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Chapter 1

Introduction

A mathematical instanton bundle on P? is a particular algebraic bundle of rank
2. Its importance arises from quantum physics; in fact these particular bundles
correspond (through the Penrose-Ward transform) to self dual solutions of the
Yang-Mills equation over the real sphere S* (| |, [ D-
Penrose-Ward transform has been generalized on higher dimensional odd projective
space by Salamon (| |) giving the possibility of defining an instanton bundle
on P2t
There are several equivalent ways to define an instanton, the one we will use more
throughout this work is the following:
given three complex vector spaces L, M and N of dimension respectively k, 2n+ 2k
and k, an instanton bundle E over P?"*! with ¢, = k is a stable bundle of rank 2n
which appears as a cohomology bundle of a monad

Loo(-1) 5 Meo -4 Ne o) (%)

Hartshorne and Hirschowitz showed on P that the general instanton bundle has
the nice property of having natural cohomology, i.e. for each ¢t € Z at most one of
the cohomology groups H*(E(t)) for i=0,...,3 is nonzero (| D).

Thanks to the properties inherited from the monad, if we fix k as above, the moduli
space of instanton bundles on P?"*! of charge k (denoted from now on by M1, )
is an open subset of the quasi-projective variety of the stable bundles on P2"+! of
given rank and Chern classes.

Actually this space is still quite unknown. Most of the investigations focus their
attention on n = 1.

In this case there have been some big improvements in recent days that led to
complete answers to smoothness and reducibility:

Jardim and Verbitsky proved the smoothness and the dimension (8k —3) of M I
for every k, confirming a 30-year old conjecture (| |). In order to prove this re-
sult the two authors used a completely new technique which deals with quaternions,
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more precisely they equip M1 j with a structure called Trihyperkahler reduction,
which is the quotient of a trisymplectic structure by the action of a Lie group.
Before this result the only known cases were when k& < 5:

the case k = 1 is due to Barth (| |). Case k = 2 was proved by Hartshorne
{l |). Ellinsgrud and Stromme settled the case k = 3 (] |), while the
smoothness when k = 4 was proved by Le Potier (| |). Finally the case
k = 5 was proved by Katsylo and Ottaviani (| |) and Coanda, Tikhomirov
and Trautmann (| ).

A similar situation happened for the irreducibility of M, ;: until 2003 the only
known cases where when k < 5 (same references as in the smoothness case except
for k = 4, which is due to Barth (| |), but the big enhancement came when
Tikhomirov proved in two different works that, for £ odd first and then for k even,
M1, j, is irreducible (| |, | 1)

In conclusion to the case of P? there are two works by Bruzzo, Markushevich and
Tikhomirov (| I, | |) in which, generalizing the definition of instanton
bundles on P?"*! to any rank greater or equal than 2n, they exhibit an irreducible
component for each moduli space. The proof of the second work relates this com-
ponent to a particular class of instanton bundles called 't Hooft instantons; these
bundles will be studied throughout this work.

If we drop the condition n = 1, the things get worse: in a series of works Ancona
and Ottaviani proved that M1, 5 is smooth and irreducible, while M Iy, is singular
for 3 < k < 8 and reducible for 4 <k <8 (| |, [ ).

The two authors conjectured also that for n > 2 and £ > 3 the moduli space of
instanton bundles is singular, conjecture proved by Miro-Roig and Orus-Lacort
( D).

So far we have talked about instanton bundles in general, but there is an inter-
esting subset of them which are called symplectic instanton bundles. In order to
define these particular instantons it is proper to observe that if £ is an instanton
bundle then so it is E*, indeed the dual of () is still a monad, and if the maps
referred to E are (A, B), then the maps referred to E* are (B, A). An instanton
bundle E is called symplectic if there exists a symplectic isomorphism between F
and E*. It is easy to show that in the case E is symplectic the monad can be
rewritten in the following way:

N'20(-1) 5 Moo 4 Neo() (30k)

where J is a skewsymmetric isomorphism.

We can then consider the moduli space of symplectic instanton bundles with n
and k fixed, and we will denote it from now on with MI5S,, .

In the case n =1 there is no difference between M, ; and M1IS, , namely every
instanton bundle on P? is symplectic, but for n > 2 this is not true anymore.



A surprisingly property that holds both for M1, and MIS, ; is that they are
affine (| |). Let’s sketch the proof of the latter:

the idea is to realize the moduli space as a GIT-quotient of an affine variety. In
order to do that we need to focus our attention on the space Hom(M ® V* N)
(where we set V = H°(O(1))).

Inside that space we can take the subvariety Q given by the nondegenerate matrices
for which (xx) is a complex, or, in other words, the matrices A for which AJA" = 0
(where J is a fixed skewsymmetric matrix) and such that everytime A(m®v*) =0
has a solution then either m = 0 or v* = 0. The space GL(N) x Sp(M) acts on Q
by (g,s) - A= gAs.

The heart of the matter is that Q is affine and GL(N) x Sp(M) modulo +(id, id)
acts freely on it. Hence the moduli space M 1S, = Q/GL(N) x Sp(M) is affine
too because it is the quotient of an affine variety by a reductive group. A similar
construction can be applied for M1, j.

A way to study the moduli space of instanton bundles is to exploit Kodaira-Spencer
theory and small deformations:

let £ be an instanton bundle (not necessarily symplectic) and Ad E be the ad-
joint bundle: therefore the Zariski tangent space to the moduli space at [E] (the
isomorphism class at which E belongs to) is isomorphic to H'(Ad E), moreover
there exists an important analytic morphism called Kuranishi map:

¢p: H'(Ad E) — H*(Ad E)

The zero locus of this map is the analytic germ of the moduli space at [E]. Hence
the moduli space is smooth at [E] if and only if the Kuranishi map is the zero
map. This condition is obviously satisfied when H?(Ad E) = 0.

When we are dealing with M1, then Ad E is equal to End E/O, hence the
Kuranishi map becomes:

¢p: H'(End E) — H*(End E)

while when F is symplectic and we want to study the germ of MIS, x at [E], the
Kuranishi map turns out to be:

¢op: H'(S*E) — H*(S?E)

To get an explicit description of the last map (the case non symplectic is similar)
we need to use the map ® ( introduced in proposition 3.1.5):
indeed the symplectic Kuranishi map lifts through the diagram

ker(®) 25 HO(AZN @ O(2)
1 !
HY(S?E) 25  H%(S?E)



where gg];(B) = BJB".
Moreover it is an easy calculation (obtained by splitting the monad into two short
exact sequences) to obtain the following estimates:

hY(End E) — h*(End E) = —k*(*", ") + 8kn? + 1 — 4n?

hl(SQE) _ h2(SZE) _ _%(271;1) + k(10n2—55n+1) —m2—_n

Let’s now give some concrete examples of instanton bundles specifying the
matrix A inside the monad:
maybe one of the first and most studied kind of instanton bundle is the so called
special symplectic instanton (or Okonek-Spindler), which has the following k& x
(2n + 2k) matrix

0 29 -+ -+ o 0 -+ 0 0 -+ 0 Yo -+ -+ yo 0

0 DT O :'UO ‘/'L‘l DY DY :'Un yO DR DT yn—l yn 0 DY O
In (| |) and in (| ]) the following results are computed for these particular
instantons:

h'(End E) = 4(3n — 1)k + (2n — 5)(2n — 1)
h'(S?E) = (10n — 2)k + (4n* — 10n + 3)
Hence, for example, for n = 2 and k = 3 M 1S, 3 is smooth of dimension 53 at the

points corresponding to special bundles (because h*(S*E) = 0).
As a second example we can introduce one of the main objects of this work: the

't Hooft bundles. They were first introduced on P? | then in (| |) Ottaviani
introduces the 't Hooft instanton bundles for n > 2 (for a precise definition go to
3.1.7):

in order to build these bundles we need to pick k+n codimension 2 linear subspaces,
say {& = w; =0} for i = 1,...,k and {z; = n; = 0} for j = 1,...,n, then the
following matrix describes an instanton bundle:

( D(&) aD(z) D(w;) aD(n;) )

where D(&;) and D(w;) are diagonal k x k matrices, D(z;) and D(n;) are diagonal
n X n matrices and a is a k X n generic matrix.

Due to this construction we get the following property on h°(E(1)): it is proved
that for a generic 't Hooft bundle we have h°(E(1)) = n.

Moreover it is conjectured in the paper that these bundles represent an irreducible
component of their moduli space. In order to prove this conjecture it would be
sufficient to prove that, apart from a finite number of cases,

h'(S*E) = 5kn + 4n*.
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Indeed, taking for granted this result, Ottaviani exhibits a basis of H'(S*FE) and
shows that the Kuranishi map sends to zero all its elements, proving that 't Hooft
instantons are smooth points of the relative symplectic moduli space.

The third example of a symplectic instanton bundle is given by the Rao-Skiti fam-
ily. These bundles were introduced on P? independently by Rao and Skiti in 1997
but their generalization is given in (| |). The matrix associated to this
bundle can be divided into two k x (n + k) blocks: the first block is exactly the
same as the Okonek-Spindler one, while the second block is a persymmetric matrix
(see definition 3.1.13). This implies that the Okonek-Spindler bundle is a particu-
lar Rao-Skiti. The generic Rao-Skiti, differently from the symplectic 't Hooft, has
HO(E(1)) = 0.

These two last examples play an important role inside the symplectic moduli space,
indeed if Ottaviani’s conjecture was true, this would imply furthermore that the
moduli space of symplectic instanton bundles on P?**! with n > 2 and k suf-
ficiently large, is reducible: indeed in the paper | | the authors prove,
among other things, that there are Rao-Skiti bundles which are not limit of 't
Hooft bundles.

This work is divided into three chapters: the first one focuses on Steiner bun-
dles; these objects may represent the kernel bundle defined in (x). First we intro-
duce a Steiner bundle of 't Hooft type called S* (which is related to 't Hooft instan-
ton), then the first result of this work is proving the behaviour of H'(S5?(S*(—1)))
and H'(S?(S*)) for these particular bundles (see Theorem 2.1.7). The possibility
of defining these bundles over P" for every n allows us to proceed with an induc-
tive proof. The idea is indeed to restrict a bundle to an hyperplane, the restricted
bundle is still a Steiner 't Hooft bundle, and this permits to exploit the inductive
step.

In the second chapter we introduce two families of symplectic instanton bundles:
The Rao-Skiti and the 't Hooft bundles. We introduce a new family of instanton
bundles which is a sort of generalization of the symplectic 't Hooft family: indeed
these new bundles are not necessary symplectic, but the matrice (A, B) have the
same structure than a symplectic 't Hooft (see definition 3.1.16). In proposition
3.1.18 we evaluate the dimension of this family.

We end the chapter showing the possible structures of the symplectic isomorphism
J for the examples introduced above. From these results we can state that the
two components (Rao-Skiti and symplectic 't Hooft) are at least path connected
(see remark 3.2.8).

The last chapter is divided into two parts: the first one is devoted to a possible
path to prove Ottaviani’s conjecture on symplectic 't Hooft bundles. More pre-
cisely the method is the one used for Steiner bundles, but in this case we need



to restrict our bundle with a codimension two variety, and this leads us to deal
with sheaves which are not bundles. Moreover we decided to apply this method
to a subset of symplectic 't Hooft bundles which, for k£ sufficiently large, seem to
behave exactly like a generic symplectic 't Hooft bundle. The matrix A associated
to these particular bundles has the same form described before, but in this case
the &’s and the z;’s depend only on a part of variables while the w;’s and the »;’s
depend on the others.

In the second part we show some of the computational results obtained using
Macaulay?2 (version 1.7) [:5] and we attach the scripts created.

The aim of this thesis is therefore to study families of instanton bundles and
their beaviour. The new results obtained in this work are the dimensions of
H'(S?(S*)) and H'(S?*(S*(—1))) for S* Steiner bundle of 't Hooft type. As said
this result could be very useful in order to prove Ottaviani conjecture. Moreover
we have introduced a new family of instanton bundles (which is the generalization
of the symplectic 't Hooft) and studied the dimension of this family. Through an
example we have seen that along the fiber of the Okonek-Spindler instanton there is
also a particular 't Hooft bundle, this fact allows us to conclude that the Rao-Skiti
component and the 't Hooft component are connected. Finally the computational
results obtained so far show that the Rao-Skiti component is smooth both for the
symplectic and the generic case, moreover the dimension of H!(S?(E)) is the same.



Chapter 2

Steiner Bundles

2.1 First properties and statement of the Theorem

Definition 2.1.1. A Steiner bundle S over P* = P(V) is a rank n vector bundle
which appears in an exact sequence of the following type:

0— S >WR0-5T00(1)—0 (2.1)

where W and I are complex vector spaces respectively of dimension n + k and k.

Proposition 2.1.2. Let S be a Steiner bundle. Then
i) h1(525%) — h2(S25*) = n (—k2 07D 2 = D) gk, )

ii) h'(S2S*(—1)) — h?(S25*(—1)) = nl) kit = q(k,n)

Proof. h°(S%S*) = h°(S2S*(—1)) = 0 because S is stable (| | or | ],
hi(S%S*) = hi(S2S*(—1)) =0 Vi > 3 follows from the exact sequence

0— S —=SWR0 —Wele0(1l) —ANIe02) —0  (2.2)
[

Definition 2.1.3. A Steiner bundle is called of 't Hooft type if the map A €
Hom(W,I ® V) is given in a convenient system of coordinates by the matrix

[D(&)la - D(z)] (2.3)
where a = (af ) is a k x n matrix with complex entries, D(&;) is a diagonal k X k
matrix with diagonal entries degree 1 forms &, ...,&, D(z;) is a diagonal n x n
matrix with diagonal entries degree 1 forms zq, ..., z,.



From now on when we write Steiner bundle we will imply of 't Hooft type.

Notation 2.1.4. When A € Hom(W, I®V') we denote by A* € Hom(I*, W*®V)
the dual map. Moreover we set A =" A;z; where A, € Hom(W, I).

Remark 2.1.5. Let be given a Steiner bundle, there exists a degree 1 form z,
such that (zo,...,z,) is a system of coordinates and from now on we will use z;
instead of z;. Furthermore we set & = &oxo + ... + EnTn-

Remark 2.1.6. For k£ = 1 we have S ~ TP"(—1). Hence we may suppose from
now on k > 2.

Our main result of this chapter is the following

Theorem 2.1.7. Let S be a generic Steiner bundle of 't Hooft type over P and
let £ > 2. Then

i) h'(S%25*(—1)) = max{q(k,n),k +n}
ii) h'(S25*) = max{p(k,n),n(k +n)}

Remark 2.1.8. Let k > 2. The following hold

q(k,n) <k+4+n <— 2 <

n—1
37’L+1 < k
< n—1 —
p(k,n) <n(k+n) < { O R

Remark 2.1.9. The Theorem is true for n = 1. In fact over P' we have S* =
O(—k) and S25* = O(—2k). In this case q(k,1) = 2k and p(k,1) = 2k — 1.

We will prove the theorem by induction on n. The proof needs the computation
of the syzygies of a certain module. It turns out that

i) it is convenient to prove by induction a stronger form of the theorem, namely
we will make explicit a basis of the vector spaces H'(S25*(—1)). Such a
basis is helpful also to prove ii) of the theorem. In fact it follows that when
p(k,n) < n(k + n) the natural map H'(S2S*(—1)) @ V. — H'(S2S*) is
surjective, although in general H?(S?S5* @ Q) # 0

ii) The induction step is straightforward for n > 2 but there are technical
problems in the step from n = 1 to n = 2. In order to overcome these
difficulties we will have to make explicit a basis of H'(5%S*(—1)) even for
n = 1.



Proposition 2.1.10. Let S be a Steiner bundle corresponding to A € Hom (W, I®
V). Let
¢: Hom(I*,W) — AN IQV
B — AB — B'A!

The following are true
H'(S?S*(—1)) = ker ¢
H?(S?S*(—1)) = coker ¢

Proof. Straightforward from the exact sequence (2.2) twisted by O(—1).
[

Proposition 2.1.11. Let S be a Steiner bundle corresponding to A € Hom(W, I®
V). Let
®: Hom(I*,W®V) — ANI®SV
B — AB — B'A!

The following are true
H(S?S*) ~ker ®/S*W
H?*(S?S*) ~ coker ®

Moreover the embedding S?W — ker ® has the matrix form ¥ + YA with ¥
symmetric.

Proof. Straightforward from the exact sequence (2.2)

2.2 Explicit description over P!

Proposition 2.2.1. Let S = O(—k) be the Steiner bundle over P! corresponding
to a map A € Hom(W,I ® V). A basis of H'(P!, 525*(—1)) is given by the
following 2k elements of Hom(I*, W) (expressed in the dual basis of I*):

i) E; with only nonzero entry at place (i,7) equal to 1, for i = 1,... k.
ii) B; with (j,i)-th entry given by

—a;&io . ) .
G tagy for J=1.k jAi
0 for j=i

1 for j=k+1
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with (4, 7)-th entry given by

—aj&jo . ) )
GEtgy lor j=1. kG
0 for j=i

and with all other entries equal to zero, for i =1,... k.

Proof. 1t is straightforward to check that AFE; and AB; are symmetric matrices.
Moreover the 2k matrices Fj;, B; are linearly independent. Hence they constitute
a basis of the 2k dimensional space H'(P!, 525*(—1)).

O

Proposition 2.2.2. Let S = O(—k) be the Steiner bundle of 't Hooft type over
P! = P(V) corresponding to a map A € Hom(W,I ® V). Let assume moreover
that & and a; are different from zero for every 1.

i) The k-dimensional subspace of I ® V' generated by I ® x; surjects over the
(k — 1)-dimensional vector space H'(P!,S*) = (I ® V) /W, where in the
quotient bxy ~ b'zy if and only if b — ¥ € (a') (a' is the first column of a).

ii) The 2k-dimensional subspace of K C W®I®V generated by (B,®@V') for i =
1,...,k surjects over the (2k — 1)-dimensional vector space H' (P!, 525*) =
K/S?W, where S2F  hiB; ~ Y2 | hiB; if and only if [y — R, ... hp —h}] €

(atxy).

Proof. To prove i) we consider the embedding of W in I ® V: the equation vx; =
Aw, where v € I and w € W, gives the conditions

{ w;&io = 0

1 _
wilin + Wr1a; = U

hence i).

In order to prove ii) consider that
HY(P', S28*(~1)) @ V — H'(P*, S%5%)

is surjective (H? vanishes over 1-dimensional projective spaces). By using the
prop 2.2.1 the 4k dimensional subspace of K generated by (B; ® V') and (E; ® V)
surjects over H'(P', 525%). The equation Y h;B; + S.F e;E; = SA!, with S
symmetric, gives the conditions

h; = Si,kﬂfz‘o% + (Sz‘,k+1§i1 + 5k+1,k+1ag)$1

10



e; = sii&ioo + (8i:&in + Sz‘,lc+1a%)f€1

which are satisfied by some S if and only if

ei1&io — €&l = hz‘o%1
a;&o = M(hi&a — hiio)

with M independent by 7.
Now ii) follows.

2.3 Restriction to hyperplanes

Let P! be the hyperplane given by the equation z, = 0. Let Apn €
Hom(W,I @ V') (where V' = (xq,...,2,-1)) be given by substituting z,, = 0 in
A. In matrix form the last column of Ajpn-1 is zero and we set Apn1 = [A’ ]0}
We set W = W' & C, so that A" € Hom(W',I1®V"). Then Spn-—1 ~ S’ ® O where
S’ is again a Steiner bundle of 't Hooft type, appearing in the exact sequence:

0— 8" —>Wo05T0(1) —0

In particular SQS‘*]‘P,n_1 =S8 S O
Consider the cohomology sequence associated to the sequence

0 — S525%(=2) — S29*(—1) — S*S*(=1)pn-1 — 0 (2.4)

It follows that H'(S%S*(—1)) is the kernel of the boundary map §
H'(S25*(—=1)pnr) =~ H (P"1, §25™(—1)) @ T = H?(S25%(=2)) ~ A2 (2.5)
Let
Ppn-1: Hom(I*, W) — NIV
B > (Apn-1) B— B (Apnr)’
By restricting (2.2) to P*~! it follows
HI(SQSH]M—1 (—1>> ~ ker gb‘pnfl.

The decomposition
Hom(I*,W) = Hom(I*,W") & I

induces in a natural way the splitting
H(SSpn-1(—1)) = H'(S*S™(=1)) & H'(S™(-1)).

11



Proposition 2.3.1. Given B’ € H'(P"!,525"*(—1)) € Hom(I*, W’) represented
by a (k4+n—1) x k matrix and b € I represented by a 1 x k matrix, let us construct
B e H'(5?S*(—1)pn-1) C Hom(I*,W) by stacking b as last row under B’, that is

/
B = [ B; } Then the boundary map in (2.5) is given by

§(B',b) = A,B — B' A,

Proof. 1t is a diagram chase into the following

NI —  H?*(S?5*(-2))

0—  HYS2S%(-1) — Wel -5 AoV —  H2(S2S*(-1))

l ~
0— HY(S2S* (~)pn1) — WI L NIV —s H*(S2S*(—1)pn-1)
0 0 0
O
Consider the cohomology sequence associated to the sequence
0 — 5%5*(—1) — S5 — 5%Spa1 — 0. (2.6)
Let
Pipn-1: Hom(I*,W V') — NI ® SV
B 5 (Ap)B— B (Apn)

and denote Kpn-1 :=ker ®pn-1 . In particular the decomposition
Hom(I*,W@V"') = Hom(I*, W @ V)& (I V')

induces
K'[pmfl = K, EB (I ® V/)

K//SQW, ~ Hl(]Pm_l, 525/*)’ I ® V//W/ ~ Hl(]Pm_l, S/*)

12



Proposition 2.3.2. Given B’ € K' C Hom(I*, W' @ V') represented by a (k +
n — 1) X k matrix with linear entries and b € I ® V' represented by a 1 x k matrix
let us construct B € Hom(I*,W @ V') by stacking b as last row under B’, that is

/
B = [ B; 1 The boundary map

Hl(SQS&nﬂ) ~ ! (Pnfl’ SZS/*) ® Hl(Pnflj S/*) L) H2(52S*(_1))
fits into the following commutative diagram:

Ko(IeV) — NIV
HY(P1, §25™) @ HY(P™L, S) BN H2(S25%(—1))
where 0'(B’,b) = A, B — B'AL.

Proof. Tt is a diagram chase into the following

0— K — Wal Ly AN®V — H2(S2S*(-1)) —0
-xn -"En

0— K — WelIeV -2 A8V —  HXS25Y) —0

‘bl]pnfl

0— Kpn-i — WRIQV NI @S2V — HQ(SQSE[M_l) — 0

2.4 Proof of the Theorem

Proposition 2.4.1. Let S be a Steiner bundle of 't Hooft type over P* with n > 2.
Let q(k,n) < k+n. H'(S5?S*(—1)) has dimension n+k and all its elements consist
of the following elements of Hom(I*, W) (expressed in the dual basis of I*):

[D(ei)la- D(f;)]' (2.7)

13



where a is the k x n matrix with constant entries that appears in A, D(e;) is a
diagonal k x k matrix with constant diagonal entries e;, D(f;) is a diagonal n x n
matrix with constant diagonal entries f;.

Proof. Tt is straightforward to check that the subspace of Hom(I*, W) spanned by
the elements (2.7) has dimension n + k and it is contained in H'(S25*(—1)).

We first prove the proposition for n = 2. In this case the prop. 2.2.1 is
needed. We consider in the above construction B’ = Zle piE; + Zle ¢;B; (here
pi, ¢; € C). We denote by a' and a? the two columns of a. Hence the boundary
operator assumes the nice form:

6(B0) = (a® b=+ (a*)) +Q

(&i2€j0—&io&;2)

(&i0&j1—E&508i1)

In particular § vanishes on the k-dimensional space spanned by (B',b) = (325, piFE;, 0).
d(B',b) = 0 is a linear system in the 2k unknowns b;, ¢;. The matrix (2) x 2k

k
2

where the (i, j)-th entry of Q is (gja; — g;aj)

of this system divides into two blocks ( ) X k each one of the form (here we are

considering the case k = 7)

<
<

SECECECECES
SESESRSRS
SECRSES
i e

il

14



If we label a row with the couple (i, j) (with i < j) to which it is referred, 7 and j
are the only non-zero entries in the row.

To be more precise: the i—th entry of the row (i, j) of the first block is —a? and
the j—th entry is a?, while the i—th entry of the row (i, 7) of the second block is

_ 1 8i28j0=8i0&;2 1&i2€j0—8io&; 2

J &i0€j1—E508i1 v &i0€1—&08i1
Considerning these blocks separately, it is easy to see that the row (i, j) with i > 1
is a linear combination of the rows (1,7) and (1, ), hence every block has rank
k — 1. Moreover, if the & are generic and 2(k — 1) < ('2‘“'), this matrix has rank
2(k — 1) and the solutions of the system are spanned by the two obvious ones:

b= (a?)! b=0

{ ¢=0 { g=d
The above inequality is equivalent to k& > 4 that is to ¢(k,2) < k + 2. It follows
that with the assumptions of the theorem dim H'(P?, S2S*(—1)) = k + 2 and this
proves the case n = 2.
The case n > 3 is easier. By induction the boundary map ¢ applies to the matrix
B which is obtained by stacking B’ = [D(e;)|a - D(f;)]" with b € I (where D(e;) is
a diagonal k x k matrix and D(f;) is a diagonal (n — 1) x (n — 1) matrix) and

and the j—th entry is —a

§(B',b) = (a"-b—10b"- (a™))

so that the kernel of ¢ has dimension (k+n — 1)+ 1=k + n as we wanted.
[l

Let n = 2. Let ¢ as in the prop. 2.3.2. We have again ¢'(>_ p; F;,0) = 0 where
p; are homogeneous polynomials of degree 1. With the notations of the prop. 2.2.2,
taking b € I ® x1, the (p, q)-entry of 5’(2521 h;B;,b) is

(5p2§q0 - €p0§q2)
(€p0§q1 - qufpl)

The (p, q) entry of ¢(C) = AC — C*A' is

1) (€p2€q0 - 51305(12)
I (€p0£q1 - §q0§p1)

(hoqa;)— hopal) xI1.

. To+ bqai — bpag + (hlqazl, — hipa

1 1
(cpgbpo — Cqp€0) To + (Cqupl — CpSq + Ch+1,g3yp — Ck+17paq) T+

+ (Cqup? — CpSq2 + Ck+27qa;2) - Ck+2,pa3) 2.

Lemma 2.4.2. Let n = 2 and p(k,2) < 2k + 4, that is k£ > 7. With the notations
of the prop. 2.2.2, a basis for the solutions of the system

5,(2 hiB;,b) = ¢(C) (2.9)
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in the unknowns h;, b, C' is given by the 2k 4 7 solutions:

hOp - 17775170 ) hlp - 7p£p1

(Ya€q0ap, —VpEp0ag)é k
g = S e i) € C

Ck+2p = 0 b=0

hop:a; h1p20 b=0 C=0

hop=0 hyp=0 by,=a C=0

2
q

2 2
asa ay&p2 0 Ep1
Cpqg = . Chttp =0 Cppop = — by = api
gp[) ng ng

hip = a:,l), all other unknowns equal to zero
_ 1 _ 2
by =a, ckr1p = —a,,all other unknowns equal to zero

Chtlp = azl,, all other unknowns equal to zero

Cht2p = afy, all other unknowns equal to zero

(k solutions)

(k+1—th)
(k+ 2 — th)
(k +3 — th)
(k+ 4 — th)
(k+5— th)
(k + 6 — th)
(k+7 — th)

and the other £ solutions are given by ¢,, = d,, and all other unknowns equal

to zero.

Proof. 1t is straightforward to check that the expressions in the statement are
solutions. Let observe first that the ¢,, unknowns are free and this fact corresponds

to the last k solutions.
In order to prove that there are no other solutions, let us denote

(thazla - hOpa;)gtﬂ

gq()gpl - ngSql

and define new unknowns A(p, ¢) by the equation

r(p,q) == for1<p, ¢<k

Cpqg = T(pv Q) + )\(p7 Q)§q0 for 1 S b, q S k

The equation (2.9) for the coefficients of x, implies

16



Cpabpo — Cqpéaqo = T(P, 1)&po — 7(2, P)éq0

and it follows A(p, q) = A(q, p).
The equation (2.9) for the coefficients of x5 implies

AP, Q)€q0ép2 — M, p)Epoégz + Ck+2,qaf, - Ck+2,pa§ =0
that is

)‘(pa Q) (6q0€p2 - 5;005(12) + Ck+2,qa12g - Ck+2,pa2 = 07

hence A(p, ¢) can be uniquely determined by the other unknowns.
In particular we get

(5(125101 B fql€p2> (fqofpl — @115270)

1 1 2 2
Cpg&p1 —Coplq = (thap_hopaq) +(%Ck+2,q—aqck+27p)

gqogpl - €p0§q1 §q0§p2 - §p0§q2

(2.10)
The last group of equations is given by the coefficients of x; in (2.9) and by
using (2.10) we are left with the following (g) equations in the 55 unknowns hyy,

h'lpa bq: Ck+1,p5 Ck+2,p

(£q2£p1 - €q1€p2)
£q05p1 - gpofql

(§q0§p2 — £q2€p0)
£q0£p1 - fp0§q1

The matrix (g) x 5k of this system has rank 4k — 7. One possible way to show
this fact is the following: this matrix divides into five blocks (’;) X k each one of
the same form and property described in (2.8). To fix the ideas we set again k = 7
and we order these five blocks in the following way: coefficients of hg,, coefficients
of hyp, coefficients of ¢y, coefficients of ci12, and coefficients of b,.

We now perform Gaussian elimination to the first block (taking into account the
entire matrix), recalling that the row (,7) (¢ > 1) is a linear combination of the
rows (1,7) and (1, 7). In such a way we get k— 1 rows linearly independent: indeed
after £ — 1 rows the first block will have only zero entries while the other blocks

(éqogpl - gqlng)
fqong - §p0€q2

—(hogt — hopay)

q +

+ (aZClHZ,q - a30k+2,p)

— (Mg — hapay)

1 1 2 2
— Cht1,4Qy + Chi1pa, + bga, — bpay =0

17



will have the following form:

PP e

PP

S N N E S R SR SR SR SRR

We now perform Gaussian elimination to the second block from the k& — th row.
It is still true that in this block the row (7, j) (now ¢ > 2) is a linear combination
of the rows (2,4) and (2,7). If we act in this way we get other k — 2 rows that
are linearly independent because the entries of the second block after these rows
become all zero. Moreover also the third block after & — 2 rows has only zero

PSR

X
X

X

X

entries, while the last two blocks have this form:

X
X

X
X

iRl N
iRl N

The third step is to leave the next k — 3 rows and perform Gaussian elimination
to the fourth block, the behavior is different than before: indeed after these £ — 3

X

SASES

18

X

P

X

X

X

X
X

X

X
X




rows the form of the fourth block is the following:

SESESCRSESRS
SESESESESRS
SESESRSESRS

while the fifth block

SESES
P

X
X
X
X
X X

S EE
SECESECEE
SRS Er
5

The last step (similar to the others) gives another k —4 linearly independent rows.
In such a way we end up with 4k — 10 rows which are linearly independent and
other (g) — 4k + 10 rows, each one of them with at most seven entries different
from zero. It is possible to see that the first three rows are linearly independent
(there are at least three if k£ > 7).

Hence we can conclude that the (g) X bk matrix of this system has rank 4k — 7
when 4k —7 < (g), which is equivalent to p(k,2) < 2k+4. This proves the lemma.

O
Proposition 2.4.3. Let S be a Steiner bundle of 't Hooft type over P" with n > 2.
Let p(k,n) < n(k+n).

i) ker @ (see 2.1.11 ) is spanned by S?W and by the following elements of ker ® C
Hom(I*,W @ V) (expressed in the dual basis of [*):

[D(ei)la- D(f;)]' (2.11)

where a is the k x n matrix with constant entries appearing in (3.7), D(e;) is a
diagonal k£ x k matrix with linear diagonal entries e;, D(f;) is a diagonal n x n
matrix with linear diagonal entries f;.

ii)H'(S%5*) = Ker ®/S*W has dimension n(k + n).
iii) the natural map H'(S%5*(—1)) ® V. — H'(S%5*) is surjective.
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Proof. Tt is straightforward to check that the elements in (2.11) belong to ker ®.
Let Z C ker @ be the linear span of the elements in (2.11). Then dim Z =
(n+1)(k+n). i) and ii) are equivalent because Z N S?*W is given by the diagonal
matrices X (as in the prop. 2.1.11 ) and has dimension k + n.

iii) follows by i) and by the prop. 2.4.1.

Consider the boundary map

HY(S2Sp0mr) =+ HY(S25%(~1))

We first prove i) for n = 2. In this case the prop. 2.2.2 is needed.

By the prop. 2.3.2 and the lemma 2.4.2 we check that the kernel of § has
dimension k + 3 and it is spanned by the first k + 3 solutions of the lemma 2.4.2.
In fact the other solutions of the lemma are zero when projected on H'. Hence
the cohomology sequence associated to (2.6)

C (Ck:—i—2
|
0 — HS? B) HY(S%2S5*(-1)) — HYS*S*) —
— HY(S%S}) — H?(S28*(~1))
gives
h'(S?S*) = (k+3)+ (k+2)—1=2k+4

as we wanted.

i) and ii) can now be proved by induction on n. We remark that p(k,n) <
n(k +n) implies ¢(k,n) < k+nand p(k,n—1) < (n—1)(k+n—1).

The cohomology sequence associated to (2.6) is

C Cn—i—k
| |

0 — HS*Spa) — HY(SPS*(-1)) — HY(S?S*) —
s HY(S?Sjpumr) — HA(S%5*(—1))
The kernel of the boundary map 0 described by the proposition 2.3.2 contains
by the inductive hypothesis the subspace H'(5%5) @ 0 and is given precisely by
H'(S25™) & (a! V') which has dimension (n — 1)(k +n — 1) + n. It follows
RYS*S ) =(n—1)(k+n—1)+n+n+k)—1=n(k+n)

as we wanted.
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proof of the Theorem 2.1.7
The part i) of the Theorem follows from the prop. 2.4.1 for q(k,n) < k + n.
Only the case n = 2, k = 3 is left out. This case can be checked by a direct
computation or by using a computer. The part ii) of the Theorem follows from
the prop. 2.4.3 for p(k,n) < n(k+n). Only the cases

k=23 n>2
k=4 n=23.4

k=5,6 n=2

are left out and in these cases we have to prove that H?*(S?S*) = 0 . The case
k = 2 is contained in the following lemma 2.4.4. The case k = 3 follows because
Schwarzenberger bundles C satisfy H?(S?C*) =0 | | and semicontinuity ap-
plies. The remaining five cases can be checked by direct computations or also by
using a computer.

Lemma 2.4.4. Let S be a Steiner bundle with £ = 2.
i) H(S*(1)) =0
ii) H*(S%S*) =0
Proof. By the assumption ¢;(S*) = —2, hence
S*(1) ~ A"ES(—1)

The (n — 1)-th wedge power of the dual of (2.1) gives

ST (—n) — ... — A"TPWRRIH(—2) — AT (—1) — A"TES(=1) — 0
and from this sequence i) follows. By tensoring (2.1) by S* we get

0 —95"®RS —S"W —5S"(1)®l —0
By using i) it follows H?(S* ® S*) = 0 and hence ii) is proved.
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Chapter 3

Instanton bundles

The Steiner bundles we have studied in the first chapter have a strong link
with the instanton bundles we are going to study. Indeed to an instanton bundle
can be associated a couple of matrices (A, B) modulo a group action (see remark
3.1.2 for details), where A can represent a Steiner bundle.

In this chapter we will introduce different kind of instanton bundles, trying to
study the relations between them in the moduli space.

3.1 Families of Instanton bundles

Definition 3.1.1. An instanton bundle E over P*"*! = P(V) with ¢, = k is a
stable bundle of rank 2n which appears as a cohomology bundle of a monad

Loo-1) 2 Moo -5 Ne o) (3.1)

where L, N and M are complex vector spaces respectively of dimension k, k and
2n + 2k. From now on we will denote E also with the couple (A, B).

If E is symplectic, the monad (3.1) can be written in the following form:

N'20(-1) 5 Moo 4 Neo() (3.2)
where J : M* — M is the (2n + 2k) x (2n + 2k) skewsymmetric matrix of the

form
0 I
-1 0 )

If we set S* = ker A we get these two exact sequences
0—N'@0(-1) 25 8 —E—0 (3.3)
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0— 5 M0 -5 N®O(1) —0 (3.4)

Remark 3.1.2. The Lie group GL(k) x GL(k) x GL(2n + 2k) acts on the pairs
of matrices (A, B) which define an instanton bundle in the following way:

((8.70.04.8)) = (3207 a7

Hence two instanton bundles are isomorphic if and only if they lie in the same
orbit of this action.

A similar condition holds for symplectic instanton bundle, in this case the Lie
group is GL(k) x Symp(2n + 2k) and the action is given by:

(@) (4.0)) = (0

The next propositions contain some results which hold for every symplectic
instanton bundle, the analogous results for generical instanton bundles can be
found in | |:

Proposition 3.1.3. Let F be a symplectic instanton bundle with ¢; = k. Then

i) W' (S?E) — h3(S?E) = —& (3" 71) 4 k(1220ntly _ 9p2 —p =: p(k,n).

i) A1(S?E(—1)) — h2(S2E(—1)) = —k2(n — 1) + k(3n + 1) =: q(k,n).

Proof. h°(S*E) = h°(S?*E(—1)) = 0 because F is stable. Furthermore using (3.3)
and (3.4) we get

0— S*S*) — S’MRO0 — MaNO() — A’N®0O(2) — 0 (3.5)

0 — A°N*® O(=2) — N* ® S*(—1) — S?°S* — S’E — 0 (3.6)

The result now follows from a direct computation.
]

Proposition 3.1.4. Let £ be a symplectic instanton bundle corresponding to
Ae Hom(M,N ® V), and S* = ker A. Let

¢: Hom(N*,M*) — NNQV
B — AJB+ B'JA!

The following are true
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1(5%25*(—1)) = ker ¢

S2E(-1)) = H'(S%S*(~1))
S*E(-1)

Proof. 1) and ii) result from the exact sequence (3.5) twisted by O(—1), while iii)
and iv) come from (3.6) twisted by O(—1).

) HY(

ii) H?(S28*(~1)) = coker ¢
) HY(S°B(-1

) H*(S*E(-1

) =
) = H*(525%(—1))

O

Proposition 3.1.5. Let F be an instanton bundle corresponding to A € Hom (M, N®
V). Let
®: Hom(N*, M*®V) — ANN®S?V

B — AJB+ B'JA'
The following are true
i S525*) ~ ker ®/Sp(M)
2(5%8*) ~ coker ®

11

v 2

) H(
) H*(
iii) H'(S*E) = H'(S%*S*)/End N*
) H*(S?E) = H*(5%5%)
Proof. In order to prove i) first notice that S?M = Sp(M) through the map
P~ PJ.
Moreover the space Sp(M) can be imbedded in ker ® in this way:
v = AL

Then i) and ii) come from the exact sequence (3.5).
The space End N* can be seen as a subspace of ker & by the imbedding:

a— Ala.

Then iii) and iv) follow from the exact sequence (3.6).
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Remark 3.1.6. Summing up the proposition 3.1.5, we can see the space @) =
End N* & Sp(M) as a subspace of ker &:

(a,7) = Al + 9 A,

hence we have

H'(S?E) = ker ®/Q.

We are now ready to define the two families studied mostly in this work: sym-
plectic 't Hooft instantons and symplectic Rao-Skiti instantons.For any projective
space of odd dimension these concepts have been introduced in | | and in
[ | respectevely. Furthermore we will introduce a generalization of the
symplectic 't Hooft giving a bigger family of instanton (still called 't Hooft) not
necessarily symplectic.

Let’s introduce the symplectic 't Hooft bundles on P? first:

the idea is to build a bundle E such that F(1) has a section vanishing on k + 1
disjoint lines.

This will imply that for a 't Hooft instanton h°(E(1)) > 0.

Let’s take k+ 1 lines {z =n =0} and {§; =w; =0} fori =1,..., k, where z,7,&;
and w; are generic linear forms (hence they define disjoint lines). Then we can
build the following matrix:

&1 arz Wi an
A=

§e arz Wy apn

where a; € C are generic.
This is an instanton bundle called of 't Hooft type.
If we introduce the following matrix

—Ww1 &1

—Wg, &k

then AC* = 0, hence it defines k + 1 sections of the kernel bundle (twisted by
O(1)), that is one section of F(1). And this section vanishes where the rank of C'
1s not maximum.

Conversely, by the Serre correspondence, an instanton bundle E over P? that has a
section of F(1) vanishing on k + 1 disjoint lines comes from a matrix of the above
form.
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Furthermore it could happen that these k£ + 1 lines are contained in a quadric: in
this case E(1) has one more section; indeed an independent section can be found
in the following way:

say ¢ the quadric that contains the k + 1 lines, there exist linear form s;,t; with
t=1,...,k+ 1 such that

q = $i& + tiw; = Sp12 + Ly,
then by adding the following row to C'

(@181, -+, QpSk, —Sk+1, A1t1, - -« Qplr, —tgs1)

we get the new section.

So if the k + 1 lines are all contained in a quadric we get h°(E(1)) = 2, otherwise
we have h°(E(1)) = 1.

Hence both the case h°(E(1)) = 1 and h°(E(1)) = 2 are covered by 't Hooft in-
stanton bundles.

From the description given by the lines it is clear that 't Hooft bundles correspond-
ing to k+ 1 lines lying on a smooth quadric are SL(2) invariant. About the matter
there is a classification of instanton bundles on P? which are SL(2) invariant in

([Fac07]).

Definition 3.1.7. A symplectic instanton bundle is called of 't Hooft type if the
map A € Hom(M,N ® V) is given in a convenient system of coordinates by the
matrix

[D(&)la- D(z)|D(wi)|a - D(m:)] (3.7)
where a = (a]) is a kxn matrix with complex entries, D(¢;) and D(w;) are diagonal
k x k matrices with diagonal entries degree 1 generic forms &1, ..., &, ws, ..., Wk,

D(z;) and D(n;) are diagonal n x n matrices with diagonal entries degree 1 generic
forms z1,..., 2, M1, - ., M.

Remark 3.1.8. Let be given a symplectic instanton bundle of 't Hooft type, there
exist degree 1 forms 2, 1 such that (2o, ... z,, N0, - - -, n) is a system of coordinates
which will be denoted for the rest of the chapter by (xo,...Zn, Yo, .-, Yn)-

Notation 3.1.9. When A € Hom(M, N @ V) defines an instanton bundle we set
A=3"" A+ >0 Ay where A;, A; € Hom (M, N).

Remark 3.1.10. An equivalent way to describe a symplectic 't Hooft instanton
bundle is giving the matrix A in the following way:

A=la-D(&)la- D(u)]

where a is now a k x (k + n) matrix with complex entries and D(&;), D(u;) are
(k+n) x (k+ n) diagonal matrices with linear entries.

26



Proposition 3.1.11. Let E be a generic symplectic 't Hooft instanton on P?**!
with ¢; = k£ > 3.
Then H°(E(1)) = n.

Proof. see Theorem 3.7 of | |.
O]

Proposition 3.1.12. Symplectic 't Hooft bundles depend on 5kn+4n? parameters
for k > 3.

Proof. see Theorem 3.8 of | |.

Let now introduce the Rao-Skiti instanton bundles:

Definition 3.1.13. A symplectic instanton bundle is called Rao-Skiti if the map
A € Hom(M, N ®V) is given in a convenient system of coordinates by the matrix

A = [F|H] (3.8)

where F'is a k x (n + k) matrix of the form

:L‘O ':E]_ ) xn 0 ) ) O
0 29 21 - T 0 - 0
F = 0O 0 a9 x -+ x,
0
0 . e ) 0 'IO :El IR :I/‘n

and H is a persymmetric k X (n + k) matrix of linear forms h;; € H°(O(1)), that
is, a matrix such that h;; = hy if i +j = s+ ¢.

The analogous result of proposition 3.1.11 and 3.1.12 are the following:

Proposition 3.1.14. Let E be a generic symplectic Rao-Skiti instanton on P?"*!
with Cy = k 2 3.
Then H°(E(1)) = 0.

Proof. see proposition 3.13 of | .

Proposition 3.1.15. Rao-Skiti bundles depend on (4n + 2)k + 4n? + 2n — 4.
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Proof. see remark 3.14 of | |.

As announced let give a generalization of the symplectic 't Hooft bundles:

Definition 3.1.16. An instanton bundle is called of ’t Hooft type if the map
A€ Hom(M, N ®YV) is given in a convenient system of coordinates by the matrix

A= [D(&)la- D(z)|D(wi)|a - D(n;)] (3.9)
where a = (a!) is a kxn matrix with complex entries, D(¢;) and D(w;) are diagonal
k x k matrices with diagonal entries degree 1 generic forms &1, ..., &, ws, ..., Wk,

D(z;) and D(n;) are diagonal n x n matrices with diagonal entries degree 1 generic
forms z1, ..., 20, M, .., 1, and B € Hom(M*, L* @ V') is given by

B = [=D(wi)| =b-D(n:)|D(&)[b- D(z)] (3.10)
where b = (b)) is a k x n matrix with complex entries.

Remark 3.1.17. An equivalent way to describe a 't Hooft instanton bundle is
giving the couple (A, B) in the following way

A=la-D(&)|a-D(w)]  B=][-b-D(u)lb- D(&)]

where a, b are now k x (k4 n) matrices with complex entries and D(&;), D(p;) are
(k4 n) x (k+ n) diagonal matrices with linear entries.

Obviously the behaviour of H(E(1)) for this class of instanton bundles is the
same as for the class of symplectic 't Hooft bundles. Let now prove the analogous
of proposition 3.1.12:

Proposition 3.1.18. 't Hooft bundles depend on (6n—1)k+4n*—n+1 parameters
for k > 5.

Proof. The idea of the proof is similar to the one in Theorem 3.8 in | . We
use the description of a 't Hooft bundle shown in remark 3.1.17: The matrices a, b
can be reduced to matrices with the first block k£ x k equal to the identity matrix,
moreover we can arrange the first row of the second block to be (1,...,1) hence
each one depends on (k — 1)n parameters. While every &;, u; depends on 2n + 2
parameters. So the couple (A, B) of matrices which describes a 't Hooft bundle
depends on: 2(k — 1)n + (2n + 2)(2n + 2k) = k(6n + 4) + 2n(2n + 1) parameters.
Now the group G = GL(k) x GL(k) x GL(2n + 2k) acts over (A, B) by

(@8 (4.8)) = (5477 aB)
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In order to evaluate the isotropy subgroups of this action it is sufficient to study
the actions of the three groups separately: let’s focus first on « (/3 is the same). «
sends the couple (A, B) to the couple (A, aB) where

aB = (—a-b-D(u)|a-b- D(&))

In order to preserve the structure of «-b, @ must be diagonal and the first element
11 must be equal to 1, so there are k — 1 free parameters.

Let’s study now the action of GL(2n + 2k) over (A, B). Let’s first divide v into
four square matrices of size n + k each, say

D' D?
Y= ( D3 D4 )
where D' = (d! ).

So (A, B) is sent in the couple (Ay~1, B~'). Focusing on the second part we get
By' = (= b(D(us) D" = D(&) D*)Ib(~D(:) D*" + D(&) D))

This leads to the condition that D(;;)DY — D(&)D?" and —D(;)D* + D(&;) DY
are diagonal matrices. Hence if i # j we get the following:

Midjl'i - fidgz'z‘ =0

Thanks to the generality of the linear forms, this leads to 2n + 2 conditions that
are satisfied if and only if d;k =0 for every 1, j, k with j # k.

This proves that the matrices D* are all diagonal.

Moreover from B~! we get the linear forms associated to the new instanton bundle,

that is: 1 2
i = pudy; — &dy ,

{ & = —wdd+&dY Vi=1..n+k
Studying A’Yfl, knowing that

1 (D1D4 _ D2D3)—1D4 —(D1D4 _ D2D3)_1D2
Y - _(D1D4_D2D3)71D3 (D1D4_D2D3)71D1
we get

211

él' = AL dE Zq2.43. (52 i )

(AT

{ﬂi = m( &idy; + pidy;)

In order to get a 't Hooft bundle it is sufﬁment to satisfy the k + n — 1 conditions

dbdl — d3d?, = A

217 27
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where A € C.
Summing up, the dimension of the isotropy group of the whole action is 3n + 3k +
1 + 2(k — 1). Subtracting this dimension from the number of parameters of the
couple (A, B) we get the result.

O

3.2 Different symplectic structures

So far we have investigated on the different structures a symplectic instanton
can have changing the matrix associated to it and fixing the matrix associated to
the symplectic isomorphism. Now let’s see how many skew-symmetric matrices J
satisfy the equation AJA! = 0 in the unknonwn J.

Notation 3.2.1. For the rest of the section J = (j) will be a (2n+2k) x (2n+2k)
skew-symmetric matrix often used in the following matrix form

Jt o J?
(5 %)

and I; represents the ¢ x ¢ identity matrix.

Proposition 3.2.2. Let A be a k X (2n + 2k) matrix representing a generic sym-
plectic 't Hooft type instanton.

The dimension of the space of solutions of the equation AJA! = 0 is k +n and the
solutions are the following

ap 0 0 0
Jt=J3=0, J? =

0 0 0 ans
with oziE(C.

Proof. 1t is easy to see that these matrices are solutions.

In order to study separately the three blocks of J we need to prove the proposition
for a non generic 't Hooft bundle, i.e. let’s suppose that the linear forms &;’s and
z;’s are only in the variables x;’s while the p;’s and the n;’s are in the y;’s (following
the same notations used in 3.1.7 ). Then if the result holds for this particular 't
Hooft by semicontinuity we can conclude.

If we call X the first block of the matrix A and Y the second block we get the
following equation

XX L XY VXX 4+ Y 3YE =0
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So J! is multiplied by quadratic forms in the z;’s, J? in the 1;’s and J? in the forms
z;y;. Let’s focus first on J* (the procedure for J* is the same). We have (n + k)?
variables, for simplicity we are going to call these matrices e; ; for7,j =1,...,k+n,
and e; ; is the matrix that is everywhere zero except for the position (4, j) where is
equal to 1. We can divide these matrices into three groups: e; ; with both indexes
less or equal than k, with one greater than £ and with both indexes grater than
k. When we perform Xe; ;X" for a matrix of the first group we get a k x k matrix
everywhere zero a part from place (i, j), moreover the quadratic form in this place
contains the monomial 3. No other matrix shares this property, hence the k?
matrices of the first group must be multiplied by zero in order to get the result.
Let’s see now how the matrices of the second group behave: taking e; jyx (with
i < kand j <n)we get a k x k matrix that has only the row 7 different from
zero and all the forms are multiple by x;. While if we take e; s ; (with i <n and
J < k) Xeiyr ;X" has only the j—th column different from zero and the forms are
multiple by z;.

let’s take e; j1 with 4, j fixed. e;ix+ is the only matrix that shares in place (i,1)
the monomial zgz; after multiplication. So we get one condition on each e; for
every t = 1,..., k. But if we focus on €; ;. the conditions are again over the €;4,
matrices, and these conditions are independent from the previous ones if i # 1.
So one more time the 2nk matrices of the second group must be multiplied by
zero in order to get the result. We are left with the matrices of the form e; iy j1
with 4,7 < n. Xe;p ;11 X" is a matrix generally nowhere zero and multiple of
the monomial z;z;. Hence only the matrices linked to e;1y j+r and e;yx i1, share
the same monomial, but thanks to the generality of a these two matrices are not
multiple, therefore we can conclude that J! = 0.

To prove that J? is diagonal we proceed keeping the same notation relative to e; ;
and dividing these matrices again into the same groups we created before, only
now ignoring e;; for every ¢ because we already know that these are solutions.
When we perform the calculation of Xe; ;Y" —Ye;; X" (a skew-symmetric matrix)
with i, 7 < k we see that this matrix has only places (7, j) and (j,7) different from
zero, and in these places all the possible degree two monomials appear. Moreover
between all these matrices only e;; and e;; give a matrix that in place (4, j) has
the monomial zyy. So let’s keep in mind that the coefficients of e; ; and e;; must
be multiple, however we can not conclude yet that they are zero. Let’s focus our
attention on the matrices of the form e; ;14 and e;yx; now: for e; ;4 (with ¢ <k
and j < n) the resultant matrix has only the i—th row and the i—th column
nonzero, moreover the monomials that appear in every place of this matrix are
multiple of y;, similarly e;,, creates a matrix with the same property except the
fact that the monomials are multiple of x;.

Finally e; 45 j+r (With ¢ # j) creates a scalar matrix multiplied by z;y;.
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So fixing i #+ }, the matrices e; ; such that Xe; ;Y' —Ye;; X" is different from zero
in the position (7, j) are exactly n?4n + 2, indeed there are 2 from the first group,
2n from the second and n? — n from the third one, moreover these last n? — n
matrices are the same for every position.

We have already said that there must be a relation between the 2 matrices of the
first group, the same happens among the matrices of the second group: indeed
these 2n matrices can be coupled by being the only two matrices in this group
that after multiplication in place (i, ;) they present a monomial of the form zgy;
or x;yop wheret =1,...,n.

So these matches solve the problem for the quadratic monomials where at least
one between xy and 1y, occurs. We have still n% 4 1 free variables and n? equations
(the other degree two monomials). In order to solve this system we are forced
to use the free variables obtained by the matrices of the third group. But if we
change position (if £ > 2 there are more positions) the equations change and we
have not enough free variables to use. This completes the proof.

[
Proposition 3.2.3. Let A be the k£ x (2n + 2k) matrix of the following form
xo a’/‘l DEE In O DY DY 0 0 DR DT O yo ... yn—l yn
0 29 ++ -+ Ty 0 -+ 0 0 -+ 0 yo == - yp O
0 o .. O xo l’l DR .. xn yO .. o .. ynfl yn 0 .. O

(Special symplectic instanton).
The dimension of the space of solutions of the equation AJA! = 0 is 2n + 2k — 1
and the solutions are the following

o Qi as s Aptk
Optk41 a1 Q2 B Optk—1

1 _ 713 _ 2 _
Jo=J"=0, Jo = Ot k42 Optk+1

aq (8%

Qont2k—1 Oopyok—2 - Ontktl (&3]
with o; € C.

Proof. First of all by calculation it is easy to see that for every a; the matrices
described above are solutions of AJA! = 0.
In order to prove that there are no others we can treat separately J*, J? and J3:
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indeed if we set A = (X|Y), where X and Y are k x (n + k) matrices dealing
respectively with the z;’s and y;’s, we get that

AJA' = XX — VI X+ XY+ Y.J3YY

Hence J' and J? are multiplied by quadratic forms in the z;’s and in the y;’s
respectively, while J? is multiplied by quadratic forms in both variables.
Let’s focus again first on J*:
we need to solve the system X J' X = 0 in the unknown J!. The matrix associated
to this linear system is (("3')k?) x (n + k)? so fixing n and for k sufficiently large
it is enough to show that the matrix has maximal rank, but it is immediate to see
that this matrix is already reduced in echelon form and all the lines are nonzero,
hence it has maximal rank.
This again implies that also J? = 0. we are left to see which are the solutions of
the system X J2Y* — YV J2' X! = 0.
if we build the matrix that represents the linear morphism X J2Y* — Y J2' X" it is
immediate to see that every row of this matrix has only two entries different from
zero, more precisely every row give us a condition j(zm) = j?k’t) ifi = k41 and
7 =t + [ for suitable [ € Z.

O

Proposition 3.2.4. Let A be a k x (2n + 2k) matrix representing a generic Rao-
Skiti instanton.
The only solution of the equation AJA! = 0 is when

_ 0 aln—i—k
/= ( _a[n-i-k: 0 >

Proof. This matrix for every « is a solution.

Here we apply the idea used in 3.2.2, we need to suppose that the linear forms
in the persymmetric matrix P are only in the variables y;’s. In this way we can
treat the blocks of J separately. J' = 0 because we can apply the same procedure
used in 3.2.3; moreover also J?> = 0 indeed the second block (the one named Y')
of the special symplectic instanton is a specialization of a persymmetric matrix,
hence if there are no solutions, except the trivial one, for this kind of matrix
there is none for the general case. For the same reason J? must be a linear
combination of the matrices in the space of solutions described in 3.2.3, i.e. band
matrices (n + k) X (n+ k) that have only one band different from zero and all the
elements in that band are equal. Indeed J? must be a solution of the equation
X J2Pt — PJ2 Xt = 0, which is a generalization of the equation stated for J2 in
3.2.3. The idea of the proof is to show that the only possibility for J? is being a

with o € C.
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multiple of the identity.

Let’s call
0 .0 0 o 0 .0 as O
.0 0 O -0 0
St=1 0 0 00 0 |-%2=]0 0 0 0 0
0O 0 0 0 O O 0 0 0 o0
0O 0 0 0 O O 0 0 0 o
0 0 0 0 0 00 0
: - 0 00 : .0 00
Sontok—2 = 0 0 00 0 | Sentor—1= 0 0 00 0
Qont2k—2 0 0 0 0 0 0O 00O
0 Qon42k—2 000 Qon42k—1 0 00O

We can divide these matrices into two groups: the upper triangular and the lower
triangular (we already know that S, x belongs to the space of solution hence we
can get rid of it). Let’s focus first on the upper triangular group. Evaluating
the matrix T, = XS;P* — PS!X" for i = 1,...,n + k — 1 we can classify it in
the following way: 77 is the only matrix among the T;’s that has in place (1,2)
quadratic forms in xgy; for ¢ = 0,...,n. Similarly 75 is the only one that has
quadratic forms in the same monomials in place (2,3). More generally T}, for
i=1,...,k—1, is the only matrix that has these forms in place (7,7 + 1).
For the other n matrices it is sufficient to focus our attention on place (k — 1,k) ;
indeed Tj.; is the only matrix which presents in that place the monomials z;y;.
The lower triangular matrices give the following matrices: U; = XS; 1Pt —
PS!,, X' fori=1,... ,n+k—1. These can be classified exactly in the same way,
more precisely U; and T; are the only matrices that share the property described
above for 7;. Hence in order to get a linear combination of the 7;’s and the U;’s
equal to zero it should happen that, for ¢ fixed, T; and U; must satisfy n + 1
equations if we focus on the entry of the matrix where they share their property
(the number of monomials of degree two that they have in common), but this,
thanks to the generality of the persymmetric matrix, gives only the trivial solution
ifn>1.

O

Remark 3.2.5. The spaces of solutions studied in the previous propositions could
be used to understand the fibre of the map that associates to a couple (A, B) rep-
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resenting an instanton bundle the matrix A that represents a Steiner bundle.

On a generic Rao-Skiti the map is one to one, while the fibre on the special
symplectic instanton is more complex, the aim for the rest of the section is to
study it.

The first thing we can see is that inside this fibre there is also a 't Hooft bundle
associated to a different symplectic isomorphism.

Proposition 3.2.6. Let A be the matrix representing the special symplectic in-
stanton bundle, moreover let

7 [n-i-k 0n+k o V On+k
]_(0n+k K )’ V_<0n+k: Vv

where
0 0 1
K o .- 0
0o .- 0
1 0 0
isa (n+ k) x (n+ k) matrix and
t’ A
V = . .
t1n+k_1 - tn+kn+k_1

is a (n+ k) x (n + k) Vandermonde matrix with ¢; € C. .
Then if we set A = AIV we get that AJA! = 0, furthermore A represents a
symplectic 't Hooft instanton bundle.

Proof. In order to see that AJA! = 0 it is sufficient to observe that the matrix
IV JV!It is of the form shown in proposition 3.2.3. Moreover, exploiting the
calculation, we can see that A is a symplectic 't Hooft bundle with linear forms:

G=zottim+ o Tn, = Yo+t Ynor o Y0
O

The following lemma will be useful to understand deeper the fibre on the special
symplectic bundle:
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Lemma 3.2.7. Every skew symmetric matrix .J belonging to the space of solutions
of proposition 3.2.3 (keeping the same notations) can be expressed in the following

form J = QJQ" where
. In-i—k 0n+k )
©= < Onsk | J2

and J is the classical skew symmetric matrix.

Proof. it is enough to observe that

0 J?
t n+k
QJQ B ( _J2 0n+k )

]

Remark 3.2.8. One important thing to notice is that moving inside the fibre of the
special symplectic bundle doesn’t imply that we are keeping the same isomorphism
class inside the moduli space, i.e. the matrices of the form of () described in lemma
3.2.7 are not always symplectic: indeed if we evaulate the Kuranishi map with [G5]
on the two instanton bundles (which lie in the same fibre) described in proposition
3.2.6 we see that it is different, more precisely both the germs are spanned by
the same number of quadrics but the generic quadrics inside these spaces have
different rank. Nevertheless what we can say is that moving along that fibre allows
us to move inside the symplectic moduli space in a path connected way. Hence
we can join the special symplectic instanton (which of course lies in the Rao-
Skiti component) to an element which lies on the symplectic 't Hooft component
concluding that these two components are path connected.
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Chapter 4

Wishtul thinking

This final chapter is devoted to some conjectures and computational results.
From 3.1 to 3.3 it is shown a possible path to prove Ottaviani’s conjecture in
[ | (Theorem 4.4): this conjecture describes the space H'(S?(E)) when E is
a generic symplectic 't Hooft bundle.

The basic idea is to apply the same method used in Chapter 1 for Steiner bundles,
but in this case the main obstacle is that the inductive step is two and not one:
this implies that we must deal with a sheaf which is not a bundle.

In 3.4 we study the same space whenever E is a Rao-Skiti instanton bundle.

As explained in Remark 1.5 of | | we can identify the tangent space at
MIS, ;. (the moduli space of symplectic instanton bundles of charge k in P?"!) in
FE with H'(S%(F)), so solving these conjectures would give an important compre-
hension of the tangent space at the moduli space of symplectic instanton bundles.

4.1 Tangent space at a symplectic 't Hooft bundle

The following theorem is divided into two parts, the first one will be proved
later in the work while the second part remains a conjecture:

Theorem 4.1.1. Let E be a symplectic instanton bundle of 't Hooft type over
P27+ and let k > 2. Then, with the notations used in proposition 3.1.3,

i) h'(S?E(—1)) = max{q(k,n),2(k +n)}
ii) h'(S?E) = max{p(k,n), 5kn + 4n?}
Remark 4.1.2. Let k > 2. The following hold

2n

q(k,n) <2(k+n) = <k

n—1

37



k>9 for n=
k>6 for n=
k>5 for n=4,5
k>4 for n>6

p(k,n) < 5kn + 4n® <=

Remark 4.1.3 (Variables division). In order to use the results obtained in Chapter
1 for our conjecture we need to deal with a special form of A, a matrix defining a
symplectic 't Hooft bundle. More precisely:

A= [D(&)]a- D(z)|D(wi)|a- D(n;)]

where now the forms &;’s depend only on the zq, ..., z, variables while the w;’s
on the x,11,...,%2,y1. this means that the two blocks of A depend on different
variables.

Computational results confirm that if &k is small there is a loss of generality in using
this particular form of A, however, if k is enough big, the 2k linear forms regain
generality. We will see later using [:5] that for n = 2 if £ > 11 these bundles have
the same behaviour as the generic one.

So from now on we will use this form of A when we describe a symplectic 't Hooft

bundle.

Remark 4.1.4 (Proof). The first part of the theorem 4.1.1 is an easy con-
sequence of theorem 2.1.7: indeed we can split V into V3 = (x¢,...,z,) and
Vo = (Tpi1, ..., Tons1) and see A = [A1|A2} where A; € Hom(W,I ® V;) (re-
turning to the notations used in (2.1) ). Then we can consider these two exact
sequences:

0— S >We0 2L Te0((1) — 0

0— S >WR0 2 T00(1)—0

Hence S; and S5 are two Steiner bundles of ’t Hooft type over P".
Furthermore we can split the matrix of the map in prop 3.1.4 into two parts:

¢: Hom(N*,M*) — NNQV

B= {?} — AJB + BtJA
1

In order to find the kernel of the map above it is sufficient to solve these two
independent conditions:

AlBl - BiAi == 0 A2B2 - B;Ag == O,
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and this means that B; € H'(S%S}(—1)), more precisely the map
o: HYS?S3(—1))® HY(S?S3(—1)) — H'Y(S%S*(-1))

B
Bl@Bg — |:B?:|

is a bijection.
Hence we can conclude.

4.2 Explicit description over P?

We know that the moduli space of instanton bundles with ¢ = k over P? is
irreducible and smooth of dimension 8k — 3. Moreover every instanton is symplec-
tic. Hence if we take E instanton bundle of 't Hooft type associated to A, with
the same notations as in definition 3.1.7, we know that h'(S?FE) = 8k — 3. In the
next proposition we make explicit a basis of H*(S?FE), but before that we need to
introduce some matrices:

First set for every i = 1...k:
C! with (j,)-th entry given by
ﬁ for j=1,....k j#i
0 for j=1
1 for 1=k+1

with (4, 7)-th entry given by
—aj&jo . ) .
Gty for G=1. .k j A
0 for j=i

and
D! with (j,4)-th entry given by
—ajwi2 . . )
Mwﬂj——wm for j=1,....k j#1
for j=i

with (4, j)-th entry given by

{& for j=1,....k j#1i

WigWj3 —Wi3W;2

0 for j=1
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Then we can construct the following matrices (same notations used in remark

4.1.4): /

The next proposition is the equivalent of proposition 2.2.2:

Proposition 4.2.1. Let assume that &, w;s and a; are different
from zero for every i. Then

i) The 2k-dimensional subspace of N ® V' generated by N ® (x1,z3) surjects
over the (2k — 2)-dimensional vector space H'(E) = (N ® V') /M, where in
the quotient (vlx; + v?x3) ~ 0 iff v* € (a') or v? € (al).

ii) The 8k-dimensional subspace K C M ® N* ® V generated by
(Ch,...,Ck,Dq,..., D) ® V surjects over the (8k — 3)-dimensional vector
space H'(S*E).

Proof. The proof of i) is the same as the first part of proposition 2.2.2: indeed the
equation v'zy + v2x3 = Am, where v' € N and m € M, gives the conditions

mi&io =0

M1 14iWi2 0
mi&in + Mey1a; = v}
Mpp14iWiz + Mogroa; = U7

hence i).

We already know that h'(S?FE) = 8k — 3, moreover it is straightforward to
see that K is contained in ker ®. So, to prove ii), it is sufficient to see that K in
H'(S?FE) has dimension 8k — 3.

The equation
k

Y (aCi+d;D;) = Ala+ STA'
i=1
where ¢;,d; € V, o € End N* and S is a (2k + 2) x (2k 4 2) symmetric matrix,
gives the following conditions (for every j =1...k):
if i = j we get
EiolQjj = Sjjeht) =
Eiagy — Sjjvne1) — Sj,2k+2ajl-
Wj25j; =

o O OO

G ) 1 —
Wj3Sjj + Sjk+1a; =
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obtaining that s; ;11 = 5; 2142 = 0.
Similarly, if ¢ = 7 + k + 1, we get the conditions S;4x4+14+1 = Sj4k+1,26+2 = 0.
If it =k+ 1 ori=2k+ 2 we obtain respectively

( do; = 0
_ k1 1
¢ dyy = > agou; — Sk+1,2k+20;
dgj == 0
_ 1
[ d3; = Sk+1,k+10;
( Co; = 0
_ 1
Cij = —52k+2,2k+24;
Co; = 0
= Yrajay + j
\ G35 = t Qg Oty T Sk41,2k+20;

Hence, in order to have Zle(ciC’i + d;D;) ~ 0, we get these k + 3 independent
conditions (the first two are exactly the same as the second part of proposition
2.2.2):

- e1, ..., c) € {a'zy), and d; = 0;
- di, ..., dg] € {(a'z3), and ¢; = 0;

- [es1 — dyy, - .. e3 — dig] € {a'), and all other variables equal to 0.

4.3 Restriction to a codimension 2 variety

Let H = P?"! be the variety given by the equations z,, = 0 and x4, = 0.
Let Apen1 € Hom(M, N ® V') be given by substituting x,, = 0 and 22,41 = 0 in
A. In matrix form there are two columns of Ajp2n—1 which are zero (more precisely
the (n+ k)—th and the last one) and we set A’ the matrix obtained by A deleting
these two columns. We set M = M’ @ C?, so that A’ € Hom(M', N @ V') defines
an instanton bundle E’.

If we call Jy its sheaf of ideals, we get the following exact sequence

0— 0(=2) 25 0(=1)? 2 35 — 0 (4.1)
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Together with the defining sequence of H we get
0— 0(-2) 5 01220 — 05 —0
Tensoring the previous sequence with S?E we thus obtain

0 — S’E(-2) — S’BE(-1)> — S°E — S*Ejg — 0 (4.2)

and this leads to the following two long exact sequences:

0 — HY(S?E(-1))? — HY(§) — H*(S*E(-2)) % H*(S*E(-1))? — H*(F) — 0
(4.3)

0 — HY(S*Ey) — H'(F) — H'(S?E) — HY(S*Ey)
— H*(§) — H*(S*E) — H*(S’Ejg) — 0 (4.4)

where § is the sheaf which appears when we split (4.2) into two short exact se-
quences.
Let’s focus on (4.3) first, especially on ¢:

0: NN — H?(S?E(-1))?
T +— (Txopgr,—Tzy)
In order to study the kernel of this map, first we study the case n = 2. If we set
o1: N°N — H?*(S*E(-1))
T —T'xs
we have the following

Lemma 4.3.1. A basis for the solutions of the system

(with ¢ and B as in remark 4.1.4 and By = 0) in the unknown B; = l go ],
1

where Cy = (¢;;) is a k x k matrix, C; = (c;;) is a 2 x k matrix and T is a generic
skew-symmetric k£ X k matrix, is given by the 3k solutions (for every 1 <t < k):

0 1

¢}, = 1, all other unknowns equal to zero (k solutions)
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¢34 = 1, all other unknowns equal to zero (k solutions)

1 _
C = 15 :
0o _ .. i,0 0 _ .0 Ssto ;
Cti = az’lft,ﬁi,o—ft,o{m Cit = Cri &0 0<i<t & soluti
: , (k solutions)
Jit Il € 1€ 0—E€0601 t,j Jit & o =

all other unknowns equal to zero

Proof. Tt is straightforward to see that the expressions written above are solutions
and are linearly independent. Moreover, for every (i,7) with 1 <i < j < k, we

have: . . . .
§inCiy —&ac; +ainc j —ajic; =0
0 0 _
fi,ocm - 5]',00]‘72‘ =0

So there are k? — k equations and k% 4 2k variables. In order to prove the lemma it
is sufficient to show that the matrix associated to this system has maximal rank.
Just to fix the ideas, we show the shape of the matrix when £ = 3, in this case we
have the following:

51,1 —52,1 —dag ai
1,0 —&a20
51,1 —53,1 —as; ai
1,0 —&30
52,1 —53,1 —as31 2.9

§2,0 _§3,0

Focusing on the left part of the matrix (the one which refers to ¢ ;) it is immediate
to see that this submatrix has maximal rank.
O

Lemma 4.3.2. Set Y the space of the solutions of the system in lemma 4.3.1.
Then, if k& > 4, the dimension of ¢(Y) is 2k — 2. Moreover a basis is given by the
following matrices multiplied by x5 (for every 1 <t <k —1):

aj
0 : 0
2
ay 1
2 2 2 2
—ar o TG0y 0 Ayp -0 A ) (4-5)
a2
141
0 : 0
_a%
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a;¢(t,1)

0 : 0
af (E(tt—1)
_a’%£<t7 1) T _a’%—lf(t?t - 1) 0 _a’%Jrlf(t? L+ 1) U _all;f(tv k)
aiﬂﬁ(t, t+1)
0 : 0
apé(t, k)

where the only rows and columns which appear are the t—eth and
(i, §) = §i,085.2
’ &i,1€5,0—6i,085,1°

Proof. In order to get easier calculation we can observe that if we take B in Y
then AJB + B'JA' = (AyJB + B'JAL)x,.

The first k£ solutions in lemma 4.3.1 are sent to 0 by ¢.

The second k solutions are sent by ¢ to the matrices of the form (4.5) multiplied
by zo with 1 <t < k, but for t = k the matrix we get is a linear combination
of the others (just to fix the ideas, in fact everyone is a linear combination of the

remaining k — 1 matrices). We call these matrices vy, ..., vx_1.
The same happens for the matrices of the form (4.6) multiplied by x5 which are
image of the last k solutions. These matrices will be denoted by wq, ..., wg_1.

Now we are left to prove that these 2k — 2 matrices are linearly independent.

In order to do it we write aqjv; + ... + ap_1vp—1 + w1 + ... + Br_1wi_1 = 0.
There are 2k — 2 variables and @ conditions. If £ > 4 there are at least 2k — 2
conditions, moreover, thanks to the generality of a and &; ;, these are independent.
So the only solution is the one with all the coefficients equal to 0, hence the
matrices are independent.

]

Now we are able to study ker ¢:

Proposition 4.3.3. The dimension of ker ¢ is k£ — 1. Moreover a basis is given by
the matrices of the form (4.5).
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Proof. We have already studied ker ¢;. If we set
wo: NN — H?*(S?E(-1))

T — Tl'g,

then a basis of ker ¢, is given by the same matrices as in lemma 4.3.2 replacing
gi,j with Wi 245-
Obviously ker ¢ = ker ¢1 N ker 9, hence the matrices of the form (4.5) belong to
ker ¢. In order to prove that there are no other elements in this intersection we
can apply the same argument used in the last part of the proof of lemma 4.3.2
applied to the & — 1 matrices of the form (4.6) in ker¢; and the £ — 1 matrices
of the same form in ker ¢». Consequently we get that these matrices are linearly
independent, hence we can conclude.

O

Now we return to the general case: first of all we still split ¢ in two:

o1: NPN — H?*(S?E(-1)) ¢9: AN — H?*(S?*E(-1))

T — —Tl'n T — Tx2n+1

Let’s give the equivalent of lemma 4.3.1 and lemma 4.3.2 when n > 2, because, in
this case, the things change:

Lemma 4.3.4. Assumen =3 and &k >4 orn > 4 and k > 3. Then a basis for
the solutions of the system

¢1(T) = ¢(B)
(with ¢ and B as in remark 4.1.4 and By = 0) in the unknown B; = [ go ] , where
1

Co = (c};) is a k x k matrix, Cy = (¢} ;) is a n x k matrix and T is a generic skew-
symmetric k X k matrix, is given by the 2k 4+ n — 1 solutions (for every 1 <t < k
and 1 <r <n-—1):

¢}, = 1, all other unknowns equal to zero (k solutions)
c}m = 1, all other unknowns equal to zero (k solutions)
¢,; = aj, all other unknowns equal to zero (n — 1 solutions)

Proof. The expressions written above are independent solutions. In order to see
that there are no others we write the system which corresponds to ¢1(T) = ¢(B) :

0 0 1 1
51‘,7’0@',]' - 5j,rcj,z‘ T QigCrj — AjrCry = 0

0 0 _
§i0Ci; — §5065, =0
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forevery 1 <r<m—1landevery 1 <i<j<k.

Hence the matrix of this system is w x (k* + kn). we can split this matrix
into two submatrices: the one of the ¢}; which is w X k%, and the one of the
¢;; which is nhEZD % k.
if we focus on the rows referred to an r fixed then the second matrix has the
same properties of (2.8), then we can perform Gaussian elimination with the same
method (taking into account the whole matrix). Swapping properly the rows we
get the first (n —1)(k — 1) rows linearly independent, and the remaining rows have
only zero entries under the c}j. The remaining variables involved in the system are
the ¢}, with i # j, so they are k(k — 1). Thanks to the generality of a and &; the
remaining rows have rank k(k — 1) provided that there are enough equations left,
more precisely provided that

nk(k —1)
2
and this inequality is true if n =3 and k >4 orn > 4 and k > 3.

—n-D(k-1)>k —k

]

Thanks to the next lemma we can observe that, despite the differences in ker ¢,
between the case n = 2 and the others, ker ¢ shows the same structure:

Lemma 4.3.5. Set Y the space of the solutions of the system in lemma 4.3.4.
Then, with the same assumptions stated in lemma 4.3.4, the dimension of ¢(Y') is
k — 1. Moreover a basis is given by the following matrices multiplied by z,, (for
every 1 <t <k-—1):

aq
0 : 0
n
a1
n n n n
—Qp o TGy 0 N (1 ) (4-7)
CLTL
41
0 : 0
n

Proof. the proof is the same as in lemma 4.3.2 observing that the n — 1 solutions
found in lemma 4.3.4 are sent to 0 by ¢.
O

Returning to (4.4), we focus our attention on

§: HY(S*(Em)) — H*J)
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We know by Proposition 3.4 in | | that Ejpznri2 ~ E' & O? where E' is a 't
Hooft bundle over P?"*1=2 Hence we have the following natural decomposition:
H'(S*E\y) ~ H'(S*E') & H'(E')*.

Moreover:
let

(I)‘PZn—l : Hom(N*, M*® V/) — NN X S22y’
B > (Apan1)JB + B J(Apzar)’

and denote Kpzn-1 := ker ®pp2n-1 . In particular the decomposition
Hom(N*, M* @ V') = Hom(N*, M"* @ V') @& (N @ V')?
induces the following splitting
Kpni =K' @& (N V')?

In the same spirit of proposition 2.3.2 we have:

/

g? } € Hom(N*, M"™ ® V') represented by a
(2k 4+ 2n — 2) x k matrix with linear entries and by,by € N ® V' represented by
a 1 X k matrix with linear entries let us construct B € Hom(N*, W* ® V) in the
By

by

By

b

Then the boundary map

Proposition 4.3.6. Given B’ = [

following way: B :=

HY(S?Eppan) = H'(P*1, S?E') @ H (P, E')? - HA(F)

fits into the following commutative diagram

K@ (NaV') 2 (NN V)

| |

Hl(]PQn—l’ SQE/> & Hl(]}p2n—1’ E’)2 L HQ(%')
where 8 (B, by, by) = (AnJB + B'JA!, As 1 JB + BtJAgnH)
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Proof. The same diagram chasing applied in proposition 2.3.2
Let’s split 0’ of prop 4.3.6 into two (keeping the same notations):

§: Kae(NeV)? — NN @V
(B/,bl,bg) — AnJB—FBtJA;

& Ke(NeV')? — NN @V
(B/,bl,bQ) — A2n+1JB + BtJAth+1

From here to the end of the section the propositions staten are without proof,
hence they have to be considered conjectures .

First we study P%:

Lemma 4.3.7. Let n = 2. Using the same notation as in proposition 4.2.1, a
basis for the solution of the system

k
o ( Z Oy vtay + vz, O) = AJS + S'JA" + Ty (4.8)

i=1

in the unknowns ¢; = co;xg + c1;21 + €323 + €454,

vhv?eCF Se N®@ M* and T € A\°N

is given by the 8k + 7 solutions:

(in every solution the unknowns omitted are supposed to be taken equal to zero)

{ s :Coi quq’;%(l%gpoa;)gq2 < o _Zpipl ¢ V(.. m) € CF
e et T R (k solutions)
Cop = a,, (k+1—th)
v, = a: (k + 2 — th)
S2tktpg = % S2t2k+2,p = % = IZJE—Z; (k+3—th)
clp:a; (k44 —th)
v; = a}o So4oktlp = —ai (k+5—th)
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S942k+1

2
S242k+2,p = Ay

(k + 6 — th)

1
7p_ap

(k+ 17— th)

Sorkipp =Tp Y(71,. .., ) € CF (k solutions)
k .
Spp =" Y(1,...,7) €C (k solutions)
Sk+2p = Vp lpg = azfyp — afﬂq V(1,5 %) € CcF (k solutions)
Sk+1p = p
o Wq3 1 1 k .
Spq Z”iﬁqu*zngzq;” (aiﬂp aiﬂq) Yy, €C (k solutions)
_ p3Wqs —Wp5Wq
tpq T OpaWed—wpawya (aq%’ o ap'Yq)
Uf) = ’yp
o wq3 2 A2 k .
Spq 5—*’35‘14%";5"3 (ag% aéﬁq) V(y1,...,m) €C (k solutions)
_ p3Wq5 —Wp5Wq _
tpq T Wp3Wgd—Wpawgs (aqup ap’Yq)
Epoq2—Ep2§ T
_ §p08q2—8p28§q0 Wq3 1 _ 41 k
Spq - 520521—521520 wpgwq4zwp4wq3 (aqup ap’}/q) v(,yla e 77]&‘) € (C
t — £p0€q2*§p2€q0 Wp3Wags5 —Wp5Wq3 (al _ CLl )
PU = Ep0a1—Ep1Eqo Wpsgs—wpawgs \a 1P p g ( )
k solutions
£p0&q2—Ep2& e
_ _ $p0§q2—8p28§4q0 Wq4 1 _ a1 k
Spq EZole —521§ZO wp3wq4jwp4wq3 <aq7p a'p’yq) v(,717 s 7716) S C
__ __Sp08g2—6p28¢0 WpdWq5 —Wps5Wed ( 1 |
tpq - &p0€q1—Ep1€q0 Wp3wgea —wpawg3 (aqvp ap/yq)

(k solutions)

Proof. (sketch) Let’s write more explicit the system (4.8):
for every 1 <1 < j < k the coefficients of the z;’s of the left part of the equation

are:
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( _ Ggo=bo&ye (1. 1
&in&j1—&i&jo <aj Coi — @4, COJ)
_ &i2§j0—&iokj2 1 2

1 1 2

a;C1y — Q; C14 a?vl — a?v!

fioﬁjl—inijo( gl i 1J)+ i Vg i
0

_S2&jo—8iog2 (o1 ol
&i0&51—&i1&j0 <aj C3i — a4 C3J)

_ &i2&o—&io&i2 1, 1., 2,2 _ 2,2
&io&j1—&i1&50 <aj Cai — @y 04]) +a; Uj a;v;
0

\

While on the right part

( §i032+k+i,]’ - §j082+k+j,7;
§i182+k+z‘,j - §j182+k+j,z‘ + a}32+2k+1,j - a]1‘52+2k+1,i
5z’282+k+z‘,j - §j282+k+j,z‘ + a?52+2k+2,j - a?52+2k+2,i
Wj3Sji — WisSij
WjaSji — WiaSij + A38k414 — O5k41
\ WjsSji — WisSij T A38kyai — AF Skray i

We can split the system into two: the equations which come from the coefficients
of xg, x1, 2 and the others; indeed there is no unknown involved in both of these
groups.

Hence we can notice that the first part is exactly the same as the one found in
lemma 2.4.2; so the first 2k + 7 solutions written above are the contribution of this
part.

We are left to prove that the matrix of the second part of the system has maximal
rank.

Lemma 4.3.8. With the same assumptions of lemma 4.3.7, a basis for the solution
of the system

k
5;(ZdiDi,O,T’lfL‘1 + T2J}4> = AJU + UtJAt - T[EQ
=1

in the unknowns d; = do;xo + di;21 + dsixs + dy;xy,
rlr?eCF UeN@M*and T € A°N
is given by the 8k 4 7 solutions:

dsp = Ypwp3 dap = YpWpa
_ (Yqwg3a, —vpwpsag)wgs _ V(15 7) € c*
Upg = Wp3Wea —WpaWg3 Uk+1,p = —VpWps
(k solutions)
d3p:a]13 <k+1—th)
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p p
2.2 2
_ _ 4pWps 2 o Wpa
Upg = Ut2,p = T o
Wp3 Wp3 Wp3
1
d4p = ap
2 o 2
Ty = Q, Ugt1p = —Q,
_ 1
Uk+1,p = ap
_ 2
Uk+27p = ap

Upp = Tp V(7,0 ) € c*

Unihipp = Vp V(Y15 M) € c*
Uot2k+2p = Vp  Llpg = aZ’yq — afﬂp V(1,5 ) € Ck

U2+2k+£1,p =Y
_ 0 1. _ 1 i
u2+k+p,q - pr&qlifplqu (aqup apfyq> v(’}/l, cee 7fyk) < C
b= €p0€q2—Ep28q0 (al —a )
Pq €p0§q1 _£p1§q0 q,)/p plyq

7’11) {Z ’Yp
_ 0 2 42 k
U2+ k+p,qg = gpogqlzgplgqo (aq7p apfyq> V("}/l, . ,’yk) eC
e €p0€q2—Ep28q0 (&2 —a? )
Pq €p0§q1 _Eplfqo q,)/p pfyq

dip =Y
§q0 Wp3Wgs —Wp5Wq3 1 1
u = a — Qa
24+-k+p,q . € qulggglgqo wpswq4pr4wq3( q /P pr)/q) V('Yl, ce
__ _ Sp0§g2—8p28q0 Wp3Wq5 —Wp5Wq3 1 _ 1
tpq T £p0€q1—Ep1€q0 Wp3Wea —Wpawe3 (aq% ap”yq)
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(k+2 — th)
(k + 3 — th)
(k+4— th)
(k+5— th)
(k+6 — th)
(k+7— th)

(k solutions)

(k solutions)

(k solutions)

(k solutions)

(k solutions)

(k solutions)



dop = Vp

_ q1 Wp3Wgs —Wp5Wq3 1 .1 k
U2+k+p,qg = £p0€q1 —Ep1E40 Wp3Waea —Wpdawy3 (aq’Yp ap/yq) \V/(’Yl, cee 77’9) cC
t — €p1€q2_£p2€q1 Wp3Wag5 —Wp5Wq3 (al _ al,y )
rq £p0&q1—Ep18q0 Wp3Waea —Wpawg3 qTp p

(k solutions)

In order to study the kernel of the map ¢ in proposition 4.3.6 we need to com-
bine the solutions given in 4.3.7 and 4.3.8, taking into account that the variables
t;; must be the same.

Once we get the dimension of the kernel of § we have almost finished indeed we
can proceed in the same way we have done in proposition 2.4.3 having all the
dimensions we need.

4.4 Computational results

Throughout the whole work I used the software Macaulay2 [(-5] (version 1.7).
This program allowed me to picture the structure of the moduli space of instanton
bundles in particular cases.

The next tables will sum up the behaviour in P° of both the generic 't Hooft bundle
and the generic Rao-Skiti bundle.
Symplectic t’Hooft bundle:

k 6| 7 8] 9 [10]11]12
RI(S?(E)) |89 95 | 98 | 106 | 116 | 126 | 136
W (End(E)) | 94 [101 | 105 | 114 | 125 | 136 | 147

Rao-Skiti bundle:

k 617819 [10]11] 12
hI(S%(E)) |89 (95|98 106|116 | 126 | 136
W (End(E)) | 89| 95 | 98 [ 106 | 116 | 126 | 136

Remark 4.4.1. The first thing to notice is that the values of h'(S?*(F)), when F
is 't Hooft, agree with Ottaviani conjecture.

In P° these two families of instantons seem to share the same dimension of H'(S?(E)),
10k + 16, while the difference is when we study the moduli space of instantons (not
necessarily symplectic): indeed the dimension of the tangent space on a 't Hooft
bundle increases while the one on a Rao-Skiti remains unchanged: this means that
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inside the Rao-Skiti component the two moduli spaces are the same, on the con-
trary the component which includes the 't Hooft bundles is different somehow.
Moreover the Kuranishi map is always identically zero evaluated on a Rao-Skiti
bundle, both for the symplectic case and the general case. This does not happen
for 't Hooft bundles: in fact they are a smooth point in M1I1Ss; but for £ < 9
are singular in MIy;. While for £ > 9, when it is supposed that their dimension
stabilizes to 10k 4 16, they become a smooth point too.

In the next section we are attaching the scripts used to achieve these results.
The thesis is hence concluded.

4.4.1 Scripts

— Input: n integer.

— Output: none.

— The program creates: kk a field (could be Q or Z p).
— S polynomial ring in 2n+2

— indeterminates over kk.

e I ideal (vars S)

— S'=S/1°2
— S''=S/1°3
— S =8/174

— Functions used: none.

start=(n)—>
(

—kk=QQ;

kk=77/32749;

S=kk([x 0..x n,y 0..y n];
Ide=ideal (vars S);

S’=S/Ide " 2;
S’’=S/Ide " 3;
S’ =8/1de " 4;
use S;
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— Input: n, k integers.

— Output: A,J matrices.

— A defines the special symplectic instanton of quantic number
— on P {2n+1}, ie AJA"t=0.

— Functions used: none

specialinstanton=(n,k)—>
(
use S;
varl=matrix{{y 0..y
var2=matrix{{x_0..x
[=map S~ (ntk);
O=1-T1;
J=matrix{{O,1},{-1,0}};
for j to (k—1) do

(

zerosl=map(S~1,57j,0);

zeros2=map(S~1,5"(2xk—2—2xj ) ,0);

if j!=0 then vect=zerosl|var2 else vect=var2;

if jl=k—1 then vect=vect|zeros2|varl else vect=vect|varl;

if j!=0 then vect=vect|zerosl;

if j==0 then A=vect else A=A||vect;

)
A=map(S~{k:1},S {2s«n+2xk:0} ,A);
return (A,J);

_nj}};
_n}};

9

— Input: n,k integers; alpha, beta rational.

— QOutput: A,J matrices.

— A(alpha ,beta) defines the symplectic special instanton
— of quantic number k on P~{2n+1} of the form described in
— [AO00] p. 98

— Functions used: specialinstanton.

specialinstantonpar=(n,k,alpha , beta)—>
(

(A,J)=specialinstanton (n,k);
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G-mutableMatrix (A);
G1-G_(0..k—1,0..ntk—1);
Gl (0,1)=Gl _(0,1)xalpha;
Gl'’=matrix (Gl);
G2-G_(0..k—1,n+tk..2xn+2+xk—1);
for i to k-1 do

if i<k—1-i then

rowSwap (G2,1 ,k—i —1);

G2 (0,1)=G2_(0,1)xbeta;
J’=mutableldentity (S,n+k);
rowSwap (J’,0,1);
for i to n+k—3 do

if i<(ntk—3)/2 then

rowSwap (J7,2+1 ,ntk—1 —1);

G2’=matrix (G2);
K=matrix(J7");
G=G1’| (G2x(-K));
A=matrix (G);
A= map(S~{k:1},S {2xn+2xk:0} ,A);
return (A,J);

Input: n,k integers.
Output: A,J matrices.
A defines a (random)

"t Hooft symplectic instanton

of quantic number k on P {2n+1}, ie AJA~t=0.

The form of A is the one described in definition 2.1.7

Functions used: none.

tHooft=(n,k)—>

(

T=vars S;
a=random (kk"k kk"n);
a=substitute (a,S);
D=mutableldentity (S,k);
xi=random (kk "k kk "~ (2xn+2));
[=map S~ (ntk);
O=I-T1;
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J=matrix{{O,1},{-1,0}};
for j to k—1 do

(

element j=0;

for t to 2xn+1 do

(
element j=element j+xi (j,t)*T (0,t);
E
D (j,j)=D_(j,j)xelement_j;
);
D=matrix (D);

Dl=mutableldentity (S,n);
for j to n—1 do
(
DI_(j,j)=D1_(j,j)*T_(0,j+1);
);
Dl=matrix (D1);
Al=D]|(axD1));
Al=map(S~{k:1},S " {n+k:0} ,Al);
omega—random (kk "k, kk "~ (2xn+2));
D=mutableldentity (S,k);
for j to k—1 do
(
element j=0;
for t to 2xn+1 do

(
element j—element j+omega (j,t)*T (0,t);
E
D (j,j)=D_(j,j)xelement_j;
);
D=matrix (D);

Dl=mutableldentity (S,n);
for j to n—1 do
(
DI_(j,j)=D1_(j,j)*T_(0,n+2+j);
);
Dl=matrix (D1)
A2=(D|(axD1))
A2=map (S~{k:1
A=A1]A2;

)

}.S" {nik:0} A2);
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return (A,J)

— Input: n,k integers.
— Qutput: A,J matrices.
— A defines a symplectic

— of quantic number k on P {2n+1}, ie AJA"t=0
— The form of (A,B) is the one described in remark 2.1.10

— Functions used: none.

"t Hooft

instanton

tHooftl=(n,k)—>
(
T=vars S;
a=random (kk"k,kk "~ (nt+k));
a=substitute (a,S);
[=map S~ (ntk);
O=I-T1;
J=matrix{{O,1},{-1,0}};
Dl=mutableldentity (S, k+n);
D2=mutableldentity (S, k+n);
xi=random (kk " (k+n) ,kk " (2%n+2));
mu=random (kk " (k+n) ,kk "~ (2%n+2));
for j to k+n—1 do

(

elementl j=0;

element2 j=0;

for t to 2xn+1 do

(

elementl j=elementl j+xi (j,t)«T (0,t)
)

element2 j—element2 j+mu (j,t)«T (0,t

D1 (j,j)=D1 (j,j)+elementl j;
D2 (j,j)=D2 (j,j)+element2 j;
);

Dl=matrix (D1);

D2=matrix (D2);

A=ax(D1|D2);

A=map(S~{k:1},S {2xn+2xk:0} ,A);
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return (A,J)

— Input: n,k integers.

— Qutput: A,B matrices.

— A,B defines a (random) generic 't Hooft instanton
— of quantic number k on P"{2n+1}, ie AB"t=0.

— The form of (A,B) is the one described in definition 2.1.16
— Functions used: none.

generictHooft=(n,k)—>
(
T=vars S;
a—random (kk"“k , kk"n);
a=substitute (a,S);
b=random (kk"k,kk"n);
b=substitute (b,S);
D=mutableldentity (S,k);
xi=random (kk"k ,kk~(n+1));
for j to k—1 do

(

element j=0;

for t to n do

(
element j—element j+xi_ (j,t)«T (0,t);
E
D (j,j)=D_(j,j)*element_j;
);
D=matrix (D);

Dl=mutableldentity (S,n);
for j to n—1 do

(

D1_(j,j)=D1_(j,j)*T_(0,j+1);

)
Dl=matrix (D1
Al=D|(axD1)
B2=(D| (bxD1)
omega=random (kk "k, kk~(n+1));

)

)
)i
).
(
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D=mutableldentity (S,k);
for j to k—1 do

(

element j=0;

for t to n do

(
element j=element jtomega (j,t)«T (0,n+1+t);
E
D (j,j)=D_(j,j)xelement_j;
);
D=matrix (D);

Dl=mutableldentity (S,n);
for j to n—1 do
(
D1 (j,j)=D1_(j,j)*T_(0,n+2+j);
);
Dl=matrix (D1);
A2=(D|(axD1));
Bl=—[D]|(bxD1));
A=A1|A2;
B=B1|B2;
A=map(S~{k:1},S {2xn+2xk:0} ,A);
B=map(S~{k:1},S"{2xn+2xk:0} ,B);
return (A,B)

— Input: n,k integers.

— Qutput: A,B matrices.

— A,B defines a (random) generic 't Hooft instanton

— of quantic number k on P~{2n+1}, ie AB"t=0.

— The form of (A,B) is the one described in remark 2.1.17
— Functions used: none.

generictHooft1l=(n,k)—>

(

T=vars S;

a—random (kk~k,kk "~ (n+k));
a=substitute (a,S);
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Dl=mutableldentity (S, k+n);
D2=mutableldentity (S,k4n);
xi=random (kk " (k+n) ,kk~(n+1));
mu=random (kk " (k+n) ,kk~(n+1));
for j to ki+n—1 do
(
elementl j=0;
element2 j=0;
for t to n do
(
elementl j—elementl j4xi (j,t)*T (0,t);
element2 j=element2 j+mu (j,t)*T (0,t4+n+1);
D1 (j,j)=D1 (j,j)+elementl j;
D2 (j,j)=D2 (j,j)+element2 j;
);
Dl=matrix (D1);
D2-=matrix (D2);
A=ax(D1|D2);
B=ax((—-D2)|D1);
A=map(S~{k:1},S {2s«n+2xk:0} ,A);
B=map(S~{k:1},S"{2xn+2xk:0} ,B);
return (A,B)
)

—— Input: n,k integers.

— Output: A,J matrices.

— A defines a (random) Rao—Skiti symplectic instanton
—of quantic number k on P~{2n+1}, ie AJA"t=0.

— The form of A is the one described in definition 2.1.13
— Functions used: none.

RSinstanton=(n, k)—>

(

T=vars S;
varsl=matrix{{T_(0,0)..T (0,n)}};
[=map S~ (ntk);

O=I-1;
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J=matrix{{O,1},{-1,0}};
firstmat=mutableMatrix (S,k,n+k);
for i to n do
for j to k—1 do
firstmat _ (j,j+i)=T_(0,1);
firstmat=matrix (firstmat );
firstmat=map(S~{k:1},S {ntk:0},firstmat );
xi=random (kk "~ (2xk+n—1) ,kk " (2xn+2));
for i to 2xk+n—-2 do
(
f 1=0;
for j to 2xn+1 do
f i=f i+xi_ (i,j)*T _(0,j);
);

secondmat=mutableMatrix (S, k,n+k);
for i to k—1 do
for j to ntk—1 do
(
secondmat (i,j)=f (i+j);

);
secondmat=matrix (secondmat );
secondmat=map(S~{k:1},S"{n+tk:0} ,secondmat );
RSmat=firstmat | secondmat;
return (RSmat, J)

— Input: n,k integers.

—— Output: J matrix.

— J is a (random) matrix which has the property AJA"t=0
—if A defines a symplectic 'tHooft bundle.

—— The form of J is the one described in proposition 2.2.3
— Functions used: none.

JtHooft=(n,k)—>
(

use S;
I[d=map S~ (n+k);
[=map S~ (ntk);
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O=I-T1;
[=mutableMatrix (1);
for i to ntk—1 do
I (i,1)= random kk;
[=matrix (I);
J=matrix{{O,1},{—transpose(1),0}};

return J;

— Input: n,k integers.

— QOutput: J matrix.

— J is a (random) matrix which has the property AJA~t=0,
—if A defines the special symplectic instanton bundle.
— The form of J is the one described in proposition 2.2.2
— Functions used: none.

Jspecial=(n,k)—>
(
use S;
Id=map S~ (ntk);
[=map S~ (ntk);
O=I-T1;
I=mutableMatrix (I);
for cont to 2xn+2xk—2 do
listarandom cont= random kk;
for i to ntk—1 do
for j to ntk—1 do
I (i,j)=listarandom (i—j+n+k—1);
[=matrix (I);
J= (O]I)]]((—transpose 1)]O);

return J;

— Input: C matrix

— QOutput: siz matrix.

—— The columns of siz are a set of generators
— of the degree 1 syzigies of C extracting
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— those which derive from degree 0 syzigies.
— Functions used: none

createsyz=(C)—>
(
n=floor ((numColumns(vars S)—2)/2);
R=syz (C,DegreeLimit =>1);
stop=(numColumns R)—1;
t=betti(R);
num=t_ (1,{0},0);
for i to num—1 do
(
vett=R {i};
for j to n do
(
vettl=x_ j*xvett;
vett2=y j*xxvett;
if (i,j)==(0,0) then
siz=vettl |vett2
else
siz=vettl |vett2|siz;

);
E

siz=siz |[R_{num.. stop };
return siz;

— Input: deg, lenght integers; RING ring.

— Output: bas matrix.

— The columns of bas are a basis of the space of homogeneous
— vectors of degree deg in RING"lenght.

— Functions used: none.

creategenerators=(deg ,RING, lenght)—>

(
vett=basis (deg ,RING);
nmcol=numColumns( vett );
T=RING"lenght ;
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for i to lenght—1 do

(

for j to nmcol—1 do
(
vett1=T {i}sxxvett (0,j);
if (i,j)==(0,0) then
bas=vettl
else
bas=vettl |bas;
);
);

return bas;

Input: deg, sqrtlenght integers; RING ring.
Output: basisskewsymm matrix.

The columns of basisskewsymm are a basis

of the space of homogeneous skew—symmetric
matrices (sqrtlenght x sqrtlenght) of degree deg.
Functions used: none.

createskewsymm=(deg ,RING, sqrtlenght)—>

(

vett=basis (deg ,RING);
nmcol=numColumns(vett );
for i to sqrtlenght—1 do

(

for j from i+1 to sqrtlenght—1 do

(

U=matrix (U);
r w to nmecol—-1 do

(
Ul=Uxvett (0 ,w);
newvett=map (S~ {sqrtlenght ~2:0},5"{1:—deg},

reshape (S (sqrtlenght ~2),S~1,transpose Ul));
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if (i,j,w)==(0,1,0) then
basisskewsymm=newvett
else
basisskewsymm=basisskewsymm | newvett;
);
);
);

return basisskewsymm ;

— Input: deg, sqrtlenght (must be even) integers; RING ring.
— Output: basissymp matrix.

—— The columns of basissymp are a basis

— of the space of homogeneous symplectic

— matrices (sqrtlenght x sqrtlenght) of degree deg.

— Functions used: none.

createsympl=(deg ,RING, sqrtlenght)—>
(

vett=basis (deg ,RING);
nmcol=numColumns( vett );

control=0;

for i to sqrtlenght—1 do

(

for j to sqrtlenght —1 do

(

U=mutableMatrix (RING, sqrtlenght ,sqrtlenght );
if i< floor(sqrtlenght/2) then

(

if j< floor (sqrtlenght/2) then

(

U _(i,j)=1;
U_

(j+floor (sqrtlenght /2),
i+floor (sqrtlenght /2))=—1;

else

U_(i,j)=1;

65



U (j—floor (sqrtlenght /2),
i+floor (sqrtlenght /2))=1;

)
)
else
(
if j< floor(sqrtlenght/2) then
(
U_(i,j)=1;
U (j+floor (sqrtlenght /2),
i—floor (sqrtlenght /2))=1;
)
else
control=1;
)

U=matrix (U);

if control==0 then

(
for w to nmcol—1 do
(
Ul=Uxvett (0,w);
newvett=map(RING"{sqrtlenght ~2:0},
RING~{1:—deg}, reshape (RING"(sqrtlenght ~2),
RING"1,transpose Ul));
if (i,j,w)==(0,0,0) then
basissymp=newvett
else
basissymp=basissymp | newvett ;
);
)
else
control=0;
);
)
return basissymp;

)

— Input: deg, sqrtlenght integers; RING ring.
— Qutput: basissymm matrix.
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—— The columns of basissymm are a basis
— of the space of homogeneous symmetric

— matrices (sqrtlenght x sqrtlenght) of degree deg.
— Functions used: none.

createsymm=(deg ,RING, sqrtlenght)—>
(

vett=basis (deg ,RING);
nmcol=numColumns( vett );

for i to sqrtlenght —1 do

(

for j from i to sqrtlenght—1 do

U=mutableMatrix (S, sqrtlenght ,sqrtlenght );
U_(i,j)=1;
U_(j,i)=1;
U=matrix (U);
r

)

w to nmcol—1 do
(
Ul=Uxvett (0 ,w);
newvett=map(S~{sqrtlenght ~2:0},5"{1:—deg},
reshape (S”(sqrtlenght ~2),S"1,transpose Ul));
if (i,j,w)==(0,0,0) then
basissymm=newvett
else
basissymm=basissymm | newvett ;
)
)
);

return basissymm ;

— Input: A,B matrices.

— Output: HlendE module.

— A and B must be matrices which define E, an instanton bundle.
— HlendE is H"1(End E) seen as an S’—module.

— Functions used: createsyz.
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Hi=(A,B)—>

(

use S;
k=numRows(A);
n=(numColumns (A) —2xk )/ /2;
r=2xk-+2%n;
Tl=map(S~k,S"k,1);
T2=map(S°r,S°r,1);
NI=T1xx*B;
G=entries (A);
for i to k—1 do
if i==0 then
N2=T1%*(matrix ({G_i}))
else
N2=N2 || ( Tl**(matrix ({G_i})));
C=N1|N2;
C=map(S~{k~2:1},S"{2xkxr:0} ,C);
O=map (S~ (kx*xr),S"(k~2),0);
Ml=T1xxtranspose A;
M4=transpose NI1;
for i to k—1 do

if i==0 then
M2=T2x%(matrix ({G_i}))
else

M2=-M2| | (T2x*(matrix ({G_i})));
for i to k—1 do
(
for j to (r—1) do
if j==0 then
el=—B (i,j)xT2
else
el=el|(=B (i,j)*T2);
if i==0 then
M3=el
else
M3-M3| | el ;
);
G=M1|M2|O) || (O|M3|M4);
G=map (S~ {2xkxr:0} ,S"{2+%k"2+1r"2: -1} ,G);
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siz=createsyz (C);
siz’=substitute (siz ,S’);
W=substitute (image G,S’);
V=substitute (image siz ,S’);
HlendE=V/W;

dimHlendE=rank HlendE;
return HlendE;

— Input: A,B matrices.
— Output: H2endE module.

— A and B must be matrices which define E, an instanton

— H2endE is H"2(End E) seen as an S’’—module.
— Functions used: creategenerators

H2=(A,B)—>
(

use S;

k=numRows(A);
n=(numColumns (A) —2xk )/ /2;
r=2xk-+2%n;

N1=T1%xB;

G=entries (A);

for i to k—1 do

it i==0 then
N2=T1#x*(matrix ({G_i}))
else
N2=N2 || (T1**(matrix ({G_i})));
C=N1|N2;

C=map(S~{k~2:1},S"{2xk*r:0} ,C);

bas=creategenerators (1,S,2xkxr);

mat=map (S°{k"~2:0},S"{numColumns bas:—2} Cxbas);

bas=creategenerators (2,S,k"2);
Z=substitute (image mat,S’");
bas’=substitute (image bas, S’’7);
H2endE=bas’/Z;

dimH2endE=rank H2endE;

return H2endE;
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— Input: A,J matrices.
— OQOutput: H1S2E module.

— A must be a matrix which define E, a symplectic instanton

— HI1S2E is H"1(S"2 E) seen as an S’—module.
— Functions used: createsyz

SH1=(A,J)—>
(
use S;
k=numRows(A);
n=(numColumns (A) —2xk) / /2;
r=2xk-+2x%n;
d=k+n;
idk=id (S"k);
idd=id _(S~d);
nul=map(S~d,S"(d*d) ,0);
matl=idk*xtranspose A;
for i to k—1 do
(
mint=(idd**A~{i} {0..d—=1})[|[((—A~{i}_{d
if i==0 then
mat2=mint
else
mat2=mat2 | | mint ;
);
for i to k—1 do
(
mint=nul || (idd**A~{i} {0..d—1});
if i==0 then
mat3=mint
else
mat3=mat3 | | mint ;
);
for i to k—1 do
(
mint=(idd**A~{i} {d..r—1})||nul;
if i==0 then
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matd=mint
else
matd=mat4 | | mint ;
)

endsympaction=matl | mat2 | mat3 | mat4;
— the columns of endsympaction are a generating set
— of the action of End k \oplus Symp r given by (a,b)——> aA+Ab
endsympaction=map (S~ {numRows(endsympaction):1},

S {numColumns(endsympaction):0} ,endsympaction );
endsympaction=substitute ( image endsympaction,S’);
AA=Axtranspose J;
for i to k—1 do

for j to k—1 do
(
O=map(S~{1:1},S°{k:0} ,0);
O=mutableMatrix O;
O (0,i)=1;
O=matrix O;
O=0*xAA"{j };
Ol=map(S~{1:1},5°{k:0},0);
Ol=mutableMatrix O1;
O1_(0,j)=1;
Ol=matrix O1;
Ol= —(O1xxAA~{i});

KK=0+01;
if (i,j)==(0,0) then
newm—KK

else
newm=newm | | KK;
)

newm=map (S~ {numRows(newm):1} ,S~{r*k:0} ;newm);
— newm is the matrix representing the morphism A——>A’JA t+AJA " t.
siz=createsyz (newm);
siz=map (S~ {numRows(siz ):1},S " {numColumns(siz ):0},siz);
siz=substitute (image siz ,S’);
H1S2E=siz /endsympaction;
dimH1S2E=rank HI1S2E;
return HI1S2E;
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— Input: A,J matrices.

— Output: HIS2E module.

— A must be a matrix which define E, a symplectic instanton bundle.
— HIS2E is H"1(S"2 E) scen as an S’—module.

— This function does the same as SH1 but for every J symplectic.
— Functions used: createsympl

JSH1=(A, J)—>
(
use S;
d=k+n;
r=2xk+2%n;
basissymp=createsympl (0,S,2xn+2xk );
for i to numColumns(basissymp)—1 do
(
mm-transpose reshape (S~ (2xn+2xk),
S”(2%n+2xk) ,matrix (basissymp 1i));
mm=Asmm;
mm=reshape (S~ (k*(2«n+2xk)),S" 1 ,mm);
if i==0 then
endsympaction=mm
else
endsympaction=endsympaction [mm;
)
for i to k—1 do
for j to k—1 do
(
alpha=mutableMatrix (S,k,k);
alpha (i,j)=1;
alpha=matrix (alpha);
mm=alphax*A;
mm=reshape (S~ (k*(2«n+2+k)),S~ 1 mm);
endsympaction=endsympaction |mm;
)
— the columns of endsympaction are a generating set
— of the action of End k \oplus Symp r given by (a,b)——> aA+Ab
endsympaction=map (S~ {numRows(endsympaction):1},
S”{numColumns(endsympaction):0} ,endsympaction );
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endsympaction=substitute ( image endsympaction,S’);
numero—floor (kx(2xn+2xk));
T=S[j 1..j numero];
B=transpose reshape (T k,T"(2xn+2xk),vars T);
matrice=AxJ«Bttranspose (B)xJxtranspose (A);
numerol=floor (kx(k—1)/2);
matricemut=mutableMatrix (T,1 ,numerol );
for i from 1 to numerol do
(
div=i;
quot=k—1;
11=0;
while ((div—1)//quot)>0 do
(
div=div—quot ;
quot=quot —1;
i1=il +1;
);
i2=il+4div;
matricemut_ (0,1i—1)=matrice_ (il ,i2);
)
matricemut=matrix (matricemut );
stringa=coefficients matricemut;
matfin=transpose stringa 1;
variabili=stringa 0;
zeromap=map (T numerol ,T~1,0);
for i to numero—1 do

(

if i>numColumns(variabili)—1 then
(
variabili=variabili|matrix(j_ (i+1));
matfin=matfin | zeromap ;
)
if variabili (0,i)!=j (i+1) then
(
if i==0 then
(
variabili=matrix(j 1)|variabili;
matfin=zeromap | matfin ;

);
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if i!=0 and i!=numero—1 then
(
variabili=submatrix(variabili ,{0},
{0..i=1})|matrix(j_ (i+1))]
submatrix (variabili ,{0},
{i..(numColumns(variabili)—1)});
matfin=submatrix (matfin ,{0.. numrows(matfin)—1},
{0..1—1})|zeromap | submatrix (
matfin , {0.. numrows(matfin)—1},
{i..(numColumns(matfin)—1)});
)
)
);
matfin=sub (matfin ,S);
matfin= map (S~ {numRows(matfin):1},S"{numColumns(matfin):0} , matfin);
siz=createsyz (matfin);
siz=map (S~ {numRows(siz ):1},S"{numColumns(siz ):0},siz );
siz=substitute (image siz ,S’);
H1S2E=siz /endsympaction ;
dimH1S2E=rank HI1S2E;
return HIS2E;

— Input: A,J matrices.

— Output: H2S2E module.

— A must be a matrix which define E, a symplectic instanton bundle.
— H2S2E is H"2(S"2 E) seen as an S’’—module.

— Functions used: creategenerators, createantisymm , dimk.

SH2=(A, J)—>
(

use S;

k=numRows(A);
n=(numColumns (A) —2xk )/ /2;
r=2xk-+2%n;

b=createskewsymm (2,S,k);
domain=creategenerators (1,S, kx*r);
ncol=numColumns domain ;
AA=Axtranspose J;
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for i to k—1 do
for j to k—1 do

O=map(S~{1:1},S°{k:0} ,0);
O=mutableMatrix O;

O (0,i)=1;

O=matrix O;

O=0*xAA"{j };
Ol=map(S~{1:1},S°{k:0},0);
Ol=mutableMatrix O1;
O1_(0,j)=1;

Ol=matrix O1;

Ol= —(O1xxAA~{i});

KK=0+01;
if (i,j)==(0,0) then
newm=KK

else
newm-=newm | | KK;
);
rows=numRows (newm ) ;
newm=map (S~ {rows:1} ,S"{r*k:0} ,newm);
for i to ncol—1 do
(
im=newmsdomain {1i };
im=map(S~{k~2:0},5S°{1: -2}, im);
if i==0 then
mat—=im
else
mat=mat | im ;
);
base’=substitute (image b,S’7);
Z=substitute (image mat,S’’);
H2S2E= base’/Z;
dimH2S2FE=rank H2S2E;
return H2S2E;

— Input: A,B matrices
— Output: quadratic forms and their rank.
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— Given a couple of matrices (A,B) which define an

— instanton bundle E the program computes the Kuranishi map
— from H"1(End E) to H*2(End E). The quadratic forms

— represent local equations of the

— moduli space of instanton bundles near E.

— Functions used: H1, H2.

kura=(A,B)—>
(
use S;
k=numRows(A);
n=(numColumns (A)—2xk) / /2;
r=2xk+2%n;
HI1E=H1(A,B);
H2E-H2(A,B);
baseHl=substitute (mingens(HI1E) ,S);
nbase=numColumns (baseH1);
for i to nbase—1 do
(
z_i=map(S~{k:0},S {r:—1},transpose (
reshape (S°r,S k,baseHl {i}~{0..kxr—1})));
z’ i=map(S~{r:—1},5"{k: -2},
reshape (S°r,Sk,baseHl {i} {kxr..2xksr—1}));
);

contatore=0;
for i to nbase—1 do
for j from i to nbase—1 do
if (z_ixz’ j+z _jxz’ 1)!=0 then
(
P (i,j)=map(S~{k~2:0},5"{1:—2}, reshape (S~(k~2),5"1,
transpose (z_ixz’ jtz j*xz’ i)));
if isSubquotient (image P_(i,j),image mat)==false then
(
if contatore==0 then
(
mapk=P_ (i ,]);
contatore=1;
indici=matrix{{i,j}};

)
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else

(
mapk=mapk |P_ (i,]);
indici=indici || matrix{{i,j}};

)
);
E

if contatore=—0 then

(
mapk=0;
dimkura=0;

)
(
)

if mapk!=0 then

(

else

mapk’=substitute (mapk,S’’);

temp=syz ((mapk|mingens image mat),DegreeLimit=>2);
matkura=gens kernel transpose submatrix(
temp,0..(numcols mapk—1),0..numcols temp—1);
hle=floor (dimHlendE)—1;
R=kk|w_0..w_hle]l;
matkk=sub (matkura ,R);
for i from 0 to (numcols matkura—1) do
(
quad 1=0;
for j from 0 to (numrows matkura—1) do
quad _i=quad i+matkk (j,i)*w_(indici_(j,0))x
w_(indici_ (j,1));
)
ideale=ideal (0);
for i from 0 to (numcols matkura—1) do
(
ideale=ideal{ideale ,quad i};
print (quad 1i);
print ("rank " rank diff(transpose basis(1,R),
diff (basis (1,R),quad _1i)));
)

);

77



— Input: A,J matrices

— Output: quadratic forms and their rank.

— Given a matrix A which define a symplectic

— instanton bundle E the program compiles the Kuranishi map
— from H"1(S"2E) to H"2(S"2E). The quadratic forms

— represent local equations of the

— moduli space of symplectic instanton bundles near E.

— Functions used: SH1, SH2.

Skura=(A,B)—>
(
k=numRows(A);
n=(numColumns (A) —2xk) / /2;
r=2xk-+2%n;
use S;
HIE-SH1(A,B);
H2E=SH2 (A ,B);
baseHl=substitute (mingens(HI1E) ,S);
nbase=numColumns (baseH1);
for i to nbase—1 do
z_i=map(S~{k:0},S {r:—1} transpose (
reshape (S°r,S k,baseHl {i} ~{0..kxr—1})));
contatore=0;
for i to nbase—1 do
for j from i to nbase—1 do
if (z_ ixJxtranspose z j+z jxJxtranspose z i)!=0 then
(
P (i,j)=map(S~{k~2:0},S"{1:—2},
reshape (S (k~2),S"1,transpose(
z_ixJxtranspose z_ jtz_ jsxJxtranspose z 1i)));
if isSubquotient (image P_(i,j),image mat)==false then
if contatore==0 then
(
mapk=P_(i,j);
contatore=1;
indici=matrix{{i,j}};
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)
(

mapk=mapk |P_(i,]);
indici=indici || matrix{{i,]j}};

)
);
if contatore==0 then
(
mapk=0;
dimkura=0;

)
(
)

if mapk!=0 then
(
temp=syz ((mapk|mingens image mat),DegreeLimit=>2);
matkura= gens kernel transpose submatrix(
temp ,0..(numcols mapk—1),0..numcols temp—1);
hle=floor (dimHIS2E)—1;
R=kk|w_0..w_hle];
matkk=sub (matkura ,R);
for i from 0 to (numcols matkura—1) do
(
quad _1=0;
for j from 0 to (numrows matkura—1) do
quad _i=quad i+matkk (j,i)*w_(indici_(j,0))x
w_(indici_ (j,1));

Y

else

else

mapk’=substitute (mapk,S’’);

);
ideale=ideal (0);
for i from 0 to (numcols matkura—1) do

(
ideale=ideal{ideale ,quad i};
print (quad 1i);
print ("rank " rank diff(transpose basis(1,R),
diff (basis(1,R),quad_1i)));
);

);
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