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Chapter 1

Introduction

Let V, W be two complex vector spaces. The elements of the vector space W @ V =
Hom(V*, W) can be written as rectangular matrices, after a basis has been choosen for
V' and respectively for W. One of the basic theorems of linear algebra asserts that after
convenient rows and columns operations the matrix can be written in the normal form

1 0 ... 0

10 0
0 0 ... 0
0 0l 0 0]

where the number of 1’s is called the rank.

This result can be understood by looking at the group GL(W) x GL(V) acting on W® V.
If (9,h) € GL(W)x GL(V) and w®v € W®V, the action is (g, h) - w®v = (g-w) @ (h-v).
The existence of the above normal form is equivalent to the fact that this action has finitely
many orbits on W ® V, classified by the rank.

The only (relative) invariant of this action appears in the special case when dim V' = dim W
and it is called the determinant. In this case a morphism A € Hom(V*, W) is called
degenerate if there exists a nonzero element v € V* such that Av = 0, and a second basic
theorem of linear algebra asserts that A is degenerate if and only if det A = 0.

This book will focus on considering the above situation but with more than two vector
spaces into the play. Let us introduce, to begin, a third vector space I, and assume without
loss of generality that dim W > dim V, dim I. An easy computation shows that when all the
three dimensions are bigger than 2, then dimW @V ® I > dimGL(W) x GL(V) x GL(I),
hence it cannot exist a dense orbit and we have to deal with infinitely many orbits and
eventually with infinitely many normal forms. We anticipate that the situation becomes
soon so wild that a classification of normal forms cannot be obtained if not in special
cases.

We want to show that this fascinating subject is better understood by complementing the

multilinear algebra point of view with the geometric point of view. Let illustrate this fact
with an example. Call a threedimensional matrix A € Hom(V* ® I*, W) degenerate if



there exist two nonzero elements v € V*, i € I* such that A(v®1i) = 0. If dimW <
dimV 4 dim I — 2 then all such A are degenerate, so we can concentrate on the case
dimW > dimV 4+ dim /7 — 1. The matrix A induces in a natural way a morphism of
projective spaces P(W)Z4%P(V*@1*). The dual variety of the image g4 (P(W)) is defined
as the locus of all hyperplanes tangent to g4(P(W)), it lives in the dual space P(V ® I)
and we denote it by (P(W))Y. This space P(V ®I) contains also the Segre variety P(V') x
P(I). It is easy to check that A is degenerate if and only if (P(W))Y and P(V) x P(I)
meet. In particular the subvariety of degenerate matrices has codimension one if and
only if dimW = dim V + dim I — 1, which can be considered the format analogous to the
square format, and it is called boundary format. Now consider A in the projective space
P(W ® V ®I). The first basic theorem in this setting asserts that A is degenerate if and
only if it belongs to the dual variety (P(W) x PV x P(I))".

It follows the nontrivial fact that the dual variety is an hypersurface if and only if dim W <
dimV + dim I — 1. The equation of this hypersuperface is called the hyperdeterminant
and it is a relative invariant for the action of GL(W) x GL(V) x GL(I) on W @ V ® I.
Following [GKZ] we denote by Det(A) the hyperdeterminant of A.

Now this phenomenon can be studied in the setting of vector bundles, which was the
starting point for both the authors of this book. Indeed A as above induces the exact
sequence on P(V)

0—O(-1)® risoe W—5,4—0

and we get that S, is locally free (that is a vector bundle) if and only if Det(A) # 0.
Such a bundle S4 is called a Steiner bundle, notice that the boundary format assumption
makes the rank of S4 equal to the dimension of P(V).

Steiner bundles are probably the simplest class of bundles on projective spaces, and they
were studied among others by Dolgachev and Kapranov in [DK]. For example it is easy
to check that they are stable bundles. The geometry of these bundles gives a nice tool for
understanding the geometry of P (V) itself. Our first encounter was a new and simple proof
of the classical theorems of Darboux and Poncelet. We recall that the Poncelet theorem
deals with the following situation. Consider two conics D and C. Start from a point of
D and draw one of the two tangents to C. From the second intersection of this tangent
with D draw the second tangent and, continuing in this way, draw n tangents. If the n-th
tangent contains the starting point then the procedure closes after n steps and you get a
polygon which is both circumscribed to C' and inscribed to D. The theorem of Poncelet
(‘le grand theorem’) says that if the procedure closes after n steps starting from one point
of D then it closes starting from any point of D, so getting infinitely many polygons as
above. We present a proof in the setting of Schwarzenberger bundles in chapter 8. The
theorem of Darboux generalizes this situation to the case when D is a curve of degree
n — 1.

It is not surprising that Steiner bundles occurr in connection with SL(2) actions. Indeed
the first natural example of a linear map A: V® I—W when dimW = dimV +dim I —1
is given by considering a two dimensional space U and the spaces V = S"U, I = SU~1,
W = 8"tE=1U/ here A is the natural multiplication map.

The bundles arising from this construction are called Schwarzenberger bundles [Schl]. We
prove that the symmetry group of a Steiner bundle is always contained in SL(2) and the
equality holds if and only if the bundle is a Schwarzenberger bundle.



Figure 1.1: A polygon which closes after 14 steps

In chapter 7 we study the possible minimal resolutions on the plane and we describe the
first examples of moduli spaces.

In the last chapter we see applications of Steiner bundles proving the Cauchy-Binet formuls
for hyperdeterminants of boundary format. Then we come to the topic giving the title to
these notes, that is the natural action of the group SL(Vp) x SL(Vp) x ... x SL(V,) on the
space of multidimensional matrices Vo ® ... ® V,,. We prove that a nondegenerate matrix
of boundary format is unstable for this action if and only if it is triangulable.

At the beginning of each chapter we list the main results and objectives of that chapter.
These notes were distributed in preliminary form to the participants to the 24rd Autumn
School in Algebraic Geometry held in Wykno (Poland), September 9-16, 2001

Since then the notes grew up a lot. We thank the organizers of the school and all the
participants for their criticism that helped to improve these notes. We acknowledge the
EC Grant HTN 2000-00099 ”Eager” Polosh KBN SPVB-M.



Chapter 2

Short introduction to algebraic
group actions

The geometric invariant theory, developped by Mumford in [MFK], is studying the action
of algebraic groups on algebraic varieties. Its main goal is to construct and to describe
quotient varieties in a sense weaker than an orbit space.

When the group G, acting on the variety X, is reductive (it means G is affine and all
its representations are semi-simple) the algebra of invariants of X is finitely generated
(Nagata’s theorem). Thanks to this result we can define the quotient of X (in fact of an
open set of X) by G. We will give a characterization of these quotient morphisms, and a
useful criterion (Hilbert-Mumford criterion) which will give us a practical way to describe
the orbits.

After this short and not exhaustive introduction we will give many applications in chapter
3 and in the rest of this book.

2.1 Algebraic groups and their actions

A closed subgroup G of GL(n,C) is called a linear group. It is a smooth algebraic variety,
moreover the multiplication map G x G — G and the inverse map G — G are algebraic,
that is G is a algebraic group. A homomorphism

f:G— GL(N,C)
is called an N-dimensional linear representation of GG. Obviously, a linear group is affine.

2.1 Theorem. [Bor/, Prop. 1.10 Every affine algebraic group is isomorphic to a linear
group.

Let G an algebraic group and X an algebraic variety (we always omit ’over the field C”)
2.2 Definition. An algebraic action of G on X is a morphism of algebraic varieties

c:GxX =X

satisfying the following properties o(g, (o(h,x)) = o(gh,x) and o(e,x) = x.



For an action ¢ of G on X we will denote o(g,z) = g.z. The orbit of z € X is the set
Grx={g.x|geG}

and the stabilizer of x is
G, ={9€G|gx=ux}
We denote X/G the orbit space and 7 : X — X/G the quotient.
When G acts on two varieties X and Y a map f: X — Y is G-equivariant if

flg-x) = g.f(x)

for all g € G and all x € X. In particular f is invariant if f(g.x) = f(x) ie. if f is
constant on the orbits. Any invariant map factorizes by the quotient map X — X/G.

In general the quotient map is not as nice as expected. For example consider the action
of C* on C? by multiplication

t.(z,y) = (tx,ty)
The orbits are the origin and the vector subspaces of dimension one (lines) without the
origin. Then the closure of every orbit contains the origin. Thus there is no structure of
separated topological space on X /G for which the quotient map is continuous. But the
quotient (X \ {0})/G exists, it is the projective line.

2.3 Proposition. [Bor/l.8 Let G an algebraic group acting on an algebraic variety X.
(i) Every orbit of G in X is open in its closure

(i) The closure of every orbit contains the orbit and others orbits of smaller dimension;
it contains at least one closed orbit.

(i) for any z, dim(G.x) = dim(G) — dim(Gy)

(iv) For any n > 0, the set {x € X | dim(G.x) < n} is closed in X.

Let X be an algebraic variety and A = O(X) the algebra of morphisms X — C. An action
o of G on X induces an action of G on A given by
o(g, f)(x)=g.f(x) = f(g a)for fEAgeGand z € X

We denote also this action by f — ¢*(f).

Ezample. (binary forms) For any integer d let V; be the vector space of homogeneous
polynomials of degree d in the variables x,y. Then G = SL(2) acts on points written as
column vectors by left multiplication and acts on Vy

< Z Z > S(z,y) = f(dz — by, —cx + ay)

Of course every f € V; can be written f(z,y) = Hle(bix —a;y). If f is not zero the
points (a;, b;) of the projective line determine f. Note that the points g.(a;, b;) determine
g.f. The stabilizer G acts on the roots by permutation. If the roots of f are distincts
and if d > 3 then Gy is finite and dim(G. f) = dim(SL(2)) = 3.
For f € V; we define the discriminant of f by the formula

Alf)y= [ (aibj—a;bi)?

1<i<j<d

7



The map A : V; — C is a polynomial map G-invariant. If A(f) = 0 then f has a multiple
(at least double) root.

If f € V4 has only simple roots and if d > 2 the orbit G.f is closed in V. In fact we have

G.fc{peValAlg) =A(f)}

This last set is closed in V; and it contains only orbit of maximal dimension (remind that
the stabilizer of a polynomial with simple roots is finite, this argument works for d > 3
but the reader can supply a easier argument in the case d = 2). We conclude with the
proposition 2.3 (ii).

2.2 Quotients

All the proofs of the result of this section can be found in [LPO].
We begin by the notion of categorical quotient which is the weakest. Then we will define
the good quotient and the geometric quotient which is the natural notion of orbit space.

2.4 Definition. A categorical quotient of X by the action of G is a pair (Y, 7) given by
an algebraic variety Y and a morphism w: X — Y which satisfy the following properties
(i) the morphism 7 is G-invariant.

(ii) the pair (Y, ) is universal for (i). That means that for any G-invariant morphism
f: X — Z there exist an unique morphism ¢ 1Y — Z such that f = ¢om

Ezample. Let M, be the vector space of n x n matrices with coefficients in C. The linear
group GL(n,C) acts on M, by conjugation. Consider the morphism

T M, —C"

which associates to a matrix M the n-coefficients of its characteristic polynomial. Then
the couple (C™, ) is a categorical quotient of M,,.

2.1 Exercise. Prove this claim. When n = 2 describe the orbits and the fibers. Do they
coincide?

2.5 Definition. A good quotient of X by the action of G is a pair (Y, ) of an algebraic
variety Y and a G-invariant morphism m which satisfy the following conditions

(i) the morphism 7 is affine and surjective.

(ii) the canonical morphism of sheaves Oy — m.(Ox)C is an isomorphism.

(iii) The image by ™ of a G-invariant subset is a closed subset of Y.

(iv) The morphism 7 separates the G-invariant disjoint closed subsets of X .

2.6 Proposition. Let 7 : X — Y be a good quotient of X by G. Then we have the
following properties

(i) The topology of Y is the quotient topology.

(ii) The pair (Y, ) is a categorical quotient.

(iii) In each fiber of 7 there is one and only one closed orbit.

The third assertion implies that the underlying set of Y can be identified with the set of
closed orbits.



2.7 Definition. Let X be an algebraic variety with an action of G. A good quotient
m: X =Y

is called a geometric quotient if the orbits are closed.

Ezxample. Let U C M, be the open subset of matrices whith distinct eigenvalues. Then
there exist a geometric quotient of U by GL(n,C) (conjugation). This quotient is the
open set of C™ of points (c1,--- ,¢y) such that the discriminant of the polynomial

"+ Z el

i>1
is different from zero. It is easy to verify that the orbits are closed. We will see next that
it is a good quotient.

Let o be an action of G on X. For x € X we denote by o, : G — X the map which sends
G onto G.z. If this map is proper, the orbit of x is closed in X.

2.8 Proposition. Let m : X — Y be a good quotient of X by the action o of G. Let
U C X be the set of points such that the morphism o, is proper. Then

(i) the set U is open in X

(i) this open set is the inverse image by 7 of an open set V- C Y, and the induced morphism
U — V is a geometric quotient.

2.9 Proposition. The map o, is proper iff the two following conditions are filled
(i) the orbit of x is closed in X

(ii) the stabilizer G, of x is finite.

2.2.1 Quotient of an affine variety

2.10 Theorem. Let G be a linear reductive group acting on an affine algebraic variety
X = SpecA. Then the algebra A is finitely generated. Moreover the morphism

7: X = SpecA — Y = SpecA®
induced by the inclusion A C A is a good quotient.

Ezample. Consider the action of GL(n,C) on M, by conjugation. By Theorem 2.10 there
exists a good quotient. This good quotient is a categorical quotient, and by uniqueness
property, this good quotient is the quotient

M, — C"

described before.

2.2.2 Quotient of a projective variety

Let ¢ : B — A be a morphism of graded finitely generated algebras such that the graded
piece of degree 0 is C. Then the inverse image of the vertex O of the cone Spec(B) by
the induced morphism Spec(A) — Spec(B) is a closed C*-invariant subvariety of Spec(A),



corresponding to a closed subvariety of Proj(A), called the center of ¢, and denoted by
C(¢). This subvariety is associated to the ideal of A generated by ¢(B4). Thus we obtain
a morphism of algebraic varieties

Proj(A4) \ C(¢) — Proj(B)

Let G be a reductive group which acts linearly on C**!. Let X be a G-invariant subvariety,
defined by a homogeneous ideal I. Consider the algebra A of homogeneous polynomials
on C"*! and the quotient R = A/I. This is a graded algebra such that Ry = C. The
variety X can be identified to Proj(R). Consider the inclusion

i:R° R
2.11 Definition. A point of X is unstable for the action of G if it belongs to the center
of 1.

Let X% = X \ C(i). We remark that x € X* if and only if there is an G-invariant
homogeneous polynomial P € R of degree > 1 such that P(x) # 0.

2.12 Theorem. The canonical morphism m : X*° — Proj(R%) is a good quotient.

2.13 Definition. A point x € X is called semi-stable for the action of G if there is an
G-invariant homogeneous polynomial P € R of degree > 1 such that P(x) # 0.

We denote by X*% the set of semi-stable points of X. We denote by X = SpecR the affine
cone of X and we denote by & a representative of z € X. So the above definition means
that

rEX® o 0¢0a

This leads to the following definition

2.14 Definition. A point x € X is semi-stable if and only if O ¢ G.%. It is stable if G.&
is closed and if G is finite.

As before we denote by o the action of G on X.

2.15 Proposition. Let G an affine algebraic group which acts on X. Then the orbit
morphism
0y :G—>X

is proper if and only if x is a stable point.

By the proposition 2.8 we know that the set of stable points X* is open. It is the inverse
image of an open set Y*¥ and the map X*® — Y% is a geometric quotient.

2.2.3 The Hilbert-Mumford criterion.

To compute the semi-stable (stable) points of a linear action of a group G on a variety X
we have a very useful numerical criterion, called the Hilbert-Mumford criterion.

2.16 Definition. A group morphism G,, = C* — G is called an one parameter subgroup

of G.

10



2.17 Proposition. Let V' a G-module. Then v € V is semi-stable (resp.stable) under the
action of G if and only if v € V is semi-stable (resp. stable) under the induced action of
every one parameter subgroup.

Let A: C* — G a one parameter subgroup of G and V be a n-dimensional representation
of G. Then in convenient coordinates we have

tr 0
A(t) = withry > - >r,
0 trn

Let p(A,v) = maw;y,20{—ri}. Assume now that G acts linearly on P" and let X C P"
be a closed G-invariant subvariety. We can show that (X, z) = p(A, ) for every non zero
representative of x. Then we observe that

o (A, z) >0« Limy_,oA(t).Z does not exist.

o u(\ z) > 0< Limy_,oA(t).2 # 0 if the limit exists.

Hence a consequence of Proposition 2.17 is

2.18 Theorem. (Hilbert-Mumford criterion) Assume that G acts linearly on P" and
let X C P a closed G-invariant subvariety. A point x € X is semi-stable (resp. stable) if
and only if (A, x) >0 (resp. w(\,z) > 0) for every one parameter subgroup .

11



Chapter 3

Applications: binary forms,
hypersurfaces

3.1 Binary forms
3.1.1 Generalities and binary forms of degree < 3

Let U be a vector space of dimension 2. P(U) is a projective line P'. We have a natural
isomorphism S™P! ~ P" which now we recall. The symmetric group &,, acts on the
ring Clzo, ..., z,] by permuting the variables. A symmetric polynomial in the n variables
Z1,...IT, is a polynomial which is invariant for this action.

Let T[5_ (1 +ait) = >0, E;td so that Ey = 1, By = d i1y v Bn = T[j_, zj. The
E; are called the elementary symmetric polynomials.

Consider the variety S"P! of effective divisors of degree n in P!.

To such a divisor
D= anx, where an =nand z € P!

we can associate a homogeneous polynomial P € S™U, unique modulo invertible scalars,
vanishing in z with multiplicity n,. This shows that S"P' ~ P(S"U) ~ P". Consider the
group SL(U) and its natural action on S™U:

g9-P(z) = P(g~ @)
Then by Theorem 2.12 we have a good quotient of the open set of semi-stable points :

m: (P =Y

3.1 Proposition. A divisor D =) nyx gives a semi-stable (resp. stable) point in P™ for
the action of SL(U) if and only if for any x € P! we have n, < 5, (resp. ny < %5)

Proof. Let X\ : C* — SL(U) a one parameter subgroup of SL(U). We have

= (4 2)

12



with @ +b = 0. We can assume that a < b. A basis of S?U" is given by the monomials
XUTJ with i + j = n so we have P = D ico. naiXiT"*i. Then the action of A on S*UVY
is the following o

)\(t)P _ Z aitfaifb(nfi)XiTnfi

=0, n

We have
w(A, P) = Max{ia + b(n —1i),a; # 0} = Max{a(2i —n),a; # 0}

but a < 0 so u(A, P) = (—a)(n — 2Min{i,a; # 0}). By the Hilbert-Mumford criterion
2.18 we know that P is unstable if and only if there exists such a one parameter subgroup
with p(A, P) < 0. This is equivalent to a; = 0 for 4 < §. That means that the point
(0,1) is a root with multiplicity > % of the polynomial P. Conversely if P has one root
of multiplicity > % we can assume that this root is (0,1). Then by choosing a = —1 and
b = 1 we prove that P is unstable (i.e. the point D is unstable). The method is exactly

the same to find the semi-stable points. O

By this way we found the semi-stable points but we did not describe the quotient nor the
morphism 7 : (P")* — Y. In the following cases we will do it.

e For n = 1 (one point on P!) all points are unstable. There exists a categorical quotient
(which is a point). The action is transitive and there is no SL(U)-invariant open subset
with a good quotient.

e For n = 2, (two points on P!) the open set of semi-stable points is the open set of divisors
D = x4y with x # y. This open set (P?)** is the complementary of a conic in the plane.
Of course we can identify the conic with the discriminant of

P =ay X%+ 20, XT + asT?

The polynomial a2 — agag is SL(U)-invariant. The good quotient is just one point because
there is only one orbit (i.e. SL(U) is 2-transitive). We can also remark that the algebra
of invariants is C[S2UY ]9V = Cla? — apas).

e For n = 3 the semi-stable points correspond to the homogeneous polynomials with three
distincts roots. If A = 0 is the equation of the discriminant of the generic binary cubic
a0 X3 + a1 X2T + aa XT? + a3T? we have (P3)* = P3\ {A = 0}, where the set of points
satisfying A = 0 is a quartic surface in P3. There is a nice interpretation of this surface
. it is the surface given by the tangent of the normal rational cubic image of P! by the
Veronese imbedding. The semi-stable points coincide with the stable points. Since SL(U)
acts transitively on the set of triplets in P*, the quotient is, once again, a point. We can
also describe the algebra of the invariants C[S3UY]3H(U) = C[A].

For n = 4, the situation becomes more complicated (then more funny). Before to consider
this case we prefer to recall some facts about the cross ratio.

13



3.1.2 Cross Ratio

Let 21, 22, 23 and z4 be four distinct points in P!. Let 0 € PGL(2,C) be the homography
such that o.(z1, 22, 23) = (0,00, 1). The remaining point will be sent to the point A = .24
where )\ is the cross-ratio

(21 — 23) (22 — 24)
(21 — z1)(22 — 23)

A(z1, 22, 23, 24) =

Remark that A(00,0,1,2) = 2. By its construction the cross ratio is SL(2)-invariant on
the ordered 4-uples of points. Permuting the four points has the effect of changing the
cross-ratio from A to either 1 — A, %, ﬁ, % or ﬁ A quick way to see that is through

the Pliicker relation
(2’1 — 22)(23 — 2’4) — (2:1 — Z3)(22 — 2’4) + (Zl — 2’4)(2’2 — 23) =0

Thus, two (not ordered) 4-uples can be carried into each other if and only if the subsets

1 1 AX=1 A
{)‘71_)‘7X71_)\7 A\ 7)\_1}C(C\{051} (31)
coincide. To characterize when this is the case, we introduce the celebrated j-function
A2 —A+1)3
i(A) = 28(— 3.2

3.1 Exercise. Show that two subsets {00,0,1, A} and {0,0, 1,)\/} are SL(2)-equivalent
if and only if j(\) = j(\).

It follows from the previous exercise that we have one orbit (in P(S*U)) for each value of
jeC.

3.1.3 Automorphisms of elliptic curves

Let wi, wa € C be independent over R. Let A = {nw; +mwa|n,m € Z} be the correspond-
ing lattice. The quotient C'/A is called an elliptic curve.

3.2 Proposition. Let F': C/A — C/A" be holomorphic. Then F' lifts to F:C — C such
that F(z) = az + b for some a,b € C.

Proof. There is a lifting because C is the universal covering. For every w € A we have
F(z +w) — F(2) € A’ which is then a constant. It follows that the derivative F” satisfies
F'(z + w) = F'(2), hence it descends to C/A which is compact, then F'(z) = a as we
wanted. ]

A holomorhic and bijective map of C/A in itself is called an automorphism. The auto-
morphisms which fix a given point make a subgroup that we denote by Aut(C/A). If this
point is the neutral element of C'/A then the elements of Aut®(C//A) lift to F such that
F(z) = az After the previous proposition it is standard to put the lattice in the canonical
form w; = 1, we = 7 with Im(7) > 0. Two lattices are called equivalent if there is an
element of SL(2,Z) which takes the first in the second one. Then we get
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3.3 Proposition. Let A = {n + m7|n,m € Z} and denote the elliptic curve C/A by E.
Then Aut®(E) has order

(i) four if A is equivalent to < 1,i >.

(i) siz if A is equivalent to < 1,e™/3.

(iii) two if A is not equivalent to the two above cases.

4% picture (the proof is geometrical, case (i) is the square lattice, in case (ii) it comes

from hexagonal lattice

3.1.4 Binary forms of degree > 4

For n = 4, the stable points correspond by Proposition 3.1 to homogeneous polynomials of
degree 4 without multiple root, i.e. outside the threefold in P* defined by the discriminant.
There are exactly two orbits of strictly semi-stable points :

e D; = (X2T?) i.e. 2 double zeroes.
e Dy = X?(X +T)(X —T)i.e. 1double zero.

We can see (exercise 3.4) that the first one is of dimension 2 (2 points on P!), the second
one is of dimension 3 (3 points on P!) and that the first orbit is closed and contained in
the closure of the second orbit. Geometrically Ds is the union of osculating 2-planes to the
quartic rational curve, D; is the union of intersection points of two osculating 2-planes.

Let U be the open set in P! x P! x P! x P! of 4-uples of distincts points. We have just
seen that U/&4 = (P*)*. Consider the map

U — P\ {c0,0,1}

which associates to (z,, z,t) the cross-ratio [x,v, z,t]. It gives an action of &4 on P!\
{00,0,1}. The orbit of A according to this action was described in (3.1). The normal
subgroup Zs x Zg of &4 acts trivially on P! \ {c0,0,1} and we obtain an action of the
finite group isomorphic to &3 generated by the automorphism z — % and z — 1 —z. This
action has a geometric quotient, given by the map j : P!\ {00,0,1} — C (see (3.2)). This
invariant is the usual invariant for elliptic curves (Hasse’s invariant), see the next remark.
This is a geometric quotient by the action of SL(2) (fibres and orbits coincide), and the
action of &4 commutes with the action of SL(2). We obtain a SL(2)-invariant morphism
from (P*)* to C by composition of the cross ratio with j, which can be extended in a
map 7 : (P*)* — P! by sending the strictly semi-stable orbit on co. We deduce that the
morphism (P4)%/SL(2) — P! is birational and it is a isomorphism.

3.2 Exercise. (i) Show that the closure in P* of the orbit 7= 1(2) is a threefold of degree
6 except m1(1728) (2 = j(—1)) which is a threefold of degree 3 (harmonic) and 7 1(0)
(z = j(w), w root of w?> —w + 1) which is a threefold of degree 2 (anharmonic).

(ii) By considering the threefold of lines bisecant to the rational quartic give the equation
of the Zariski closure of 7~ (1728).

Xo X1 X5
Hint : det | X7 X9 X3 = 0 is the wanted equation.
Xo X3 Xy
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3.4 Remark. Any elliptic curve is isomorphic to a smooth plane cubic. By projecting
the cubic from one of its point over a line we get a double covering with four ramification
points. The cross ratio of these four points does not depend on the center of projection.
These four points make a harmonic 4-uple in the case (i) of 3.3. An example is the curve
y?z = 2% — x2% ([Ha] example 4.6.1). The four points make a anharmonic 4-uple in the

case (ii) of 8.3. An example is the Fermat curve x3 + y3 = 23 ([Ha] evample 4.6.2).

3.5 Remark. The algebraic counterpart of the exercise 3.2 is that f = agx* + 4a123y +
6asx’y® + dasxy> + asy® is the sum of two 4-powers if and only if

apg aip az
J:=det| a1 as a3z | =0
a2 a3 a4

3.3 Exercise. (i) Given generic t1,ty € C, the equation (x —t1)(x — t2) = A\ (z — t1)% +
Xo(x — t2)? has no solution in the unknowns \;, because for x = t; you get \; = 0.

(ii) Given any ty,ta,t3 € C prove that the equation (x —t1)(x —t2)(x —t3) = A (z —t1)> +
Aao(z — t2)® + A3(z — t3)3 has a solution in the unknowns ;.

The correct generalization of the exercise 3.3 is the exercise 3.5 (iii).

Let U be a complex vector space of dimension 2 and consider the projective space P(S™U)
of hyperplanes in S"U. The rational normal curve C,, is described by < u®" >, where
ueU”.

S™U is the space of homogeneous polynomials of degree n and C,, corresponds to the
polynomials with a single root of multiplicity n.

In the projective space P(S™U) it is customary to identify the class [f] of a polynomial
with the polynomial itself.

3.6 Definition. Given a smooth point © of a curve C, by the implicit function theorem
there is a C*°-map f : U — P™ from an open set U C C containing the origin parametrizing
locally the curve. Let us assume that f(0) = x, the k-th osculating space at x is the span of
the points £(0), f1(0), ..., f®)(0) and it is defined when these points are independent. A
point where the k-th osculating space is not defined for some k < n is called inflectionary
point. Any curve not contained in a hyperplane has only finitely many inflectionary points.

3.7 Proposition. The i-th osculating space at the point < u®™ > corresponds to the
polynomials which are divisible by < u®"~* > and we denote it by Tin. In particular Tp1
1s the tangent line at p and T;l_l 1s the osculating hyperplane at p.

Proof. By the group action it is enough to compute the spaces in a neighborhood of "

which correspond to ¢ = 0 in the parametrization (1,¢,¢2,...,t"). Then the space where
the first 7 derivatives vanish at zero consists of points with the last n—i coordinates vanish.
These points correspond to polynomials which are multiple of ™. O

We underline that in this correspondence, every polynomial f in the line < g, h > joining
the polynomials g and h is a multiple of GC'D(g, h).
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3.4 Exercise. In P* for every pair of points * and y* in the rational normal curve C,
show that the corresponding osculating planes meet in the point x*y?. Prove that the locus
filled by this point is a orbit S. Prove that its closure is SUC, and it is a smooth surface of
degree 4, which is isomorphic to the projective plane, and it is called the Veronese surface
in P4, In fact it is the projection of the Veronese surface in P° through a point. A theorem
of Severi in 1901 (written at the age of 22) shows that it is the unique surface in P> which
projects from a point to a smooth surface in P

3.8 Remark. Zak has classified all varieties of dimension %(n — 1) in P™ that are not
linearly normal, that is that are projection from a external point of a variety in a higher
dimensional projective space. There are 4 such examples, and the Veronese surface of
the previous exercise is the first one. For details see [LVAV]. Zak proof has been recently
simplified by Chaput. There is a fascinating link of these 4 varieties with the 4 real division

algebras R, C, H, O [Chap].

3.5 Exercise. A generic hyperplane H C P(S™U) meets the rational normal curve C in
n distinct points x1,...,x,. We get a function H — ﬂ?legi_lC.

(i) Prove that this function extends to a morphism P(S"U)* — P(S™U) in the following
way, if HNC is > " nyx; then H goes to ﬂ;-lngi_iC.

(ii) For n = 1 the corresponding map U — U* is given by the contraction by N*U*. For
general n the linear map S™U — S"U™* is the n-symmetric power of this one.

(iii) Prove that the morphism P(S"U)* — P(S™U) of part (i) is a linear projective
transformation which is symmetric if n is even and skew-symmetric if n is odd. In
particular N} T,,C €< x1,...,x, > if n is odd, while in the case n even the locus
{H € P(S"U)*|H D T;"'C Vp € HNC} is a smooth quadric. Formally when H N C
contains points with multiplicities i, one has to take the corresponding osculating space of
order n — 1.

(iv) Prove that the inverse function P(S"U) — P(S™U)* comes from the function

f = H = {span of roots of f counted with their multiplicity}

The previous exercise has the following interpretation in terms of representations: A?(S™U)
contains a summand of rank 1 iff n is odd, S?(S™"U) contains a summand of rank 1 iff
n is even . In particular every rational normal curve of even degree determines a unique
smooth quadric containing it.

3.6 Exercise. Castelnuovo, 1891 From the Veronese surface S in P* (see 3.4 it is
possible to reconstruct the rational normal quartic C. In fact Vx € S, the trisecants to S
passing through x lie in a plane wy, called singular plane. Then C' can be obtained in one
of the two following ways

i) C ={z e S|dimnm, NT,S > 1} (in general muy N TS = {x})

ii) Ty meets S in x and in a conic Cy. Then C = {z € S|z € Cy}.

The Hessian of a polynomial f(z,y) € S™(U) is by definition

H(xay) = fxxfyy - x2y e SQ”74U
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3.7 Exercise. (i) Prove that H(z,y) = 0 gives a system of quadrics which defines as
scheme the rational normal curve C. For n < 3 these quadrics generate the homogeneous
ideal of quadrics containing C, but for n > 4 they are too few.

(ii) Prove that the quadrics given by the 2 X 2 minors of the matrix

a ap -0 Gp-1
al as e an

generate the homogeneous ideal of C'.

3.9 Lemma. The hypersurface R(ag,ai,...,a,) = 0 given by the discriminant of f(x,y) =
oo Gi (?)m’ "=t corresponds to the union of T[ZJQ ~ P2,

Proof. Every T"?2 contains polynomials with a double root. Conversely if f has a double
root it lies in a 772, O

This lemma has the following generalization

3.8 Exercise. Prove that the equations of the varieties UyeyT,n ' give necessary and
sufficient in order that f € S™U has a root of multiplicity ©. Compute explicitly the
variety of polynomial of fourth degree with a double root.

3.9 Exercise. Enriques-Fano Consider the closure of the orbit of f € P(S™U) under
the action of SL(U), call it X¢. Prove that

i) Xy is never a point.

i) Xyt is a curve iff it is the rational normal curve (of degree n) and f(x,y) = 2" (in a
suitable system of coordinates).

iii) X5 is a surface iff f(z,y) = x'y"" for some 0 < i < n (in a suitable system of
coordinates). The degree of Xy is 2i(n — i) if 2i # n and i* if 20 = n. This case is the
only one where Xy is smooth (projection of the quadratic Veronese embedding)

i) In the case not covered by ) and i) X is a threefold of degree "(”]1{7)!’((0*2) where

I'y ={9g € PGL(2)|g- f = f}. When n =4 and the 4 roots of f are distinct then Iy
is Zio ® Ziy with the only two exceptions of the harmonic case (f = x* + y*) where [y ois
dihedral of order 8, which is the simmetry group of a square, and of the anharmonic case
(f = 2* + xy3) described in the next remark.

3.10 Remark. The item iv) of the previous exercise has been analyzed by [Aluffi-Faber].
They prove that the threefold Xy is smooth only in the four following cases
i)n=3 X;= P3 f=a3+y3 (Fano of index 4) and I’y is the dihedral group of order
6 corresponding to the isometries of a regular triangle.
i) n =4 X; = Q3(smooth quadric in P* f =x(x3+y?) (anharmonic) (Fano of index
3) and I'y is the tetrahedral group of order 12 isomorphic to Ay. Remark that we have a
central extension

1—>ZQ—>A4L>63—>1

(in fact the centrum of Ay is given by Zo X Zso) where f acts by permutation of the three
medians which join the medium points of the opposite edges of the tetrahedron. A4 can be
seen as binary dihedral corresponding to the reqular triangle.
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iii) n=6 X; = Gr(P',P*) N P" f = zy(a* —y*) (Fano of index 2) and Ty is the
octahedral group of order 24 isomorphic to &4

w)n =12 X; has deg 22 in P'? f = oy(z' + 112%9y° — 2y'%) (Fano of index 1 found
by Mori), the genus is 12 and Iy = As=icosahedral group of order 60

The exzample iv) escaped classical list of Fano threefolds. One of its more intriguing proper-
ties is that its Hilbert scheme of lines is not reduced. Examples i)-iv) give compactifications
of C3, see also [Mukai].

***Epictures? Say more about finite subgroups of SL(2) and regular polyhedra.

3.11 Remark. By pullback with the 2 : 1 covering SL(2)— PGL(2) we get the so called
binary polyhedral groups.

3.2 Hypersurfaces, ternary forms

3.10 Exercise. Consider the action of SL(V) (change of variables) on the space P(S*V)
of quadrics in P(V). Find a natural invariant and give its equation. Give the number
of orbits and show that only one orbit is closed. By studying the stabilizer of semi-stable
point show that there is no stable point for n > 3.

We consider now a vector space V of dimension 3 over C and we consider the action of
SL(V) on the space of cubic forms S3VY = C[z,y, 2]3, by change of coordinates. Let
f € S3VV be a cubic curve in P? = P(V). Let A a one parameter subgroup of SL(V). We

can write it

t* 0 0
Aty=[ 0o ¢ 0
0 0 t

where a, b, ¢ are integers such that a + b4+ ¢ =0 and a > b > ¢. We deduce that the
vector space of cubic forms f such that Lim; ,0A(f).f = 0 is contained in the vector
space generated by 23, 2%y, zy?, y3, 222 (these two vector spaces are equal when (a, b, c) =
(2,1,—3)). Then every unstable f can be written with convenient coordinates in the
following form :

f(z,y, 2) = az® + ba’y + cay® + dy® + ex?z

So we can understand what is a unstable plane curve of degree 3. By computing the
partial derivatives we see that (0,0, 1) is a singular point, but not an ordinary singular
point. More precisely a cubic curve is unstable if it has a triple point or a cusp. This
happens in the following three cases. **pictures

e If de # 0 then the curve is a cuspidal curve (the cusp is the point (0,0, 1))

o If d = 0 and ce # 0 then the curve is the union of the conic ax? + bxy + cy® + exz = 0
and its tangent x = 0.

e If c=d =0 orif e =0 then the curve is the union of three lines with a common point.

This proves that the cubic curves which are smooth (i.e. outside the discriminant locus) or
with an ordinary singular point (nodal curves) are semi-stable. We have a good quotient

P(S3VV)% — P(SPVY)* /SL(V)
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Since the dimension of P(S3VV)* is 9 the quotient is a normal unirational curve so it
is P!. Remember that each fiber contains a closed orbit. When the cubic is smooth its
stabilizer is finite, so its orbit is 8 dimensional and moreover the orbit is closed because if
not you could find in the closure a smaller one. **this is false!**

When the cubic is nodal we have three cases :

e irreducible nodal curve, zyz + 3> + 23 =0

e union of an irreducible conic and a line cutting the conic in two distincts points, xyz +
y* =0

e three non concurrent lines, zyz = 0

The cases 2 and 3 correspond to strictly semi-stable curves because the dimension of their
stabilizer is > 1, for example the one parameter subgroup A(t) = (¢,1,¢~!) stabilizes the
two curves. We can also see that the orbit of zyz = 0 is of dimension 6 and it is contained
in the closure of the orbit (dimension 7) of xyz + ey® = 0. This latter is also contained
in the closure of the orbit zyz + ey® + (a®. These three orbits are in the same fiber, the
closed orbit is the smallest one. Since there is only one closed semi-stable but not stable
orbit, namely the set of three non concurrent lines, we obtain

P(SPVY)$/SL(V) ~ Al
3.11 Exercise. Describe the unstable orbits, compute their dimension.

3.12 Exercise. Clebsch quartics, (1865) S*V is a direct summand of S*(S*V). In
coordinates this means that any f € S*V can be written as

flz,y,z)=W". Cy-W (3.3)

where W = (2%, 2zy, 2x2,vy%,2y2,2%) and Cy is a (symmetric) 6 x 6 matriz with linear
entries with respect to f. .

(i) show that there are infinitely many symmetric matrices Cy such that (3.3) holds

(ii) show that among the symmetric matrices Cy such that (3.3) holds there is a unique
one Cy characterized by the property C i gyirzyt = V-Vt where V = (p?,pq, pr, ¢%, qr,2).
Prove that the rank of Cy is SL(V)-invariant.

(i) write explicitly the first entries of C¢ in terms of the coefficients of f.

(iv) prove that rkCy = 1 if and only f is the fourth power of a linear polynomial.

(v) prove that det Cy = 0 if and only if f is the sum of five fourth powers. This shows that
the 5-secant variety of the quartic Veronese embedding of P? is a hypersurface of degree
6 in P(S*V) = P¥. Remark that the freshman (and wrong!) numerical postulation gives
that every f is the sum of five fourth powers. In fact 4 +5 -2 = 14. Alerander and
Hirschowitz [AH] classified all the few special cases analogous to this one(see [IK]).

(vi) prove that xz(xz + y?) is not the sum of five 4-powers.

3.13 Exercise. (Dolgachev) Prove that any non-singular hypersurface of degree d in P"
is a semi-stable point for the linear action of SL(n+ 1) on P™. If d > n+ 1, prove that
any non singular hypersurface of degree d is a stable point under the action of SL(n + 1)
(because the group of automorphism is finite in this case).
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3.3 Action of PGL(U) = PGL(2) on P(S?(S2U))

***make pictures of the several cases, orbits and their relation™*
Consider the following imbeddings

P(U) % P(S2U) < P(S2(S2U))

We denote by Co the conic Co = v(P(U)) and by Cy the quartic curve i(C3). The space
P(S2%(S%U)) is the space of conic curves of P(S2U). The canonical decomposition

S2S%U = S*tU e C

shows that there is a fixed point in this space which is the conic C; and also an invariant
hyperplane P(S*U) which is generated by the quartic rational normal curve Cy. This curve
is the curve of double lines tangent to C5. The invariant varieties D; and Dy defined at
the beginning of the subsection 3.1.3. can be interpreted as the locus of intersection of
respectivly the bitangent and tangent conics to Cy with the hyperplane generated by Cy
( Observe that the unstable points of P* are the points of the rational curve (Cy) and of
the surface of tangent lines to the rational quartic. We can see this curve and this surface
as the intersection of the hyperplane with the surface of surosculating conics and with the
threefold of osculating conics.)

Now since a general conic C' meets Cs in four distinct points, the orbit PGL(U).C is linked
to the cross-ratio of these four points. In the space of conics there is a natural invariant
which is the set of singular conics. As we have seen before this is a cubic hypersurface S,
since in the pencil (C, Cs) there is exactly three singular conics. We would like to study
the action of PGL(U) on this invariant hypersurface.

3.3.1 Action of PGL(2) on the singular conics

Let C a singular conic meeting C in four distinct points. Two fourtuples of points on
C5 have same cross-ratio A, %, 1-— )\,ﬁ, ﬁ and % if and only if they are equivalent
under SL(2). Then we deduce that two singular conics associated to the cross ratio {A, 3}
with A € C—{0, 1} live in the same SL(2)-orbit (Indeed if we have [z1, 22, 23, z4] = A then
(22,21, 23,24] = ). Let C\ a representative of this orbit. The function ¢(\) = (%)2 is
invariant by the transformation A — % We associate, by this way, the complex number

c(\) # 1 to the conic €. We denote by () the SL(2)-orbit of C}.

The complex number ¢(A) = 0 if and only if the cross-ratio A of the four points on Cy is
—1. In that case the two lines of C' are harmonically conjugated i.e. C' belongs to the
pencil of conics (double line) (12,d?) where [ and d are tangent to Cs. This remark proves
that Qy = Sec(i(Cs)).
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Chapter 4

Poncelet porism

4.1 Fregier’s involution and Pascal theorem

Let D C P? be a smooth conic and = be a point in P? such that = ¢ D. A general
line passing through x meets D in two distinct points. The homography v € Aut(D) =
PGL(2,C) which permute these two points is an involution called Fregier’s involution.
The point x is called the center of the involution, and the two tangents to D coming from
x give the fixed points of u.

4.1 Exercise. Show that every involution on D is a Fregier’s involution.

4.1 Proposition. Let u and v be two involutions with distincts fixed points. Then,
(uv) is involutive if and only if the two fixed points of u and the two fixed ponts of v form
an harmonic 4-ple on D.

Proof. Let (x1,x2) be the fixed points of u and (y1,y2) be the fixed points of v.

Assume that uv is involutive. Since uv = vu we can see that v (resp. u) exchanges the
fixed points of u (resp. of v). The cross ratio does not change by an homography (3.1.2)

then we have [z, z2,y1,y2] = [u(x1),u(x2),u(y1),u(y2)]. By the remark above it means
that [z1, 22, y1,y2] = [x1, %2, y2, y1], and this equality implies that [z1,z2,y1,y2] = —1.
Conversely, since [z1,x2,y1,y2] = —1 we have the following relations

(21, 22, y1,y2] = [x1, T2, ¥2, y1] = [22, 21, Y1, ¥2]

This means that v (resp. w) exchanges the fixed points of u (resp. of v) because an
involution is defined by its fixed points. Now we have uv(x1) = xa, uv(z2) = x1,uv(y1) =
yo,uv(y2) = y1 and these four points are all fixed points for (uv)2. Since an homography
with three fixed points is the identity, the proposition is proved. O

4.2 Proposition. Let u, v, and w be three involutions with distincts fixed points, ., x,
and ., be their respective centers. Then, (uvw)2 =1idp & Ty, T, and x, are aligned.

Proof. Assume that the three centers are aligned and let’s call L this line. The line L is
not tangent to D because the three involutions do not have a common fixed point. Then
let {z,y} = LN D. We verify that wvw(z) = y and wow(z) = y. Let z € D be a fixed
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point of uvw. Now the three points x,y and z are fixed points for uvw. It means that
(uvw)? = idp.

Conversely, assume that uvw is involutive. Let x € D such that v(z) = w(z). Then x is
a fixed point of the two homographies vw and wv. Of course v(z) is also a fixed point for
vw because vw(v(x)) = vw(w(z)) = v(z). We have found two fixed points for vw. We
want now to prove that u(z) is also a fixed point to vw. Assume for a while that u(x) # z.
By hypothesis we have (uvw)(uvw)(x) = x. Since vw(x) = x we find wvwu(z) = =, then
u?vwu(z) = u(z) or vw(u(x)) = u(x). Since u(z) # = and vw # idp this proves that
u(x) = v(x) = w(x) i.e. that z,,x, and x,, are aligned.

It remains to verify that u(z) # x. An involution is defined by its two fixed points, hence
wvw and u cannot have the same fixed points. So if u(x) = x, we have u(v(z)) = z with
z # v(x) (if z = v(z)thenxandv(x) are both fixed points of u). But wow(v(x)) = wv(x) = 2z
and wou(v(x)) = wo(z) # z which contradicts vvw = wou. O

4.3 Corollary. (Pascal’s theorem) Let pi,p2,p3,qs3,q2,q1 be sixz (ordered) points on a
smooth conic D. Let x;j,% < j the point of intersection of the two lines joining p; to q;
and p; to q;. Then the three points x12, 213 and x23 are aligned.

Proof. We denote by, u the involution defined by x12, v the one defined by x93 and w the
last one defined by x13. Then by following lines you verify that

(vow)(p1) = q1, (wvw)(q1) = p1-

Let z a fixed point of uvw. Then z,p1,q are fixed points of (uvw)?. Since an element
of PGL(2,C) which has more than three fixed point is the identity, we have proved that
(uvw)? = idp. The result now follows from Proposition 4.2. O

4.2 Poncelet porism

4.4 Definition. 1) A true n-gone is the union of n-distinct lines. A true n-gone has (g)
vertices.

2) A true n-gone is circumscribed to a smooth conic D if all its lines are tangent to D.
3) A true n-gone is inscribed into a conic C (even a singular one) if at least n of its
vertices belong to C.

4) A conic C (even singular) is n-circumscribed to a smooth conic D if there exist a true
n-gone circumscribed to D and inscribed in C.

5) A conic C (even singular) is strictly n-circumscribed to a smooth conic D if C is
n-circumscribed to D and C' is not m-circumscribed to D with m < n.

When the two conics C' and D are smooth then we will sometimes write that C is n-
inscribed into D when the dual conic C'V is n-circumscribed to the dual conic DY. We will
say that a homography f € AutD is of order n if and only if f” = idp and f"~! # idp.

4.2.1 Smooth case

We will begin this section by a short review of old results which is an average of the papers

[BB], [BKOR], [GH1].
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Let C and D be two smooth conics such that C' meets D in four distinct points and C' is
n-circumscribed to D. Poncelet has showed the following theorem (called 'grand théoréme
de Poncelet’)

4.5 Theorem. Let C and D be two smooth conics such that C is n-circumscribed to D.

Then any general point of C is a vertex of a true n-gone inscribed in C and circumscribed
to D.

Proof. (from Griffiths and Harris’s proof) Consider the incidence curve E C C' x DY,
where E = {(x,l),x € [}. This curve is a smooth elliptic curve since the first projection
(on C) is a double covering ramified over four distinct points. Then one can define two
involutions on E. Indeed let (z,1) € C' x DY. The line [ cuts C' in an other point z . Let
I' be the second tangent to D from z. Then we have the following involutions :

E-SE, (z,0)— (2,1

E-2 B, (2,0) (z,0)

Let o be the origin of F for the group law +. Then there exists a € F and b € E such
that i1(z) = —z 4+ a and i2(2) = —z + b. It follows that the product isi; is a translation
on E, more precisely i2i1(z) = z + (b — a). Then the polygone closes after n steps if and
only if n.(b — a) = o. It means that C is n-circumscribed to D if and only if (b — a) is
a n-torsion point on E. This does not depend on the choice of the beginning vertex, but
only on the conics C' and D. O

Remark. If we begin the construction from a vertex x by drawing the second tangent to
D then (b — a) becomes (a — b) which does not change its nature (it is still a n torsion
point).

Cayley showed that the set of n-circumscribed conics to D is an hypersurface in P° =
P(H°(Op2(2))). This is well explained in a modern way by Griffiths and Harris. We will
denote this hypersurface by &,,. Of course, since in the set of n-circumscribed conics you
will find the r-circumscribed conics with » > 3 and r | n (draw an example for the case
n = 6, r = 3) the hypersurface €, is not irreducible in general. Thus, this justifies to
introduce an other notation M, for strictly n-circumscribed conics to D.

We denote by T'(n) the number of n-primitive torsion points of E. Barth and Bauer prove
that deg(M,) = % ([BB], theorem 3.3). In fact this number was already found by
Halphen in his Trait des fonctions elliptiques et de leurs applications (see chapter IV and
chapter X).

It results immediatly from their proof that M, is reduced and that the degree of €, is the
sum of the degrees of the hypersurfaces M, for 3 < r < n and r | n. Since the number
of n-torsion points on E is n?, the degree of €, is # when n is even (we remove the

2-torsion points), ”2; L when n is odd (we remove the origine).

Remark. If I' € M,, N M, for m # n then I" is a singular conic. This is an immediate
consequence of the theorem 4.5. It follows that &, = UTZ&TIn M, is reduced.

The cases of tangency, in other words, when the conic is tangent, bitangent, an osculating
or an surosculating to D, are studied (for smooth conics) in [BKOR] (section 7.14 page
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329-331). The authors show that a smooth conic C' tangent or bitangent to D can be
n-circumscribed to D but that it is never the case if C' osculates or surosculates D. We
give now two different proofs for the cases of simple tangency and bitangency. In the part
concerned with jumping conics (see Section 8.6, prop. 8.17 ) we will prove, by an original
argument, that a smooth osculating (and also surosculating) to D is never n-circumscribed
to D.

e When C is tangent to D, i.e. the intersection consists of three distinct points, the
curve [ is a rational cubic curve with a ordinary double point denoted by (z0, lo) The
1nvolut10ns i1 and 49 extend to the non- smgular model E. The fixed points of 7; and
of is are distinct points. The fixed points of t are the preimages of (zg,ly). We have
Aut(F)=Aut(P;)=SL(2). Since SL(2) acts transitively on the set of three points of P
we may assume that (1,0), (0,1) are the two fixed point of 7; and that (1,1) is a fixed
point of 75. Then we get

M) = < é _OZ )7 M (i) = ( Zjei ei_—zz >

where € = 1, —1 and z € C. The other fixed point of i3 is (€i — 2, €i + z). Then the matrix

of tis M(t) = ( zizi ) ZZ;Z_ ¢ ) Since the eigenvalues of this matrix are (z + 22 4 1)i

and (z — V22 + 1)i, the homography £ is of order n when z verifies

4+ V22+1)"=(z—V224+1)"

: _ z+V22H41 _ 3
or in other words when u = gy sl UL root of unity.
4.2 Exercise. By studying the incidence curve E, like above, try to prove that a smooth
osculating or surosculating conic to D is never n-circumscribed to D.

e Let C be a smooth bitangent conic to D. Without lost of generality we can assume that
the points C' N D are cyclic points. In the real plane C' and D are concentric circles. We
can choose the equations such that C' and D are given respectively by :

X?2+Y?=R%?and X?2+Y%?=1

where R is a real number greater than 1. Then C' is n-circumscribed to D if the angulus
between the two intersection points with C' of a tangent line to D is 2’” withk=1,---n—1

4.2.2 Singular case****verify the commentaries, add picture!!land add a
general grand thm de poncelet, including the singular case.

We explained above which smooth conics are n-circumscribed to a fixed one called D.
Now we want to describe the locus of singular conics n-circumscribed to D. We will do it
when they are 4 distinct points of intersection with D. Moreover we will consider only the
case of singular conics 2n-circumscribed to D. In fact, intuitively it is clear that a singular
conic which intersects D in 4 points cannot be 2n+ 1-circumscribed (because the two lines
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should play the same role) and it is also clear by drawing a picture that if the singular
conic meets D in three points then there is a convergent proccess which show that any
singular tangent conic is n-circumscribed for all n > 2. We will give a precise meaning
and also a proof of these facts in Section 8.6 with the help of vector bundle techniques.

4.6 Proposition. Let u and v two involutions on a smooth conic D, x, and x, the
respective centers. Then the followings are equivalent

1) the product uv is of order n.

2) the singular conic x,, Uz is strictly 2n-circumscribed to DV

Proof. If uv is of order n then the result is clear. Indeed let = € D, then the points v(x),
wv(z), vuv(z), - -+, v(uww)" 1(z) and uwv™(z) = x are the vertices of an inscribed 2n-gone
into D. The dual 2n-gone (its lines are the tangent lines to DV which correspond to the
above vertices) is circumscribed to DV and all its vertices belong to z,) U .

On the other hand, the existence of a 2n-gone circumscribed to DV implies the existence
of a 2n-gone inscribed into D. Let x one of its vertices. By following its sides we have
(uv)™(xz) = . Since 2n > 3 we deduce that the product uv is of order n.

We have seen in Proposition 4.6 that a singular conic, say [ U d, where [ and d are lines
such that | ¢ CY and d ¢ CY, is 2n-circumscribed to Cy if and only if the product
uv, of the homomorphism u and v with center [¥ and dY in CY, is of order n. Since
clearly these conditions are preserved by any element of SL(2) we would like to find the
complex numbers which characterize the correspondings orbits €2,,. This is the object of
the following proposition. We denote by B, the m-primitive roots of unity.

4.7 Proposition. Let | and d two lines of P? with 1¥,d" ¢ Cy, u (resp. v) the Frégier’s
involution on C5 defined by the point 1V (resp d” ). The following conditions are equivalent
(n>2):

i) C =1Ud is 2n-circumscribed to Cs.

ii) the product wv is of order n

ii1) 1Ud € Uz, Q12 s

**** je it depends only on the data of [, d and C5 so it is the Poncelet Thm for singular con-

ics **** Proof. We have already proved the first equivalence i) < ii) in Proposition 4.6.
We will prove now i) < iii).

First of all we need to prove that [ Ud meets C5 in four distinct points. Otherwise v and
v defined by the points [V and d" have a common fixed point since we have [ Nd € C.
Moreover this common fixed point is the unique fixed point of uv. Then uv is a translation,
i.e. could not be of order n. It follows that there exist n € C such that [lUd € €,,. Let z a
complex number such that n = (%)2 After the identification C ~ P!, we can assume
that [N Cy = {(1,7),(1,—4)} and (1,iz) € d N Cy. Since the invariant associated to [ U d
(see 3.3.1) is ¢(\) = (%)2 the cross-ratio of the four points (1Ud) N Cy is A = (12)2 or

142
A = (3£2)2, Then the second fixed point of v is (1, —iz). Thus the involutions are

1—z
(0 -1 Lo 0o -1
Y= 1 o0 )" o

We see that the product uv is of order n if and only if z € Rq,,. O
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Remark If |z| = 1 then (112)2 € R, hence the four points in the complex plane lie in a
circle. ***picture jean-francoise*** It follows from the two propositions above that the
"grand théoreme de Poncelet’ is also verified for singular conics. More precisely

4.8 Theorem. Let D be a smooth conic and C' be either a smooth conic or the product
of two distinct lines. If C is n-circumscribed to D then any general point of C' is a vertex
of a true n-gone inscribed in C' and circumscribed to D.
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Chapter 5

Some remarks about bundles on P"

5.1 The theorem of Segre-Grothendieck

We refer to [OSS] and to the appendix 10.2 for the definition of vector bundle and spanned
vector bundle.

5.1 Example. On P" = P(V) with homogeneous coordinates (xo,...,T,) we have the
line bundles O(t) that on the standard covering given by U; = {x|z; # 0} have transition
functions g;; = (2£)!. Then fort > 0 O(—t) = O(=1)®" and O(t) = (O(—1)*)®". All the
line bundles on P" are isomorphic to O(t) for some integer t.

If F is a coherent sheaf, it is usual to denote F' ® O(t) by F(t). For ¢t > 0 the space
HO(P",O(t)) consists of all homogeneous polynomials in (zo,...,z,) of degree t, or in
equivalent way H°(P", O(t)) ~ S'V. All the intermediate cohomology of O(t) is zero,
that is

H'(P",O) =0 for0<i<n VtcZ

The zero loci of sections of O(t) are exactly the hypersurfaces of degree t. The zero loci
of a general section of O(n1) @ ... ® O(ny) is called a complete intersection.

It is important to underline that Hom(O(a), O(b)) ~ S*~*V that is sheaf morphisms
O(a) — O(b) are given in coordinates by homogeneous polynomials of degree b — a.
In general a morphism ®O(a;) — ©O(b;) is represented by a matrix whose entries are
homogeneous polynomials. As a particular case, note that any isomorphism O(a)¥ —
O(a)¥ is represented by a invertible k& x k matrix of constants.

On P(V) there is the natural action of SL(V). SL(V) is the universal covering of the
automorphism group of P(V) which is PGL(V). If E is a bundle over P(V), for any
g € SL(V) we can consider the bundle g*E.

5.2 Definition. The group of symmetry of a bundle E in P(V) is its stabilizer for the
SL(V)-action and it is denoted by Sym(E). In formula

Sym(E) :={g € SL(V)|¢g"FE ~ E}

5.3 Definition. A bundle E is called homogeneous if Sym(E) = SL(V'). It can be shown
that it is equivalent to the existence of a action of SL(V') over E which lifts the natural
action on P(V).
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5.4 Theorem. Segre-Grothendieck Let E be a bundle on P'. Then E splits as the
direct sum E = ®0O(a;) for some integers a;

Proof. The proof is by induction on the rank of E. Up to tensor E with a line bundle,
we can assume that H°(E) # 0, H’(E(—1)) = 0. Then any nonzero s € H°(E) does not
vanish anywhere. In fact if s(x) = 0 for some = € P!, pick t € H°(P', O(1)) such that
t(z) = 0, then s/t is a nonzero section of E(—1). It follows that we have an exact sequence

0—O0—E—F—0 (5.1)

where F' is a bundle which splits by the inductive hypothesis. Let F' = ©O(k;). The
assumption HY(E(—1)) = 0 and the vanishing H'(O(—1)) = 0 imply that k; <0 Vi. At
this point the standard proof by Grauert and Remmert tells us that Ext'(F,0) = H(F*)
vanishes and then the sequence splits. Due to the importance of this theorem, we offer
the alternative argument of Grothendieck, which is near to the original Segre construction
(although Grothendieck was not aware of it!) and does not use the property of Ext! of
classifying extensions (although essentially it reproves it in this special case). For more
historical informations, see [GO].

Apply Hom(—, O) (i.e. dualize) to the sequence (5.1)

0—s Hom(F,0) = F*LsHom(B, 0) = B* % Hom(0,0) = 0O—0  (5.2)
The cohomology sequence associated to (5.2) is
0
H(EH Yo S H (FY) =0

where for any s € H°(E*) we have H’(g)(s) = g-s. Since H%(g) is surjective, there exists
s such that g - s is the identity, this implies that (5.2) splits so that E = O @& F as we
wanted.

O
5.1 Exercise. Prove that the decomposition of the previous theorem is unique.

5.2 Exercise. Let X be a variety such that Pic(X) =Z. Let E be a bundle(or a torsion
free sheaf) of rank r on X. Let ko = min{k|h%(E(k)) # 0}. Prove that any nonzero
s € HY(E(ko)) vanishes in codimension at least two and at most r (it is possible that the
zero locus is empty).

5.5 Corollary. Every bundle on P is homogeneous, i.e. it is SL(2)-invariant.

The above theorem is an essential tool to study vector bundles on higher dimensional
projective spaces. If F is a bundle on P" and L is a line then Ej;, splits as ©O(a;(L))
with well determined integers a;(L). When L changes the integers a;(L) can change. By
semicontinuity properties it is easy to check (see [OSS]) that for generic L the integers
a;(L) are more balanced than for special L. The lines such that their splitting is not
the generic one are called jumping lines (see chapter 8 on Barth morphism). When the
integers a;(L) are the same for any line L we say that E is uniform. In particular every
homogeneous bundle is uniform. The converse is not true (see exercise 5.6).
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5.6 Example. In the next chapter of this book Schwarzenberger bundles are defined. They
appear on P" in sequences

0—OF— 0O (1) — E—0
The Schwarzenberger bundle E on P? defined from the exact sequence
0—0*—0*1)—E—0

splits as O(1) ® O(3) on lines in a conic C C P2V and as O(2) ® O(2) on lines in P2V \ C

5.2 The Euler sequence and the tangent bundle

Let P" = P(V') be the projective space of one dimensional vector subspaces of the (n+1)-
dimensional vector space V*. Consider the incidence variety W = {(v,x) € V*xP"|v € z}
We have a fibration W — P™ whose fibers are isomorphic to C. Hence W is a line bundle
on P".

5.3 Exercise. Prove that W is isomorphic to O(—1).

Hint compute the transition functions.

We get an exact sequence

0—O0(-1)—O0 @V —Q—0

where @ is called the quotient bundle and has rank n.
The main basic result of the theory is the following

5.7 Theorem. Q(1) ~ TP"

Proof. GL(V*) = GL(V) acts on P". Let x € P*. We have the natural map GL(V) — P"
given by g +— gx. The derivative computed in the origin is the surjective linear map
End(V) — T,P". Its kernel is {g € End(V)|g(v) C< v >} Hence

T,P" ~ End(V)/{glg(v) C<v >}~ Hom(<v > V" <v>)
so that TP" ~ Hom(O(—-1),Q) ~ Q(1). O

5.4 Exercise. Prove the isomorphism needed in the proof, that is if v is a nonzero vector
in 'V, the natural map End(V) — Hom(< v >,V*/ < v >) is surjective with kernel equal
to {glg(v) C<v >}

Tensoring by O(1) we get the Euler sequence

0—O0—0(1) @ V*—TP"—0 (5.3)

It follows from the Euler sequence that HOTP" ~ sl(V). sI(V) can be interpreted as the
space of (n + 1)-matrices of trace zero. Every A € sl(V) induces Aj.»: <v>— V*/ <
v > so that the section vanishes in < v > if and only if v is a eigenvector of A. Since the
generic matrix has (n + 1) distinct eigenvectors we get
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5.8 Theorem. The generic section of TP™ vanishes in n + 1 points.

5.9 Corollary.
TP! = O(2)

5.10 Theorem. The tangent bundle on P splits on any line as O(1)" "1 © O(2).

First proof Let [ be a line. By Theorem 5.4 TP} ~ ", 0(a;) with Y% a; = 1 (TP") =
n + 1. By the Euler sequence we see that TP"(—1) is globally generated, hence a; > 1,
which concludes the proof.

Second proof Let P"~! = H be a hyperplane in P*. Then Qpnipn-1 = Qprn—1 & O. Then
apply Corollary 5.9.

5.5 Exercise. Let f: P? — P° be the Veronese embedding. Prove that f*TP5 is homoge-
neous.

5.6 Exercise. * Let f: P2 — P? be obtained as a smooth projection of the Veronese
embedding. Prove that f*TP* is uniform but not homogeneous.
Hint: restrict f*TP* to conics

5.11 Remark. For a vector space V of dimension n we denote detV := A"V . We recall
that any linear map ® € Hom(V, W) between vector spaces of the same dimension induces
the map det® € Hom(detV,detW). If A and B are vector spaces of dimension a and b
respectively, then there are canonical isomorphisms:

u.+k71)

det(A® B) ~ (detA)®® @ (detB)®®  det(S*A) ~ (det4)®("a

AFA =~ NTFA* @ (detA)

The above isomorphisms hold also if A and B are replaced by vector bundles over a variety

X.

5.7 Exercise. We denote Q* = A\PQL. Prove that there is the following exact sequence
0— QP(p) = NPV*@0 — QP L(p) = 0
Deduce that H*(QP(p + 1)) = APV* Hint: see the appendiz 10.5.

The basic exact sequence on the grassmannian
We consider the grassmannian G = Gr(CF+1 V*) = Gr(P*,P(V*)), see the appendix.
Consider the incidence variety W = {(v,x) € V* x G|v € x}. We have a fibration W — G
whose fibers are isomorphic to C*+1. Hence W is a vector bundle on G of rank k+1 which
is called the universal bundle. We get the exact sequence

0—U—0V"—Q—0

where the quotient bundle @) has rank n — k. Repeating word by word the arguments of
Theorem 5.7 we get

5.12 Theorem. TG ~ Hom(U,Q) ~U* ® Q
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Again we have H°(G) = sl(V). The section corresponding to the matrix A € si(V)
vanishes on the linear spaces C¥*! which are invariant by A. If A is generic with n + 1
distinct eigenspaces, the CF+1 invariant are exactly those which are spanned by k + 1
among these eigenspaces. We have proved the following

5.13 Theorem. The generic section of TGr(CF, V*) vanishes at (Z_ﬂ) points

Let E be a bundle of rank r on X. }P’(E)LX is the projective bundle with fiber isomorphic
to P! (see [Ha] I1.7). There are a canonical line bundle called Op(g)(1) which restricts
to every fiber as O(1) and a relative Euler sequence

0—O0—0(1)@p"E*—T,q—0

It can be proved that H*(P(E),Z) is generated by h = Op(g)(1) and by p*H*(X,Z) with
the only relation

A" —prer(B)A" ™+ pxco(E)R 24 ... (=1) ¢ (E) =0

It is possible to take this relation (the decomposition of A" ) as the definition of Chern
classes of E, ¢;(E) € H'(X,Z). The Chern classes are well defined even in the Chow ring
A(X) = @A;(X). The above relation is called Wu-Chern equation .

The Wu-Chern equation can be reformulated as ¢, (p*E* @ O(1)) = 0 which follows from
the Whitney formula (5.5) that we will see in a while.

When FE is spanned, also the line bundle Op(g)(1) is spanned and this gives as usual a
map P(E)iﬂP’(HO(E)) where the fibers in P(E) are mapped by ¢ to linear spaces. When
Op(g)(1) is very ample then P(E) is classically called a scroll.

Remark that when E — F' is a surjective map between bundles then it is induced an
imbedding P(F') — P(E) which takes fibers to fibers.

5.8 Exercise. The flag manifold F(0,1,2) C P2 xP?V consists of pairs (p,l) where p € P
is a point, | € P?Y is a line and p € 1. Prove that it is a hyperplane section of PP? x P2V
and it is isomorphic to the projective bundle P(TP?).

5.3 Geometrical definition of Chern classes

There are several equivalent definitions of the Chern classes of a vector bundle E. The
analytic definitions via the curvature is the more useful to prove formulas about the Chern
classes. In the spirit of this book we sketch the geometrical definition of Chern classes of
degeneracy loci that involves the map ®g in the grassmannian.

Let E be a spanned vector bundle of rank r over X. We denote by s1,...,8._pt1 7—p+1
generic sections of E. The subvariety

{z € X|s1(x),..., Sp—pt1(z) are lin. dep.} (5.4)

has codimension p and its homology class in Ha;,—2,(X, Z) does not depend on the sections
(it is easy to check that even the rational equivalence class in the Chow ring is well defined).

5.14 Definition. The Chern classes c,(E) € H**(X,Z) of a spanned vector bundle E are
defined as the Poincaré dual of the class in (5.4).
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If p=rin (5.4) we get the zero locus of a generic section of E.
If p=1in (5.4) we get that ¢;(F) = c1(det E), furthermore ¢; of a line bundle associated
to a divisor D is the class of D itself.

5.9 Exercise. Prove that ¢1(E) = c¢1(A\"E)

5.10 Exercise. Prove that if E has rank 2 then E ~ E* ® c¢1(E). Hint: use the exercise
10.7.

When E is not spanned there are two ways to supply the definition of Chern classes. The
first one (as in [GH]) is to consider convenient C'* sections, in fact the Chern classes are
C®-invariant. The second one is to tensor F with some ample line bundle L in order to
get £ ® L spanned and then use the formula

k .
W(E® L) = ") (B)er (LR

(of course one has to check that this definition is well posed!)
In particular we will use often ¢1(E ® L) = ¢1(E) + rey (L)
The Chern polynomial is the formal expression

cu(t) :=co(E) + c1(B)t + ca( B)t* + ...
In the case X = P" we have ¢;(E) € Z and cg(t) € Z[t]/t" . If
O=E—=F—-G—=0
is an exact sequence of vector bundles, the Whitney formula is
ce(t)ca(t) = cp(t) (5.5)

In particular
a(F) = a(E) + al(G)

c2(F) = c2(E) + c1(E)e1(G) + c2(G)
5.11 Exercise. An instanton bundle on P? is defined as E = Kerb/Ima where
O(-1)F - 0F2 2 0(1)
satisfies b surjective, a injective and b-a = 0 (such a complex is called a monad). Prove

that
1

B = ey

**An example where ceogimz(Oz) = degZ even if Z is in a Segre product™**.
We recall from [GH] the following basic

5.15 Theorem. Gauss-Bonnet For any compact complex variety of dimension n

X(X,Z) = c,(TX)
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5.16 Corollary.

X(P") =n+1
k41 " o n -+ 1
ey = (1)
Proof. Apply the theorems 5.8 and 5.13. O

The Thom-Porteous formula allows to compute the homology class (and even the class
in the Chow ring) of the degeneracy locus of a map between two vector bundles. This is
defined as follows. Let E——F be a sheaf map between vector bundles of rank e and f.
The k-degeneracy locus is Dy(¢) := {z € X|rk(¢;) < k}. We have

codimDy(¢) < (e — k)(f — k) (5.6)

and codimDy(¢) < (e — k)(f — k) in the generic case. Assume that codimDy(p) =
(e — k)(f — k), then the Thom-Porteous formula is

[Di(¢)] = det (cp—p+j—i(F — E)i<ij<e—k) (5.7)

where ¢;(E — F) is the i-th coefficient in the expansion of the quotient cg/cr and we pose
¢ =0if i <O0.

5.3.1 The splitting principle

For practical computations of Chern classes it is useful the so called splitting princi-
ple. It says that for a given bundle FE over X there exists a variety Y and a morphism
p: Y — X such that p*F has a filtration whose quotients are line bundles L; and moreover
p*: H*(X,Z) — H*(Y,Z) is injective. Hence p*(c(E)) = c(p*(E)) = [[,(1 + c1(L;)). By
the injectivity of p* one can factor formally in a convenient ring extension of H*(X,Z) as
c¢(E) = [[(1 4+ z;(F)) and compute with z;(E) as if they were the first Chern classes of

line bundles L;.

We describe this procedure with an example. Let E be a bundle of rank two. We want
to compute the Chern classes of the symmetric power S3(E) by means of ¢;(E). Split
formally ¢y (F) = a + b, co(E£) = ab. Then

c1(S*E) = 3a + (2a + b) + (a + 2b) + 3b = 6(a + b)
co(S*E) = 3a(2a+b)+3a(a+2b)+9ab+(2a+b) (a+2b)+(2a+b)(3b)+(a+2b)(3b) = 11(a+b)*+10ab
c3(S*E) = 3a(2a+b)(a+2b)+3a(2a+b)(3b)+3a(a+2b)(3b)+(2a+b) (a+2b)(3b) = 6(a+b)*+30(a+b)ab
c4(S®E) = 3a(2a + b)(a + 2b)(3b) = 18(a + b)*(ab) + 9(ab)?

The formulas obtained
Cl(S3E) = 601(E)

c2(SE) = 113(E) + 10c2(E)
c3(S3E) = 6¢3(F) + 30c1(E)ca(E)
c1(S3E) = 18¢2(E)c2(E) + 9c3(E)

are valid for any bundle of rank two E by the splitting principle.
These computations extend in a straightforward way to coherent sheaves, because any
coherent sheaf has a locally free resolution.
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5.12 Exercise. Compute c;(S*E) for a bundle E of rank 2 or 3 by means of ¢;(E).

e (SFE) = Siig(k =) (") en(E)
**quote Lascoux

5.13 Exercise. Compute the Chern polynomial of a bundle E on P™ with the resolution

0—0°*—0(1)'—E—0
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Chapter 6

Steiner Bundles on P"

The Steiner bundle, say S, on P = P(V) are one of the simplest case of vector bundles
in the sense that they are defined by a short exact sequence like the following :

0—=>I"®0pn(—1) — W ®O0pn — S =0
By (5.6), to have a bundle it is necessary that dim(W) — dim(I*) > n. Then the rank of
a Steiner bundle on P" is always greater than n.
Ezample : The quotient bundle over P" is a Steiner bundle.

These bundles are related to classical varieties like the rational normal curves or Segre
varieties. We begin this chapter by explaining in full generality the geometry of incidence
variety with emphasis on duality and come back again with Steiner bundle in theorem 6.3.

6.1 Incidence varieties, duality and vector bundles.

Let X C PN a projective variety, we denote by XV, and called it the dual variety, the
closure in (PV)V of the set of hyperplanes in PV containing one (in a smooth point) tangent
space of X. More precisely,if T, X is the (projective) tangent space of X in a smooth point
xz, and X*™ the open subset of smooth points in X, we have

XV:={HeP' |3z e X" T,X C H}

When X is the product of two varieties, X = X3 x X5 the tangent space in a point (x1, x2)
is the projective space generated by (T, X1) x {x2} and {x1} x (T,,X2).

We begin with the classical incidence variety point-hyperplane in PV
F —1- PNV
g
]P)N

Let X be a non degenerated smooth subvariety of PV, and PIW C PV a linear subvariety
in the dual space. We denote by ¥ C F the following variety p~'X N ¢~ 'PW. We have
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the restricted diagram

The resolution of X as a subscheme of X x PW is
0 —— OXlew(—l, —1) —_— OXX]P’W —_— Ogg — 0

In fact X is an hyperplane section of X x PW in P(V ® W) where P(V) = PV. So we
identify X with a linear form in P(V @ W). The fiber over a point of PW is the hyperplane
section of X by the corresponding hyperplane. So when X is not linear the variety X is
never a projective vector bundle over PW. The fiber over x € X is an hyperplane section
of PW by the hyperplane zV. Then we have

6.1 Theorem. The following conditions are equivalent :
i) X is a projective bundle over X

i) X N (PW)Y =0

i) dim (PW) > dim (X) and X ¢ (X x PW)V

Proof. X is a projective bundle over X if and only if for all x € X the fibers are projective
spaces of the same dimension (by Proposition 10.9). Since p~!(z) ~ 2V N PW it means
that for all x € X the projective space " N PW is an hyperplane of PW and not all the
ambient space. In other words there is no x € X such that PW C zV or equivalently
x € (PW)V. This proves i) < ii).

We assume that X N (PW)Y = @ then it is clear that dim (PW) > dim (X). We denote by
® the linear map V ® W — C or the map V — W™ corresponding to X. The hypothesis
means that for all z € X the linear form ®(z) : W — C is not everywhere zero. This
proves that the hyperplane ® = 0 is not tangent to X x PW.

Conversely, if there exists z € X N (PW)Y and dim (PW) > dim (X) then we have to
find z € PW such that the kernel of the linear form ®(z) : V' — C contains P(T,X).
Let r = dimX and (zg,--- ,,) a basis of T, X. Since ®(>_ A\;jz;) = ®(x) = 0 the vector
subspace (.4 ker®(z;) C W contains a non zero vector z. O

We assume now that dimX < dimPW and that X = P(S) is a projective bundle over X,
then we have :

0 — Ox(-1) —2— W®O0y S 0

We have seen in the previous theorem that a general ® gives a vector bundle on X, which
is equivalent to say that for all x € X, ®(z) # 0. General, here, means outside the closed
set (X x PW)Y. In the following proposition we give the codimension of this set and also
its degree, according to the degree of X.

6.2 Proposition. Let r = dimX and dimPW =r 4+ k, k > 0, then
(i) codim(X x PW)¥ =k +1
(ii) deg(X x PW)Y = deg(X x PF1)
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Proof. Let (®g,- - ,Pxy1) be k+ 2 general linear forms on V ® W. We consider the map :

> Xi®;

W ® OIP”C+1><X OIP”C+1><X(L 1)

Since the codimension of P(W)Y is exactly r + k 4 1, it meets the variety P**1 x X
along a finite scheme of lenght equal to the degree of P! x X. Let (ag,--- ,ars1;x) an
intersection point. The linear form ) a;®; vanishes identically on the point € X, so by
the previous theorem it is tangent to X x PW. O

6.2 Application to Segre varieties : Steiner bundles

Let n,m, k be three integers such that £ > 0 and 1 < n < m. We assume that £ > 0 in
order to obtain a vector bundle on the Segre variety (see 6.1 iii)) P x P < P 1) (m+1)—1
The incidence diagram is

¥ q Pn+m+k

d
P" x P™
The variety X C P™ x P™ x P**™+F is an hyperplane section of P x P x P"tm+k by an

hyperplane of P(tD(m+1)(n+m+k)—1 defined by a trilinear form ® = > ik Wig ki Xi Y5 2.

We fix some notations. Let V,I,W three vector spaces such that PV = P"* PI = P™
and PW = P"*™*k  The linear form ® could be written ® : V* @ I* @ W* — C or
®:V*®I* — W. So we have the following exact sequences

>
0 —— Opyxprxpw (—1,—1,—1) —— Opyxprxpw > X 0

0 —— Opyxpr(—1,-1) 2, W @ Opy xpr S 0

0 —— I"®Opy(-1) LN We@Opy —— Sy —— 0

0O —— V* ®Op](—1) —(—1)——> W & Opr St 0
The different expressions of ® are respectively

¢ = Z i, j ke XiYj 2y,

i7j7k
n,m n,m
= ( E a; jo0X;Yj, -, E @i jntmtkXiY5)
i=0,j=0 i=0,j=0
n n
Doi0@i00Xi Y0 0ntmtkXi
n n
b — Zi:() ai,l,OXz‘ T Zz:o ai,l,n+m+kXi
n n
Yoo Wimo0Xi Do GimntmkXi
m m
2i005,0Y; o Do a0 ntmtkY]
m m
o= ijo arjoYj - Ej:o ajntm+kY;j
m m
dic0ng0Yj o D ilgGnjntm+kY

We write again the theorem 6.1 in this particular case
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6.3 Theorem. Let V, I, W and ® be given as before. The following conditions are
equivalent

1) For all non zero vectors x € V* and y € I*, ®(z ®@y) # 0.

2) (BW)Y NPV x PI =)

3) S is a vector bundle (of rank n+m + k) over PV x PI.

4) Sy is a Steiner bundle (of rank n + k) over PV.

5) St is a Steiner bundle (of rank m + k) over PI.

6) ® ¢ (PV x PI x PW)V

Proof. The proof of this theorem is essentially the same than the one given to prove the
theorem 6.1. But according to the importance of Steiner bundles in this text we prefer to
repeat the proof. We choose here to write ® : V* @ I* — W. Let x € V* and y € I*, then
®(z ®y) is a linear form on W, i.e

P(ry): W*—=C,z2— ®(zxy)(2)

The sets Hyy = {z € W*, ®(z ® y)(2) = 0} are hyperplanes in W* if ®(x ® y) # 0 and
are equal to W* if ®(z ® y) = 0. Then it is clear that 1), 2) and 3) are equivalent.

Let {y1, -+ ,Ym+1} be a basis of I* and {z1, -+ ,x,41} be a basis of V*. For a fixed
x € V* and a fixed y € I* we define the sets

_ Am+1 _ ~n+l
Hy =020 Hey,, Hy =02 Hejy

The expected dimension for H, is n+ k. If the dimension is n+ k for all x € V* we obtain
a vector bundle of rank n + k over PV. Assume that dimcH, > n + k, then the m + 1
hyperplanes are not linearly independent, or at least one of them is not an hyperplane. In
both cases we have a non zero family of complex numbers such that >  a;®(x ® y;) = 0,
then ®(x ® Y a;y;) = 0, which proves the equivalence between 3) and 4). The same holds
for 3) and 5).

By hypothesis ® € P(V ® I ® W). The point ® belongs to (PV x PI x PW)" if and only
if the hyperplane ® in P(V* ® I* ® W*) contains a tangent space in a point zg ® yo ® zp.
But the tangent space to a product is just the space generated by the tangent spaces
of each component of the product. In our case, it is the projective space generated by
{zo @ yo} x P(W*), {x0 ® 20} x P(I*) and {yo ® z0} x P(V*). In other words, & €
(PV x PI x PW)V if and only if it exists 7o ® yo ® 20 € V* @ I* @ W* such that

VyeI",Vx e V¥ Vz e W* ®(x0®@y)(20) = P(z ® yo)(20) = P(x0 @ yo)(2) =0

Now to prove the equivalence between 1) and 6) we just need to show that if ®(zo®y)(z) =
0 for all z € W* then there exists zg € W* such that

Vy € I,Vz € V,®(x0 ® y)(20) = ®(z ® y0)(20) =0

But we have already seen that ®(z¢ ® yo) = 0 is equivalent to dimcH,, > n + k and
dimcH,, > m+k, then, since £ > 0, the intersection H,, N H,, contains a non zero vector
2p. O
6.4 Proposition. Let k > 0,
(i) codim(P" x P™ x Prm+F)V — k4 1

g +mAk+1)!
(i) deg(P" x P x Prtmh)v — (prmihil:
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Proof. 1t is just a reformulation of the proposition 6.2. O

This proposition can be generalized to more than three factors, as we will see in Theo-
rem 9.20.

When k = 0, the dual variety is an hypersurface and its equation is given by the hyperde-
terminant (see chapter 9).

The following theorem says that any morphism between Steiner bundles is induced by a
morphism between the corresponding short exact sequences.

6.5 Theorem. Let E, F be Steiner bundles on P(V') appearing in the following sequences

0—I®0(-1)—W ® O—E—0
0—I®O0(-1)—W e O0—F—0

where dmV =n+1,dimI =m+ 1, dmW =n+m+k+ 1. For every f: E — F there
are a € End(I), b € End(W) such that the following diagram commutes

0 — I0(-1) — W0 X E— 0

la lb Jf (6.1)

0 — I®O(-1) — W0 — F— 0
Proof. Applying Hom(W ® O, —) to the second row of (6.1) we have the exact sequence
Hom(W @ O,W ® O) = End(W) — Hom(W ® O,F) — Ext"(W,1 ® O(-1))
The composition f-p € Hom(W ® O, F) lifts to End(W') because
Ext' (W, 12 O(-1)) =W*® I ® H' (O(-1)) =0

Let b be a lifting, it makes commutative the right part of (6.1). Then the existence of a is
trivial. ]

6.2.1 Logarithmic bundles

Let H ={Ho, -, Hytm+1} be an arrangement of n+m + 2 hyperplanes in general linear
position in P". Let (X;) be the coordinates on P" and (b;;) the complex numbers such
that H; = Zz‘:o,..- n bi; X;. Since the hyperplanes of H are in general linear position there

are exactly m+ 1 relations between them, say Hy i1 = (ijo,..- ntm ai;; Hj)i=0,.. m- We

define a new set of indeterminates, say (Yp, -, Y,,) on P™ in order to associate (n+m-1)
linear forms K; = El:O,m,m a;;Y; to the relation vectors (agj, - - ,am;). We have, again,
n + 1 relations K,1pmi1 = (ijo,--~,n+m bij Kj)i=0,.. n- Since {Ho, -, Hypim41} are in
linear general position in P™ it is clear that the forms K := {Kj, -+, Kn1m+1} are in
linear general position in P™.

We denote by Zg, - -+ , Zpm the indeterminates on P, On P" x P™ x P"*™ since the

linear forms H and K are in general linear position, the trilinear form

o = Z H,K; 7,

1=0,--- ,n+m
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induces two Steiner Bundles E, on P" and FE,, on P™ defined by the exact sequences

0 —— optt(—1) =Ny opimtt E, 0
ap0Ho  ao1Hy a0,n+mHntm
H, H H,
where the matrix N is given by N = ar0tt0 41,141 ntmbintm
am,OHO am,lHl am,nerHner
0 —— Opl(—1) — opfmit Ep 0
booKo bo1K1 bo,n+mKntm
K K K
where the matrix M is given by M = broKo bk DLt K m
bn,OKO bn,lKl bn,n+mKn+m

6.6 Theorem. The Steiner bundles E,, and E,, are uniquely defined by H and K.

6.7 Remark. Since K is obtained from H, it is better, following [DK] to write H*® (‘as’
for associated) instead of K. The bundles E,, and E,, are called Logarithmic bundle,
and they will be denoted E(H) and E(H®*). Dolgachev and Kapranov proved the theorem
above in a more general way (see “Torelli theorem”, [DK] thm *** and [Va2], [AO99]).
More precisely, Dolgachev and Kapranov do not associate any matriz to H.

Proof. We will prove that any choice of n+m+ 1 hyperplanes in H gives the same Steiner
bundle. Let us consider the following relations

Hyvmir = (Xm0, mpm @iHj)i=0. m and Ho = (325-1 . nimi1 GiHj)i=0,- m- They
give two different matrices

apoHo ao1H: a1 ntmHnim
| ai0Ho a1:1H; a1, ntmHnim
N, =
an,OHO an,lHl an,n—i—mHn—i-m
conHy co1Ho c1ntmr1Hnime1
N — ciiHy c11Ho CLtm+1Hnimy1
=
Cn,lHl Cn,lHQ Cn,n+m+1Hn+m+1

and, a priori, two Steiner bundles on P". Since the forms are in general linear position
it is evident that the vectors (ap;,- - ,an,i) and (co4,- -+ ,¢n;), for i = 0,--- ,n+m are
proportionals. Then on P™ x P™ the two matrices give two line-matrices of bi-forms

(HOKO T )Hn+mKn+m) and (HlKl U 7Hn+m+1Kn+m+1)
But since Hpymi+1Kn+m+1 = HoKo + H1 K1 + -+ + Hpym Ky it is clear that the two

line matrices give the same bundle on P" x P and also the same bundles on P" and on
pm. O]
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6.3 Some SL(V) invariant Steiner bundles

Let V' a C vector space such that dim¢c V' =r 4+ 1 > 2. We denote by Sj the vector space
SymFV, ie. the k-symmetric power of V, and by v, the image of PV by the Veronese
map P(S7) < P(Sk). We consider now the canonical maps, the multiplication of forms
and the dual map 6 which is the derivation,

Sn ® Sm é Sn—i—mu Sn+m i} Sn ® Sm

Since these maps are SL(V)-equivariants we omit the dual sign for vector spaces. Also
we want to define an order on the basis of Sy. Let (xo,---,2,) a basis of V. Since a
form of S, could be written [];—, xfl with >~ k; = k, we choose the lexicographic order on
partitions i.e.

(k(),'-- ,kr) < (lo,-" ,ZT)@EIs\li:ki fOl"iSS, and ki—i—l Sli-i-l

We denote respectively by X
on Sy, Sy and Sy4m.-
Then in coordinates the multiplication map is given by the following trilinear form

e=[ > I > I 3 X o ) Yoo mn) Z(so o)l

(s8)[22 sk=n+m (ni)[3oni=n (m;)[32 mj=m,ng+mp=sj

Yim and Z(s, .. s, (s like sum) the coordinates

N0, M) 057" s M)

If we denote by p(r,n,m,(s)) the number of couples of r + 1-partitions of n and m such
that their sum is equal to the r 4+ 1-partition of n + m called (s) we have in a simple way

® = Z p(r,n,m, (5))X(no,-~~,nr)y(mo,-~,mr)Z(50,~~-,sr)
(k)22 sp=n+m

Remind the incidence diagramm

X — s P(Spim)

P(S,) x P(Sm)

We remark that p(r,n,m,(0,--- ,n+m,---,0)) = 1. This remark is sufficient to prove
that the sheaf X is a vector bundle over P(S,,) x P(S,,), indeed we have

6.8 Proposition. The multiplication map x induces a vector bundle on P(Sy) x P(Sy,).

Proof. Let us call ® this map. It is enough to prove that for all z ® y € P(S,,) x P(Sp),
®(z®y) #0. Let Xo, -, X, a basis of V. Since ®~H(X]"™) = {X ® X"}, we have

XMz oy) =0e X]'(z) = X" (y) = 0.
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Let us introduce some notations. The multiplication map gives the following SL(V)-
bundles on P(S,,) x P(Sy,),P(Sy,) and on P(S,,),

0 —— Op(sn)xp(gm)(—l,—l) e Sn+m®OIP(Sn) E— En+m — 0
0 —— Sn®OIP(Sm)(_1) — Sn-i—m@OIP’(Sn) E— Em,n-i—m — 0
0 —— Sm®0p(5n)(—l) —_— Sn+m®OIP>(Sn) —_— En’ner — 0

The projective Steiner bundle PE;, 1., over P(S),) is imbedded in P(S,) x P(S,4m) and
it is defined by the s, equations

¢ = Z X(nof“Jlr)Z(no-&-mo,m,nr—l-mr)](mj)\ij:m =0
(ng) |32 ni=n

Over a general point (Z(p,... n,))(n,) the projective fiber is Psntm=sm—1  Psntm which is
defined by the s,, equations

¢ = Z (o, n) L(notmo, - mrtme) (ms) [ S my=m = 0
(n)[2oni=n

6.9 Proposition. Over a point (z(° - - - Ty )(n,) the fiber is the set of hyperplanes contain-

ing the m-osculating space of Vnym in the point (" - - 277) (5)|5 sp=ntm

Proof.

50—mMo

Hlmo,- ,mr)(xgo . xir)(sk)\Zskzn-&-m = (330 i)

P ) IS sk=ntm

where 25’ "

coexprT™Mr =0 if s < my,. ]
Let us consider the restriction of Fj, 4, to the Veronese vy, it gives
0 — S ® Op(sl)(—n) — Sntm ® Opsy) — Enpgm — 0

By the above proposition we can interpret the first arrow as the matrix of m-partial
derivatives of S,4.,, and by the way to consider &, ,,, as the bundle of degree n + m
hypersurfaces in PS] with a singular point of order > m + 1. In other terms the fiber over
a point x is HO(m™ ! (n +m))*

6.10 Remark. The image of the projective bundle P&, ;, 1., C PS1 X PS), 1., by the second
projection is the m-osculating variety of Vnim.

One more time we consider the classical incidence variety

F  —2 P(Sp)Y

and its restriction to vy,

43



6.11 Proposition. E, ,im = p«q*Oy, (PE2)(= p+q*Ops,)(n +m))

n

Proof. We have the following resolution of ¢~*(v,,),
0 —— O]P’(Sn)xvn(_L_l) — Op(s,)xvn, — Og-1(p,) — 0
and via the isomorphism of sheaves O,, (1) = Op(g,)(n) it becomes
0 —— Ops, xp(sy)(—1,—1) —— Ops,)xp(s)) — Og-1(v,) — 0

We tensorize by ¢*Op(g,)(n +m) and take the direct image of the exact sequence on PS,
to obtain

0 —— Sm®OIP(Sn)(_1) —_— Sn+m®OIF’(Sn) —_— En,n+m — 0

O

6.12 Example. Let (Xo, X1, X2) be a basis of V and (X2, XoX1, XoXa, X2, X1 X2, X3) be
a basis of S?V. Since S?V = HY(Opy(2)) = H°(Opg2y/ (1)) we introduce new coordinates
to have a basis given by linear forms on PS?V instead of quadratic forms on PV, it means
that

(X5, XoX1, XoXa, X7, X1X2,X3) = (20, Z1, Za, Z3, Z4, Zs5)

Then over PV* the matriz associated to ® is

Xo X1 Xo 0 0 0
0 Xo 0 X; X2 0
0 0 Xo 0 X1 Xy

And the matriz associated to the map ® over PS?V is

Zo Z1 Zsy
7. Zs Za
Zy Zy Zs

In PS2V the locus defined by the vanishing of the determinant of this matriz is the locus
of singular conics.

6.1 Exercise. Consider the multiplication map S?V ® S?V — SV where dimV = 3, and
find (after choosing a basis ) the matriz of the map

S’V @ Opgry — S*V* @ Opgay (1)

Show that the degeneracy locus is the hypersurface of Clebsch quartics, already seen in
exercise 3.12.
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6.4 Schwarzenberger bundles

According to the proposition 6.4 the dual variety (P(S™V) x P(S"V) x P(S"t™V))VY
corresponding to Ej, 4 is an hypersurface (SL(V')-invariant) if and only if dimc (V') = 2.
When dime (V') > 2 the codimension is strictly bigger than 1. For this reason these bundles
play a particular role. We will change the name of the underlying vector space V by U
when the dimension is 2.

Let U be a two dimensional vector space over C. According to the proposition 6.8, the
multiplication map

S @ SPU —2s srmy
gives a bundle E,, ;4. on P(S™U). These bundles, introduced by Schwarzenberger in
[Schl], are now called Schwarzenberger bundles.

Since they are related, by construction, to the rational normal curve, we fix, one for all
the notation. Let r any positive integer. We denote by C, (resp. C)Y) the rational normal
curve in P(S™U) (resp. P(S"U*)) image of P(U) (resp. P(U*)) by the Veronese morphism.
Since dimc(U) = 2 we have a nice matrix description for the different maps associated to
the multiplication gmr o gngy — % gni+myr. We denote by (to,t1) a basis of U, (2; =
£, (y; = tht]77), and (2 = tht}T™ ") the respective basis of S"U, S™U and S"+"U.
Then ¢(z; ® y;) = zi+; We have also the map

S"MU — S"U* @ S"TTU

i=n

*
Yj — E Ty @ Zitj
i=0

where (z}) is the (dual) basis of S"U*. Let
P(S™™MU*) = P(C[Zy, ..., Znim]), and P(S"U) =P(C[X, ..., X,])

The representative matrix of the composed homomorphism

ST ——s U © ST s ST © Op(gnny (1)

=n 1=n
yj fo Q Ziyj > Z Zi+in
=0 =0

is the following (m + 1) x (n + m + 1)-persymmetric matrix

0 0o --- 0 Xy
e Xy Xy
0 X1 X
0 Xp Xo
My, = Xo Xy Xn
X1 Xo X, 0
Xy - 0
X, .
X, O 0 O



In the same way the representative matrix of the composed homomorphism

S —— S"U* @ ST —— S"U* @ Op(gntmy+)(1)

i=n i=n
Yj — Z.f;k & Zijgj > Zl‘fZH_j
=0 i=0

is the following (m + 1) X (n + 1)-persymmetric matrix

Zo Z1 Zy e Zm
Zy Zy - Zm+1
N, — 22 ... .
Zn—l—m—l
Zn o o Zpamet Znam

The matrix N, is the pull back by the natural (given by the Clebsch-Gordan decomposi-
tion) embedding
¢ : P(S™MU) — P(S™U @ S"U)

of the (m+ 1) x (n+ 1)-generic matrix. It is well known that (see [Harris], prop. ***) the
zero locus defined by the maximal minors of N, is exactly the scheme of the (n — 1)-plane
n-secant (we assume here that n < m) to the rational normal curve C,,, defined by the
two-minors. More generally the zero scheme defined by the i-st Fitting ideal is identified
to the scheme of (n — i — 1)-plane (n — i)-secant to the rational normal curve defined by
the two-minors. We will denote these varieties V,,_;

6.2 Exercise. Prove that V,, consists of the closure of the union of linear (n — 1)-
dimensional spaces which are n-secant to C,. It is called the n-secant variety to Cy.
The 2-secant variety is the usual secant variety.

6.13 Theorem. P(E,, ,,1r,) is the blowing up of V,, along V1

Proof. According to the matrix description above, P(Ey, j,1,) is embedded in the product
P(S"U)xP(S™*™U) as a subvariety defined by the equations ((3°1" § X;Ziy; = 0)j=0,.. m)-
We denote respectively by p and 7 the projection morphisms on P(S™"*U) and P(S"U).
Then we will denote by Op(g, ,,,..)(a,b) the line bundle p*Op(gn+mn(a) @ 7 Op(gnyr)(b)
The image of P(Ey, 5, 4m) by p is just V;,. The fiber over a general point (zg, - - - , xy) is just
the P"~! defined by the m + 1 linear equations ((}_1_#iZi4+; = 0)j=0,...m) in P(S"T™U).
These equations are also obtained by the product (xg,- - - ,2,)N,,. It means that this P"~!
belongs to V,,. So it is clear that the morphism p : P(E), p+m) — Vi, is birationnal and
isomorphic outside V,,_1. To show that V,,_1 is the center of the blowing up we have to
prove that p~1(V,,_1) is a divisor in P(E,, ;1m)

More generaly we determine the class of p~(Vi) in the Chow ring A(P(Ennim)) of
P(Enntm)-

6.14 Proposition. For any i < n there is an injective homomorphism of vector bundles

Oé;z_én,n-&-nl)(_l’o) L) (W*En,n-&—m—i)*

such that V(A™y) = p~1V; and [p~V;] = cp—i(coker)) in A(P(Epnim))-
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Proof. For any i < n we have the following exact sequence on P(S™U)

My —i

0 —— §moiy(—l) Sty gnemeigy o Fninod),

Ek

n+m-—i 0
We dualize this exact sequence and look at it on P(Ey, y,4m)

1 tM'mfi
0 —— (T Eppim—i)* —— (S"TmU)* ——=

(S™UY*(0,1) —— 0
We have also for any i < n a map on P(S"t™U)

srtm=iyy % gigr(1,0)

where V; = V(A1¢) € P(S"t™U) and ¢ is given by the following matrix

Zy 21 Zs e Zntm—i

Zy Zy - Zntm—it1
Zn+m—1

Zi e e Znerfl Zner

As before we dualize this map and look at it on P(E,, p41m)

SU(~1,0) = (SmHm=ip)*
Since for any i < n the product ‘M,,_;N; is zero on P(Ey n+m) the composed homomor-
phim
; N; ; tMm—i
S'U(-1,0) —— (S"tm—y)yx ——

is zero. Then there exists a non zero map

(S™'U)*(0,1)

SiU(~1,0) —2— (7 Bpnim—i)*.

By the snake lemma the cokernels of ¢ and N; are the same on P(E, ,4m). So we can
deduce that V(A1) = V(ATLN;) and this last one is the inverse image p~'V;. Next
we verify easily that dimp~'V; = n +i — 1. The codimension (equal to (n — 1)) is the one
expected and we can apply the Thom-Porteous formula to conclude.

End of the proof of the theorem 6.13 : It results that p~'V,,_; is a divisor of
P(Ey n+m) defined by the determinant of

SPLU(=1,0) —2 (7 Epmt)™.

By a simple computation of first Chern classes we find that p~'V,,_ is defined by a non

zero section of Opg,, ,,..)(n,n —m — 2) i.e. by one section of (S"Ep nim)(n —m —2). O

6.15 Remark. [Val] On P?, the existence of a non zero section of S*(E2_,)(—n) char-
acterizes Schwarzenberger bundle amomg the stable rank two vector bundles.
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6.4.1 Splitting of Schwarzenberger bundles on the rational normal curves

6.16 Theorem. Let C,, = P(U) C P(S"U) = P™ be the rational normal curve. Then
TPy ~ S" U@ O(n+1) Ng,pr ~ 5" 2U ® O(n +2)

Proof. The exact sequence defining the Schwarzenberger bundle O(—n) on P! is
0—Op1(—n)—Op1 ® S"U—Op1(1) @ S"1U—0

The first isomorphism immediately follows. Then we get the sequence

0—Op1(2 —n)—Op (1) @ S 'U—N(—n)—0
Tensoring by Opi(—3)

0—O0(—n —1)—0(-2) @ S" 'U—N & Op1(—n — 3)—0
so that
0——HO(N @ Op1 (—n — 3))—S" WU -L8" U s HY(N @ Opi (—n — 3))—0

By Schur lemma the map f is an isomorphism (why is not zero?), so that N ® Op1 (—n —
3) = O(—1) ® W for some representation W. Comparing with the first sequence we get
W ~ S"2U as we wanted . O

6.17 Remark. H'(N¢, pn) = S"T2U @ S"2U = sl(S"U)/sl(U). This is the tangent
space at the Hilbert scheme SL(S™U)/SL(U) of rational normal curves.
6.18 Theorem. E, 1 ® Oc, = S" HU) ® Oc, (™) = S""HU) @ Op1 (m + 1)

n

Proof. The bundle F,, ;, 1, over C can be interpretated as the bundle of m + 1-osculating
spaces to C (see prop. 6.9)). More precisely we have over P! ~ C,,

O‘)SkU X OPI (*ﬂ)‘)Sn—i_mU %) Opl —)En7n+m X O[pl —0
The fiber of this bundle over x € P! is
Ho(m™ (0 +m)) = H'(Op(n — 1)) = S U
(see also Proposition 3.7) which is independent from z. O O
6.4.2 Splitting of Schwarzenberger bundle on lines

Approach with the incidence variety

Let X be the inverse image of C)Y in the incidence variety (point-hyperplane). i.e.
X ={(z,H) | z € H, H osculates C), }

We call prq and pro the projection maps from X to P(S™U) and C). We recall that we
can define Schwarzenberger’s bundle on P(S"U) as direct images of lines bundle on C,
i.e Epm = pra«priOcy (%) (see prop. 6.11).
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6.19 Theorem. ([ST] prop. 2.18) Let 1l € P(S™U) be a general line. Let (q,€) such that
m=qn+ e with 0 < e <n. Then

(Enm)i(~q) = [SU ® O] & [$" DU @ Oy(-1)]
Proof. Since [ is general we have an isomorphism pry '(1) ~ CY

prQ_I(l) N X
{ 4
I — P(S"U)

Thus we have

€

* n m
(Enm)j = pra«(priOcy (E)\prz—l(z)) = pT2*OpT2—1(z)(E) = DPra« [Oprgl(l)(Q) ® OpTgl(z)( )]

n
Since on the rational curve pr, 1(l) ~ C) there exists only one line bundle of degree ng,
we have priO;(q) = OpT;1(l) (¢). Then by the projection formula we find

(Bun)i = prasOp1y() @ Ou(g)
Remind the resolution of X C P(S™"U) x P(U*)
0 = Op(sruyxp=)(—1, —n) = Opsnuyxpw=) = Ox — 0
Over [ the above exact sequence becomes
0 = Oppw+) (=1, —n) = Op=) — Opr2_1(l) —0

and after tensorization by Op(g+)(€) we obtain

€
0— OlX[F’(U*)(_]-a € — n) — OlX[P’(U*)(Ov 6) — Oprgl(l)(ﬁ) —0

Now take the direct image by pro of this exact sequence
€
0— HO(OP(U*)(6>) X Ol — prQ*Oprgl(l)(ﬁ> — Hl(O]}n(U*)(G — n)) (= Ol(—l) —0
in other words

€ — (e
(Bn)i(—0) = prac0,, 1) (5) = [S°U © 0 &[5V © 0y(~1)]

n

Approach with representation theory

Now we give a second proof of the splitting of the Schwarzenberger bundle, considering
the geometry of P(S™U). The isomorphisms

S"P(U) ~P(S"U) ~P(S"U™)
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are geometrically described by

U g = T <L TR >

where Zle a; = n Let us fix » > n, a rational normal curve
C, CP" (6.2)

and an isomorphism

P(U) ~ C, (6.3)

then for any point of P(S"U) we get n points with multiplicity of C,, hence a natural
morphism

i: P(S™U) — Gr(P" 1, P")

The Schwarzenberger bundle E,, , on P(S"U) is isomorphic to i*U* where U is the universal
bundle on the Grassmannian.

Since U is homogeneous, the isomorphism class of E, , does not depend on the choices
(6.2) and (6.3) .

We consider a line r through the points f and g corresponding to two polynomials S™U*
without common factors. Let k+ 1 = qn + € with 0 < e < n.

We want to give a second proof of the theorem [ST]

Proof. Since ¢i(Ep ntr) = k + 1 it is sufficient to prove that En,n+k|r is isomorphic to
the direct sum of some copies of O(m) and O(m + 1) for a certain integer m. Indeed
m-(n—e)+(m+1)-e=k+1implies m = g and e = €. It is sufficient to prove that

ho(ra En,n+k|7«(t)) -h! (’I“, En,n+k|7«(t)) =0 VieZ

;From the sequence of the previous theorem it follows that h°(r, En,n+k‘r(t)) =0fort <0.

For t > 0, HO(r, En7n+k|r(t)) and H(r, En’nJrk'T(t)) are respectively kernel and cokernel
of the linear map

HO(r, S"™*U @ O(t)) — H(r, S*U @ O(t + 1))

Then it is sufficient to prove that the previous map has maximal rank for ¢ > 0.
Let us consider the dual map

SHU* ® S'H(f,9) — STEUT @ 8'(f,9) (6:4)
which is described by
a® fight'= s af @ fi gt L ag @ figh
The map (6.4) is the cohomology H°-map associated to the sheaf morphism on P(U)
O(k) ® S™(f,9) = O(n+ k) ® S'(f. g) (6.5)

with matrix
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fog
f g
Since f and g have no common factors it follows that the previous matrix has maximal
rank on every point of P(U). Then the sheaf morphism (6.5) on P(U) is surjective with

kernel O(k — n(t + 1)), and the associated H’-map (6.4) has maximal rank because for
every a € Z h°(P(U), O(a)) - k1 (P(U), O(a)) = 0. O

Splitting on any line
6.20 Corollary. Let r be the line through f and g with deg GCD(f,g9) =j. Letk+1 =
d(n—7)+€ with0<ée <n—j. Then

En,n+k‘7‘ ~ O] ) O(q/)’n—e’ D O(q/ + 1)5/

Proof. Let h = GCD(f,g). We remark that E, i restricted to T;;fj has a trivial
summand of rank j (this follows from the geometrical description because the n-ples of
points on C,, 4 have j fixed points) and on the complementary summand we can apply
the theorem. O

6.3 Exercise. (i) Prove that the loci in the Grassmannian of lines in P" where the splitting
of Ep n+k is the same are SL(2)-invariant.
(ii) Prove that under the splitting in Corollary 6.20 we have

Enpir, ~ 000U @[0¢)©S" U@ [0(¢ +1) © 577U

6.5 Characterization of Schwarzenberger bundles among Steiner
via the symmetry group

When we have introduced the Schwarzenberger bundles we have seen that they are special
Steiner bundle in the sense that are SL(2)-invariant. In this part we prove the converse :

A rank n Steiner bundle on P™ which is SL(2) invariant is a Schwarzenberger bundle.

We recall that the vector spaces SU for i > 1 are the irreducible SL(2)-representations.
We denote (t5 *t¥),—o... ; a basis of S°U. Since they are SL(2) invariant we will not
distinguish S'U and S*U*.

6.21 Theorem. Let V', I and W be three non trivial SL(2)-modules with dimension n+1,
m+1andn+m+1and ¢ € P(VRIR®W) an invariant hyperplane under SL(2). Then,

¢ ¢ (P(V)xP(I) x P(W))" & ¢ is the multiplication S"U @ S™U — S""U

Proof. When ¢ € P(S"U®S™U®S™t™U) is just the multiplication S"U®S™U — S"tmU
we have already seen that it corresponds to Schwarzenberger bundles.

Conversely, let V = &;(S'U ® 4;), I = ®;(S’U ® Bj) where A;, B; are trivial SL(2)-
representations of dimension n; and m;. Let th € S'U, th € SIU be two highest weight
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vectors and u € A;, v € Bj. Since ¢ ¢ (P(V)xP(I)xP(W))" we have qb((té@u)@(té@v)) #
0. By SL(2)-invariance ¢((t) ® u) @ () @ v)) = th7 ¢(u @ v) € S™IU @ Cyyj, where Cy;
is a trivial SL(2)-representation. By hypothesis ¢(u ® v) # 0 for all u € A; and v € B;
so, by Theorem 6.3, it implies that dimC;;; > n; +m; — 1, and (STHU) M~ c W+,
Assume now that I contains at least two distinct irreducible representations. Let i and
jo the greatest integers appearing in the decomposition of V' and I. We consider the
submodule I; such that I ® (SjOU)mjo = I. Then the restricted map V ® Iy — W* is
not surjective because the image is concentrated in the submodule W7 of W* defined by
Wi @ (Stotioy)miotmio—! = W*. Now since

dimC(Wl) < dim(c(V) + dim(c(fl) -1

there exist a € V, b € I} C B such that ¢(a®b) = 0. A contradiction with the hypothesis.
So V = (SU)™, I = (S7U)™ and (S™HU)W+mi~1 ¢ W*. Since dimcW = dimcV +
dimcl — 1, we have (i + 1)n; + (j + 1)m; — 1 = dimcW > (i 4 j + 1)(n; + m; — 1) which
is possible if and only if n; = m; =1 and W = S;;. O

6.22 Corollary. A rank n Steiner bundle on P™ which is SL(2) invariant is a Schwarzen-
berger bundle.

Proof. Let S a rank n Steiner bundle on P™, i.e S appears in an exact sequence

0 S > W Opry —— I*®Op(v)(1) — 0

where P(V) = P", P(I) = P™ and P(W) = P"t™. If SL(2) acts on S the vector spaces V,
I and W are SL(2)-modules since V is the basis, I* = H'S(—1) and W* = H°(S*). If S
is SL(2)-invariant the linear surjective map

V® (H'S(-1))* — H°(S*)

is SL(2)-invariant too. O

6.6 Darboux theorem on Poncelet’s curves

Let s € H(Epntm) be a non zero section. We want to describe the zero locus Z(s)
geometrically. Since we have the following resolution

0 —— SmU®O]}DSnU(—1) —_— SnerU@O]pgnU E— En7n+m — 0

we obtain H O(En’ner) = §"tm{J. Thus we can see that this section s correspond to an
hyperplane Hy, C P(S™™™U) or to an effective divisor of degree n + m on the rational
curve Chp4+m- The section s, or to be precise the cosection

(Enntm)*® —— Opgnyy — Ozsy — 0

induces a rational map P(S"U) — P((Enn+m)*) which is not defined over the zero-
scheme Z(s). First of all we remind that over a point = € P(S"U) we have

7 U@) = {3 @ Xie; = 00 m} = P(Bnnim(x)) = P!
1=0
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The rational map P(S"U) — P((Epn+m)*) sends a point z € P(S"U) onto Hs N7~ ()
which is in general a P72 i.e a point in P((Eyntm)*(z)) = P*"1*. This map is not
defined when 7~1(z) C H,. The hyperplane H; cuts the rational curve C,,, along an
effective divisor D, ., of length n 4+ m. The subschemes D,, C D,,, of length n (they
are ("J;m) when D, 4, is smooth) generate the (n — 1)-planes n secant to C),4p, which are
contained in Hg. The corresponding point belongs to the zero-scheme Z(s).

Remind that we have E, pim = prl*prgch(HTm) (prop. 6.11). Then to a section
s e H O(En7n+m) we can associate a divisor Dy, of degree n +m on C,/. The zero-
scheme Z(s) is the set of points x € P(S™U) such that the divisor 2V N C)Y of degree n
belongs to Dytm. When Dy, is smooth, we get n + m osculating hyperplanes of C), in
P(S™U). Every subset of n-osculating hyperplanes gives a point in P(S™U). These points
are the zero-scheme of the section s. We have proved the following proposition.

6.23 Proposition. Let s € HO(En’ner) be a non zero section and Dy, be the corre-
sponding effective divisor of degree n +m on CY. We denote by Z(s) the zero-scheme of
s. Then,

v € Z(s) e 2" NCY C Dpym(s)

and more generally we have
Tz Cmy e (V)TN CY C Dygml(s)

Proof. Assume Zz,) C m’*1. Let H, the hyperplane corresponding to the section s and
D,, the divisor on C) corresponding to x. Then < (r + 1)D,, >*C H,. This proves
(V)N CY C Dyym(s).

On the other hand, the inclusion < (r +1)D,, >*C Hg proves that the exceptional divisor
< Dy, >* of P(Zy(s)) appears with multiplicity (r + 1), it means that T, C m/+L O

Now we want to be more explicit, in order to explain the link between two geometric
objects, the pencils of sections of Schwarzenberger bundles and the Poncelet curves.

To do such a link, it is necessary to describe more explicitly the zero-scheme of any (non
zero) section s € HO(Fa ).

A non zero section s € H°(Fs,,) gives a exact sequence

0 Opz o Egm EE— IZ(S)(TL— 1) — 0

6.24 Lemma. Let s € H°(Fa,,) be a non zero section and Z(s) its zero-scheme. If L is
a tangent line to Cy secant to Z(s), then L is (n — 1)-secant to Z(s).

Proof. Since L is tangent to Cy, we get a surjective homomorphism FEs,, — O, which
proves that (Ez )|, = Or(n — 1) ® Of. The exact sequence

s

0 Opz > Egm — IZ(S)(TL— 1) — 0

induces a surjective map (Ea,), — Zraz(s)/n(n — 1) (where Zrqz() /1 is the ideal sheaf
of the scheme LN Z(s) in L). If L meets Z(s), it implies Z;nz(5)/(n — 1) = Oy, in other
words L is n — 1 secant to Z(s). O
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6.25 Proposition. Let s € H*(Ey,,) be a non zero section and Z(s) be its zero-scheme.
Let Dy (s) =Y n;L; the corresponding effective divisor of degree n on Cy :

1) The support of Z(s) consists in the set :

a) i =L; N L ifi #j

b) Ty = Lj; ncY if ng > 2.

2) Let Z(s) = UZ;; where Z;; is the subscheme of Z(s) supported by x;;. Then we have :
a) Zi; = Z(s;) where s; € H°(Fa,,) is the section corresponding to the effective divisor
b) Zi; U Zi; U Zj; = Z(sij) where si; € HO(Egvnﬁnj) is the section corresponding to the
effective divisor Dy, 1n; = n;Lj + njL;/.

Proof. The point x € P? belongs to Z(s) if and only if the line 2V of P2V is twosecant to
D,,(s) (see prop 6.23). But the lines which are two-secant to D, (s) are evidently the lines
x}; joining the points L;” and LY of Cy for i # j and the lines tangent to Cy in a point
LY such that 2LY € D,(s). It proves 1).

For the second part, we remark that Z;; is the two-secant subscheme of the divisor D,,, =
n;Ly and that Z; U Z;; U Zj; is the two-secant subscheme of the divisor Dy, 4rn; = n;L; +
njL]V. These divisors correspond to the sections s; € H%(Fs,,) and s;; € H O(Egjn#nj).

O

6.26 Remark. We assume that n > 2. D,(s) is smooth if and only if Z(s) is smooth, in
that case Z(s) consists of the vertices of the n-lines (distincts) tangent to Cs.

More precisely we have :

6.27 Corollary. deg(Oz,) = ni(n; — 1)/2, deg(Ogz,;) = nin;.
deg(OLimZii) =n;— 1, deg(OLmZij) =ny;.

Proof. deg(Ogz,,) = c2(E2y,) =ni(n; —1)/2.

deg(Oz,;) = c2(Ean,4n,;) — deg(Oz,;) — deg(Oz,;) = nin;.

The line L; is n; — 1-secant to Z;; because it is a tangent to Co meeting the zero-scheme of
the section s; € H(Es ;) (Remark 6.24). In the same way, the line L; is (n;+nj—1)-secant
to Z(s;5). Since it is n; — 1-secant to Zj; it is n; secant to Z;. O

6.28 Definition. Let D,, be an effective degree-n divisor on Co and V(D,,) be the set of
vertices of the n-gone defined by the n-lines tangent to Co along A. A plane curve S of
degree (n — 1) passing through V(D,,) is called Poncelet related to Cs.

We allow, in this definition, the divisor to be non reduced.

The classical theorem of Darboux, revisited recently by Trautmann in [Tr], says

6.29 Theorem. (Darboux) Let S C P? a curve of degree (n — 1) which is Poncelet related
to Co (a smooth conic of P?V ). Then S contains the vertices of infinitely many n-gones

Proof. In order to prove the theorem we prove that a curve S C P? of degree (n — 1) is
Poncelet related to Cs if and only if S is the determinant of a pencil of sections of Es,,.
The divisor D, is defined by a section of O¢,(%). It induces a section s € H*(E, ;) (with
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Esn = prispr3Oc, (%)) such that the zero-scheme Z(s) = V(D,) is the scheme of the
two-secant to D,, :

s

0 OP2 Egm EE— IZ(S)(n— 1) — 0
The curve S is a section of Ty, (n — 1). Then it exists a non-zero section ¢ of Ej, such
that s At =0 is the equation of S. O
o —
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Chapter 7

First examples of moduli of
bundles

7.1 Basic definitions and properties

We refer to [HuLe] for a detailed treatment of moduli spaces of bundles. Here we want
only to mention the basic definitions.

7.1 Definition. A flat family of bundles on X parametrized by S is given by a scheme F
together with a flat morphism F — S x X. Two such families Fy PLox X, 258 x X
are called equivalent if there is L € Pic(S) such that Fy = 7*L ® Fy, where 7 is the first
projection.

All bundles in a flat family have the same Chern classes and the same rank. From now on
we fix Chern classes ¢; € A(X) and rank 7 € N. When X = P" the ¢; can be considered
as integers.

A moduli space for bundles with fixed ¢; and r is a scheme that intuitively parametrizes all
possible bundles F such that ¢;(E) = ¢; and rank(E) = r. A problem arises because there
are in general nontrivial flat families of arbitrary large dimension. This problem has been
solved by considering only some bundles called stable bundles, that in turn are a special
case of the stable (torsion free) sheaves. The following definition of stability was given
by Mumford in order to satisfy in a certain setting the stability requirement of GIT. We
state the definition for an arbitrary ample line bundle L on X, but the reader interested
only to the case X =P" can take L = O(1).

7.2 Definition. A bundle E on X is called stable (resp. semistable) with respect to a
ample line bundle L if for every subsheaf F with 0 < rank(F) < rank(E) we have

ci(F)- Lt ci(B) - L1
“ranE) <P O uE)

c1(E)-L" 1

T is called the slope of E and it is denoted by pu(E).

The expression

On P" ¢;(FE) is an integer and we have the simpler expression

=52
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If a subsheaf F' C E has u(F) > p(E) we say that F' destabilizes E.

7.1 Exercise. Given the exact sequence
0—-EF—-F—-G—=0

prove that p(F') is strictly included between u(E) and u(G) with the only exception
w(E) = u(F) = p(G).

7.2 Exercise. Given a bundle E prove that w(A\*E) = u(SFE) = ku(E). Hint: Use the
splitting principle 5.3.1.

7.3 Exercise. Given a bundle E on P™ prove that for any integer t

u(E(t) = p(E) +t

7.3 Definition. Let Pic(X) = 7Z, so that ¢1 can be considered as a integer. A bundle E
on X is called normalized if c1(E) € {—(r —1),...,—1,0} (this condition is satisfied by
E(t) for a unique t, we denote by Eporm this unique twist of E).

7.4 Remark. FE is normalized if and only if —1 < u(E) < 0.
The following criterion is useful in order to check the stability

7.5 Proposition. (Hoppe) Let Pic(X) =Z. Let E be a bundle of rank r.
If H° ((\*(E)) =0 for1 <k <r then E is stable.

norm)

Sketch of proof Consider a subsheaf F' of E of rank k. From 0 — F — E we get 0 —
(AFF)* — APE. Now (AFF)*™ is a line bundle (see [OSS] ), hence (AFF)™ = O(ku(F)).
It follows that there is a section of A*E(—ku(F)), hence pu (A*E(—ku(F))) > 0, that is
w(F) < p(E) as we wanted.

7.6 Remark. The converse of the above proposition does not hold. A counterexample is
given by the nullcorrelation bundle N (see Section 7.4) onP? having c1(N) =0, co(N) = 2,
which is stable but contains O as direct summand of A2N so that h(A2N) # 0.

An interesting application of the above proposition is the following

7.7 Proposition. A Steiner bundle of rank n on P™ is stable.

Proof. Consider a bundle E on P(V') appearing in the sequence
0—I®0(-1)—W e O0—E—0

where dimV =n+1, dim/ = k, dimW = n + k. Since (/\k(E))norm = (A*(E)) (t) for
some ¢ < 1 then it is sufficient to prove that h" ((A*(E))) (—=1) = 0. Consider the g — th
exterior power, twisted by O(—1)

0—SITR0(—q—1)— ... —IANT'WRO(-2)— AW @0O(—1)—(AIE)(—1)—0
Taking cohomology the result follows. O

7.4 Exercise. Prove that a stable normalized bundle satisfies h%(E) = 0
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7.5 Exercise. Prove that E @® F is semistable if and only if E and F' are both semistable
with the same slope. Prove that stable bundles are always indecomposable.

7.6 Exercise. Prove that if E is stable then E* is stable. Prove that E is stable if and
only if E® L is stable for some line bundle L.

7.8 Remark. If E and I are stable then E ® F is polystable, i.e. is the direct sum of
stable bundles with the same slope. This fact is quite deep and can be proved by using
FEinstein metrics. Maruyama proved in [Marl] that if E, F are semistable then E @ F is
semistable.

7.9 Definition. A bundle is called simple if H(EndE) = C that is if its only endomor-
phisms are homotheties.

7.10 Theorem. Stable bundles are simple

Proof. Let f: E — E. Fix a point « € X, there there is an eigenvalue A for f,: E, — E,.
It follows that f — AI is not a isomorphism. Suppose that it is not zero. Then ker(f — A1)
and im(f — AI) have both rank strictly included in [0,7]. By the exercise 7.1 one of these
destabilizes E. O

Let us fix ¢; and r
There is a basic functor F, , from the category of schemes to the opposite (with arrows
reversed) category of sets, namely (for simplicity we omit the suffix {c¢;,r}).

F: Schemes — (Sets)"

S +— {equivalence classes of flat families of stable bundles over S with fixzed c;,r}

7.11 Definition. M is called a coarse moduli space if there is transformation of func-
tors
F(-)— Hom(—, M)

such that
i) for every M’ with a transformation of functors F(—) — Hom(—, M') there is a unique
m: M — M’ such that the following diagram commutes
F — Hom(—,M)
N\ \J
Hom(—, M'")

ii) there is a biunivoc correspondence between reduced points of M and stable bundles on
X with assigned ¢; and r.

M satisfying the minimality condition i) is called to corepresent F'.

7.12 Definition. F' is called represented by M if F(—) = Hom(—, M). In this case M
1s called a fine moduli space.
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This implies (why?) that there exists a flat family P parametrized by M such that all
other flat families are obtained by this one as pullback. P is called the Poincaré bundle.
A fine moduli space is also a coarse moduli space.
Fine moduli spaces do not exist in general, but only in special cases. A famous theorem
of Maruyama states that coarse moduli spaces always exist for projective X, and they are
even compactified by a projective scheme M C M adding equivalence classes of semistable
sheaves.
Moduli spaces of G-bundles
In general the transition functions of bundles take value in GL. If the bundle carry a
symmetric nondegenerate bilinear form (i.e. w: F — E* such that w* = w then we can
consider transition functions that leave w invariant, i.e. they lie in SO or in its universal
covering Spin. FE becomes a Spin-bundle in this way. When the transition functions
take value in G we say that E is a G-bundle and G is called the structural group of the
bundle.It makes sense to consider flat families of G-bundles where G C GL and we have
the analogous notion of moduli space parametrizing G-bundles.

The tangent space at [E]
The tangent space of the coarse moduli space M of G-bundles on X with assigned c;
and r is isomorphic to the cohomology group H'(adE). Here adFE is the adjoint bundle
defined by the adjoint representation G — adG. In general G = GL and correspondingly
adE = EndE. In case G = SL we have adE = EndE/O. In case G = Spin or G = SO
we have adE = A’E. In case G = Sp we have adFE = SE.
More precisely there is a Kuranishi map, coming from deformation theory

HY(adE)—~5H?(adE)

such that the holomorphic germ of M at [E] is defined by k& = 0. It follows that if
H?(adE) = 0 then [E] is a smooth point and the estimate h!(adE)—h?(adE) < dimgp M <
h'(adE).

If F is only a stable sheaf, it belongs to the Maruyama moduli space of GL-bundles and the
tangent space at F is isomorphic to Ext!(E, E). Moreover there is a Kuranishi morphism
Ext'(E,E) — Ext?(E, E) with the same properties as in the bundle case.

7.2 Minimal resolutions
For any torsion free sheaf E over P" there is a minimal resolution
O—-F1—>... 4w FF—>Fp—>FE—=0

where every F; is a direct sum of line bundles. The minimal resolution remains exact when
we perform the H'-sequence

0— HYF,_1(t)) = ... = H(F.(t)) = H°(Fy(t)) — H°(E(t)) = 0

for every t € Z. Moreover the minimality condition requires that no line bundle can be
dropped in two adjacents F; and Fj_1, this is equivalent to the fact that no constant entry
appears in the matrices representing the morphisms of the resolution. These properties
characterize uniquely the minimal resolution.
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In particular on P? every torsion free sheaf FE has a minimal resolution
0= ®0(—a;) = ®O(—=b;) = E =0
We consider the case rkE = 2. We assume

a1 < ... <ag
by < ... < bpy2

;From [DM] or [1] it follows that the generic E the a;,b; can take at most three different
values and that max;{b;} — min;{a;} < 2.
We want to give some bounds on a;, b;. We first need a technical lemma.

7.13 Lemma. Let 0 < by < by be integer numbers. Then
(i) b%—i—b%—QbQ(bl—{—bz—l)—l <0

Let 1 < by < by be integer numbers. Then

(i3) b? + b2 — 2by(by + by — 1) <0

(i) b? + b3 — 2ba(by + by —2) —2 <0

Proof (i) and (ii) are straightforward looking at the corresponding hyperbolas in the plane.
(iii) is trivial by the factorization

b} + b3 — 2ba(by + by — 2) — 2 = (b1 — ba(1 + V2) + V2)(b1 — ba(1 — V2) = V2)

O
7.14 Proposition. (i) ¢;(E) = Z,’f:l a; — Zfif b;
(ii) 2e2(E) = }(F) = Xy af = 57 0F
(i) bivo < a; fori=1...k
Proof (i) and (ii) are straightforward. (iii) is proved in [BS]. O

7.15 Proposition. Let ¢i(F) = 0. E is stable (resp. semistable) if and only if by > 1
(resp. by >0).

Let c1(E) = —1. E is stable if and only if it is semistable if and only if by > 1 (resp.
by >0).

Proof by > 1 is equivalent to HY(E) = 0. by > 0 is equivalent to H°(E(—1)) = 0. O
The following propositions are taken from the thesis [D], with some improvements.

7.16 Proposition. If E is normalized and semistable then
k-1
bi12 + 5 < e

If moreover E is stable and c¢1(E) =0 then

k
b2 + 5 < e
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Proof Assume E semistable and ¢;(E) = 0. Then

2y = —b? — b3 +Z b2 ,) = —b? — b +Z i = bis2) (@i + bisg — 2b2) + 2by(by + by) >
k
> b2 — b3+ Z(ai + biya — 2b2) + 2ba(b1 + b2) >
=1

(by using a; > bj12 + 1)
k
> —b% — b% + 22(@'4—2 —bo) + k + 2b2(by + b2) >
i=1

> —b% — b3 + 2bjpn — 20y + k + 2by(by + b2) > b0+ k — 1

where in the last inequality we have used (i) of Proposition 7.13. The other cases are
similar by using (ii) and (iii) of Proposition 7.13. O

7.17 Proposition. If E is normalized and semistable then

ar + % < ey
If moreover E is stable and c¢1(F) =0 then

k—2
ak+T§C2

Proof Assume E stable and ¢;(E) = 0.

k—1
2c2 = —b] — b3 + (aj — biyo) + ) _(af —bis) =
i=1
k—1
= —b% — b% + (ai — bz+2) + Z(ai — bi+2)(ai + bH_Q — 2()2) + ng(bl + by + bk+2 — ak) >
i=1
k-1
> —b — b3 + (aj, — bjyo) + Y (@i + biyz — 2by) + 2ba(by + by + by2 — a) >
i—1
(by using a; > bj12 + 1)
k—1
> —b — b5+ (af — bjyo) +2) (biva — o) + (k — 1) + 2bo(by + by + bryo — ag) >
i=1

> —b? — b2 + (ap — brga)(ag + bpya — 2bo) + (k — 1) + 2by(by + by)

If ap, — bg1o = 1 we have the thesis from the previous proposition.
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If a, — br4o > 2 we get

2¢y > —b?—b3+2(ap+bpro—2b2)+(k—1)+2by (b1 +b2) > 2(ap+byyo—ba)+(k—1) > 2a,+(k—1)
where we have used (ii) of Proposition 7.13. This is slightly stronger that we claimed. The
other cases are similar by using (i) and (iii) of Proposition 7.13. O

Remark Given (cj,c2) of a normalized semistable torsion free sheaf of rank 2 on P?
there are only finitely many sequences of integers a; < ... < ag, by < ... < bgys which
satisfy the Proposition 7.14 and the inequalities of Proposition 7.15, Proposition 7.16 and
Proposition 7.17. This is the first nontrivial case of what is called the boundedness theorem
for semistable sheaves, proved first by Maruyama (see [HuLe]). We underline that without
the semistability assumptions, it is possible to find infinitely many sequences of integers
a1 <...<ag, by <... < bgyo which satisfy only the Proposition 7.14.

Applications:

7.18 Theorem. Let E be a torsion free sheaf of rank 2 over P? .
If (c1,¢2) = (—1,1) and E is semistable then there is a sequence

0—0(=2)—0O(-1)>—E—0
If (c1,c2) = (0,1) and E is semistable then there is a sequence
0—0(-2)—0(-1)> ® O—E—0
If (c1,c2) = (0,2) and E is stable then there is a sequence
0—0(-2)2—0(-1)*—E—0
If (c1,c2) = (0,2) and E is strictly semistable then there is a sequence
0—O0(-3)—0(-2) 2 O(-1)  O—E—0
If (c1,c2) = (—1,2) and E is (semi)stable then there is a sequence
0—0(=3)—0(=2) ® O(=1)2*—E—0

Proof (c1,¢2) = (—1,1) and (semi)stable implies 1 < b; <1 — %=L hence k=1, by = by =
bs=1anda; =—1+33 b =2

(c1,¢2) = (0,1) and semistable implies 0 < b; <1 — Bl 1 <g;<1— k—gg hence k < 3. If
k =2or k=3 then b; = 0, a; = 1 which contradicts ¢c; = 0. So & = 1 and in this case
it is easy to check that the system Z?:1 b = a1, 25’:1 b? = a? — 2 has the only solution
ar = 2, (by,b2,b3) = (0,1,1).

(c1,c2) = (0,2) and stable implies 1 < b; < 2 — % hence ¥ < 2, and b; = 1. If £k =1
then a; = 0+ 23:1 b; = 3 and a? — Z?’ b? = 6 which is a contradiction. Hence k = 2

i=1"%

and a1 + as = 4, a% + a% = Z?zl b? + 4 = 8 which implies a; = ag = 2. If F is only
semistable we have the weaker inequality 0 < b; < 2 — % which gives k < 5. Moreover
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1<a; <2— % If a; = 1 then b; = 0 and ¢;(F) > 0 which is a contradiction. Hence

a1 > 2 which gives k£ < 3. If £ = 3 then a1 = a2 = a3 = 2 which forces Z?:1 b; = 6,
0 < b; < 1 which is a contradiction. If £ = 2 then a; = a2 = 2 and we find again the
stable case. The last possibility is £k = 1, hence 2 < a; < 3 and 0 < b; < 2. The system
2?21 b = a1, 23 b? = a? — 4 has the only solution a; = 3, (b1, be,b3) = (0,1,2).

=1
(c1,¢2) = (—1,2) and (semi)stable implies 1 < b; < 2 — k—gl hence k < 3. If k = 3 then
b; = 1, a; > 2 which contradicts Z?:l a; = —1—1—2?:1 b; = 4. The same argument excludes
the case k = 2. Hence k =1 and 1 <b; < 2, 2 < a; < 3. The system Z?Zl b, =a1+1,
23 b? = a? — 3 has the only solution a; = 3, (b1, b, b3) = (1,1,2). O

i=1"1
Exercise With the notations above let (ci,c2) = (0,1) and E semistable. Prove that
there is only the following minimal resolution

ar =2, (b1,b2,b3) = (0,1,1)

The following two exercises require more computations. They become straightforward by
using a computer.

Exercise With the notations above let (¢, c2) = (0,3) and E semistable, prove first that
k < 3. Then the possible minimal resolutions are the following ones:

(a1,a2) = (3,3)(b1, b2, b3, bs) = (0,2,2,2)
(al, CLQ) = (2, 3)(b1, bg, bg, b4) = (1, 1, 1, 2)<StCLble)
a] — 4, (bl, bg, b3) = (0, 1, 3)
a1 = 37 (bh b27 b3) = (17 17 1)(stable)
Exercise Let (c1,c2) = (—1,3) and F (semi)stable, prove first that k& < 3. Then the
possible minimal resolutions are the following ones:
(a17 CLQ) = (3) 3)(b17 b?) b37 b4) = (]—7 27 27 2)
ap = 47 (bl, b27 b3) = (17 17 3)

7.3 Examples on P?

7.19 Theorem. Moduli spaces of G-bundles over P? are smooth.
Proof. By Serre duality h?(EndE) = h°(EndE(-3)) = 0. O
The Hirzebruch-Riemann-Roch theorem implies that for a rank 2 bundle on P? we have

\(E) = %(cl(E)Q —265(E) + 3¢1(E) + 4) (7.1)

X(EndE) = ¢1(E)? — 4cy(E) + 4
Hence if F is stable we get

hY(EndE) = dimg M = —c2(E) + 4c2(E) — 3 (7.2)
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which is the dimension of the moduli space at E.
We will see the first examples of bundles of rank 2 on P? and P3.

7.20 Theorem. Let E be a stable rank 2 bundle on P? with c1(E) = 0. Then cz(E) > 2.

Proof. By the exercise 7.4 we have h’(E) = 0. By Serre duality h?(E) = h%(E*(-3)) =
hO(E(-3)) = 0. Hence 0 < h*(E) = —x(E) = (by (7.1) = £(2c2(E) —4) as we wanted. [

7.7 Exercise. Let E be a stable rank 2 bundle on P? with c1(E) = —1. Prove that
c(E) > 1.

We denote by Mp2(c1,c2) the moduli space of stable 2-bundles on P2
By the previous results Mp2(0, ¢2) is empty if co < 1 and Mp2(—1, ¢2) is empty if co < 0.
Moreover dim Mp2(0, k) = 4k — 3 for k > 2 and dim Mp2(—1,k) = 4k — 4 for k > 1.

Mp2(—1,1)
7.21 Theorem. Mp2(—1,1) is given by one point, it contains only the bundle TP?(—2).

We sketch two different proofs of the previous basic theorem. Although each of these
two needs some tool not covered in these notes, we think they touch different interesting
aspects of the theory that deserve to be deepened.

first proof By Proposition 7.5 TP?(—2) € M(—1,1), which is then not empty. By
(7.2) dim M (—1,1) = 0. It follows that SL(3) acts trivially on M (—1,1), that is every
E € M(—1,1) is homogeneous. We have P? = SL(3)/P and it is now a standard fact that
E comes from an irreducible representation of rank 2 of P. Since the semisimple part of
P is SL(2), there is only the standard representation which gives our bundle. O

second proof By Theorem 7.18 E' € M(—1,1) appears in a sequence

0= O(-2)-50(-1)3 5 E -0

We have to prove that all bundles E appearing in the above sequence are isomorphic. In
fact A is given in coordinates by (lo,l1,l2) where [; = Z?:o a;jz;. Now A is a constant
rank map iff the three lines {l; = 0} have no common intersection, which means that the
3 X 3 matrix a;; is nondegenerate. Since two nondegenerate matrices are equivalent by
GL(3)-action the result follows. O

7.22 Remark. It is not known if the moduli space containing TP" is a point for n > 5.
This is true for n < 4.

MIF’2 (_ 1, 2)
We sketch now a proof that M(—1,2) is the projective space of symmetric matrices 3 x 3
of rank 2, that is M(—1,2) is isomorphic to S?P?\ A ~ Sec(vs) \ v2 where vy := vo(P?) is
the Veronese surface in P?

You see that SL(3) acts transitively over M (—1,2).
By Theorem 7.18 E € M(—1,2) iff it appears in a sequence
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0= O(=3)"2L0(—2) 2 O(~1)? = E =0

f is the equation of a line, ¢; are conics. We want to associate a pair of distinct lines to
such a bundle. This is accomplished by the following exercises.

< q1,q2 > defines a 2-dimensional space in H°(f,O(2)) = C3. This is called classically a
g? (linear series).

7.8 Exercise. E is locally free iff the corresponding g3 has no fized points.
7.9 Exercise. {f = 0} is the unique jumping line of E.

7.10 Exercise. The g? has two distinct double points Py, Py on the line {f = 0}. E is
uniquely determined by these two points.

The isomorphism
M(—-1,2) — S*P2\ A

is given geometrically by
E— {Pl, Pg}

7.23 Remark. The jumping lines of the second kind (see the next chapter 8) are exactly
the lines in the two pencils through Py and Ps.

7.24 Remark. The closure M(—1,2) is NOT Sec(va) but it is the blow-up of Sec(va)
along vo. In this way the variety obtained lies naturally in the variety of complete conics.

7.25 Remark. Although Mp2(0,1) is empty there is a 2-dimensional family of semistable
bundles E with minimal resolution

0—O(-2)—0(-1)> ® O—E—0

These bundles are parametrized by P?, the correspondence is given by the intersection of
the two linear forms which appear in the minimal resolution. Notice that for these bundles
we have h°(EndE) = h'(EndE) = 2.

M= (0, 2)

7.26 Theorem. M (0,2) is the projective space of nondegenerate conics, that is M(0,2)
is isomorphic to P° \ V3, where V3 is the determinantal hypersurface of degree 3.

By Theorem 7.18 E € M(0,2) iff it appears in a sequence
0= 0(-2?%=0-1D)*—=E—=0

The morphism is represented by a 2x4 matrix with entries homogeneous linear polynomials
in three variables, that is by a 2 x 3 x 4 matrix. The hyperdeterminant of this matrix
is nonzero (see the chapter 9 on hyperdeterminants). It is a basic fact that two such
matrices are GL(2) x GL(3) x GL(4)-equivalent (see the Theorem 9.24 on multidimensional
matrices). F is a Schwarzenberger bundle. The jumping lines fill a smooth conic in P?. By
the geometrical construction of the Schwarzenberger bundles, the conic of jumping lines
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determines the bundle, (see the Proposition 6.11, where it is shown that the bundle can
be reconstructed by the rational normal curve) proving the Theorem 7.26.

The Maruyama closure M (0, 2) is obtained by adding the semistable sheaves F' which have
the minimal resolution

0—-0(-3)—=0(-2)a0(-1)0—-F =0

Such F has a section vanishing on two points Z. The sheaf O @7y is also a semistable free
torsion sheaf which is equivalent to F'in M (0,2) . It can be proved that the sheaves added
correspond exactly to the degenerate conics, that is M (0,2) = P?. M (0,n) is singular for
n > 3.

7.27 Remark. P? is a toric variety, under the action of T = C* x C*. There is a induced
action of T over M(c1,c2). The fized points of this action are the T-invariant sheaves.
Hence from these informations it is possible to compute topological invariants of M(c1,ca).
For example, suppose that T acts as (t1,t2)-(xo,x1,22) = (0, t121,t222). The T-invariant
bundles with ¢1 =0, co = 2 are

2.3
T0,T7,T5
—

0— O(-3) O0(-2)20(-1)0 —F =0

and the other five bundles corresponding to the 6 permutations of {xo,x1,z2}. In fact
x(P°,Z) = 6.

7.11 Exercise. Compute x of M(—1,2) and of M(—1,2).

Hint: The exceptional divisor in M(—1,2) is a Pl-bundle over a surface isomorphic to P?
and its x is the same as (P! x P2).

7.4 The nullcorrelation bundle

Let Mps(0,1) be the moduli space of stable rank 2 bundles over P? with ¢; = 0, ¢ = 1.

7.28 Theorem. Mp3(0,1) is the projective space of nondegenerate skewsymmetric matri-
ces 4 x 4, that is Mps(0,1) is isomorphic to P>\ Q4, where Q4 is a smooth 4-dimensional
quadric (Klein quadric).

It can be proved by Beilinson theorem that every E € Mp3(0,1) appears in a sequence
0—=0(-1) = Q1) = E—=0

E is called a nullcorrelation bundle. In fact Hom(O(—1),Q'(1)) ~ A2V. This can be
proved by considering the second wedge power of the Euler sequence. The Theorem 7.28
is now proved by the following exercise.

7.12 Exercise. i)Prove that O(—1)—5Q (1) with w € A2V is a injective bundle map if
and only if w is nondegenerate. i) Prove that wy, wa € A?V define isomorphic bundles iff
there is t € C* such that wi = tws.

7.13 Exercise. Prove that the restriction of a nullcorrelation bundle to a linear P?> C P3
s never stable.
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7.29 Remark. The above properties characterizes the nullcorrelation bundle among all
stable 2-bundles on P3 ([Bal]). In [Col] were characterized the stable bundles on P3 that
become unstable on a family of planes of dimension at least 2.

You see that SL(4) acts transitively over Mps(0,1). Every nullcorrelation bundle is sym-
plectic, moreover it is also Sp(4)-invariant.

The geometrical interpretation of nullcorrelation bundles is the following. A skew sym-
metric nondegenerate matrix 4 x 4 J induces a morphism J: P2——P3V such that Vp €
P3,p € J(p). Now for every p € P3, consider the line NN, given by all the lines in J(p)
through p. We get a P!-bundle which is the projective bundle P(N).
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Chapter 8

Jumping lines, jumping conics and
the Barth morphism

8.1 Generalities about jumping lines

Let E be a stable rank 2 vector bundle on P" (r > 2) with Chern classes ¢; = 0 or
c1 = —1 and cg = n. We will speak about even bundle when ¢; = 0 and odd bundle in
the other case. It is well known that, when the rank of the bundle F is equal to 2, it is
stable (resp. semi-stable) if and only if H°(E) = 0 (resp. H°(E(—1)) = 0). The notions
of semi-stability and stability coincide for odd bundle. The first important result is the
following theorem due to Grauert and Mulich

8.1 Theorem. Let E a semi-stable rank two vector bundle on P" and | a general line.
Then E; = O; @ Oy if E is even, E; = Oy ® O)(—1) if E is odd.

Over some lines, called jumping lines, the bundle does not split in the above way. More
precisely we can describe the set S(F) of jumping lines of F in the following way

S(E) = {l, H(Ei(-1)) # 0}

We would like now to show that S(E) inherits a natural scheme structure. For this observe
that the cohomological condition H?(E;(—1)) # 0 is equivalent to the condition

e H'(E;(—1)) # 0 when E is even

e H(E}) # 0 when E is odd.

Now, consider the incidence variety point-line and the canonical projection morphism
P F L G, P

The jumping lines of E define a closed subscheme S(E) in G(1,P") which is the support
of the coherent sheaf

o Rlq.(p*E(—1)) when E is even

e Rlq.p*E when E is odd

8.2 Theorem. (Barth, [Bal] Theorem 2, Hulek [Hu] cor. 10.7.1) When ci1(E) is even
S(E) is a divisor of degree n.
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When c1(E) is odd (and E general in the moduli space) S(E) is a codimension two subva-
riety of G(1,P"). When r = 2 its degree is @ When r > 3 its bidegree is (%2, n(ng_l)),

this means that the jumping lines contained in a generic P% are % and that the jump-

ing lines through a generic point and contained in a generic P3 are =

Ezample : Assume that F is semi-stable but not stable, so that ¢;(E) is even. Then when
E is normalized we have h°(E) = 1 and the unique (modulo multiplication by scalar) non
zero section of E gives the following exact sequence

0—>O]P>r—>E—>IZ(S)—>O

where the zero-scheme Z(s) of degree n is a scheme of codimension two in P". Let [ a line
in P", we restrict the above exact sequence to [

0—-0 — E —>IZ(S)®OZ —0
Since we have the following isomorphism of sheaves
25y @ 01 =Tz ®R

where R is a torsion sheaf supported by Z(s) NI we obtain that

e F; = O; @ O; when [ does not meet Z(s)

e E; = Oy(a) ® Oi(—a) when I(Oz(5n) = a. So in this case S(F) is given set theoretically
by the lines meeting Z(s).

Proof We give the proof on P2. For the general case you can refer to the original Barth’s
paper ([Bal]). In that case the incidence variety F is a divisor in P? x P2" defined by the

equation Zi% X; X} = 0 where X; (resp. X}) are the homogeneous coordinates on P?
(resp. on P2V). Thus we have the canonical resolution

0— Op2xp2v(—1, —1) — Opzxpzv — O —0

First case : E even Now tensorize this exact sequence by p*E(—1) and take the direct
image by q on P?V. Since H°(E)) = 0 for the general line we find that q¢.(p*E(—1)) = 0.
Then we obtain

0= HY(E(-2)) ® Opav(~1) -2 HY(E(~1)) ® Opsv — Rlqu(p* E(~1)) — 0

The Riemann-Roch-Grothendieck formula gives X'(E(t)) = (¢t + 1)(t + 2) — n. From the
stability of £ and the Serre duality we find h'(E(—1)) = h'(E(—-2)) = nand H'(E(-1)) =
H'(E(—2))* which implies that ¢ could be represented by a square symmetric matrix with
linear forms as coefficients. ***add theta characteristic It follows that the support of the
scheme R'q,(p*E(—1)) is defined by the equation det(¢) = 0.

Second case : E odd Tensorize the above exact sequence by p*E and take the direct image
by ¢ on P2V, Since H°(E;) = 1 for the general line we find that ¢.p*E is a rank 1 sheaf
on P2V. Moreover we can verify that E is a line bundle. Then we obtain

0= qup*E — HYE(-1)) ® Opav (—1) -2 HY(E) ® Opav — Rlqup*E — 0
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The Riemann-Roch-Grothendieck formula gives X (E(t)) = (t+1)? —n. From the stability
of E we find h!(E(—1)) = n and h'(E) = n — 1 which implies that ¢ could be represented
by a n x (n — 1) matrix with linear forms as coefficients. It follows that the support
of the scheme R'q,p*E is a two codimension subscheme of degree @ defined by the
V(A" 1¢), except when the maximal minors possed a common factor.

8.3 Remark. For any stable rank two vector bundle E such that c1(FE) is odd the codi-
mension of S(FE) is at most 2.

8.2 Barth morphism on P?

Let M(0,n) be the coarse moduli scheme of semi-stable coherent sheaves of rank 2 with
Chern classes (0,n) on P2. This variety is a projective, irreducible variety of dimension
4n — 3. We recall that a locally free sheaf representing a point of M (0,n) is necessarily
stable. Let us denote by U(0,n) the open set of points representing locally free sheaves.
The closed set of classes of singular sheaves is an hypersurface in M (0,7n) that we denote
by 6M(0,n). By the property of a coarse moduli scheme we obtain a morphism

M(0,n) — P(H°(P?Y, Opav (n))), [E] — S(E)

This map was first considered by Barth. It is known that the restriction of the morphism
7 to the open set U(0, n) is quasi-finite (**** number of theta-char on one curve is finite),
that the the restriction to M (0,n) has fibers of dimension > 1 (**** cite Maruyama),
and the image of the boundary is contained in the closed set of reducible curves (**** cite
Maruyama). This implies that the image of v is also an irreducible variety of dimension
4n — 3. Tt is also known that there exists a smooth curve in the image (see Barth [Bal],

prop, ****)

Very recently LePotier and Tikhomirov have showed that the degree of the map ~ :
M(0,n) — Imy is 1 for n > 4. The computation of the degree of the image is related to
the computation of Donaldson numbers on P2. When n < 4 we have

e if n = 2 the map is an isomorphism

e if n = 3 this map is surjective and of degree 3.

The dimension of the linear system P(H®(P2V, Opav (n))) is @, and for n > 4 we have

dimM (0,n) < n(nTjL?’) When n = 4 the dimension of the moduli space is 13 and the
dimension of the projective space of quartics is 14. The curves of the divisor v(M(0,4))
are the so called Luroth quartics, i.e plane quartics circumscribed to a true pentagon.
We will call the hypersurface £ := (M (0,4)) the Luroth hypersurface. It is not easy to
find the equation of this hypersurface, but in 1918 Frank Morley already wrote that the
Luroth’s invariant is of degree 54.

8.4 Proposition. Let E be a general bundle in M(0,4). Then S(E) is a Luroth quartic.
Proof. By computing its Euler-Poincare polynomial we find X' (E(1)) = 2.

8.1 Exercise. Assume that h'(E(1)) = 1. Show that there exists a jumping line of order
3.
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Thus in general we have h'(F(1)) = 0 and h°E(1) = 2. Since all the jumping lines of F
are of order 1 the determinant of the two independant sections of E(1) is a smooth conic,
i.e we have

0—20p2 — E(1) — 0 =0

where O is supported by a smooth conic C. Dualize this exact sequence we get
0 — B(—1) — 20p2 — Ext'(0,0p2) — 0

By computing the Chern classes we find that Ext'(©,Op:2) = OC(%). Now apply the
functor p.q* to the last exact sequence. Since for the general line [ we have h°Ej(—1) =0
we have p,g*E(—1) = 0 so a short exact sequence

)
0 — 20p2v —> p*q*Oc(i) — Rp.¢*E(-1) = 0

Since a Poncelet related curve of degree 4 is the determinant of two linearly independant
sections of the Schwarzenberger’s bundle F5 = p*q*OC(g) this proves that the curve of
jumping lines of F is a Luroth quartic. O

8.2 Exercise. More generally show that the Poncelet’s curves belong to the image of ~y
for any n. For this consider the family of bundles E such that h°(E(1)) = 2 (called
Hulsbergen’s bundle).

For n > 5 the dimension of the family of Poncelet’s curves is strictly smaller than the
dimension of I'm~y. When n > 4 Matei Toma in [To] has shown that the Barth morphism
restricted to the subscheme of Hulsbergen bundles is generically injective. It means that
a general Poncelet’s curve is associated to only one smooth conic.

8.3 Barth morphism on Schwarzenberger bundles

Let C a smooth conic with equation f = 0 on P2V and FEs, 1 the even Schwarzenberger’s
bundle associated to C. The second Chern classes of the normalized bundle Eay,41(—n) is
n(n + 1). We denote by mC' the divisor defined by the equation f™ = 0.

8.5 Proposition. S(Fa,11) = @C

K preuve a developper avec Daniele *** Proof. Since Eay41 is SL(2) = Aut(C)-invariant
its divisor of jumping lines is supported by C. Its degree is n(n + 1), thus the proposition
is proved. O

Let v : M(0,n(n + 1)) — P(H°(P?Y, Opav(n(n + 1)))). The above proposition showed

that the image of Fa,41 is the curve WC . Since this curve does not contain a linear

component we know that the fiber y‘l(WC) is finite. We show the following

8.6 Theorem. 7_1(%0) = {Eont1} (set-theoretically).
Moreover if m is an integer which could not be written under the form n(n + 1) for any
integer n then the curve mC' does not belong to the image of .
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Proof. Let £ a vector bundle in the finite fiber y~}(mC). Let o € SL(2), since S(c*E) =
0.5(8) = mC we deduce that SL(2) acts on v~ 1(mC). But SL(2) is connected thus this
action is trivial. It means that for any bundle £ € y~}(mC) and any o € SL(2) we have
o*€=¢E.

The following proposition proves the theorem

8.7 Proposition. The only stable SL(2)-invariant bundles of rank 2 on P? are the
Schwarzenberger bundles.

Proof of the proposition. We denote by CV the image of P! by the Veronese morphism
P! < P2 ~ S?P!, 7 the morphism of degree 2 P! x P! — P? ~ S?P! which send the
couple (z,y) to the intersection point of the lines ¢, and ¢, tangent to CV in the points
7(z,z) and 7(y,y). We denote also p; and ps the canonical projections of P! x P! on
each factor. The action of SL(2) on P! induces an action on P? which identifies SL(2)
to Aut(C") (resp. on P?V which identifies SL(2) to Aut(C) where C' is the dual conic).
More precisely, let o € SL(2) and z = 7(x,y) a point of P? the induced action on P? is

0.z =m7(ox,0y).

Let F be a stable rank two vector bundle on P? SL(2)-invariant, i.e. such that ¢*F = F
for all o € SL(2). Then we have (o,0)*(7*F) = 7n*F. We show thanks to a idea of
Schwarzenberger ([Sch2], §3) that the bundle 7*F corresponds to an SL(2)-homorphism
between two irreducible representations of SL(2).

We recall that a line bundle on P x P! is of the following form

Op1yp1(a,b) ~ piOp1(a) ® p50p1(b) and that 7Op2(1)) = Op1yp1(1,1)

We will assume that ¢;(F) = 0 or ¢1(F) = —1 and we will denote ¢1(F) = ¢;. Since the
action of SL(2) on P? (resp. P?V) has two orbits say CV and P2\ CV (resp. C and P2\ C),
it is clear that the support of S(F') is C' and that the order of jump is the same for every
jumping line (i.e. it exists an integer n > 0 such that h°(F;(—n)) = 1 for any line [ € C).

Let x € P! and ¢, the tangent to C' coming from the point 7(x, ). By hypothesis on the
jump order we have, h?(F;_(—n)) = 1. We deduce that

p1«m F(—=n) = Op1(—m) avec m >0

Since the jump is uniform, the induced homomorphism 7*FY(n) — p{Op1(m) is surjec-
tive. Its kernel is a line bundle on P! x P1. An easy computation of first Chern classes show
that this kernel is Opiyp1(2n — m — ¢1,2n — ¢1). The vector bundle 7*F"Y (n) correspond
to a non zero element (since it is not decomposed) of

Ext! (Op1 yp1 (m, 0), Op1yp1(2n — m — ¢1,2n — ¢1)) = HY(Op1 yp1 (20 — 2m — ¢1,2n — ¢1))
The surjective homorphism 7* FY (n) —s p;Op1 (m) induces a non zero homorphism on P?
FY(n) — Enc

Since Ey ¢ = 20p2 we have m > 2 if not h®(F(—n)) # 0 which is a contradiction with the
stability of F. Then the bundles FY(n) and E,, ¢ are stable. Then the homomorphism is
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of maximal rank. Thus we find ¢1(FY(n)) = 2n — 1 < ¢1(Ep,c) = m — 1. In particular
2n — 2m — ¢; — 1 < 0 which implies by the Kunneth formula for sheaves [BS]

HY (Op1yp1(2n —2m — ¢1,2n — ¢1)) = H (Op1(2n — 2m — ¢1)) @ H*(Op1(2n — ¢1))
and by Serre duality
HY(Op1yp1(2n —2m —c1,2n —¢1)) = Hom(H®(Op1 (2(m —n — 1) +¢1), H*(Op1 (2n — ¢1)))

We denote by a+p the homorphism (modulo a multiplicative scalar) corresponding to the
bundle 7*F. Let ® = (0,0) an automorphism of P! x P! with o € SL(2). The bundle
®*7* F' is represented by the homorphism

Qgenip = 0 Qe ()71

In the other hand, ®*7*F = 7*F which proves that the homomorphism o« is SL(2)-
invariant. Since HY(Op1(r)) ~ STHY(Op1(1)) is an irreducible representation of SL(2)
we deduce that 2(m —n — 1) +¢; = 2n — ¢1. It means ¢1(FY(n)) = c1(En ) and then
Fv(n) = E2n+1—c1,C- u

Unfortunately this result does not prove that the following Barth morphism
v M(0,n(n+ 1)) — P(H*(P?Y, Opzv (n(n + 1))))

is generically injective. Indeed we will show that the Schwarzenberger’s bundle belong to
the ramification of this map. In other word the differential map

dﬁ)/[E2n+1] : T[E2n+1]M(O7 n(n + 1)) — Tn(n2+1)CIP(HO(P2v7 Opav (n(n + 1))))
is not injective. Indeed this map is certainly an equivariant map and (according to the
SL(2) = SL(U)-action on P? = P(S2U))
n+1

Ty o) M(0,n(n+ 1)) = H' (EndBgnyr) = Y SU
=2

[n(n4+1) ]_1

Totoon POHOE, Opo (0 + 1)) = H Ot (0o + 1)) = 3 §me-tiy
2 2 i—0

Let n > 2. We see that S°U belongs to the kernel of this map when n(n + 1) = 0(mod4)
and that S4U belongs to the kernel of this map when n(n + 1) = 2(mod4).

8.3 Exercise. Prove the above equalities.
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8.4 Hulek curve of jumping lines of second kind

What’s about odd bundle. We have seen that in general the scheme of jumping lines of
an odd bundle on P? is a finite scheme. In some cases, for instance for Schwarzenberger’s
bundle, this scheme contain a divisor. For schwarzenberger’s bundle it is easy to prove (by
using SL(2)-invariance) that this scheme is a divisor supported by a smooth conic. We
are able to caracterize those bundles which possed a line in their scheme of jumping lines
(see for instance [Vad4]). Hulek associates to any odd bundle of Chern classes (—1,n) a
plane curve in the dual plane P?V of degree 2(n — 1). For a bundle E this curve is denoted
C(FE) and called curve of jumping lines of second kind. Set theoretically this curve is

C(E) ={l € P | H°E;: # 0}
First of all, like for jumping lines, we need the following important result due to Hulek.

8.8 Theorem. (Hulek) For the generic line | we have H'Ej;: = 0.

Now let Fy the divisor in P? x P2V defined by the equation (ZES X;X7)? = 0 where X;
(resp. X}) are the homogeneous coordinates on P? (resp. on P?V). Thus we have the
canonical resolution

0— Opzxpzv(—Q, —2) — O[p:2><[p>2v — O[FQ — 0

We denote by p and ¢ the projections on each factor P? and P?V and p, § their restrictions

to Fa. Since ¢ !(I) = I?, the above theorem assure that @,p*E = 0. Now we are able to

give the proof of the following
8.9 Theorem. (Hulek) C(E) is a curve of degree 2(coF — 1).

Proof. We tensorize the resolution of Fo by p*E and we apply the functor ¢.. Since
gxp"E = 0 we find

0 — HY(E(-2)) ® Opav (—2) -2 HYE) ® Opov — R\G5E — 0

Since h'E = h'E(—2) = c3 — 1 and H'E = (H'E(—2))* the map ¢ could be represented
by a symmetric matrix of quadratic forms. Then supp(R'¢.p*E) = det(¢) is a curve of
degree 2(co — 1). O

We would like to give an other result about the curve of jumping lines of second kind
without proof. Then we will finish this part about Hulek morphism with examples.

8.10 Proposition. (Hulek) For every odd bundle E with coE = n we have S(E) C
SingC(E) with equality for the general bundle.

Proof. Remember that the incidence variety F is defined in P2 x P?V by the equation
222(2) X;X;] = 0. We do not make a distinction between the projections p and g and their
restrictions on F. Then we have the following exact sequence

0— Op(—1,-1) — Op, — Op — 0
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which is the relative version of
0—=0/(-1) —O0p —0,—=0

We tensorize this exact sequence by p*E and we apply ¢.. Thus we obtain the long exact
sequence

0= ¢p*F — (R'¢.p*E(-1))(~1) = R'@.p*F — R'q.p*E — 0

The surjective arrow R'G.p*E — R'q.p*E implies that every jumping lines is a jumping
lines of the second kind. Moreover, since the rank 1 sheaf R'q.p*E(—1) is not locally
free over the jumping lines, this exact sequence shows that any jumping line is singular in
C(E). We omit to prove the equality for the general bundle. O

We want to study the image of the morphism

C: M(—1,n) — P(H(Opav (2n — 2)))

8.4 Exercise. For cy = 1 the only bundle of M (—1,1) does not have jumping lines. Show
that it also does not have any jumping lines of the second kind.

If co = 2, let s € HYE(1) a non zero section, we have the exact sequence induced by s
0= Op2 — E(1) — Tz5(1) =0

where Z(s) consists of two distinct points  and y. The only jumping lines is the line
passing through = and y. The curve C(F) is a curve of degree 2 with one singular point.
Since hYE(1) = 2 and the determinant of this pencil is the line passing through x and y, we
deduce by Hurwitz formula that there are two sections s and ¢ such that their zero schemes
are double points. So every lines D passing through Z(s) or Z(t) verify HEp2 # 0.

If co = 4 show that the curve C'(E) of the general odd bundle is a sextic with six singular
points. When F is the Schwarzenberger’s bundle E4 associated to the conic C' then
C(Ey) = 3C.

8.5 Jumping conics

Let E be a stable rank two vector bundle on P2. We assume that E is normalized i.e.
c1(E) = 0 or —1. Let C be a smooth conic of P2. Since this conic is isomorphic to
P! the Grothendieck’s theorem implies that Ec = Oc(%) @ Oc(5) where O¢(%) means
the line bundle on C with degree a and a + b = 2¢;1(E). Moreover the Grauert-Mulich
theorem implies that for the general conic of P? we have Ec = Oc @ O¢ when E is
even, Ec = O¢(5t) @ Oc(5) when E is odd. Now we can define the jumping conics for
smooth conics. They are the one such that the decomposition is not as above. Since the
Grothendieck’s theorem is not valid over singular conics, we need to define the jumping
conics with a cohomological condition (equivalent for smooth conics).

8.11 Definition. A conic C is a jumping conic for E if

EC 75 200 when C1 = 0
h9(Ec) #0 when ¢ = —1
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We denote by J(E) the set of jumping conics. The Grauert-Mulich theorem applied to
conics leads to the following result ([Man] thm 1.8)

8.12 Theorem. J(E) is a divisor of P(H°(Op2(2))) and degJ(E) = ca + c1.

Proof. Consider the incidence variety point-conic ie the divisor F C P? x P® defined set
theoretically by
F={(z,C)|zeC}

and defined by the equation
X3Yo + XoX1Y1 + XoXaYs + X7Ys + X1 XoY) + X35 =0

We denote by p and g the projections on P? and IP° respectively. Thus we have the following
resolution of F in P? x P?

0— OP2xP5(_27 —1) — OIPQXIPE’ — O —0

— Assume first that the bundle E is odd. After tensoring this exact sequence by p*E and
taking the direct image on P> we obtain

0 — H'E(—2) ® Ops(—1) — H'E ® Ops — R'q.p*E — 0

Indeed, the Grauert-Mulich ’s theorem implies that ¢,p*E = 0. Since h'E(—2) = h'E =
ca — 1 the support of R'q,p*FE is a divisor of degree ¢y — 1.

Remark. Consider the Veronese morphism P2V < P> which sends a line [ to the conic
I2. We denote by V the image of P?V. The support of R'q,p*E ® Oy is a curve of degree
4(n —1). Since the Veronese morphism is of degree 2 this proves the Hulek’s theorem.

— Assume now that the bundle E is even. The sheaf ¢,p*F is a rank 2 reflexive sheaf on
P°. Its first Chern class is —co. Indeed, consider the following exact sequence

0= qp'E — H'E(—2) ® Ops(—1) - H'E ® Ops — R'q.p*E — 0

Since h'!E(—2) = ¢y and h'E = c3 — 2 the codimension of the support of Rlq.p*E is
generically 3. Let [ a general line in P°, here general means : [ do not meet neither the
support of R'q.p*E neither the singular locus of ¢.p*E (in fact they certainly coincide).
Then the restriction of the above exact sequence is

0= ¢@pE®0, — HE(-2)®0)(-1) - H'E® 0, — 0

This proves that ¢1(g.p*E) = —co.

The canonical map (evaluation) ev : ¢*¢.p*E — p*E becomes over a conic C
Oc ®Oc — E¢

So ew is lying over the jumping conics. But the zero locus of ev is defined by its determinant
which is an hypersurface of degree c¢;(p*E) — ¢1(¢*qsp*F) = co. O
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Singular conics

Let 1 Uly a couple of lines meeting transversally and [? the singular conic supported by .

8.13 Proposition. If E is even, then

— 1 Uls is a jumping conic if and only if at least one of the two lines l; is a jumping line
for E.

— 12 is a jumping conic if and only if | is a jumping line.

Proof. Assume first that [; Uls ¢ J(FE). The following exact sequence
O — O (-1) — Opu, — 01, = 0
tensorized by E gives
O — E;,(-1) — Opu, @ Ou, — Ei, — 0

Since the last arrow is surjective we have F;, = O, ® O;,. By changing the role of [y
and Iy, we prove also that I ¢ S(FE). In the same way if [y and [y are not in S(F)
then we obtain HEy, ., = H°(Oy, @ Oy,). Then any section is non zero everywhere, so
Ei,ui, = Onut, @ O,

The same proofs work for ? instead of I; U ly. O

8.14 Proposition. Assume that E is odd. If at least one of the two lines l; is a jumping
line for B then ly Uly is a jumping conic for E.

Proof. Assume first that [; € S(E). The following exact sequence
0 — Oll(_l) — Ohulz — Ol2 —0

tensorized by E shows that hOE}, , # 0.

The converse is in general false. Indeed we have dim(J(E)NS) = 3 but dim(P?V x S(E)) =
2.0

We have already proven the following proposition in the text concerned with Hulek curve.
8.15 Proposition. If E is odd and | is a jumping line then [ is a jumping conic.

In fact we know that J(E) NV is exactly the image of the Hulek curve C(E) by the
Veronese morphism.

8.5 Exercise. Assume that E is odd and that 1> € J(E) but | ¢ S(E). Then prove that
Ep = 0p @ Op(-1).

Find by yourself the following exact sequences
(= 011U12 — Ol1 D 012 — Ollﬂlz —0

O — Oll(_l) — Ollulg — 012 — 0

O—0(-1) —O0p —0;,—0
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8.6 Jumping conics of Schwarzenberger’s bundle.

We show here that a conic C' is a jumping conic for the Schwarzenberger’s bundle Es ,,
associated to D if and only if C' is n-circumsbribed to D. This theorem will give a new
proof of the “grand théoreme de Poncelet”.

Let D be a smooth conic in P2.

Let ¢ : P?Y x P2V — P® be the morphism which sends a couple of lines on the conic
union of these lines. The threefold T = (P?V x DY) consists in singular conics such
that one line of its support is tangent to . The morphism 1) restricted to the diagonal
is the Veronese morphism v : P2V < P5. The variety Sec(v(D")) of lines bisecants to
v(DV) is a threefold of degree 3. You can obtain it by intersection of the hypersurface
S = Sec(v(P?V)) = ¢ (P?V x P?V) with the hyperplane generated by the rational quartic
<v(DV) >.

We recall that the Schwarzenberger E3 ,, associated to D is defined by 2, = p«q*Opv(%).
The scheme of jumping lines S(Fs,,) is supported by DY. Moreover if [ is a jumping line
for By, we have h(Ey (1 —n)) = 1. By construction Es, is invariant under the action
of SL(2) ~ Aut(D).

We recall also that the hypersurface of conics n-circumscribed to D is denoted &,.

From now we assume that n > 3.
8.16 Theorem. J(E3,) =¢,

Proof. First we remark that the two hypersurfaces have the same degree and that €, is
reduced. Then it is enough to show that we have &, C J(Es,) on the open set of smooth
conics.

Let C' a smooth conic n-circumscribed to D. The (g) vertices defined by the data of
n-tangent lines are the zeroes of one section s € H O(Eg’n) (see proposition 6.25 in this
text). The following exact sequence

0= Opz = Egp — Iy((n—1) =0

restricted to C' shows that E, ,c = Oc(3) @ O(;(”T_z). O

As a consequence of this theorem we obtain a second proof of the Poncelet theorem 4.5.

Second proof of the Poncelet theorem 4.5 Let us start from a point x on C and let us draw
the polygone (perhaps not closed) tangent D. Stop after n-steps. Then the conic C' meets
the n-gone along at least n points (n points if it is closed, n+ 1 if not). The conic C' meets
the (721) vertices defined by the data of n-tangent lines to D (which are the zeroes of one
section s € H°(FEy,,)) along at least n — 1 points. Since C' is n-circumscribed to D it is
a jumping conic of Fs ., it implies that C' meets the (g‘) vertices zeroes of s € H(Ea,,))

along n points.

8.17 Proposition. Let C' be a smooth osculating conic (resp.surosculating) to D.
Then C ¢ €,
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Proof. A point in v(DV) corresponds to a singular conic supported by a tangent line to
D. A point in the developable surface of v(DV) corresponds to a sin conic supported by
a tangent line [ to D and by an other line meeting [ at the tangent point { N D. The
variety of osculating conic (resp. surosculating) is the cone with vertex D and basis the
developable surface of v(DV) (resp. the cone with vertex D and basis v(D")). But SL(2)
acts transitively on the smooth conics of these two cones. It follows that if one of them
belongs to €, then all of them belong to &,. In particular the vertex of the cone belong
to €,. But the following exact sequence

n—1
2

0—>E27n(—1) —)E27n —)OD( ) —0
proves that D ¢ J(E3,). We deduce that €, meets the osculating cone along the devel-
opable and the surosculating cone along the rational quartic. O

8.6 Exercise. Prove the existence of this above exact sequence.

Of course the divisor J(E2,) meets the hypersurface S. When n is odd supp(J(E2,) N
S) C T. It is a consequence of S(Es,,) supported by DV ([Man], remark 1.2 and lemma
1.3). Moreover, since J(Es,) NS and T are both SL(2)-invariant threefolds, we have
supp(J(E2,) NS) = T. When n is even we still have T C supp(J(E2,)NS) but there are
others jumping conics in S. To determine which one are jumpinc conics we will study the
intersection between the set M,, of conics strictly n-circumscribed to D with the variety
of singular conics. S.

One singular conic define four points on D, then we can compute the croos-ratio of these
four points. We recall that two singular conics which give the same cross-ratio or two

inverse cross-ratio {\, £} with A € C — {0,1} are in the same orbit Q(n) under SL(2),

where ¢(\) = ( %)2 The element of Py, are the 2n-primitive roots of unity.

8.18 Theorem. (i) [M2p+1 NSlyea =T

(7i) [Man N Slyea = TU UZE‘B% 9(15722)2

Proof. Remark. The fraction (1‘5;2)2 is invariant by the transformations z +— —z and

z + 1. Then, when z € mathfrakPs,, the fonction (%)2 takes only ¢(n) distincts
values.

First we show 9(P?Y x DY) C M,. The hypersurfaces M, and S meet along a variety of
dimension 3. If not, every point of the Veronese would be a jumping conic for Es , which
would contradict Manaresi and Hulek results ([Man], remark 1.2, lemma 1.3 and [Hu],
Thm 3.2.2).

Moreover if a singular conic belongs to Ms,+1 it is a jumping conic for E3 9,,+1. It follows
that a line of its support is tangent to D. Since Mo, 41 NS is invariant under SL(2) it
proves (i).

The hypersurfaces M, and My,—; meet along a solid in S. From (i) we deduce that
[MQn N Manl]red = ¢(P2V X Dv)a then ¢(P2V X DV) C M2n-

We conclude with the lemma 4.7 ]
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8.19 Corollary. The singular jumping conics are
(i) [J(E2,2n41) NSlrea = T )
(ii) [J(E2,2n) N S]red =TU Uk22,k;|n Uzeiﬁzk 9(142-722)2

Proof. It is an immediate consequence of the above theorem and the fact that J(Es )

Ur23,r\n M. O

8.7 Singular locus of J(E,,,)

Quite nothing is known about this problem. From Barth and Bauer’s paper it follows that
a smooth conic n-circumscribed to D (and meeting D in four distinct points) is a smooth
point of M,,. Then this conic is a smooth point of J(E>,) too. This is not suprising since
the jump order is as small as possible. But the link between jump order and singular point
is not established yet, and we could expect, like in the case of jumping lines, that there is
no coincidence. We could observe that the conic of T are singular in J(E2,) when n > 5
is not a prime number. Moreover the jump order is the greatest one.

8.20 Proposition. Any conic C ¢ T verify h°(Es ,c(—[5] — 1)) = 0.
If C € T we have hO(EQMC(Z —n)) # 0 and h°(E5 (1 —n)) =0.

Proof. Assume first that C' ¢ T. When C is smooth you saw (in the proof of the first
thm) that h%(E, ,c(—[5] — 1)) = 0. It proves the proposition when n is odd. When n is
even, the exact sequence ([Val] page 435, suites de liaison)

0= Eyp — Fopt1 — O — 0

where [ is a tangent line to D proves that
n n
hO(E2,n\C(_[§] —1)#0= hO(Ez,n+1|c(—[§] —1)) #0.

Since [2] = [24L] this implies C € J(Fa,+1) which is a contradiction.

Assume now that C' = [ Ud with one of the two lines [ and d is tangent to D (if | = d, the
conic [ U d corresponds to the double line). When [ eis tangent to D, the exact sequence

0— Ol(—l) — Olud — Od —0

proves, after tensorisation by Es,, that h?(Ey ,u0q(2 — 1)) # 0.
Next we shows hY(Ea (1 —n)) = h'(Ey,(—1 — n)) = 0 with the resolution

0— (n—1)Op2(—1) - (n+1)Op2 — E2, — 0

This implies hO(E27n|lud(1 —n)) =0.
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Chapter 9

Hyperdeterminants

9.1 Multidimensional boundary format matrices

Hyperdeterminants were introduced by Cayley in [Cay], then this notion was forgotten
until Gelfand, Kapranov and Zelevinsky recently rediscovered Cayley’s results and gave a
modern account of the subject. It is well known that a square matrix A is nondegenerate
if and only if the homogeneous linear system A - x = 0 has only the zero solution. This
notion of nondegeneracy can be generalized to the multidimensional matrices, in this case
the above linear system will be replaced by a suitable multilinear system. In the case of
plane (bidimensional) matrices, the determinant is defined only for square matrices. So
we have to expect for analogous restrictions on the format of multidimensional matrices
in order to define their hyperdeterminant. We consider first the case of boundary format,
that comes in a natural way, then we generalize the hyperdeterminant to a large class of
matrices.

Let V; for ¢ = 0,...,p be a complex vector space of dimension k; + 1. We assume kg =
max; k;. It is not necessary to assume kg > k1 > ... > k, (see remark 9.10).

We remark that a multidimensional matrix A € Vy ® ... ® V,, can be regarded as a map
Vol = V1®--- @V, hence taken the dual map V)Y ®...®V," — V{ (that we call also A),
we can give the following definition:

9.1 Definition. A multidimensional matriz A is called degenerate if there are v; € V¥,
v; #0 fori=1,...,p such that A(v; ® ... ®@vp) = 0.

Such a solution v1 ® ... ® vy is called a nontrivial solution.

If p = 1 nondegenerate matrices are exactly the matrices of maximal rank.

The following theorem, even if in a special case, gives the flavour of the utility of hyper-
determinants.

9.2 Theorem. (Cayley) Let A be a 3 x 2 X 2 matriz and let Ay, Ao1, A1o, A11 be the
3 x 3 submatrices obtained by

apoo apor  @pio  aoil
aipo aior aiio G111
azp0 a201 G210 G211

81



deleting respectively the first column (00), the second (01), the third (10) and the fourth
one (11). The multilinear system A(x ® y) = 0 has a nontrivial solution if and only if
det Agy det A1g — det Aggdet A1 =0

Proof. We may assume that the 3 x4 matrix in the statement has maximal rank, otherwise
one equation in the system is a combination of the other two and it is easy to check that
a 2 X 2 x 2 system has always nontrivial solutions.

Any solution (zgyo, zoy1, T1Yo, z1y1) of the system is proportional to

(det Agg, — det Agy, det Aqg, — det AH)

Also a solution (xoyo, Zoy1, x1Yo, x1y1) = (20, 21, 22, 23) can be thought as a point in the
quadric P! x P! with equation zpz3 — 2122 = 0. Hence the result follows. O

9.3 Definition. The expression det Agy det A1 — det Agg det Aq1 is called the hyperdeter-
minant of the 3 X 2 x 2 multidimensional matriz A and we denote it as Det(A) (note the
capital letter!).

9.4 Lemma. If ko < Y.*_| k; then all matrices in Vo ® ...®V, are degenerate.

Proof. The kernel of the map induced by A V)Y ® ... ® va — Vb has codimension <
ko+1<>® ki +1. Hence P(KerA) C P(Vi ®...®V),) meets the Segre variety. O
02y

9.1 Exercise. Let v; € VY nonzero elements for i = 1,...,p. Then {A € [ ® ...
VplA(v1 ® ... ®vp) = 0} is a linear space of codimension ko + 1.

9.5 Theorem. If ko > > Y | k; the degenerate matrices fill an irreducible variety of codi-
mension ko — > 0_ ki + 1.

Proof. Consider the incidence variety
Z={A(~nl,....[v») e Vb®...V,) x [P(V1) x ... x P(V))] |[A(v1 ® ... ® vp) = 0}

By the previous exercise Z is a vector bundle over P(V1) x ... x P(V},), and dimZ =
dimVy @ ... ® Vp, — (ko — > ki +1). Hence Z is irreducible and its projection over
Vo ® ...V, is D which is still irreducible. Moreover the generic fiber of the projection
Z — D is 0-dimensional (consider a linear space cutting in one point the Segre variety).
It follows the result.

O

9.6 Definition. If ko = Y_.?_, k; the matrices A € Vy ® ... ® V), are called of boundary
format. It follows from the previous theorem that boundary format degenerate matrices fill
a irreducible hypersurface.

9.2 Hyperdeterminants in the boundary format case

Let Ac Vo ®...® V), be of boundary format and let m; = Zz;ll k; with the convention
my = 0.

We remark that the definition of m; depends on the order we have chosen among the k;’s
(see remark 9.10).
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9.2 Exercise. With the above notations the vector spaces Vi’ @ S"™ V) ®...® S™V, and

Sty ... ® SmPHVp have the same dimension N = ,(!I?Jr;z',

9.7 Theorem. (and definition of d4). Let kg = Y 0 | k;. Then the hypersurface of
degenerate matrices has degree N = I(c]f?+112" and its equation is given by the determinant

of the natural morphism

04 VY @SV @ @ SV e ST

Proof. If A is degenerate then we get A(v; ® ... ® v,) = 0 for some v; € V;*, v; # 0 for
i=1,...,p. Then (94) (v?mﬁ'l ®R...® vl?mpH) =0.

Conversely if A is nondegenerate we get a surjective natural map of vector bundles over
X =P(Va) x...xP(V},)

VY ® Ox 25V @ Ox(1,...,1).

Indeed, by our definition, ¢4 is surjective if and only if A is nondegenerate.
We construct a vector bundle S over P(V3) x ... x P(V,) whose dual S* is the kernel of
¢4 so that we have the exact sequence

0—S*—Vy ® O—V; ® O(1,...,1)—0. (9.1)
After tensoring by O(ma,...,my) and taking cohomology we get
HO(S* (ma,ms, . .., mp))— Ve @ SMVL @ ... @ S™V,248mHly g g STty

and we need to prove

HO(S*(ma,ms3,...,m,)) = 0. (9.2)
Let d = dlm(P ‘/2 X ... X P(‘/p)) = Zf:Z k‘l = Mp4+1 — k?l.
Since det(S*) = O(—k1 — 1,...,—k; — 1) and rank S* = d from remark 5.11 it follows
that
S*<T}’L2,m3, RN mp) ~ Ad_ls(—l, —ki—1+ms,...,—k1—1+ mp) (93)
Hence, by taking the (d — 1)-th wedge power of the dual of the sequence (9.1), and using
Kiinneth formula to calculate the cohomology as in [GKZ1], the result follows. O

9.8 Definition. The hyperdeterminant of A € Vj ® ... ® V}, is the usual determinant of
04, that is

Det(A) := detda (9.4)
where 94 = H%(¢a) and ¢4 : Vy ® (’)X&)Vl ® Ox(1,...,1) is the sheaf morphism
associated to A. In particular
(k‘o + 1)!
ki!... k!
This is theorem 3.3 of chapter 14 of [GKZ]. Now, applying remark 5.11, we have a
GL(Vp) x ... x GL(V,)-equivariant function

degDet =

p N
Det: Vy & ... @V, = Q) (detV;) =T
=0

A det(Da)
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9.9 Corollary. Let A € Vi ®...®V, of boundary format. A is nondegenerate if and only
if Det(A) #0

9.10 Remark. Any permutation of the p numbers ki,...,k, gives different m;’s and
hence a different map d4. As noticed by Gelfand, Kapranov and Zelevinsky, in all cases
the determinant of d4 is the same by theorem 9.7.

9.11 Example. The 3 x 2 x 2 case. In this case the morphism Vi @ Vi — S2Vi @ Vs is
represented by a 6 X 6 matriz, which, with the obvious notations, is the following

[ aooo  ao10 acor @o11 ]
apoo appl @10 Aoil
@100 4ai1o G101 @111
a100 aiplr @110 Qaii1
a200 4210 G201 G211
L a200 azp1 G210 a211 |

The hyperdeterminant is the determinant of this matrixz. This determinant is symmetric
exchanging the second and the third index (this is not trivial from the above matrix!).

9.12 Example. In the case 4 x 3 x 2 the hyperderminant can be obtained as the usual
determinant of one of the following two maps

VioVi = S2VieV,
Vo @ 8%Ve = V1 @ 53V,

Alternative proof that the degree of the hypersurface of degenerate matrices
is N = ,g’f?*’;z', We know that A is degenerate iff the corresponding P(V5)Y meets the
Segre variety. Hence the condition is given by a polynomial P(x1,...,2,,) in the variables
z; € PNV @ ... ® Vp) of degree equal to the degree of the Segre variety which is
kl,kio'kp, Since x; have degree kg + 1

in terms of the coefficients of A, the result follows.

A case where this technique simplifies a lot the formulas is the 3 x 2 x 2 case. In this
case P(V1) x P(V2) is a quadric surface and P(Vp)* is a point in the P(V; ® Va) where the
quadric is embedded. Hence consider the following 3 x 4 matrix

apoo  ao10 apo1 aoil
@100 aiio aiolr aiil
az00 a210 G201 G211

Call pgo the determinant obtained by deleting the first column, pig the determinant
obtained by deleting the second column, and so on. The coordinates of P(Vp)* are
(Poo, —P10, P01, —p11)- Then the hyperdeterminant is obtained by the formula

DetA = poop11 — Po1P1o

Let A = (aj,,....;,) a matrix of format (ko +1) x --- x (k, +1) and B = (bj,....j,) of format
(lo+1) x---x (lg+1), if k, = ly it is defined (see [GKZ]) the convolution (or product)
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Ax B of A and B as the (p + ¢)-dimensional matrix C of format (ko + 1) x --- x (kp—1 +
1) x (I +1) x -+ x (Ig + 1) with entries

kp
CiO"“»ipflyjlw"vjq = : :ai()?"'?ip—l7hbh7j17"'7jq'
h=0
Similarly, we can define the convolution Ax, ;B with respect to a pair of indices r, s such
that k. = ls.

9.13 Theorem. I[fAc Vy®---®V, and B € Wy ® --- ® W, are nondegenerate boundary
format matrices with dimV; = k; + 1, dimW; = l; + 1 and W ~ V), then A x B is also
nondegenerate and

(9.5)

We remark that equation (9.5) generalizes the Binet-Cauchy theorem for determinant of
usual square matrices.

Proof. [DO] O

9.3 Exercise. From (Definition 9.8) the degree of the hyperdeterminant of a boundary
format (ko +1) x --- x (k, + 1) matriz A is given by the multinomial coefficient:

ko +1
Ny =
A <k:1k:p)

Det(Ax B) = [(DetA)NB(DetB)NA]ﬁ

Thus, (9.5) can be rewritten as

9.14 Remark. The same result of the above theorem works for the convolution with respect
to the pair of indices (j,0) with j varying in {1,...p}. Indeed the condition Wy ~ V;
ensure that Ax;qo is again of boundary format and we can arrange the indices as in the
proof because for any permutation o we have Det(A) = Det(cA).

9.15 Corollary. If A and B are boundary format matrices then
A and B are nondegenerate <= A x ;j B are nondegenerate

The implication <= of the previous corollary is true without the assumption of boundary
format, see proposition 1.9 of [GKZ].

9.16 Remark. Theorem 9.13 and the implication = of the corollary 9.15 work only for
boundary format matrices. Indeed, if, for instance, A and B are 2 x 2 X 2 matrices with

aijr =0  forall (i,7,k) ¢ {(0,0,0),(1,1,1)} and
bers =0 forall (k,r,s) ¢ {(0,0,1),(1,1,0)}

then A and B are nondegenerate since, applying Cayley formula (see [Cay] pag.89 or
[GKZ] pag.448), their hyperdeterminants are respectively:

Det(A) = ajpoaiy, and  Det(B) = g bty

but the convolution A x B is degenerate. In this case, by using Schlifli’s method of com-
puting hyperdeterminant ([GKZ]), it easy to find that Det(A x B) corresponds to the dis-
criminant of the polynomial F(zo,71) = a3yya3;10501b3107373 which obviously vanishes.
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9.3 The dual variety and hyperdeterminants in the general
case

We want to mention how the hyperdeterminant can be generalized to cases not of boundary
format (see [GKZ]. The basic notion is that of dual variety. Let X C P™ be a variety. A
hyperplane H € P™* is said to be tangent to X if there is a smooth point z € X such that
T,X C H. The dual variety X" is defined to be the Zariski closure of the set of tangent
hyperplanes.

9.4 Exercise. The dual variety of the rational normal curve C C P(S4U) is a hypersurface
in P(SIU) which is the equation of the discriminant, that is f € CV iff f has a multiple
root. The degree of CV is 2(d —1).

9.17 Example. The previous exercise can be generalized to the higher dimensional case.
The dual of the Veronese variety V. C P(S4C™t1) is the discriminant hypersurface in
P(S4C™ 1) which contains the singular hypersurfaces of degree d in P(C"+1). Its degree is
(n+1)(d—1)"

9.18 Example. Let kg = max;—o,...p ki. Then the dual variety of the Segre variety P(Vp) x
... x P(V,) is a hypersurface if and only if ko < Y_0_, k; ([GKZ]). We underline that the
boundary format corresponds to put an equality in the above inequality, which justifies its
name.

9.19 Definition. Let ko <Y 7 | k;. Then the equation of the hypersurface
(Vo) x ... x B(V;)"
defines (up to a constant) the hyperdeterminant of A € CFo x ... x Ckr,

To show that the previous definition fits with the Definition 9.8 we have to check, according
to the Corollary 9.9 that in the boundary format case the dual variety coincides with the
variety of degenerate matrices. This follows from the following

9.20 Theorem. Let ko > > P | k;.

(i) The dual variety (P(Vp) x ... x P(V,))" coincides with the variety of degenerate ma-
trices in P(V @ ... @ V).

(ii) In particular the dual variety has codimension ko — > b_| k; + 1.

(iii) deg (P(Vo) x ... x P(V,))Y = (k’jo_jjp)

Proof. We can identify (up to scalar multiples) ¢ € P(Vy ® ... ® V) with a hyperplane
inP(Vo®...®V,) and with ¢: V7' ®...®@V;} — V. So ¢ € (P x ... x P’%)V if and only
if there exist nonzero z; € V;* for ¢ = 0,...,p such that ¢ contains the projective space
generated by P(Vy) x {Z1} x ... x {Zp} and {Z1} x ... x {&;} x ... x {Zp} x P(V;*) for
it =1,...,p. This is equivalent to the existence of nonzero z; € V;* for ¢ = 0,...,p such
that

(a) ¢(2f71 ®X...QR ip)(:L‘()) =0 Vg € VO*

(b)¢(§31®...®xi®...®i’p)(i’o):0 Va; € VJ*
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Condition (a) is equivalent to nondegeneracy of ¢. Now with our assumption condition
(a) implies condition (b). In fact denote, for a fixed ¢

Hjl"“,jp = {xo € VE)*W('%I R...&® i‘p)(xo) = 0}

H;'il .... BBy = {:EQ € Vb|¢(f1 R...xZ; .. .i‘p)(xo) =0 Vux; € Vz*}

H3, ..z, has codimension 1 for a general ¢ and coincides with V{ if ¢ satisfies condition
(a).
Hz,...é,..5p = Naievili . a;,.. 5, has codimension < k; + 1 for a general ¢ and codimen-
sion < k; if ¢ satisfies condition (a). Hence if ¢ satisfies condition (a) the intersection of
Hz, . 5i..7p for ¢ = 1,...,p contains a nonzero element and this means that ¢ satisfies
condition (b).
We have proved (i) and (ii).
(iii) (and (ii)) follow also from Proposition 6.2.

O

For the convenience of the reader we state the following theorem which is a straightforward
generalization of Theorem 6.3 and contains Theorem 9.20 (i) and Corollary 9.9.

9.21 Theorem. Let A € Hom(Vy @ ... @ V,,, Vo) and let ko > >¥_, ki. The following
conditions are equivalent

(i) A is degenerate

(ii) A€ (P(Vp) x ... x P(V,))Y

(iii) P(Vo)Y NP(V1) x ... x P(V},) # 0 (where the embedding of PP(Vy) is induced by A )
(iv) Vy @ Ox =5V @ Ox(1,...,1) is surjective.

In [GKZ] and in [WZ] a wellposed definition of hyperdeterminant was found, not depending
to any constant.

The hyperdeterminant of a 2 x 2 x 2 matrix (NOT of boundary format!) has degree 4.
Its geometrical interpretation is the following. Let A be a nonzero 2 x 2 x 2 matrix. You
have an exact sequence on P

0= O(-1)2-502 5T, 0

where Z is a scheme . Then DetA # 0 if and only if Z is a reduced scheme of length 2
(that is consists of two distint points, Schlafli).

9.22 Remark. The given definition of hyperdeterminant can be generalized to other cases
where the codimension of the degenerate matrices is bigger than one, these cases are not
covered in [GKZ]. If ko, ..., k, are nonnegative integers satisfying ko = > o_; ki then we
denote again mj = Zf;ll k; with the convention m; = 0.

Assume we have vector spaces Vy,...,V, and a positive integer q such that dimVy =
q(ko+1),dim V) = q(k1+1) and dimV; = (k;+ 1) fori =2,...,p. Then the vector spaces
VW@ S™MV®...® 8™V, and STV @ ... ® SmPHV;, still have the same dimension.
In this case degenerate matrices form a subvariety of codimension bigger than 1.

The case ¢ = p = 2 has been explored in [CO] leading to the proof that the moduli space of
instanton bundles on P? is affine.
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9.5 Exercise. Let A a 2 X 2 X 4 matriz. In this format there is no good motion of
hyperdeterminant.

(i) Prove that if it is degenerate then the 2 X 2 X 3 minors vanish.

(ii) Find a nondegenerate A such that all the 2 x 2 X 3 minors vanish.

(iii) Define I(A) to be the det of the 4 x 4 matriz obtained by A by stacking the two faces
(do not worry about the way in doing it!). Prove that A is degenerate if and only if all the
2 x 2 x 3 minors vanish and I(A) = 0.

9.4 Multidimensional matrices and bundles

A multidimensional matrix is an element A € Vo ® ... ® V,, where V; is a complex vector
space of dimension k; + 1 for i = 0,...,p. We will say that the type of Ais kg x ... x kp.
We want to consider the action of SL(Vp) x...x SL(V,) on P(Vp®...®V,). If p =1 there
are finitely many orbits determined by the rank. In particular all bidimensional matrices
of maximal rank are equivalent under the action of SL(Vp) x SL(V7). It is immediate to
check that by dimensional reasons this property cannot hold in general for p > 2. We will
restrict to the boundary format case, that is

p

ko= ki

i=1

We denote by Det A the hyperdeterminant of A. Let egj ), e ,e,(fi ) be a basis in Vj so that
every A € Vy ®...®V, has a coordinate form

A= Z aio,m,ipez(»g) ®...Q egf)

(9) (9)

Let x; yes T

1) A multilinear form

be the coordinates in V;. Then A has the following different descriptions:

P

Z a,-ow,ipxg(?) ®...Q l’z(»p)
(iov"'vip)

2) An ordinary matrix M4 = (my,4,) of size (k1+1) x (ko +1) whose entries are multilinear
forms
0
Mo = E aio,..‘,z',,%(é) ®...Q xgp)

P
(i27---7ip)

3) A sheaf morphism f4 on the product X = Pk2 % .. x Pke
ot Inoy @, .kt
We have seen in the case p = 2 the following

9.23 Theorem. The following properties are equivalent

i) Det A # 0.

i) the matriz M4 has constant rank ki +1 on X = PF2 x ... x Ph».

iii) the morphism fa is surjective so that S = Kerfa is a vector bundle of rank ko — k;.
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9.24 Theorem. All nondegenerate matrices of type 2 x k x (k+1) are GL(2) x GL(k) x
GL(k + 1) equivalent.

Proof. Let A, A’ two such matrices. They define two exact sequences on P!

0= O(—k)—0OF1L001)k -0
0= O(—k)— 01201k =0
We want to show that there is a commutative diagram

0 = O(-k) — Ol A ok - o

0 — O(-k) — O 2 ok = o

In order to show the existence of f we apply the functor Hom(—, O*+1) to the first row. We
get Hom(OF1, O 1) L5 Hom(O(—k), Okt = Ezt!(O(1)F, Ok 1) ~ HY(O(—1)kE+D) =
0. Hence g is surjective and f exists. Now it is straightforward to complete the diagram

with a morphism ¢: O(1)* — O(1)*, which is a isomorphism by the snake lemma. O
Let (xo,...,z1) be homogeneous coordinates on P(V'). We set
x1
ro 21 o T1
I(zg,x1) := and  Ii(zo,z1) :=
Tog X1 o X1
0

A reformulation of the previous theorem is the following

9.25 Proposition. Every surjective morphism of vector bundles on P!
Opt — Opi (1)*

is represented, in a suitable system of coordinates (xg,x1), by the matriz Ij.

9.26 Corollary. For k =2 any Steiner bundle is Schwarzenberger.

9.5 Multidimensional Matrices of boundary Format and Ge-
ometric Invariant Theory

It is well known that all one dimensional subgroups of the complex Lie group SL(2) either

are conjugated to the maximal torus consisting of diagonal matrices (which is isomorphic

to C*) or are conjugated to the subgroup C ~ { { (1) Zl) } b e (C}.
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9.27 Definition. A p + 1-dimensional matriz of boundary format A € Vo ® ... ® V), is
called triangulable if one of the following equivalent conditions holds:

i) there exist bases in V; such that Qig,....ip, = 0 forig > Zle o

ii) there exist a vector space U of dimension 2, a subgroup C* C SL(U) and isomorphisms
Vj o~ Sk such that if Vo & ... ® V, = ®pezWh is the decomposition into direct sum of
eigenspaces of the induced representation, we have A € ©,>oWp,

Proof of the equivalence between i) and ii)

Let x,y be a basis of U such that t € C* acts on = and y as tz and ¢~ 'y. Set e,&j) =

xkykj_k(lzj) € SkiU for j > 0 and e}(€0) = xko_kyk(%) € SU sothat €l” ® ... @ e® is a

70 ip
basis of S*U ®...®S* U which diagonalizes the action of C*. The weight of egg) ®.. .®e£f)
is 2(3°V_, it — ip), hence ii) implies i). The converse is trivial.

9.28 Definition. A p + 1-dimensional matriz of boundary format A € Vo ® ... ® V), is
called diagonalizable if one of the following equivalent conditions holds

i) there exist bases in V; such that a;,,.. ;, =0 for ig # P

ii) there exist a vector space U of dimension 2, a subgroup C* C SL(U) and isomorphisms
Vj ~ SkiU such that A is a fived point of the induced action of C*.

9.29 Definition. A p+ 1-dimensional matrixz of boundary format A € Vo®...®@V, is an
identity if one of the following equivalent conditions holds
i) there exist bases in Vj such that

v L0 for o # 3T i
105ty 1 for io=) 1 1t

ii) there exist a vector space U of dimension 2 and isomorphisms V; ~ SkiU such that A
belongs to the unique one dimensional SL(U)-invariant subspace of S*U @ SMU ® ... ®
Sk

The equivalence between i) and ii) follows easily from the following remark: the matrix A
satisfies the condition ii) if and only if it corresponds to the natural multiplication map
SMU®...® SHU — S*U (after a suitable isomorphism U ~ U* has been fixed).

In the case p = 2 the identity matrices correspond exactly to the Schwarzenberger bundles.
The definitions of triangulable, diagonalizable and identity apply to elements of P(Vy®...®
Vp) as well. In particular all identity matrices fill a distinguished orbit in P(Vo®...®V}).
The function Det is SL(Vp) x ... x SL(Vp)-invariant, in particular if Det A # 0 then A is
semistable for the action of SL(Vp) x...xSL(V,). We denote by Stab (A) C SL(Vy)x...x
SL(V,) the stabilizer subgroup of A and by Stab (A)° its connected component containing
the identity. The main results are the following.

9.30 Theorem. ([AO]) Let A € P(Vy®...®V,) of boundary format such that Det A # 0.
Then

A is triangulable <= A is not stable for the action of SL(Vy) x ... x SL(V},)

9.31 Theorem. ([AO]) Let A € P(Vy®...®V,) be of boundary format such that Det A #
0. Then

A is diagonalizable <= Stab(A) contains a subgroup isomorphic to C*
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***add picture

The proof of the two above theorems relies on the Hilbert-Mumford criterion. The proof
of the following theorem needs more geometry.

9.32 Theorem. ([AO] forp =2, [D] forp>3) Let Ac P(V,@V1®...QV,) of boundary
format such that Det A # 0. Then there exists a 2-dimensional vector space U such
that SL(U) acts over V; ~ S¥U and according to this action on Vo ® ... ® V, we have
Stab (A)° C SL(U). Moreover the following cases are possible

0 (trivial subgroup)
Stab (A)° ~ o
SL(2) (this case occurs if and only if A is an identity)

9.33 Remark. When A is an identity then Stab (A) ~ SL(2).

9.34 Theorem. ([A099] theorem 6.14) Let E be a Steiner bundle of rank n on P™. Let
Sym(E) = {g € SL(n + 1)|g*E ~ E} and let Sym°(E) be its connected component
containing the identity. Then Sym°(E) is always contained in SL(2) and the equality
holds if and only if E is a Schwarzenberger bundle.
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Chapter 10

Appendix

10.1 Grassmannians and Segre varieties
Let V be a vector space of dimension n + 1 and consider v € V', v # 0. Define
¢i: NV = ATV

by
$i(w) ==wAv

10.1 Lemma. (Koszul complex of a vector). The following sequence is exact
0— A0V = C2% ALYV EL A2y 22y Oty g

Proof. 1t is evident that the above sequence is a complex. Choose a basis of V given
by e1,...,en,ens1 = v. Choose w € AV such that ¢p(w) = wAv = 0. If w =
Zi1<..‘<ik Qi .. € N\ ... N\ ej, then each nonzero coefficient a;, . ;, has i = n + 1. Hence
Y= Zi1<...<ik_1 @iy ..ip€iy N ... A€, satisfies ¢p_1(¢) =Y Av = w. O

10.2 Remark. The theorem 10.1 admits the following generalization [Serre, Algébre lo-
cale, multiplicités, LNM 11, Springer|. Let E be a vector bundle of rank n over X and
consider s € HY(X,E) such that Z = {x|s(x) = 0} has pure codimension n. Define
¢i: N'E — NHLE by ¢;(w) = wAs and the dual ¢t: NHLE* — A'E*. Then the following
sequence is exact

n kel 1 ®h2 o, bh
0— A" E*— A Fr— . . . —FE"—0x—0z;—0

and it is called the Koszul sequence associated to s.

The Grassmannian
Let P" = P(V). Grassmannians parametrize the set of linear subspaces of dimension & in
P™. The best way to give to this set the structure of an algebraic variety is the following
definition.

10.3 Definition. . Gr(k,n) = Gr(P*,P") is defined as the subset of P(AN*+1V) consisting
of decomposable tensors.
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10.4 Theorem. Gr(k,n) is a projective variety of dimension (k+ 1)(n — k).
In order to prove the theorem we have the following

10.5 Lemma.
i) If w € ARV then dim{v € Viw Av =0} <k + 1.
ii) w € AV s decomposable if and only if dim{v € V|w Av =0} =k + 1.

Proof of lemma 10.5. By the theorem 10.1
wAv=0 <& JyYsuchthat w=v Av
Hence if v1,...,v; are independent elements in {v € V|w Av = 0} it follows that
w=9 AviA... Avj

(choose a basis containing v1,...,v; !) and the result is obvious.

Proof of the theorem 10.4 Consider the morphism

dw): V. = ARy
v o= WA

By the lemma w € Gr(k,n) if and only if 7k ¢p(w) =n — k. rk ¢(w) is always > n — k by
the lemma 10.5 i), so the last condition is satisfied if and only if 7k ¢(w) < n — k. The
map
ALY Hom(V, NFF2V)
W o Bw)

is linear, hence the entries of the matrix ¢(w) are homogeneous coordinates on P(A*+1V)
and Gr(k,n) is defined by the vanishing of the (n —k + 1) x (n — k + 1) minors of this
martrix.

The map i: Gr(k,n) — P(AF1V) is called the Pliicker embedding. The equations that we
have found define the Grassmannian as scheme but they do not generate the homogeneous
ideal of G = Gr(k,n). The ideal Igp is generated by quadrics that are called Pliicker
quadrics (see [Harris]).

10.1 Exercise. Prove that i is a closed immersion

Hint: writing down coordinates you can show injectivity.

In conclusion we have a biunivoc correspondence between points in Gr(k,n) and linear
subspaces P¥ € P™. The following construction shows that this correspondence is much
more rich than a set correspondence.

Define the incidence variety U C Gr(k,n) x P given by {(g,z)|x € g} (really U is the
projective bundle P(U) where U is the universal bundle on the Grassmannian). U —
Gr(k,n) satisfies the following universal property: for every subscheme F C S x P™ such
that the projection F — S is flat (F with this property is called a flat family) and Fy is a
linear P* for every s € S then there exists a unique morphism ¢: S — Gr(k,n) such that
¢*U = F. This property says that the Grassmannians are Hilbert schemes (in fact they are
the simplest Hilbert schemes). For an introduction to Hilbert schemes see ([Eis-Har]). It
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is interesting to remark that in order to construct the Hilbert schemes, the Grassmannians
are needed as first step. We will see in connections with vector bundles other examples of
the ubiquity of Grassmannians in modern geometry.

When &k = 0 or n — 1, Gr(k,n) is isomorphic to the projective space P". The simplest
Grassmannian which is not a projective space is Gr(1,3).

ZT; :Ej

10.2 Exercise. Let p;j = for 0 < i < j < 3 be Pliicker coordinates in the

i Yj
embedding Gr(1,3) — P5. Prove that Gr(1,3) is given by the smooth quadric with equation

Po1P23 — Po2p13 + po3piz = 0
10.3 Exercise. Gr(k,n) is a rational variety of dimension (k+ 1)(n — k)
10.4 Exercise. Gr(k,n) is a homogeneous variety, in particular it is smooth.

A more advanced property is that Pic(Gr) = Z. This is equivalent to say that in the
Pliicker embedding every effective divisor on Gr is cutted as a scheme by a hypersurface
in P(AF*1V) . This is a famous result proved by Severi in 1915, which is the core of the
definition of the Chow variety, which is one of the first examples of moduli spaces. The
Pliicker embedding corresponds to the embedding given by the complete linear system
HY(O(1)).

In the case k = 1 we have the Grassmannian of lines.

10.5 Exercise. Show that a Grassmannian of lines in its Plicker embedding can be seen
as the (projective) variety of skew-symmetric matrices of rank 2. Its equation are given by
4 x 4 pfaffians, that are quadrics in the Plicker embedding.

10.6 Exercise. Show that the secant variety of Gr(P',P"™) can be interpreted as the variety
of skew-symmetric matrices of rank < 4 and its dimension is 4n — 7. Compare this with
the general variety of dimension 2(n — 1) that has secant variety of dimension 4n — 3.
Deduce that Gr(P',P") projects smoothly in P47,

Kunneth formula for sheaves Let X, Y be projective varieties and let p and ¢ be the
two projections of the product X x Y onto the two factors. The formula says that for
every coherent sheaves F' over X and G over Y we have

H'(X xY,p'F®¢*'G) = @}_ H (X, F) @ H(Y,G)

Hirzebruch ([Hir]) attributes this formula to Grothendieck.
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The Segre variety
Let V; be complex vector spaces of dimension k; + 1 for ¢ = 0,...,p The Segre variety
is the product P(Vp) x ... x P(V},). The Segre embedding describes this variety in the
space of tensors in a manner similar to Grassmannians. In fact we have a natural closed
immersion

P(Vo) x ... x P(V,)-5P(Vo & ... ® V)

given by (vg,...,vp) — v9 ® ... ® v, which describes the image of i as the set of decom-
posable tensors.

When p = 1 the tensor space P(Vy ® V1) can be interpreted as P(Hom(V{, V1)) and in
this case the Segre variety corresponds to morphisms of rank < 1. Its equations in this
case are given by 2 x 2 minors. It is known that in general the ideal of the Segre variety
is generated by quadrics.

The Hilbert polynomial of the Segre variety in the Segre embedding is []7_, (tzkl) It

follows that the degree of the Segre embedding is the multinomial coefficient (%(Z’}; )

The Picard group of P(Vp) x ... x P(V,) is isomorphic to ZP*! and its elements will be
denoted by O(ao,...,ap) where a; are integers. The previous embedding corresponds to
the embedding given by the complete linear system H°(O(1,...,1)).

10.2 Vector bundles

A vector bundle over X is unformally a family of vector spaces parametrized by X. X x
C" — X is called the trivial bundle of rank r. In general we require that a vector bundle
is locally trivial. More precisely

10.6 Definition. A wvector bundle E of rank r over an algebraic variety X is an algebraic
variety E with a surjective morphism

. FE— X

such that there exists an open covering {Uy}acr of X satisfying the two properties i) there
exist isomorphisms ¢o: ™ 1 (Uy)—Uy x C making commutative the diagram

7N UL 2 Ul x C

[E

U, — U,

it) Yo, B € I the composition (restricted)

¢71
(Ua NUs) x C 271Uy N Us) 22 (Uy N Us) x C"

has the form
¢a o qsgl(l‘a U) = (xv gaﬂ(x)v)

where
gap: (UaNUg) = GL(r)

are algebraic.
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i) means that the fibration is locally trivial and that each fiber 7=!(z) is isomorphic to
Cr.

ii) means that the structure group of the bundle is linear.

gap are called the transition functions and satisfy the properties

9o = YBa (10.1)
9apB " 98y = Gary (10.2)

In equivalent way, given a covering {U,}acr with a set of transition functions gag(x)
satisfying (10.1) and (10.2) we can construct a vector bundle E as the quotient of the
disjoint union

[[w. xcn)

(e

by the relation ~ defined in the following way:
V(z,v) € Uy x C" (2/,0") € Ug x C”

we have
(z,v) ~ (2" V) it x =2" v =gap(x)

10.7 Remark. We can say synthetically that “the transition functions determine the
bundle”.

If gop are transition functions for ' and h,g are transition functions for F' then
< Gop b ) are transition functions for £ @ F
af

(this can be taken as definition of E @ F)

(9;ﬁ1 )t are transition functions for £* dual bundle

9o @ hep are transition functions for £ ® F

If T: GL(r) — GL(r') is any representation we define T'(E) to be the bundle with transi-
tion functions 7T'(g3). This construction applies in particular to T = AFand T = S*.
If f: X =Y is amap and F is a bundle on Y with transition functions g,g(y) then f*E
is the bundle on X with transition functions g.s(f(z)).
If X is smooth the bundle Q}( of 1 — forms can be defined as the bundle with transition
functions given by the jacobian matrices obtained by change of local coordinates. The
tangent bundle is TX = (Q%)*.
A vector bundle of rank 1 is called a line bundle. The set of line bundles has a natural
structure of abelian group isomorphic to H'(X,O*) with the multiplication given by the
tensor product and the inverse given by the dual bundle.
A section of E is an algebraic map

s: X = F

such that mw o s = idx
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10.8 Definition. A vector bundle is called spanned if there are (global) sections sy, ..., sk
such that Vx € X the vectors s1(z),. .., sp(x) span the fiber m=1(z).

To any vector bundle FF we can associate a locally free sheaf of Ox-modules £ defined by
E(U) = {sections of Ej;}

Conversely to any locally free sheaf £ is associated a vector bundle with fiber F, ~
Ex/ MzE; defined as the Spec of the symmetric algebra of £ (see [Hal).

For any coherent sheaf £ the fiber E, ~ £,/ M_,E, is a vector space whose dimension is
called the rank of £ at «.

10.9 Proposition. & is locally free if and only if it has constant rank.

Proof [Ha] A sheaf morphism between bundles E LF induces linear maps E, &Fm for
every x € X. It follows from the definition of sheaf morphism that f is injective if and
only if f, is injective for generic x € X. f is called a bundle morphism if it has constant
rank Vo € X. In particular f is injective and it is a bundle morphism if and only if f, is
injective for any x € X. When we write a exact sequence of sheaves or bundles

0—>EL>F—>G—>O

we assume it is a exact sequence of sheaf morphisms. In the sequence above assume F
and F' are locally free (bundles). Then f is always injective as sheaf morphism and it is a
bundle morphism if and only if G is locally free. A version of Nakayama lemma states that
a surjective sheaf morphism between bundles is also a bundle morphism, in particular its
kernel is locally free.

10.10 Remark. Let be given a bundle morphism ELF The ker f is locally free.

10.7 Exercise. Prove that for any vector space V of dimension r there is a canonical
isomorphism NFE ~ N""EE* @ ATE. The same isomorphism hold if E is a vector bundle
of rank r.

It is usual to identify a vector bundle F and the associated locally free sheaf £. In
particular the cohomology groups HY(X, E) are (by definition) the cohomology groups
HY(X,E). Note that H(X, E) is the space of global sections of E. In particular a vector
bundle is spanned if and only if the evaluation map

HYX,E)® O - E

is surjective.

10.3 Wedge power of a short exact sequence
Let A, B, C be vector spaces. Suppose we have a exact sequence

0—A—B—C—0
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Then for any integer k > 1 the following sequences are exact

0—ANfF A ANF B ANF 1B CO— AP 2B® S20— ... —S*C—0

0—S5*A—S* 1A B—S* 240 A2B—...— AF B— AF C—0

All the maps are natural. Obviously the second sequence is dual of the first one.

10.8 Exercise. Prove from the above the following combinatorial identities
(1) = Xhoo 1V () (557

(a+/]2—1) _ Z?:o(_l)j (a-l—c—}lc—ﬁ;j—l) (;:)

Remark

There are analogous sequences exchanging symmetric with wedge powers.
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