_{ϕ} is

$$
\left[\begin{array}{rrr}
0 & P & -Q \\
-P & 0 & R \\
Q & -R & 0
\end{array}\right]
$$

Equations in the defective cases, III

(Strassen, 1983, but in a different form) For n even, $\operatorname{det}\left(A_{\phi}\right)$ is the equation of $\sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$, which has degree $3(n+1)$.

Equations in the defective cases, III

(Strassen, 1983, but in a different form) For n even, $\operatorname{det}\left(A_{\phi}\right)$ is the equation of $\sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$, which has degree $3(n+1)$.

- Sketch of proof: If $\phi \in \mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}$ then $r k\left(A_{\phi}\right)=2$. If $\phi \in \sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$ it follows that $r k\left(A_{\phi}\right) \leq 3 n+2$, while $\operatorname{dim} U \otimes V^{\vee}=3(n+1)$.

Equations in the defective cases, III

(Strassen, 1983, but in a different form) For n even, $\operatorname{det}\left(A_{\phi}\right)$ is the equation of $\sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$, which has degree $3(n+1)$.

- Sketch of proof: If $\phi \in \mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}$ then $r k\left(A_{\phi}\right)=2$. If $\phi \in \sigma_{\frac{3 n}{2}+1}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$ it follows that $r k\left(A_{\phi}\right) \leq 3 n+2$, while $\operatorname{dim} U \otimes V^{\vee}=3(n+1)$.
- When n is odd, the above determinant vanishes on $\sigma_{\frac{3 n+1}{2}}\left(\mathbf{P}^{2} \times \mathbf{P}^{n} \times \mathbf{P}^{n}\right)$, which has bigger codimension.

A Conjecture for Grassmannians

- Conjecture I Let $k \geq 2$. $\sigma_{s}(\operatorname{Gr}(k, n))$ has the expected dimension with the only exceptions:

		codim	exp. codim
1)	$\sigma_{3}(\operatorname{Gr}(2,6))$	1	0
2$)$	$\sigma_{3}(\operatorname{Gr}(3,7))$	20	19
$\left.2^{\prime}\right)$	$\sigma_{4}(\operatorname{Gr}(3,7))$	6	2
3$)$	$\sigma_{4}(\operatorname{Gr}(2,8))$	10	8

A Conjecture for Grassmannians

- Conjecture I Let $k \geq 2$. $\sigma_{s}(\operatorname{Gr}(k, n))$ has the expected dimension with the only exceptions:

		codim	exp. codim
1$)$	$\sigma_{3}(\operatorname{Gr}(2,6))$	1	0
2$)$	$\sigma_{3}(\operatorname{Gr}(3,7))$	20	19
$\left.2^{\prime}\right)$	$\sigma_{4}(\operatorname{Gr}(3,7))$	6	2
3$)$	$\sigma_{4}(\operatorname{Gr}(2,8))$	10	8

- All the examples have been written by Catalisano, Geramita, Gimigliano (2002), with the help of Catalano-Johnson:

Evidence for the conjecture

The conjecture is true by Montecarlo computations for $n \leq 14$ (McGillivray 2005) $n \leq 16$ (Draisma 2006)

Evidence for the conjecture

The conjecture is true by Montecarlo computations for $n \leq 14$ (McGillivray 2005) $n \leq 16$ (Draisma 2006)

The conjecture for σ_{k} (Grassmann) is true if $k \leq 6$.

The inductive step for Grassmannians

- Let $X=G r(k, n)$. Specialize some points on $X^{\prime}=G r(k, n-1)$ and project to $X^{\prime \prime}=\operatorname{Gr}(k-1, n-1)$.

The inductive step for Grassmannians

- Let $X=G r(k, n)$. Specialize some points on $X^{\prime}=G r(k, n-1)$ and project to $X^{\prime \prime}=\operatorname{Gr}(k-1, n-1)$.
- Let U and Q be the universal and the quotient bundle on $\operatorname{Gr}(k, n)$. Let $E(Q)$ be the Poincaré dual of the Euler class of Q, namely $E(Q)=\left\{\mathbf{P}^{k} \mid \mathbf{P}_{0}^{k-1} \subset \mathbf{P}^{k}\right\} \simeq \mathbf{P}^{n-k}$ for a fixed P_{0}^{k-1}.

Splitting Theorem for Grassmannians

$$
\text { Let } s=s^{\prime}+s^{\prime \prime}, a=a^{\prime}+a^{\prime \prime} \text {, }
$$

$b=b^{\prime}+b^{\prime \prime}$. Let P be the class of a point. If
$\operatorname{Dim} J\left(s^{\prime} G r(k, n-1),\left(s^{\prime \prime}+a^{\prime}\right) E(Q), b^{\prime} E\left(U^{\vee}\right), b^{\prime \prime} P\right)=$
Virt Dim $J(\ldots)$
AND
$\operatorname{Dim} J\left(s^{\prime \prime} G r(k-1, n-1), a^{\prime \prime} E(Q),\left(s^{\prime}+b^{\prime \prime}\right) E\left(U^{\vee}\right), a^{\prime} P\right)=$ Virt $\operatorname{Dim} J(\ldots)$
then
$\operatorname{Dim} J\left(s G r(k, n), a E(Q), b E\left(U^{\vee}\right)=\operatorname{Virt} \operatorname{Dim} J(\ldots)\right.$

A stronger Conj. for Grassmannians

Conjecture II Let $k \geq 2$. $J\left(s G r(k, n), a \mathbf{P}^{n-k}, b \mathbf{P}^{k+1}\right)$ has the expected dimension with the only exceptions for (s, a, b, k, n), up to duality:

- $(2,0,1,2,6) \quad(2,0,2,2,6) \quad(2,1,1,2,6)$
$(2,2,0,2,6) \quad(3,0,0,2,6)$
- $(3,1,0,2,7)$
- $(3,0,0,3,7)$
$(3,0,1,3,7)$
$(3,0,2,3,7)$
$(3,0,3,3,7)$
$(3,1,1,3,7)$
$(3,1,2,3,7)$
$(4,0,0,3,7)$
$(4,0,1,3,7)$
(4, 0, 0,2, 8$)$
$(4,0,1,2,8)$
$(4,0,2,2,8)$
$(4,1,0,2,8)$

Starting case for Grassmannians

We still need to manage with the starting case of the induction. It is $\operatorname{Gr}(2, n)$, Grassmannians of planes. It turns out that the technique given in [Brambilla-O.], to prove the cubic case in AH-theorem, works also for $\operatorname{Gr}(2, n)$.

Proof of cubic case in AH-Theor. [BO],

- Cubics in \mathbf{P}^{n} have dim $f(n)=\frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_{i} (it is an integer if $n \neq 2 \bmod 3$)

Proof of cubic case in AH-Theor. [BO],

- Cubics in \mathbf{P}^{n} have $\operatorname{dim} f(n)=\frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_{i} (it is an integer if $n \neq 2 \bmod 3$)
- Let L be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on L and leave $n+1$ points at their place.

Proof of cubic case in AH-Theor. [BO],

- Cubics in \mathbf{P}^{n} have $\operatorname{dim} f(n)=\frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_{i} (it is an integer if $n \neq 2 \bmod 3$)
- Let L be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on L and leave $n+1$ points at their place.

Proof of cubic case in AH-Theor. [BO],

- Cubics in \mathbf{P}^{n} have dim $f(n)=\frac{(n+3)(n+2)(n+1)}{6}$ Consider $\frac{(n+3)(n+2)}{6}$ points P_{i} (it is an integer if $n \neq 2 \bmod 3$)
- Let L be a codimension 3 linear subspace. Specialize $\frac{n(n-1)}{6}$ points on L and leave $n+1$ points at their place.

Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P^{n} containing L. They have dim
$\Delta_{3} f(n)=f(n)-f(n-3)=\frac{3 n^{2}}{2}+\frac{3 n}{2}+1$

Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P^{n} containing L. They have dim
$\Delta_{3} f(n)=f(n)-f(n-3)=\frac{3 n^{2}}{2}+\frac{3 n}{2}+1$
Let M be a second codimension 3 linear subspace

Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P^{n} containing L. They have dim
$\Delta_{3} f(n)=f(n)-f(n-3)=\frac{3 n^{2}}{2}+\frac{3 n}{2}+1$
Let M be a second codimension 3 linear subspace

Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P^{n} containing L. They have dim
$\Delta_{3} f(n)=f(n)-f(n-3)=\frac{3 n^{2}}{2}+\frac{3 n}{2}+1$
Let M be a second codimension 3 linear subspace

Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P^{n} containing $L \cup M$. They have dim
$\Delta_{3} \Delta_{3} f(n)=9(n-1)$

Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P^{n} containing $L \cup M$. They have dim
$\Delta_{3} \Delta_{3} f(n)=9(n-1)$
Let N be a third codimension 3 linear subspace.

Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P^{n} containing $L \cup M$. They have dim
$\Delta_{3} \Delta_{3} f(n)=9(n-1)$
Let N be a third codimension 3 linear subspace.

Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P^{n} containing $L \cup M$. They have dim
$\Delta_{3} \Delta_{3} f(n)=9(n-1)$
Let N be a third codimension 3 linear subspace.

Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P^{n} containing $L \cup M \cup N$. They have dim
$\Delta_{3} \Delta_{3} \Delta_{3} f(n)=27$

Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P^{n} containing $L \cup M \cup N$. They have dim
$\Delta_{3} \Delta_{3} \Delta_{3} f(n)=27$

Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P^{n} containing $L \cup M \cup N$. They have dim $\Delta_{3} \Delta_{3} \Delta_{3} f(n)=27$

It is enough to compute the rank of a 27×27 matrix. It is 27 and the cubic case is proved.

Typical rank for Grassm. of planes

The same technique works for Grassmannians, with $\operatorname{Gr}(2, n-6)$ at the place of L.

Typical rank for Grassm. of planes

- The same technique works for Grassmannians, with $\operatorname{Gr}(2, n-6)$ at the place of L.
- Ehrenborg proved (1999) that $\underline{R}(G r(2, n)) \leq \frac{n^{2}}{12}+O(n)$

Typical rank for Grassm. of planes

- The same technique works for Grassmannians, with $\operatorname{Gr}(2, n-6)$ at the place of L.
- Ehrenborg proved (1999) that $\underline{R}(G r(2, n)) \leq \frac{n^{2}}{12}+O(n)$
- Application of the technique:
[AOP] $\underline{R}(\operatorname{Gr}(2, n)) \sim \frac{n^{2}}{18}$ (sharp asymptotical value)

