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Interpolation problem

• Fix k general points P1, . . . , Pk in the plane
• How many plane curves of degree d exist

which are singular at P1, . . . , Pk?

The expected dimension of the linear system is
max(

(
d+2
2

)
− 3k, 0)

Secant to Grassmann and Segre – p. 3/44



Campbell Theorem, 1892

• Campbell Theorem
The dimension of the system of plane curves
of degree d, singular at k general points, is
max(

(
d+2
2

)
− 3k, 0) with the only exceptions

• (d, k) = (2, 2) conics through two points
• (d, k) = (4, 5) quartics through five points
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Terracini’s work

• Campbell Theorem is reproved by Terracini
(1913). Terracini’s proof is a breakthrough.
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Terracini’s work

• Campbell Theorem is reproved by Terracini
(1913). Terracini’s proof is a breakthrough.

• Let X1, . . . , Xs ⊂ P
N be irreducible varieties.

The join of X1, . . . , Xs is

J(X1, . . . , Xs) :=
⋃

xi∈Xi

< x1, . . . , xs >

where the overbar means Zariski closure.
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Dimension of the join

• Its virtual dimension is

Virt dim J(X1, . . . , Xs) =
s∑

i=1

dim Xi + (s− 1)

and its expected dimension is

Exp dim J(X1, . . . , Xs) = min{
s∑

i=1

dim Xi+(s−1), N}
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The higher secant variety

•

σs(X) := J(sX) = J(X, . . . , X
︸ ︷︷ ︸

s times

)
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The higher secant variety

•

σs(X) := J(sX) = J(X, . . . , X
︸ ︷︷ ︸

s times

)

• Hence σ2(X) is the usual secant variety and
we have the filtration
X = σ1(X) ⊂ σ2(X) ⊂ σ3(X) ⊂ . . ..
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σs(X) := J(sX) = J(X, . . . , X
︸ ︷︷ ︸

s times

)

• Hence σ2(X) is the usual secant variety and
we have the filtration
X = σ1(X) ⊂ σ2(X) ⊂ σ3(X) ⊂ . . ..

• The minimal s such that σs(X) fills the
ambient space is called the typical rank and it
is denoted by R(X).
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The higher secant variety

•

σs(X) := J(sX) = J(X, . . . , X
︸ ︷︷ ︸

s times

)

• Hence σ2(X) is the usual secant variety and
we have the filtration
X = σ1(X) ⊂ σ2(X) ⊂ σ3(X) ⊂ . . ..

• The minimal s such that σs(X) fills the
ambient space is called the typical rank and it
is denoted by R(X).

• X is called defective if there exists a p such
that dim σp(X) < Exp dim(σp(X)).
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Terracini lemma

• Terracini Lemma Let Pi ∈ Xi and
z ∈< P1, . . . , Pk > be general. Then

TzJ(X1, . . . , Xk) =< Tx1
X1, . . . , Txk

Xk >
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Terracini lemma

• Terracini Lemma Let Pi ∈ Xi and
z ∈< P1, . . . , Pk > be general. Then

TzJ(X1, . . . , Xk) =< Tx1
X1, . . . , Txk

Xk >

• Corollary Exceptional cases in polynomial
interpolation correspond to defective
Veronese varieties.
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Alexander-Hirschowitz Theorem, (1995)

Theorem[AH], Classification of defective
Veronese varieties Let d ≥ 3. σs(vd(P

n)) has the
expected dimension with the only exceptions:

codim exp. codim

1) σ5(v4(P
2)) 1 0

2) σ9(v4(P
3)) 1 0

3) σ14(v4(P
4)) 1 0

4) σ7(v3(P
4)) 1 0
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Equations of the exceptional cases, I

• In the cases 1), 2), 3), the equation of the
‘last’ secant variety is the catalecticant
invariant (Clebsch). For φ ∈ S4V let
Aφ: S

2V ∨ → S2V be the contraction operator.
Then det Aφ is the catalecticant invariant.
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invariant (Clebsch). For φ ∈ S4V let
Aφ: S

2V ∨ → S2V be the contraction operator.
Then det Aφ is the catalecticant invariant.

• For n = 2 it has degree 6 and it gives the
condition to express a homogeneous quartic
polynomial in 3 variables as the sum of 5
fourth powers (Waring problem).
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Equations of the exceptional cases, I

• In the cases 1), 2), 3), the equation of the
‘last’ secant variety is the catalecticant
invariant (Clebsch). For φ ∈ S4V let
Aφ: S

2V ∨ → S2V be the contraction operator.
Then det Aφ is the catalecticant invariant.

• For n = 2 it has degree 6 and it gives the
condition to express a homogeneous quartic
polynomial in 3 variables as the sum of 5
fourth powers (Waring problem).

• Sketch of proof: If φ ∈ v4(P
2) then rk(Aφ) = 1. If

φ ∈ σ5(v4(P
2)) it follows that rk(Aφ) ≤ 5.
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Equations of the exceptional cases, II

• In the case 4) let φ ∈ S3V , where dim V = 5.
Let Bφ: Γ

2,2,1,1V → Γ2,1,1V be the
SL(V )-invariant contraction operator.

Secant to Grassmann and Segre – p. 11/44
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• In the case 4) let φ ∈ S3V , where dim V = 5.
Let Bφ: Γ

2,2,1,1V → Γ2,1,1V be the
SL(V )-invariant contraction operator.

• ⊗ ∗ ∗ ∗ →

∗

∗

∗ ≃
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Equations of the exceptional cases, II

• In the case 4) let φ ∈ S3V , where dim V = 5.
Let Bφ: Γ

2,2,1,1V → Γ2,1,1V be the
SL(V )-invariant contraction operator.

• ⊗ ∗ ∗ ∗ →

∗

∗

∗ ≃

• Theorem, arXiv:0712.2527det Bφ = 2P (φ)3

where P is the equation of σ7(v3(P
4)), it has

degree 15. Secant to Grassmann and Segre – p. 11/44



Waring problem for cubics

• Sketch of proof: If φ ∈ v3(P
4) then rk(Bφ) = 6. If

φ ∈ σ7(v3(P
4)) it follows that rk(Bφ) ≤ 42,

while dim Γ2,2,1,1V = 45.
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Waring problem for cubics

• Sketch of proof: If φ ∈ v3(P
4) then rk(Bφ) = 6. If

φ ∈ σ7(v3(P
4)) it follows that rk(Bφ) ≤ 42,

while dim Γ2,2,1,1V = 45.
• P (φ) = 0 gives the condition to express the

homogeneous cubic polynomial φ in 5
variables as the sum of 7 cubes.
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Sketch of proof of AH-Theorem,I

Let s = s′ + s′′. Specialize s′ points on a
hyperplane X ′ = vd(P

n−1) ⊂ X = vd(P
n).
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Sketch of proof of AH-Theorem,I

Let s = s′ + s′′. Specialize s′ points on a
hyperplane X ′ = vd(P

n−1) ⊂ X = vd(P
n). Project

from X ′ on X ′′ = vd−1(P
n). Call π this projection.
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Sketch of proof of AH-Theorem,II

• Splitting Theorem for Veronese varieties
If DimJ(s′X ′) = Virt DimJ(s′X ′) AND
DimJ(s′′X ′′, s′P ) = Virt DimJ(s′′X ′′, s′P )
it follows that
DimJ(sX) = Virt DimJ(sX).
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Sketch of proof of AH-Theorem,II

• Splitting Theorem for Veronese varieties
If DimJ(s′X ′) = Virt DimJ(s′X ′) AND
DimJ(s′′X ′′, s′P ) = Virt DimJ(s′′X ′′, s′P )
it follows that
DimJ(sX) = Virt DimJ(sX).

• May apply induction!
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Sketch of proof of AH-Theorem,III

• First difficulty: what is the starting case of the
induction? Quadrics are defective. They
correspond to the matrices of rank ≤ k inside
the symmetric matrices of order n + 1. See
next talk by C. Brambilla for a generalization
to partial polynomial interpolation. Cubics
become the starting case.
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Sketch of proof of AH-Theorem,III

• First difficulty: what is the starting case of the
induction? Quadrics are defective. They
correspond to the matrices of rank ≤ k inside
the symmetric matrices of order n + 1. See
next talk by C. Brambilla for a generalization
to partial polynomial interpolation. Cubics
become the starting case.

• If we show that cubics are not defective for
n ≥ 5, then the inductive procedure shows
that R(vd(P

n)) ∼
(
n+d

d

)
/(n + 1) if n→∞ or

d→∞. (weak asympt. version of AH-theor.)
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The tropical approach

• There is a nice tropical approach to the proof
of A-H theorem.

Draisma, Sullivant (tiling),
Miranda-Dimitrescu, Brannetti, . . .
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The tropical approach

• There is a nice tropical approach to the proof
of A-H theorem.

Draisma, Sullivant (tiling),
Miranda-Dimitrescu, Brannetti, . . .

• As far as I know, at present the proof works
for n ≤ 3.
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The case of Segre Varieties

• σ4(P
2 ×P

2 ×P
2) and σ3(P

1 ×P
1 ×P

1 ×P
1)

(four qubits) are the first defective cases.
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The case of Segre Varieties

• σ4(P
2 ×P

2 ×P
2) and σ3(P

1 ×P
1 ×P

1 ×P
1)

(four qubits) are the first defective cases.
• In 1985, Lickteig completes previous work by

Strassen and shows that

P
n ×P

n ×P
n

is never defective for n ≥ 3.
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Some cases where equations are known

• Landsberg and Manivel (2003) show that
σ2(P

n1 ×P
n2 × . . .×P

nk) is defined by the
cubics of the various flattening, algebraically
for k = 3 and set-theoretically for k ≥ 4.

Secant to Grassmann and Segre – p. 18/44



Some cases where equations are known

• Landsberg and Manivel (2003) show that
σ2(P

n1 ×P
n2 × . . .×P

nk) is defined by the
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• Allman and Rhodes (2004) extend the
algebraic statement to k ≤ 5. Garcia,
Sturmfels and Sullivant conjecture that this is
true ∀k.
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Some cases where equations are known

• Landsberg and Manivel (2003) show that
σ2(P

n1 ×P
n2 × . . .×P

nk) is defined by the
cubics of the various flattening, algebraically
for k = 3 and set-theoretically for k ≥ 4.

• Allman and Rhodes (2004) extend the
algebraic statement to k ≤ 5. Garcia,
Sturmfels and Sullivant conjecture that this is
true ∀k.

• Landsberg and Weyman (2006) have found
equations for σk(P

1 ×P
n2 ×P

n3) ,
σ2(P

n1 ×P
n2 ×P

n3 ×P
n4) and

σ3(P
n1 ×P

n2 ×P
n3) Secant to Grassmann and Segre – p. 18/44



The unbalanced case

• Definition Let n1 ≤ n2 ≤ . . . ≤ nk.
P

n1 ×P
n2 × . . .×P

nk is called balanced if
∑k

i=1 ni ≤
∏k−1

i=1 (ni + 1). Otherwise is called
unbalanced.

Secant to Grassmann and Segre – p. 19/44



The unbalanced case

• Definition Let n1 ≤ n2 ≤ . . . ≤ nk.
P

n1 ×P
n2 × . . .×P

nk is called balanced if
∑k

i=1 ni ≤
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The unbalanced case

• Definition Let n1 ≤ n2 ≤ . . . ≤ nk.
P

n1 ×P
n2 × . . .×P

nk is called balanced if
∑k

i=1 ni ≤
∏k−1

i=1 (ni + 1). Otherwise is called
unbalanced.

• Unbalanced means ni ≪ nk

• Catalisano-Geramita-Gimigliano (2006) find,
in the unbalanced case, equations for
σs(P

n1 ×P
n2 × . . .×P

nk) when s is sufficiently
large and describe exactly which σs are
defective. Unbalanced implies defective.
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Many copies of P
1

• Catalisano-Geramita-Gimigliano in 2005
prove that σs(P

1 ×P
1 × . . .×P

1) is never
defective, with at most one exception for any
such variety.
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Many copies of P
1

• Catalisano-Geramita-Gimigliano in 2005
prove that σs(P

1 ×P
1 × . . .×P

1) is never
defective, with at most one exception for any
such variety.

• The only known defective case is
σ3(P

1×P
1×P

1×P
1) which has codimension

2, while the expected codimension is 1.
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Inductive technique for Segre varieties

• Let X = P
n1 ×P

n2 × . . .×P
nk. Fix a linear

subspace P
n′

1 ⊂ P
n1. Specialize s′ points on

X ′ = P
n′

1 ×P
n2 × . . .×P

nk and project from
X ′ on X ′′ = P

n′′

1 ×P
n2 × . . .×P

nk, where
(n′1 + 1) + (n′′1 + 1) = (n1 + 1).

Secant to Grassmann and Segre – p. 21/44



Inductive technique for Segre varieties

• Let X = P
n1 ×P

n2 × . . .×P
nk. Fix a linear

subspace P
n′

1 ⊂ P
n1. Specialize s′ points on

X ′ = P
n′

1 ×P
n2 × . . .×P

nk and project from
X ′ on X ′′ = P

n′′

1 ×P
n2 × . . .×P

nk, where
(n′1 + 1) + (n′′1 + 1) = (n1 + 1).

• The difficulty is that, even if a point is not
specialized, its tangent space meets < X ′ >.
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The tangent spaces of Segre varieties

• The tangent space at v1 ⊗ v2 ⊗ v3 is
V1 ⊗ v2 ⊗ v3 + v1 ⊗ V2 ⊗ v3 + v1 ⊗ v2 ⊗ V3. The
three summands are E(Q1), E(Q2), E(Q3),
where Qi is the i-th quotient bundle and E(Qi)
is the Poincaré dual of the Euler class of Qi.
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The splitting Theorem[AOP]

• Splitting Theorem for Segre Varieties [AOP]
Let s = s′ + s′′, ai = a′

i + a′′

i . If

Dim J(s′X′, (a1 + s′′)E(Q′

1), a′

2E(Q2), a′

3E(Q3)) = Virt Dim J(. . .)

AND

Dim J(s′′X′′, (a1 + s′)E(Q′′

1 ), a′′

2E(Q2), a′′

3E(Q3)) = Virt Dim J(. . .)

then

Dim J(sX, a1E(Q1), a2E(Q2), a3E(Q3)) = Virt Dim J(. . .)
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The splitting Theorem[AOP]

• Splitting Theorem for Segre Varieties [AOP]
Let s = s′ + s′′, ai = a′

i + a′′

i . If

Dim J(s′X′, (a1 + s′′)E(Q′

1), a′

2E(Q2), a′

3E(Q3)) = Virt Dim J(. . .)

AND

Dim J(s′′X′′, (a1 + s′)E(Q′′

1 ), a′′

2E(Q2), a′′

3E(Q3)) = Virt Dim J(. . .)

then

Dim J(sX, a1E(Q1), a2E(Q2), a3E(Q3)) = Virt Dim J(. . .)

• The same is true if the joins fill their ambient space.
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Notation for statement T

The statement

Dim J(sX, a1E(Q1), a2E(Q2), a3E(Q3)) = ExpDim J(. . .)

is denoted by

T (n1, n2, n3; s; a1, a2, a3)

The goal is to prove T (n1, n2, n3; s; 0, 0, 0) for as
many s as possible.
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The inductive procedure at work

Example: σ6(P
3 ×P

3 ×P
3)

Secant to Grassmann and Segre – p. 25/44



The inductive procedure at work

Example: σ6(P
3 ×P

3 ×P
3)

T (3, 3, 3; 6; 0, 0, 0)
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The inductive procedure at work

Example: σ6(P
3 ×P

3 ×P
3)

T (3, 3, 3; 6; 0, 0, 0)

↑

2T (1, 3, 3; 3; 3, 0, 0)
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The inductive procedure at work

Example: σ6(P
3 ×P

3 ×P
3)

T (3, 3, 3; 6; 0, 0, 0)

↑

2T (1, 3, 3; 3; 3, 0, 0) ← 2T (1, 1, 3; 1; 2, 2, 0)

↑

2T (1, 1, 3; 2; 1, 1, 0)
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The inductive procedure at work

Example: σ6(P
3 ×P

3 ×P
3)

T (3, 3, 3; 6; 0, 0, 0)

↑ 2T (1, 1, 1; 1; 1, 1, 0)

2T (1, 3, 3; 3; 3, 0, 0) ← 2T (1, 1, 3; 1; 2, 2, 0) 〈

↑ 2T (1, 1, 1; 0; 1, 1, 1)

2T (1, 1, 3; 2; 1, 1, 0) ← 2T (1, 1, 1; 1; 0, 1, 1)

↑

2T (1, 1, 1; 1; 1, 0, 1)
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starting cases, I

• X = P
1 ×P

1 ×P
1 Up to permutation of

the three factors the list of defective cases is
(0; 0, 1, 3), (1; 0, 0, 2)
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starting cases, I

• X = P
1 ×P

1 ×P
1 Up to permutation of

the three factors the list of defective cases is
(0; 0, 1, 3), (1; 0, 0, 2)

• Why (1; 0, 0, 2) is defective ? Consider X as a
pencil of smooth quadrics parametrized by
the third factor. A point of X is a point of one
of these quadrics, say Q. The two lines meet
Q in two disjoint points, and the line spanned
by these points meets every tangent plane of
Q.
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starting cases, II

• P
1 ×P

1 ×P
2 Up to permutation of the

first two factors the list of minimal defective
cases is
(0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),
(1; 0, 0, 2)
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starting cases, II

• P
1 ×P

1 ×P
2 Up to permutation of the

first two factors the list of minimal defective
cases is
(0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),
(1; 0, 0, 2)

• We have also the lists for P
1 ×P

2 ×P
2 and

P
2 ×P

2 ×P
2
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starting cases, II

• P
1 ×P

1 ×P
2 Up to permutation of the

first two factors the list of minimal defective
cases is
(0; 0, 1, 3), (0; 0, 4, 1), (0; 5, 1, 0), (1; 0, 3, 0),
(1; 0, 0, 2)

• We have also the lists for P
1 ×P

2 ×P
2 and

P
2 ×P

2 ×P
2

• Examples of applications of the inductive
technique are
R(23) = 5, R(24) = 9, R(25) = 23, R(33) = 7,
R(34) = 20, R(35) = 64, R(36) = 215,
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Asymptotic behaviour is non defective

• Theorem [Abo, O., Peterson] Let X = (Pn)k,

k ≥ 3. Let sk := ⌊ (n+1)k

nk+1 ⌋ and
δk := sk mod (n + 1).
(i) If s ≤ sk − δk then σs(X) has the expected
dimension.
(ii) If s ≥ sk − δk + n + 1 then σs(X) fills the
ambient space.
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Asymptotic behaviour is non defective

• Theorem [Abo, O., Peterson] Let X = (Pn)k,

k ≥ 3. Let sk := ⌊ (n+1)k

nk+1 ⌋ and
δk := sk mod (n + 1).
(i) If s ≤ sk − δk then σs(X) has the expected
dimension.
(ii) If s ≥ sk − δk + n + 1 then σs(X) fills the
ambient space.

• Corollary on typical rank R(nk) ∼ (n+1)k

nk+1 if
n→∞ or k →∞.
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A Conjecture on Segre varieties

Conjecture Let d ≥ 3. σs(P
n1 × . . .×P

nd) has the
expected dimension with the only exceptions:

codim exp. codim

1) unbalanced . . . . . .

2) σ3n

2
+1(P

2 ×P
n ×P

n), n even 1 0

3) σ2n+1(P
1 ×P

1 ×P
n ×P

n) 2 1

4) σ5(P
2 ×P

3 ×P
3) 4 3
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Conjecture true for k ≤ 6

Theorem [Abo,O., Peterson] The conjecture for
σk(Segre) is true if k ≤ 6.
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Equations in the defective cases, I

In the unbalanced case([CGG]), and in the case
P

1 ×P
1 ×P

n ×P
n ([CGG], Carlini), the flattening

technique works.
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Equations in the defective cases, II

• Consider the case
P

2 ×P
n ×P

n = P(U)×P(V )×P(V ′). For
every φ ∈ U ⊗ V ⊗ V ′ define the contraction
Aφ: U ⊗ V ∨ → ∧2U ⊗ V ′
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Equations in the defective cases, II

• Consider the case
P

2 ×P
n ×P

n = P(U)×P(V )×P(V ′). For
every φ ∈ U ⊗ V ⊗ V ′ define the contraction
Aφ: U ⊗ V ∨ → ∧2U ⊗ V ′

• If P , Q, R are the three (n + 1)× (n + 1) slices
of φ, the matrix representing Aφ is






0 P −Q

−P 0 R

Q −R 0





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Equations in the defective cases, III

• Theorem(Strassen, 1983, but in a different
form) For n even, det(Aφ) is the equation of
σ3n

2
+1(P

2 ×P
n ×P

n), which has degree
3(n + 1).
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form) For n even, det(Aφ) is the equation of
σ3n

2
+1(P

2 ×P
n ×P

n), which has degree
3(n + 1).

• Sketch of proof: If φ ∈ P
2 ×P

n ×P
n then

rk(Aφ) = 2. If φ ∈ σ3n

2
+1(P

2 ×P
n ×P

n) it
follows that rk(Aφ) ≤ 3n + 2, while
dim U ⊗ V ∨ = 3(n + 1).
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Equations in the defective cases, III

• Theorem(Strassen, 1983, but in a different
form) For n even, det(Aφ) is the equation of
σ3n

2
+1(P

2 ×P
n ×P

n), which has degree
3(n + 1).

• Sketch of proof: If φ ∈ P
2 ×P

n ×P
n then

rk(Aφ) = 2. If φ ∈ σ3n

2
+1(P

2 ×P
n ×P

n) it
follows that rk(Aφ) ≤ 3n + 2, while
dim U ⊗ V ∨ = 3(n + 1).

• When n is odd, the above determinant
vanishes on σ3n+1

2

(P2 ×P
n ×P

n), which has
bigger codimension. Secant to Grassmann and Segre – p. 33/44



A Conjecture for Grassmannians

• Conjecture I Let k ≥ 2. σs(Gr(k, n)) has the
expected dimension with the only exceptions:

codim exp. codim

1) σ3(Gr(2, 6)) 1 0

2) σ3(Gr(3, 7)) 20 19

2′) σ4(Gr(3, 7)) 6 2

3) σ4(Gr(2, 8)) 10 8
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A Conjecture for Grassmannians

• Conjecture I Let k ≥ 2. σs(Gr(k, n)) has the
expected dimension with the only exceptions:

codim exp. codim

1) σ3(Gr(2, 6)) 1 0

2) σ3(Gr(3, 7)) 20 19

2′) σ4(Gr(3, 7)) 6 2

3) σ4(Gr(2, 8)) 10 8

• All the examples have been written by
Catalisano, Geramita, Gimigliano (2002), with
the help of Catalano-Johnson. Secant to Grassmann and Segre – p. 34/44



Evidence for the conjecture

• Theorem The conjecture is true by
Montecarlo computations for n ≤ 14
(McGillivray 2005)
n ≤ 16 (Draisma 2006)

Secant to Grassmann and Segre – p. 35/44



Evidence for the conjecture

• Theorem The conjecture is true by
Montecarlo computations for n ≤ 14
(McGillivray 2005)
n ≤ 16 (Draisma 2006)

• Theorem [Abo,O., Peterson] The conjecture
for σk(Grassmann) is true if k ≤ 6.
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The inductive step for Grassmannians

• Let X = Gr(k, n). Specialize some points on
X ′ = Gr(k, n− 1) and project to
X ′′ = Gr(k − 1, n− 1).
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The inductive step for Grassmannians

• Let X = Gr(k, n). Specialize some points on
X ′ = Gr(k, n− 1) and project to
X ′′ = Gr(k − 1, n− 1).

• Let U and Q be the universal and the quotient
bundle on Gr(k, n). Let E(Q) be the Poincaré
dual of the Euler class of Q, namely
E(Q) = {Pk|Pk−1

0 ⊂ P
k} ≃ P

n−k for a fixed
P

k−1
0 .
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Splitting Theorem for Grassmannians

• Splitting Theorem for Grassmann
varieties[AOP] Let s = s′ + s′′, a = a′ + a′′,
b = b′ + b′′. Let P be the class of a point. If
Dim J(s′Gr(k, n− 1), (s′′ + a′)E(Q), b′E(U∨), b′′P ) =

Virt Dim J(. . .)

AND
Dim J(s′′Gr(k − 1, n− 1), a′′E(Q), (s′ + b′′)E(U∨), a′P ) =

Virt Dim J(. . .)

then
Dim J(sGr(k, n), aE(Q), bE(U∨) = Virt Dim J(. . .)
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A stronger Conj. for Grassmannians

Conjecture II Let k ≥ 2. J(sGr(k, n), aPn−k, bPk+1)
has the expected dimension with the only
exceptions for (s, a, b, k, n), up to duality:
• (2, 0, 1, 2, 6) (2, 0, 2, 2, 6) (2, 1, 1, 2, 6)

(2, 2, 0, 2, 6) (3,0,0,2,6)

• (3, 1, 0, 2, 7)

• (3, 0, 0,3,7) (3, 0, 1, 3, 7) (3, 0, 2, 3, 7) (3, 0, 3, 3, 7)

(3, 1, 1, 3, 7) (3, 1, 2, 3, 7) (4, 0, 0,3,7) (4, 0, 1, 3, 7)

• (4, 0, 0,2, 8) (4, 0, 1, 2, 8) (4, 0, 2, 2, 8) (4, 1, 0, 2, 8)

Secant to Grassmann and Segre – p. 38/44



Starting case for Grassmannians

We still need to manage with the starting case of
the induction. It is Gr(2, n), Grassmannians of
planes. It turns out that the technique given in
[Brambilla-O.], to prove the cubic case in
AH-theorem, works also for Gr(2, n).
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Proof of cubic case in AH-Theor. [BO], I

• Cubics in P
n have dim f(n) = (n+3)(n+2)(n+1)

6

Consider (n+3)(n+2)
6 points Pi (it is an integer if

n 6= 2 mod 3)
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Consider (n+3)(n+2)
6 points Pi (it is an integer if
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• Let L be a codimension 3 linear subspace.
Specialize n(n−1)

6 points on L and leave n + 1
points at their place.
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Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P
n

containing L. They have dim
∆3f(n) = f(n)− f(n− 3) = 3n2

2 + 3n
2 + 1
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Proof of cubic case in AH-Theor., II

Applying induction we reduce to cubics in P
n

containing L. They have dim
∆3f(n) = f(n)− f(n− 3) = 3n2

2 + 3n
2 + 1

Let M be a second codimension 3 linear
subspace
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Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P
n

containing L ∪M . They have dim
∆3∆3f(n) = 9(n− 1)
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Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P
n

containing L ∪M . They have dim
∆3∆3f(n) = 9(n− 1)
Let N be a third codimension 3 linear subspace.
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Proof of cubic case in AH-Theor., III

Applying induction we reduce to cubics in P
n

containing L ∪M . They have dim
∆3∆3f(n) = 9(n− 1)
Let N be a third codimension 3 linear subspace.
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Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P
n

containing L ∪M ∪N . They have dim
∆3∆3∆3f(n) = 27
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Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P
n

containing L ∪M ∪N . They have dim
∆3∆3∆3f(n) = 27

Secant to Grassmann and Segre – p. 43/44



Proof of cubic case in AH-Theor., IV

Applying induction we reduce to cubics in P
n

containing L ∪M ∪N . They have dim
∆3∆3∆3f(n) = 27

It is enough to compute the rank of a 27× 27
matrix. It is 27 and the cubic case is proved.
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Typical rank for Grassm. of planes

• The same technique works for
Grassmannians, with Gr(2, n− 6) at the place
of L.
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Typical rank for Grassm. of planes

• The same technique works for
Grassmannians, with Gr(2, n− 6) at the place
of L.

• Ehrenborg proved (1999) that
R(Gr(2, n)) ≤ n2

12 + O(n)
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Typical rank for Grassm. of planes

• The same technique works for
Grassmannians, with Gr(2, n− 6) at the place
of L.

• Ehrenborg proved (1999) that
R(Gr(2, n)) ≤ n2

12 + O(n)

• Application of the technique:
Theorem[AOP] R(Gr(2, n)) ∼ n2

18 (sharp
asymptotical value)

Secant to Grassmann and Segre – p. 44/44
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