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Chapter 1

Introduction

A mathematical instanton bundle on P3 is a particular algebraic bundle of rank
2. Its importance arises from quantum physics; in fact these particular bundles
correspond (through the Penrose-Ward transform) to self dual solutions of the
Yang-Mills equation over the real sphere S4 ([Ati79], [AW77]).
Penrose-Ward transform has been generalized on higher dimensional odd projective
space by Salamon ([Sal84]) giving the possibility of defining an instanton bundle
on P2n+1.
There are several equivalent ways to define an instanton, the one we will use more
throughout this work is the following:
given three complex vector spaces L,M and N of dimension respectively k, 2n+2k
and k, an instanton bundle E over P2n+1 with c2 = k is a stable bundle of rank 2n
which appears as a cohomology bundle of a monad

L⊗O(−1)
Bt

−→M ⊗O A−→ N ⊗O(1) (?)

Hartshorne and Hirschowitz showed on P3 that the general instanton bundle has
the nice property of having natural cohomology, i.e. for each t ∈ Z at most one of
the cohomology groups H i(E(t)) for i=0,. . . ,3 is nonzero ([HH82]).
Thanks to the properties inherited from the monad, if we fix k as above, the moduli
space of instanton bundles on P2n+1 of charge k (denoted from now on by MIn,k)
is an open subset of the quasi-projective variety of the stable bundles on P2n+1 of
given rank and Chern classes.
Actually this space is still quite unknown. Most of the investigations focus their
attention on n = 1.
In this case there have been some big improvements in recent days that led to
complete answers to smoothness and reducibility:
Jardim and Verbitsky proved the smoothness and the dimension (8k− 3) of MI1,k

for every k, confirming a 30-year old conjecture ([JV14]). In order to prove this re-
sult the two authors used a completely new technique which deals with quaternions,
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more precisely they equip MI1,k with a structure called Trihyperkähler reduction,
which is the quotient of a trisymplectic structure by the action of a Lie group.
Before this result the only known cases were when k ≤ 5:
the case k = 1 is due to Barth ([Bar77]). Case k = 2 was proved by Hartshorne
([Har78]). Ellinsgrud and Stromme settled the case k = 3 ([Em81]), while the
smoothness when k = 4 was proved by Le Potier ([Pot83]). Finally the case
k = 5 was proved by Katsylo and Ottaviani ([KO03]) and Coanda, Tikhomirov
and Trautmann ([CTT03]).
A similar situation happened for the irreducibility of MI1,k: until 2003 the only
known cases where when k ≤ 5 (same references as in the smoothness case except
for k = 4, which is due to Barth ([Bar81]), but the big enhancement came when
Tikhomirov proved in two different works that, for k odd first and then for k even,
MI1,k is irreducible ([Tik12], [Tik13])
In conclusion to the case of P3 there are two works by Bruzzo, Markushevich and
Tikhomirov ([BMT12], [BMT16]) in which, generalizing the definition of instanton
bundles on P2n+1 to any rank greater or equal than 2n, they exhibit an irreducible
component for each moduli space. The proof of the second work relates this com-
ponent to a particular class of instanton bundles called ’t Hooft instantons; these
bundles will be studied throughout this work.
If we drop the condition n = 1, the things get worse: in a series of works Ancona
and Ottaviani proved thatMIn,2 is smooth and irreducible, whileMI2,k is singular
for 3 ≤ k ≤ 8 and reducible for 4 ≤ k ≤ 8 ([AO95], [AO00]).
The two authors conjectured also that for n ≥ 2 and k ≥ 3 the moduli space of
instanton bundles is singular, conjecture proved by Mirò-Roig and Orus-Lacort
([MROL97]).
So far we have talked about instanton bundles in general, but there is an inter-
esting subset of them which are called symplectic instanton bundles. In order to
define these particular instantons it is proper to observe that if E is an instanton
bundle then so it is E∗, indeed the dual of (?) is still a monad, and if the maps
referred to E are (A,B), then the maps referred to E∗ are (B,A). An instanton
bundle E is called symplectic if there exists a symplectic isomorphism between E
and E∗. It is easy to show that in the case E is symplectic the monad can be
rewritten in the following way:

N∗ ⊗O(−1)
JAt

−→M ⊗O A−→ N ⊗O(1) (??)

where J is a skewsymmetric isomorphism.
We can then consider the moduli space of symplectic instanton bundles with n
and k fixed, and we will denote it from now on with MISn,k.
In the case n = 1 there is no difference between MI1,k and MIS1,k, namely every
instanton bundle on P3 is symplectic, but for n ≥ 2 this is not true anymore.
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A surprisingly property that holds both for MIn,k and MISn,k is that they are
affine ([CO02]). Let’s sketch the proof of the latter:
the idea is to realize the moduli space as a GIT-quotient of an affine variety. In
order to do that we need to focus our attention on the space Hom(M ⊗ V ∗, N)
(where we set V = H0(O(1))).
Inside that space we can take the subvarietyQ given by the nondegenerate matrices
for which (??) is a complex, or, in other words, the matrices A for which AJAt = 0
(where J is a fixed skewsymmetric matrix) and such that everytime A(m⊗v∗) = 0
has a solution then either m = 0 or v∗ = 0. The space GL(N)×Sp(M) acts on Q
by (g, s) · A = gAs.
The heart of the matter is that Q is affine and GL(N)× Sp(M) modulo ±(id, id)
acts freely on it. Hence the moduli space MISn,k = Q/GL(N)× Sp(M) is affine
too because it is the quotient of an affine variety by a reductive group. A similar
construction can be applied for MIn,k.
A way to study the moduli space of instanton bundles is to exploit Kodaira-Spencer
theory and small deformations:
let E be an instanton bundle (not necessarily symplectic) and Ad E be the ad-
joint bundle: therefore the Zariski tangent space to the moduli space at [E] (the
isomorphism class at which E belongs to) is isomorphic to H1(Ad E), moreover
there exists an important analytic morphism called Kuranishi map:

φE : H1(Ad E) −→ H2(Ad E)

The zero locus of this map is the analytic germ of the moduli space at [E]. Hence
the moduli space is smooth at [E] if and only if the Kuranishi map is the zero
map. This condition is obviously satisfied when H2(Ad E) = 0.
When we are dealing with MIn,k then Ad E is equal to End E/O, hence the
Kuranishi map becomes:

φE : H1(End E) −→ H2(End E)

while when E is symplectic and we want to study the germ of MISn,k at [E], the
Kuranishi map turns out to be:

φE : H1(S2E) −→ H2(S2E)

To get an explicit description of the last map (the case non symplectic is similar)
we need to use the map Φ ( introduced in proposition 3.1.5):
indeed the symplectic Kuranishi map lifts through the diagram

ker(Φ)
φ̃E−→ H0(∧2N ⊗O(2))

↓ ↓
H1(S2E)

φE−→ H2(S2E)
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where φ̃E(B) = BJBt.
Moreover it is an easy calculation (obtained by splitting the monad into two short
exact sequences) to obtain the following estimates:

h1(End E)− h2(End E) = −k2
(

2n−1
2

)
+ 8kn2 + 1− 4n2

h1(S2E)− h2(S2E) = −k2

2

(
2n−1

2

)
+ k(10n2+5n+1

2
)− 2n2 − n

Let’s now give some concrete examples of instanton bundles specifying the
matrix A inside the monad:
maybe one of the first and most studied kind of instanton bundle is the so called
special symplectic instanton (or Okonek-Spindler), which has the following k ×
(2n+ 2k) matrix

x0 x1 · · · xn 0 · · · · · · 0 0 · · · · · · 0 y0 · · · yn−1 yn
0 x0 · · · · · · xn 0 · · · 0 0 · · · 0 y0 · · · · · · yn 0
...

. . . . .
. ...

0 · · · 0 x0 x1 · · · · · · xn y0 · · · · · · yn−1 yn 0 · · · 0


In ([OT94]) and in ([Dio98]) the following results are computed for these particular
instantons:

h1(End E) = 4(3n− 1)k + (2n− 5)(2n− 1)
h1(S2E) = (10n− 2)k + (4n2 − 10n+ 3)

Hence, for example, for n = 2 and k = 3 MIS2,3 is smooth of dimension 53 at the
points corresponding to special bundles (because h2(S2E) = 0).
As a second example we can introduce one of the main objects of this work: the
’t Hooft bundles. They were first introduced on P3 , then in ([Ott96]) Ottaviani
introduces the ’t Hooft instanton bundles for n ≥ 2 (for a precise definition go to
3.1.7):
in order to build these bundles we need to pick k+n codimension 2 linear subspaces,
say {ξi = ωi = 0} for i = 1, . . . , k and {zj = ηj = 0} for j = 1, . . . , n, then the
following matrix describes an instanton bundle:(

D(ξi) aD(zj) D(ωi) aD(ηj)
)

where D(ξi) and D(ωi) are diagonal k× k matrices, D(zj) and D(ηj) are diagonal
n× n matrices and a is a k × n generic matrix.
Due to this construction we get the following property on h0(E(1)): it is proved
that for a generic ’t Hooft bundle we have h0(E(1)) = n.
Moreover it is conjectured in the paper that these bundles represent an irreducible
component of their moduli space. In order to prove this conjecture it would be
sufficient to prove that, apart from a finite number of cases,

h1(S2E) = 5kn+ 4n2.

4



Indeed, taking for granted this result, Ottaviani exhibits a basis of H1(S2E) and
shows that the Kuranishi map sends to zero all its elements, proving that ’t Hooft
instantons are smooth points of the relative symplectic moduli space.
The third example of a symplectic instanton bundle is given by the Rao-Skiti fam-
ily. These bundles were introduced on P3 independently by Rao and Skiti in 1997
but their generalization is given in ([CHMRS14]). The matrix associated to this
bundle can be divided into two k × (n + k) blocks: the first block is exactly the
same as the Okonek-Spindler one, while the second block is a persymmetric matrix
(see definition 3.1.13). This implies that the Okonek-Spindler bundle is a particu-
lar Rao-Skiti. The generic Rao-Skiti, differently from the symplectic ’t Hooft, has
H0(E(1)) = 0.
These two last examples play an important role inside the symplectic moduli space,
indeed if Ottaviani’s conjecture was true, this would imply furthermore that the
moduli space of symplectic instanton bundles on P2n+1, with n ≥ 2 and k suf-
ficiently large, is reducible: indeed in the paper [CHMRS14] the authors prove,
among other things, that there are Rao-Skiti bundles which are not limit of ’t
Hooft bundles.

This work is divided into three chapters: the first one focuses on Steiner bun-
dles; these objects may represent the kernel bundle defined in (?). First we intro-
duce a Steiner bundle of ’t Hooft type called S∗ (which is related to ’t Hooft instan-
ton), then the first result of this work is proving the behaviour of H1(S2(S∗(−1)))
and H1(S2(S∗)) for these particular bundles (see Theorem 2.1.7). The possibility
of defining these bundles over Pn for every n allows us to proceed with an induc-
tive proof. The idea is indeed to restrict a bundle to an hyperplane, the restricted
bundle is still a Steiner ’t Hooft bundle, and this permits to exploit the inductive
step.
In the second chapter we introduce two families of symplectic instanton bundles:
The Rao-Skiti and the ’t Hooft bundles. We introduce a new family of instanton
bundles which is a sort of generalization of the symplectic ’t Hooft family: indeed
these new bundles are not necessary symplectic, but the matrice (A,B) have the
same structure than a symplectic ’t Hooft (see definition 3.1.16). In proposition
3.1.18 we evaluate the dimension of this family.
We end the chapter showing the possible structures of the symplectic isomorphism
J for the examples introduced above. From these results we can state that the
two components (Rao-Skiti and symplectic ’t Hooft) are at least path connected
(see remark 3.2.8).
The last chapter is divided into two parts: the first one is devoted to a possible
path to prove Ottaviani’s conjecture on symplectic ’t Hooft bundles. More pre-
cisely the method is the one used for Steiner bundles, but in this case we need
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to restrict our bundle with a codimension two variety, and this leads us to deal
with sheaves which are not bundles. Moreover we decided to apply this method
to a subset of symplectic ’t Hooft bundles which, for k sufficiently large, seem to
behave exactly like a generic symplectic ’t Hooft bundle. The matrix A associated
to these particular bundles has the same form described before, but in this case
the ξi’s and the zi’s depend only on a part of variables while the ωi’s and the ηi’s
depend on the others.
In the second part we show some of the computational results obtained using
Macaulay2 (version 1.7) [GS] and we attach the scripts created.

The aim of this thesis is therefore to study families of instanton bundles and
their beaviour. The new results obtained in this work are the dimensions of
H1(S2(S∗)) and H1(S2(S∗(−1))) for S∗ Steiner bundle of ’t Hooft type. As said
this result could be very useful in order to prove Ottaviani conjecture. Moreover
we have introduced a new family of instanton bundles (which is the generalization
of the symplectic ’t Hooft) and studied the dimension of this family. Through an
example we have seen that along the fiber of the Okonek-Spindler instanton there is
also a particular ’t Hooft bundle, this fact allows us to conclude that the Rao-Skiti
component and the ’t Hooft component are connected. Finally the computational
results obtained so far show that the Rao-Skiti component is smooth both for the
symplectic and the generic case, moreover the dimension of H1(S2(E)) is the same.
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Chapter 2

Steiner Bundles

2.1 First properties and statement of the Theorem
Definition 2.1.1. A Steiner bundle S over Pn = P(V ) is a rank n vector bundle
which appears in an exact sequence of the following type:

0 −→ S∗ → W ⊗O A−→ I ⊗O(1) −→ 0 (2.1)

where W and I are complex vector spaces respectively of dimension n+ k and k.

Proposition 2.1.2. Let S be a Steiner bundle. Then

i) h1(S2S∗)− h2(S2S∗) = n
(
−k2 (n−1)

4
+ k 5n+3

4
− (n+1)

2

)
=: p(k, n)

ii) h1(S2S∗(−1))− h2(S2S∗(−1)) = −k2 (n−1)
2

+ k 3n+1
2

=: q(k, n)

Proof. h0(S2S∗) = h0(S2S∗(−1)) = 0 because S is stable ([AO94] or [BS92]),
hi(S2S∗) = hi(S2S∗(−1)) = 0 ∀i ≥ 3 follows from the exact sequence

0 −→ S2S∗ −→ S2W ⊗O −→ W ⊗ I ⊗O(1) −→ ∧2I ⊗O(2) −→ 0 (2.2)

Definition 2.1.3. A Steiner bundle is called of ’t Hooft type if the map A ∈
Hom(W, I ⊗ V ) is given in a convenient system of coordinates by the matrix

[D(ξi)|a ·D(zi)] (2.3)

where a =
(
aji
)
is a k × n matrix with complex entries, D(ξi) is a diagonal k × k

matrix with diagonal entries degree 1 forms ξ1, . . . , ξk, D(zj) is a diagonal n × n
matrix with diagonal entries degree 1 forms z1, . . . , zn.
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From now on when we write Steiner bundle we will imply of ’t Hooft type.

Notation 2.1.4. When A ∈ Hom(W, I⊗V ) we denote by At ∈ Hom(I∗,W ∗⊗V )
the dual map. Moreover we set A =

∑n
i=0Aizi where Ai ∈ Hom(W, I).

Remark 2.1.5. Let be given a Steiner bundle, there exists a degree 1 form z0

such that (z0, . . . , zn) is a system of coordinates and from now on we will use xi
instead of zi. Furthermore we set ξi = ξi0x0 + . . .+ ξinxn.

Remark 2.1.6. For k = 1 we have S ' TPn(−1). Hence we may suppose from
now on k ≥ 2.

Our main result of this chapter is the following

Theorem 2.1.7. Let S be a generic Steiner bundle of ’t Hooft type over Pn and
let k ≥ 2. Then

i) h1(S2S∗(−1)) = max{q(k, n), k + n}
ii) h1(S2S∗) = max{p(k, n), n(k + n)}

Remark 2.1.8. Let k ≥ 2. The following hold

q(k, n) ≤ k + n ⇐⇒ 2n
n−1
≤ k

p(k, n) ≤ n(k + n) ⇐⇒
{

3n+1
n−1
≤ k

or k = 2

Remark 2.1.9. The Theorem is true for n = 1. In fact over P1 we have S∗ =
O(−k) and S2S∗ = O(−2k). In this case q(k, 1) = 2k and p(k, 1) = 2k − 1.

We will prove the theorem by induction on n. The proof needs the computation
of the syzygies of a certain module. It turns out that

i) it is convenient to prove by induction a stronger form of the theorem, namely
we will make explicit a basis of the vector spaces H1(S2S∗(−1)). Such a
basis is helpful also to prove ii) of the theorem. In fact it follows that when
p(k, n) ≤ n(k + n) the natural map H1(S2S∗(−1)) ⊗ V −→ H1(S2S∗) is
surjective, although in general H2(S2S∗ ⊗ Ω1) 6= 0

ii) The induction step is straightforward for n ≥ 2 but there are technical
problems in the step from n = 1 to n = 2. In order to overcome these
difficulties we will have to make explicit a basis of H1(S2S∗(−1)) even for
n = 1.
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Proposition 2.1.10. Let S be a Steiner bundle corresponding to A ∈ Hom(W, I⊗
V ). Let

φ : Hom(I∗,W ) → ∧2I ⊗ V

B 7→ AB −BtAt

The following are true

H1(S2S∗(−1)) = ker φ

H2(S2S∗(−1)) = coker φ

Proof. Straightforward from the exact sequence (2.2) twisted by O(−1).

Proposition 2.1.11. Let S be a Steiner bundle corresponding to A ∈ Hom(W, I⊗
V ). Let

Φ : Hom(I∗,W ⊗ V ) → ∧2I ⊗ S2V

B 7→ AB −BtAt

The following are true

H1(S2S∗) ' ker Φ/S2W

H2(S2S∗) ' coker Φ

Moreover the embedding S2W → ker Φ has the matrix form Σ 7→ ΣAt with Σ
symmetric.

Proof. Straightforward from the exact sequence (2.2)

2.2 Explicit description over P1

Proposition 2.2.1. Let S = O(−k) be the Steiner bundle over P1 corresponding
to a map A ∈ Hom(W, I ⊗ V ). A basis of H1(P1, S2S∗(−1)) is given by the
following 2k elements of Hom(I∗,W ) (expressed in the dual basis of I∗):

i) Ei with only nonzero entry at place (i, i) equal to 1, for i = 1, . . . , k.

ii) Bi with (j, i)-th entry given by
−ajξi0

ξi0ξj1−ξi1ξj0 for j = 1, . . . , k j 6= i

0 for j = i
1 for j = k + 1
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with (i, j)-th entry given by{
−ajξj0

ξi0ξj1−ξi1ξj0 for j = 1, . . . , k j 6= i

0 for j = i

and with all other entries equal to zero, for i = 1, . . . , k.

Proof. It is straightforward to check that AEi and ABi are symmetric matrices.
Moreover the 2k matrices Ei, Bj are linearly independent. Hence they constitute
a basis of the 2k dimensional space H1(P1, S2S∗(−1)).

Proposition 2.2.2. Let S = O(−k) be the Steiner bundle of ’t Hooft type over
P1 = P(V ) corresponding to a map A ∈ Hom(W, I ⊗ V ). Let assume moreover
that ξi0 and ai are different from zero for every i.

i) The k-dimensional subspace of I ⊗ V generated by I ⊗ x1 surjects over the
(k − 1)-dimensional vector space H1(P1, S∗) = (I ⊗ V ) /W , where in the
quotient bx1 ∼ b′x1 if and only if b− b′ ∈ 〈a1〉 (a1 is the first column of a).

ii) The 2k-dimensional subspace ofK ⊂ W⊗I⊗V generated by 〈Bi⊗V 〉 for i =
1, . . . , k surjects over the (2k − 1)-dimensional vector space H1(P1, S2S∗) =
K/S2W , where

∑k
i=1 hiBi ∼

∑k
i=1 h

′
iBi if and only if [h1−h′1, . . . , hk−h′k] ∈

〈a1x1〉.

Proof. To prove i) we consider the embedding of W in I ⊗ V : the equation vx1 =
Aw, where v ∈ I and w ∈ W , gives the conditions{

wiξi0 = 0
wiξi1 + wk+1a

1
i = vi

hence i).

In order to prove ii) consider that

H1(P1, S2S∗(−1))⊗ V −→ H1(P1, S2S∗)

is surjective (H2 vanishes over 1-dimensional projective spaces). By using the
prop 2.2.1 the 4k dimensional subspace of K generated by 〈Bi⊗ V 〉 and 〈Ej ⊗ V 〉
surjects over H1(P1, S2S∗). The equation

∑k
i=1 hiBi +

∑k
i=1 eiEi = SAt, with S

symmetric, gives the conditions

hi = si,k+1ξi0x0 + (si,k+1ξi1 + sk+1,k+1a
1
i )x1
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ei = si,iξi0x0 + (si,iξi1 + si,k+1a
1
i )x1

which are satisfied by some S if and only if{
ei1ξi0 − ei0ξi1 = hi0a

1
i

a1
i ξi0 = M(hi0ξi1 − hi1ξi0)

with M independent by i.
Now ii) follows.

2.3 Restriction to hyperplanes
Let Pn−1 be the hyperplane given by the equation xn = 0. Let A|Pn−1 ∈

Hom(W, I ⊗ V ′) (where V ′ = 〈x0, . . . , xn−1〉) be given by substituting xn = 0 in
A. In matrix form the last column of A|Pn−1 is zero and we set A|Pn−1 =

[
A′|0

]
.

We set W = W ′⊕C, so that A′ ∈ Hom(W ′, I ⊗ V ′). Then S|Pn−1 ' S ′⊕O where
S ′ is again a Steiner bundle of ’t Hooft type, appearing in the exact sequence:

0 −→ S ′∗ −→ W ′ ⊗O A′−→ I ⊗O(1) −→ 0

In particular S2S∗|Pn−1 = S2S ′∗ ⊕ S ′∗ ⊕O
Consider the cohomology sequence associated to the sequence

0 −→ S2S∗(−2) −→ S2S∗(−1) −→ S2S∗(−1)|Pn−1 −→ 0 (2.4)

It follows that H1(S2S∗(−1)) is the kernel of the boundary map δ

H1(S2S∗(−1)|Pn−1) ' H1(Pn−1, S2S ′∗(−1))⊕ I δ−→ H2(S2S∗(−2)) ' ∧2I (2.5)

Let

φ|Pn−1 : Hom(I∗,W ) −→ ∧2I ⊗ V ′

B 7→
(
A|Pn−1

)
B −Bt

(
A|Pn−1

)t
By restricting (2.2) to Pn−1 it follows

H1(S2S∗|Pn−1(−1)) ' ker φ|Pn−1 .

The decomposition
Hom(I∗,W ) = Hom(I∗,W ′)⊕ I

induces in a natural way the splitting

H1(S2S∗|Pn−1(−1)) = H1(S2S ′∗(−1))⊕H1(S ′∗(−1)).
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Proposition 2.3.1. Given B′ ∈ H1(Pn−1, S2S ′∗(−1)) ⊂ Hom(I∗,W ′) represented
by a (k+n−1)×k matrix and b ∈ I represented by a 1×k matrix, let us construct
B ∈ H1(S2S∗(−1)|Pn−1) ⊂ Hom(I∗,W ) by stacking b as last row under B′, that is

B :=

[
B′

b

]
. Then the boundary map in (2.5) is given by

δ(B′, b) = AnB −BtAtn

Proof. It is a diagram chase into the following

0y
∧2I

'−→ H2(S2S∗(−2))y·xn y
0 −→ H1(S2S∗(−1)) −→ W ⊗ I φ−→ ∧2I ⊗ V −→ H2(S2S∗(−1))y y' y y
0 −→ H1(S2S∗(−1)|Pn−1) −→ W ⊗ I

φ|Pn−1

−→ ∧2I ⊗ V ′ −→ H2(S2S∗(−1)|Pn−1)y y y
0 0 0

Consider the cohomology sequence associated to the sequence

0 −→ S2S∗(−1) −→ S2S∗ −→ S2S∗|Pn−1 −→ 0. (2.6)

Let

Φ|Pn−1 : Hom(I∗,W ⊗ V ′) −→ ∧2I ⊗ S2V ′

B 7→
(
A|Pn−1

)
B −Bt

(
A|Pn−1

)t
and denote K|Pn−1 := ker Φ|Pn−1 . In particular the decomposition

Hom(I∗,W ⊗ V ′) = Hom(I∗,W ′ ⊗ V ′)⊕ (I ⊗ V ′)

induces
K|Pn−1 = K ′ ⊕ (I ⊗ V ′)

K ′/S2W ′ ' H1(Pn−1, S2S ′∗), I ⊗ V ′/W ′ ' H1(Pn−1, S ′∗)
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Proposition 2.3.2. Given B′ ∈ K ′ ⊂ Hom(I∗,W ′ ⊗ V ′) represented by a (k +
n− 1)× k matrix with linear entries and b ∈ I ⊗ V ′ represented by a 1× k matrix
let us construct B ∈ Hom(I∗,W ⊗ V ) by stacking b as last row under B′, that is

B :=

[
B′

b

]
. The boundary map

H1(S2S∗|Pn−1) ' H1(Pn−1, S2S ′∗)⊕H1(Pn−1, S ′∗)
δ−→ H2(S2S∗(−1))

fits into the following commutative diagram:

K ′ ⊕ (I ⊗ V ′) δ′−→ ∧2I ⊗ Vy y
H1(Pn−1, S2S ′∗)⊕H1(Pn−1, S ′∗)

δ−→ H2(S2S∗(−1))

where δ′(B′, b) = AnB −BtAtn.

Proof. It is a diagram chase into the following

0 0y y
0 −→ K1 −→ W ⊗ I φ−→ ∧2I ⊗ V −→ H2(S2S∗(−1)) −→ 0y y·xn y·xn y
0 −→ K −→ W ⊗ I ⊗ V Φ−→ ∧2I ⊗ S2V −→ H2(S2S∗) −→ 0y y y y
0 −→ K|Pn−1 −→ W ⊗ I ⊗ V ′

Φ|Pn−1

−→ ∧2I ⊗ S2V ′ −→ H2(S2S∗|Pn−1) −→ 0y y y
0 0 0

2.4 Proof of the Theorem
Proposition 2.4.1. Let S be a Steiner bundle of ’t Hooft type over Pn with n ≥ 2.
Let q(k, n) ≤ k+n. H1(S2S∗(−1)) has dimension n+k and all its elements consist
of the following elements of Hom(I∗,W ) (expressed in the dual basis of I∗):

[D(ei)|a ·D(fj)]
t (2.7)
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where a is the k × n matrix with constant entries that appears in A, D(ei) is a
diagonal k× k matrix with constant diagonal entries ei, D(fj) is a diagonal n× n
matrix with constant diagonal entries fj.

Proof. It is straightforward to check that the subspace of Hom(I∗,W ) spanned by
the elements (2.7) has dimension n+ k and it is contained in H1(S2S∗(−1)).

We first prove the proposition for n = 2. In this case the prop. 2.2.1 is
needed. We consider in the above construction B′ =

∑k
i=1 piEi +

∑k
i=1 qiBi (here

pi, qj ∈ C). We denote by a1 and a2 the two columns of a. Hence the boundary
operator assumes the nice form:

δ(B′, b) = (a2 · b− bt · (a2)
t
) +Q

where the (i, j)-th entry of Q is (qja
1
i − qia1

j)
(ξi2ξj0−ξi0ξj2)

(ξi0ξj1−ξj0ξi1)

In particular δ vanishes on the k-dimensional space spanned by (B′, b) = (
∑k

i=1 piEi, 0).
δ(B′, b) = 0 is a linear system in the 2k unknowns bi, qj. The matrix

(
k
2

)
× 2k

of this system divides into two blocks
(
k
2

)
× k each one of the form (here we are

considering the case k = 7)

X X
X X
X X
X X
X X
X X

X X
X X
X X
X X
X X

X X
X X
X X
X X

X X
X X
X X

X X
X X

X X



(2.8)
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If we label a row with the couple (i, j) (with i < j) to which it is referred, i and j
are the only non-zero entries in the row.
To be more precise: the i−th entry of the row (i, j) of the first block is −a2

j and
the j−th entry is a2

i , while the i−th entry of the row (i, j) of the second block is
−a1

j
ξi2ξj0−ξi0ξj2
ξi0ξj1−ξj0ξi1 and the j−th entry is −a1

i
ξi2ξj0−ξi0ξj2
ξi0ξj1−ξj0ξi1 .

Considerning these blocks separately, it is easy to see that the row (i, j) with i > 1
is a linear combination of the rows (1, i) and (1, j), hence every block has rank
k − 1. Moreover, if the ξi are generic and 2(k − 1) ≤

(
k
2

)
, this matrix has rank

2(k − 1) and the solutions of the system are spanned by the two obvious ones:{
b = (a2)t

q = 0

{
b = 0
q = a1

The above inequality is equivalent to k ≥ 4 that is to q(k, 2) ≤ k + 2. It follows
that with the assumptions of the theorem dimH1(P2, S2S∗(−1)) = k + 2 and this
proves the case n = 2.
The case n ≥ 3 is easier. By induction the boundary map δ applies to the matrix
B which is obtained by stacking B′ = [D(ei)|a ·D(fj)]

t with b ∈ I (where D(ei) is
a diagonal k × k matrix and D(fj) is a diagonal (n− 1)× (n− 1) matrix) and

δ(B′, b) = (an · b− bt · (an)t)

so that the kernel of δ has dimension (k + n− 1) + 1 = k + n as we wanted.

Let n = 2. Let δ′ as in the prop. 2.3.2. We have again δ′(
∑
piEi, 0) = 0 where

pi are homogeneous polynomials of degree 1. With the notations of the prop. 2.2.2,
taking b ∈ I ⊗ x1, the (p, q)-entry of δ′(

∑k
i=1 hiBi, b) is

(h0qa
1
p−h0pa

1
q)

(ξp2ξq0 − ξp0ξq2)

(ξp0ξq1 − ξq0ξp1)
x0 +

[
bqa

2
p − bpa2

q + (h1qa
1
p − h1pa

1
q)

(ξp2ξq0 − ξp0ξq2)

(ξp0ξq1 − ξq0ξp1)

]
x1.

The (p, q) entry of φ(C) = AC − CtAt is

(cpqξp0 − cqpξq0)x0 +
(
cpqξp1 − cqpξq1 + ck+1,qa

1
p − ck+1,pa

1
q

)
x1+

+
(
cpqξp2 − cqpξq2 + ck+2,qa

2
p − ck+2,pa

2
q

)
x2.

Lemma 2.4.2. Let n = 2 and p(k, 2) ≤ 2k+ 4, that is k ≥ 7. With the notations
of the prop. 2.2.2, a basis for the solutions of the system

δ′(
k∑
i=1

hiBi, b) = φ(C) (2.9)
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in the unknowns hi, b, C is given by the 2k + 7 solutions:
h0p = γpξp0 h1p = γpξp1

cpq =
(γqξq0a1p−γpξp0a1q)ξq2

ξq0ξp1−ξp0ξq1 ck+1,p = −γpξp2
ck+2,p = 0 b = 0

∀(γ1, . . . , γk) ∈ Ck (k solutions)

h0p = a1
p h1p = 0 b = 0 C = 0 (k + 1− th)

h0p = 0 h1p = 0 bp = a2
p C = 0 (k + 2− th)

cpq =
a2
pa

2
q

ξp0
ck+1,p = 0 ck+2,p =

a2
pξp2

ξp0
bp = a2

p

ξp1
ξp0

(k + 3− th)

h1p = a1
p, all other unknowns equal to zero (k + 4− th)

bp = a1
p ck+1,p = −a2

p, all other unknowns equal to zero (k + 5− th)

ck+1,p = a1
p, all other unknowns equal to zero (k + 6− th)

ck+2,p = a2
p, all other unknowns equal to zero (k + 7− th)

and the other k solutions are given by cpq = δpq and all other unknowns equal
to zero.

Proof. It is straightforward to check that the expressions in the statement are
solutions. Let observe first that the cpp unknowns are free and this fact corresponds
to the last k solutions.
In order to prove that there are no other solutions, let us denote

r(p, q) :=
(h0qa

1
p − h0pa

1
q)ξq2

ξq0ξp1 − ξp0ξq1
for 1 ≤ p, q ≤ k

and define new unknowns λ(p, q) by the equation

cpq = r(p, q) + λ(p, q)ξq0 for 1 ≤ p, q ≤ k

The equation (2.9) for the coefficients of x0 implies
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cpqξp0 − cqpξq0 = r(p, q)ξp0 − r(q, p)ξq0
and it follows λ(p, q) = λ(q, p).
The equation (2.9) for the coefficients of x2 implies

λ(p, q)ξq0ξp2 − λ(q, p)ξp0ξq2 + ck+2,qa
2
p − ck+2,pa

2
q = 0

that is

λ(p, q) (ξq0ξp2 − ξp0ξq2) + ck+2,qa
2
p − ck+2,pa

2
q = 0,

hence λ(p, q) can be uniquely determined by the other unknowns.
In particular we get

cpqξp1−cqpξq1 = (h0qa
1
p−h0pa

1
q)

(ξq2ξp1 − ξq1ξp2)

ξq0ξp1 − ξp0ξq1
+(a2

pck+2,q−a2
qck+2,p)

(ξq0ξp1 − ξq1ξp0)

ξq0ξp2 − ξp0ξq2
(2.10)

The last group of equations is given by the coefficients of x1 in (2.9) and by
using (2.10) we are left with the following

(
k
2

)
equations in the 5k unknowns h0p,

h1p, bq, ck+1,p, ck+2,p

−(h0qa
1
p − h0pa

1
q)

(ξq2ξp1 − ξq1ξp2)

ξq0ξp1 − ξp0ξq1
+ (a2

pck+2,q − a2
qck+2,p)

(ξq0ξp1 − ξq1ξp0)

ξq0ξp2 − ξp0ξq2
+

−(h1qa
1
p − h1pa

1
q)

(ξq0ξp2 − ξq2ξp0)

ξq0ξp1 − ξp0ξq1
− ck+1,qa

1
p + ck+1,pa

1
q + bqa

2
p − bpa2

q = 0

The matrix
(
k
2

)
× 5k of this system has rank 4k − 7. One possible way to show

this fact is the following: this matrix divides into five blocks
(
k
2

)
× k each one of

the same form and property described in (2.8). To fix the ideas we set again k = 7
and we order these five blocks in the following way: coefficients of h0p, coefficients
of h1p, coefficients of ck+1,p, coefficients of ck+2,p and coefficients of bp.
We now perform Gaussian elimination to the first block (taking into account the
entire matrix), recalling that the row (i, j) (i > 1) is a linear combination of the
rows (1, i) and (1, j). In such a way we get k−1 rows linearly independent: indeed
after k − 1 rows the first block will have only zero entries while the other blocks
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will have the following form:

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X


We now perform Gaussian elimination to the second block from the k − th row.
It is still true that in this block the row (i, j) (now i > 2) is a linear combination
of the rows (2, i) and (2, j). If we act in this way we get other k − 2 rows that
are linearly independent because the entries of the second block after these rows
become all zero. Moreover also the third block after k − 2 rows has only zero
entries, while the last two blocks have this form:

X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X


The third step is to leave the next k − 3 rows and perform Gaussian elimination
to the fourth block, the behavior is different than before: indeed after these k − 3
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rows the form of the fourth block is the following:
X X X . . . .
X X X
X X X
X X X
X X X
X X X


while the fifth block 

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X


The last step (similar to the others) gives another k−4 linearly independent rows.
In such a way we end up with 4k − 10 rows which are linearly independent and
other

(
k
2

)
− 4k + 10 rows, each one of them with at most seven entries different

from zero. It is possible to see that the first three rows are linearly independent
(there are at least three if k ≥ 7).
Hence we can conclude that the

(
k
2

)
× 5k matrix of this system has rank 4k − 7

when 4k−7 ≤
(
k
2

)
, which is equivalent to p(k, 2) ≤ 2k+4. This proves the lemma.

Proposition 2.4.3. Let S be a Steiner bundle of ’t Hooft type over Pn with n ≥ 2.
Let p(k, n) ≤ n(k + n).

i) ker Φ (see 2.1.11 ) is spanned by S2W and by the following elements of ker Φ ⊂
Hom(I∗,W ⊗ V ) (expressed in the dual basis of I∗):

[D(ei)|a ·D(fj)]
t (2.11)

where a is the k × n matrix with constant entries appearing in (3.7), D(ei) is a
diagonal k × k matrix with linear diagonal entries ei, D(fj) is a diagonal n × n
matrix with linear diagonal entries fj.

ii)H1(S2S∗) = Ker Φ/S2W has dimension n(k + n).

iii) the natural map H1(S2S∗(−1))⊗ V −→ H1(S2S∗) is surjective.
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Proof. It is straightforward to check that the elements in (2.11) belong to ker Φ.
Let Z ⊂ ker Φ be the linear span of the elements in (2.11). Then dim Z =
(n+ 1)(k+ n). i) and ii) are equivalent because Z ∩S2W is given by the diagonal
matrices Σ (as in the prop. 2.1.11 ) and has dimension k + n.
iii) follows by i) and by the prop. 2.4.1.
Consider the boundary map

H1(S2S∗|Pn−1)
δ−→ H2(S2S∗(−1))

We first prove i) for n = 2. In this case the prop. 2.2.2 is needed.
By the prop. 2.3.2 and the lemma 2.4.2 we check that the kernel of δ has

dimension k + 3 and it is spanned by the first k + 3 solutions of the lemma 2.4.2.
In fact the other solutions of the lemma are zero when projected on H1. Hence
the cohomology sequence associated to (2.6)

C Ck+2

|| ||
0 −→ H0(S2S∗|P1) −→ H1(S2S∗(−1)) −→ H1(S2S∗) −→

−→ H1(S2S∗|P1)
δ−→ H2(S2S∗(−1))

gives
h1(S2S∗) = (k + 3) + (k + 2)− 1 = 2k + 4

as we wanted.
i) and ii) can now be proved by induction on n. We remark that p(k, n) ≤

n(k + n) implies q(k, n) ≤ k + n and p(k, n− 1) ≤ (n− 1)(k + n− 1).
The cohomology sequence associated to (2.6) is

C Cn+k

|| ||
0 −→ H0(S2S∗|Pn−1) −→ H1(S2S∗(−1)) −→ H1(S2S∗) −→

−→ H1(S2S∗|Pn−1)
δ−→ H2(S2S∗(−1))

The kernel of the boundary map δ described by the proposition 2.3.2 contains
by the inductive hypothesis the subspace H1(S2S ′∗)⊕ 0 and is given precisely by
H1(S2S ′∗)⊕ (atnV

′) which has dimension (n− 1)(k + n− 1) + n. It follows

h1(S2S∗) = (n− 1)(k + n− 1) + n+ (n+ k)− 1 = n(k + n)

as we wanted.

20



proof of the Theorem 2.1.7
The part i) of the Theorem follows from the prop. 2.4.1 for q(k, n) ≤ k + n.

Only the case n = 2, k = 3 is left out. This case can be checked by a direct
computation or by using a computer. The part ii) of the Theorem follows from
the prop. 2.4.3 for p(k, n) ≤ n(k + n). Only the cases

k = 2, 3 n ≥ 2

k = 4 n = 2, 3, 4

k = 5, 6 n = 2

are left out and in these cases we have to prove that H2(S2S∗) = 0 . The case
k = 2 is contained in the following lemma 2.4.4. The case k = 3 follows because
Schwarzenberger bundles C satisfy H2(S2C∗) = 0 [Dio98] and semicontinuity ap-
plies. The remaining five cases can be checked by direct computations or also by
using a computer.

Lemma 2.4.4. Let S be a Steiner bundle with k = 2.

i) H i(S∗(1)) = 0

ii) H2(S2S∗) = 0

Proof. By the assumption c1(S∗) = −2, hence

S∗(1) ' ∧n−1S(−1)

The (n− 1)-th wedge power of the dual of (2.1) gives

Sn−1I∗(−n) −→ . . . −→ ∧n−2W ∗⊗I∗(−2) −→ ∧n−1W ∗(−1) −→ ∧n−1S(−1) −→ 0

and from this sequence i) follows. By tensoring (2.1) by S∗ we get

0 −→ S∗ ⊗ S∗ −→ S∗ ⊗W −→ S∗(1)⊗ I −→ 0

By using i) it follows H2(S∗ ⊗ S∗) = 0 and hence ii) is proved.
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Chapter 3

Instanton bundles

The Steiner bundles we have studied in the first chapter have a strong link
with the instanton bundles we are going to study. Indeed to an instanton bundle
can be associated a couple of matrices (A,B) modulo a group action (see remark
3.1.2 for details), where A can represent a Steiner bundle.
In this chapter we will introduce different kind of instanton bundles, trying to
study the relations between them in the moduli space.

3.1 Families of Instanton bundles
Definition 3.1.1. An instanton bundle E over P2n+1 = P(V ) with c2 = k is a
stable bundle of rank 2n which appears as a cohomology bundle of a monad

L⊗O(−1)
Bt

−→M ⊗O A−→ N ⊗O(1) (3.1)

where L,N and M are complex vector spaces respectively of dimension k, k and
2n+ 2k. From now on we will denote E also with the couple (A,B).

If E is symplectic, the monad (3.1) can be written in the following form:

N∗ ⊗O(−1)
JAt

−→M ⊗O A−→ N ⊗O(1) (3.2)

where J : M∗ −→ M is the (2n + 2k) × (2n + 2k) skewsymmetric matrix of the
form (

0 I
−I 0

)
.

If we set S∗ = kerA we get these two exact sequences

0 −→ N∗ ⊗O(−1)
JAt

−→ S∗ −→ E −→ 0 (3.3)
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0 −→ S∗ −→M ⊗O A−→ N ⊗O(1) −→ 0 (3.4)

Remark 3.1.2. The Lie group GL(k) × GL(k) × GL(2n + 2k) acts on the pairs
of matrices (A,B) which define an instanton bundle in the following way:(

(α, β, γ), (A,B)

)
7→ (βAγ−1, αBγt)

Hence two instanton bundles are isomorphic if and only if they lie in the same
orbit of this action.
A similar condition holds for symplectic instanton bundle, in this case the Lie
group is GL(k)× Symp(2n+ 2k) and the action is given by:(

(α, γ), (A, J)

)
7→ (αAγ, J)

The next propositions contain some results which hold for every symplectic
instanton bundle, the analogous results for generical instanton bundles can be
found in [Ott96]:

Proposition 3.1.3. Let E be a symplectic instanton bundle with c2 = k. Then

i) h1(S2E)− h2(S2E) = −k2

2

(
2n−1

2

)
+ k(10n2+5n+1

2
)− 2n2 − n =: p(k, n).

ii) h1(S2E(−1))− h2(S2E(−1)) = −k2(n− 1) + k(3n+ 1) =: q(k, n).

Proof. h0(S2E) = h0(S2E(−1)) = 0 because E is stable. Furthermore using (3.3)
and (3.4) we get

0 −→ S2(S∗) −→ S2M ⊗O −→M ⊗N ⊗O(1) −→ Λ2N ⊗O(2) −→ 0 (3.5)

0 −→ Λ2N∗ ⊗O(−2) −→ N∗ ⊗ S∗(−1) −→ S2S∗ −→ S2E −→ 0 (3.6)

The result now follows from a direct computation.

Proposition 3.1.4. Let E be a symplectic instanton bundle corresponding to
A ∈ Hom(M,N ⊗ V ), and S∗ = kerA. Let

φ : Hom(N∗,M∗) → ∧2N ⊗ V

B 7→ AJB +BtJAt

The following are true
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i) H1(S2S∗(−1)) = ker φ

ii) H2(S2S∗(−1)) = coker φ

iii) H1(S2E(−1)) = H1(S2S∗(−1))

iv) H2(S2E(−1)) = H2(S2S∗(−1))

Proof. i) and ii) result from the exact sequence (3.5) twisted by O(−1), while iii)
and iv) come from (3.6) twisted by O(−1).

Proposition 3.1.5. Let E be an instanton bundle corresponding toA ∈ Hom(M,N⊗
V ). Let

Φ : Hom(N∗,M∗ ⊗ V ) → ∧2N ⊗ S2V

B 7→ AJB +BtJAt

The following are true

i) H1(S2S∗) ' ker Φ/Sp(M)

ii) H2(S2S∗) ' coker Φ

iii) H1(S2E) = H1(S2S∗)/End N∗

iv) H2(S2E) = H2(S2S∗)

Proof. In order to prove i) first notice that S2M ∼= Sp(M) through the map

P 7→ PJ.

Moreover the space Sp(M) can be imbedded in ker Φ in this way:

γ 7→ γAt.

Then i) and ii) come from the exact sequence (3.5).
The space End N∗ can be seen as a subspace of ker Φ by the imbedding:

α 7→ Atα.

Then iii) and iv) follow from the exact sequence (3.6).
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Remark 3.1.6. Summing up the proposition 3.1.5, we can see the space Q =
End N∗ ⊕ Sp(M) as a subspace of ker Φ:

(α, γ) 7→ Atα + γAt,

hence we have
H1(S2E) = ker Φ/Q.

We are now ready to define the two families studied mostly in this work: sym-
plectic ’t Hooft instantons and symplectic Rao-Skiti instantons.For any projective
space of odd dimension these concepts have been introduced in [Ott96] and in
[CHMRS14] respectevely. Furthermore we will introduce a generalization of the
symplectic ’t Hooft giving a bigger family of instanton (still called ’t Hooft) not
necessarily symplectic.
Let’s introduce the symplectic ’t Hooft bundles on P3 first:
the idea is to build a bundle E such that E(1) has a section vanishing on k + 1
disjoint lines.
This will imply that for a ’t Hooft instanton h0(E(1)) > 0.
Let’s take k+ 1 lines {z = η = 0} and {ξi = ωi = 0} for i = 1, . . . , k, where z, η, ξi
and ωi are generic linear forms (hence they define disjoint lines). Then we can
build the following matrix:

A =

 ξ1 a1z ω1 a1η
. . .

...
. . .

...
ξk akz ωk akη


where ai ∈ C are generic.
This is an instanton bundle called of ’t Hooft type.
If we introduce the following matrix

C =


−ω1 ξ1

. . .
. . .

−ωk ξk
−η z


then ACt = 0, hence it defines k + 1 sections of the kernel bundle (twisted by
O(1)), that is one section of E(1). And this section vanishes where the rank of C
is not maximum.
Conversely, by the Serre correspondence, an instanton bundle E over P3 that has a
section of E(1) vanishing on k+ 1 disjoint lines comes from a matrix of the above
form.
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Furthermore it could happen that these k + 1 lines are contained in a quadric: in
this case E(1) has one more section; indeed an independent section can be found
in the following way:
say q the quadric that contains the k + 1 lines, there exist linear form si, ti with
i = 1, . . . , k + 1 such that

q = siξi + tiωi = sk+1z + tk+1η,

then by adding the following row to C

(a1s1, . . . , aksk,−sk+1, a1t1, . . . , aktk,−tk+1)

we get the new section.
So if the k + 1 lines are all contained in a quadric we get h0(E(1)) = 2, otherwise
we have h0(E(1)) = 1.
Hence both the case h0(E(1)) = 1 and h0(E(1)) = 2 are covered by ’t Hooft in-
stanton bundles.
From the description given by the lines it is clear that ’t Hooft bundles correspond-
ing to k+1 lines lying on a smooth quadric are SL(2) invariant. About the matter
there is a classification of instanton bundles on P3 which are SL(2) invariant in
([Fae07]).

Definition 3.1.7. A symplectic instanton bundle is called of ’t Hooft type if the
map A ∈ Hom(M,N ⊗ V ) is given in a convenient system of coordinates by the
matrix

[D(ξi)|a ·D(zi)|D(ωi)|a ·D(ηi)] (3.7)

where a =
(
aji
)
is a k×nmatrix with complex entries, D(ξi) andD(ωi) are diagonal

k × k matrices with diagonal entries degree 1 generic forms ξ1, . . . , ξk, ω1, . . . , ωk,
D(zj) and D(ηj) are diagonal n×n matrices with diagonal entries degree 1 generic
forms z1, . . . , zn, η1, . . . , ηn.

Remark 3.1.8. Let be given a symplectic instanton bundle of ’t Hooft type, there
exist degree 1 forms z0, η0 such that (z0, . . . zn, η0, . . . , ηn) is a system of coordinates
which will be denoted for the rest of the chapter by (x0, . . . xn, y0, . . . , yn).

Notation 3.1.9. When A ∈ Hom(M,N ⊗ V ) defines an instanton bundle we set
A =

∑n
i=0Aixi +

∑n
i=0 Ãiyi where Ai, Ãi ∈ Hom(M,N).

Remark 3.1.10. An equivalent way to describe a symplectic ’t Hooft instanton
bundle is giving the matrix A in the following way:

A = [a ·D(ξi)|a ·D(µi)]

where a is now a k × (k + n) matrix with complex entries and D(ξi), D(µi) are
(k + n)× (k + n) diagonal matrices with linear entries.
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Proposition 3.1.11. Let E be a generic symplectic ’t Hooft instanton on P2n+1

with c2 = k ≥ 3.
Then H0(E(1)) = n.

Proof. see Theorem 3.7 of [Ott96].

Proposition 3.1.12. Symplectic ’t Hooft bundles depend on 5kn+4n2 parameters
for k ≥ 3.

Proof. see Theorem 3.8 of [Ott96].

Let now introduce the Rao-Skiti instanton bundles:

Definition 3.1.13. A symplectic instanton bundle is called Rao-Skiti if the map
A ∈ Hom(M,N ⊗V ) is given in a convenient system of coordinates by the matrix

A = [F |H] (3.8)

where F is a k × (n+ k) matrix of the form

F =


x0 x1 · · · xn 0 · · · · · · 0
0 x0 x1 · · · xn 0 · · · 0

0 0 x0 x1 · · · xn
. . .

...
... · · ·

. . .
. . .

. . . · · ·
. . . 0

0 · · · · · · 0 x0 x1 · · · xn


and H is a persymmetric k × (n+ k) matrix of linear forms hij ∈ H0(O(1)), that
is, a matrix such that hij = hst if i+ j = s+ t.

The analogous result of proposition 3.1.11 and 3.1.12 are the following:

Proposition 3.1.14. Let E be a generic symplectic Rao-Skiti instanton on P2n+1

with c2 = k ≥ 3.
Then H0(E(1)) = 0.

Proof. see proposition 3.13 of [CHMRS14].

Proposition 3.1.15. Rao-Skiti bundles depend on (4n+ 2)k + 4n2 + 2n− 4.
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Proof. see remark 3.14 of [CHMRS14].

As announced let give a generalization of the symplectic ’t Hooft bundles:

Definition 3.1.16. An instanton bundle is called of ’t Hooft type if the map
A ∈ Hom(M,N ⊗V ) is given in a convenient system of coordinates by the matrix

A = [D(ξi)|a ·D(zi)|D(ωi)|a ·D(ηi)] (3.9)

where a =
(
aji
)
is a k×nmatrix with complex entries, D(ξi) andD(ωi) are diagonal

k × k matrices with diagonal entries degree 1 generic forms ξ1, . . . , ξk, ω1, . . . , ωk,
D(zj) and D(ηj) are diagonal n×n matrices with diagonal entries degree 1 generic
forms z1, . . . , zn, η1, . . . , ηn, and B ∈ Hom(M∗, L∗ ⊗ V ) is given by

B = [−D(ωi)| − b ·D(ηi)|D(ξi)|b ·D(zi)] (3.10)

where b = (bji ) is a k × n matrix with complex entries.

Remark 3.1.17. An equivalent way to describe a ’t Hooft instanton bundle is
giving the couple (A,B) in the following way

A = [a ·D(ξi)|a ·D(µi)] B = [−b ·D(µi)|b ·D(ξi)]

where a, b are now k× (k+ n) matrices with complex entries and D(ξi), D(µi) are
(k + n)× (k + n) diagonal matrices with linear entries.

Obviously the behaviour of H0(E(1)) for this class of instanton bundles is the
same as for the class of symplectic ’t Hooft bundles. Let now prove the analogous
of proposition 3.1.12:

Proposition 3.1.18. ’t Hooft bundles depend on (6n−1)k+4n2−n+1 parameters
for k ≥ 5.

Proof. The idea of the proof is similar to the one in Theorem 3.8 in [Ott96]. We
use the description of a ’t Hooft bundle shown in remark 3.1.17: The matrices a, b
can be reduced to matrices with the first block k× k equal to the identity matrix,
moreover we can arrange the first row of the second block to be (1, . . . , 1) hence
each one depends on (k − 1)n parameters. While every ξi, µj depends on 2n + 2
parameters. So the couple (A,B) of matrices which describes a ’t Hooft bundle
depends on: 2(k − 1)n+ (2n+ 2)(2n+ 2k) = k(6n+ 4) + 2n(2n+ 1) parameters.
Now the group G = GL(k)×GL(k)×GL(2n+ 2k) acts over (A,B) by(

(α, β, γ), (A,B)

)
7→ (βAγ−1, αBγt)
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In order to evaluate the isotropy subgroups of this action it is sufficient to study
the actions of the three groups separately: let’s focus first on α (β is the same). α
sends the couple (A,B) to the couple (A,αB) where

αB = (−α · b ·D(µi)|α · b ·D(ξi))

In order to preserve the structure of α · b, α must be diagonal and the first element
α11 must be equal to 1, so there are k − 1 free parameters.
Let’s study now the action of GL(2n + 2k) over (A,B). Let’s first divide γ into
four square matrices of size n+ k each, say

γ =

(
D1 D2

D3 D4

)
where Di = (dij,k).
So (A,B) is sent in the couple (Aγ−1, Bγt). Focusing on the second part we get

Bγt =
(
− b(D(µi)D

1t −D(ξi)D
2t)|b(−D(µi)D

3t +D(ξi)D
4t)
)

This leads to the condition that D(µi)D
1t−D(ξi)D

2t and −D(µi)D
3t +D(ξi)D

4t

are diagonal matrices. Hence if i 6= j we get the following:{
µid

1
ji − ξid2

ji = 0
−µid3

ji + ξid
4
ji = 0

Thanks to the generality of the linear forms, this leads to 2n + 2 conditions that
are satisfied if and only if dijk = 0 for every i, j, k with j 6= k.
This proves that the matrices Di are all diagonal.
Moreover from Bγt we get the linear forms associated to the new instanton bundle,
that is: {

µ̃i = µid
1
ii − ξid2

ii

ξ̃i = −µid3
ii + ξid

4
ii

∀i = 1 . . . n+ k.

Studying Aγ−1, knowing that

γ−1 =

(
(D1D4 −D2D3)−1D4 −(D1D4 −D2D3)−1D2

−(D1D4 −D2D3)−1D3 (D1D4 −D2D3)−1D1

)
we get {

µ̃i = 1
d1iid

4
ii−d2iid3ii

(−ξid2
ii + µid

1
ii)

ξ̃i = 1
d1iid

4
ii−d2iid3ii

(ξid
4
ii − µid3

ii)

In order to get a ’t Hooft bundle it is sufficient to satisfy the k + n− 1 conditions

d1
iid

4
ii − d2

iid
3
ii = λ
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where λ ∈ C.
Summing up, the dimension of the isotropy group of the whole action is 3n+ 3k+
1 + 2(k − 1). Subtracting this dimension from the number of parameters of the
couple (A,B) we get the result.

3.2 Different symplectic structures
So far we have investigated on the different structures a symplectic instanton

can have changing the matrix associated to it and fixing the matrix associated to
the symplectic isomorphism. Now let’s see how many skew-symmetric matrices J
satisfy the equation AJAt = 0 in the unknonwn J .

Notation 3.2.1. For the rest of the section J = (jlt) will be a (2n+2k)×(2n+2k)
skew-symmetric matrix often used in the following matrix form

J =

(
J1 J2

−J2t J3

)
and It represents the t× t identity matrix.

Proposition 3.2.2. Let A be a k× (2n+ 2k) matrix representing a generic sym-
plectic ’t Hooft type instanton.
The dimension of the space of solutions of the equation AJAt = 0 is k+n and the
solutions are the following

J1 = J3 = 0, J2 =


α1 0 0 0
0 α2 0 0

0 0
. . . 0

0 0 0 αn+k


with αi ∈ C.

Proof. It is easy to see that these matrices are solutions.
In order to study separately the three blocks of J we need to prove the proposition
for a non generic ’t Hooft bundle, i.e. let’s suppose that the linear forms ξi’s and
zi’s are only in the variables xi’s while the µi’s and the ηi’s are in the yi’s (following
the same notations used in 3.1.7 ). Then if the result holds for this particular ’t
Hooft by semicontinuity we can conclude.
If we call X the first block of the matrix A and Y the second block we get the
following equation

XJ1X t +XJ2Y t − Y J2tX t + Y J3Y t = 0
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So J1 is multiplied by quadratic forms in the xi’s, J3 in the yi’s and J2 in the forms
xiyj. Let’s focus first on J1 (the procedure for J3 is the same). We have (n+ k)2

variables, for simplicity we are going to call these matrices ei,j for i, j = 1, . . . , k+n,
and ei,j is the matrix that is everywhere zero except for the position (i, j) where is
equal to 1. We can divide these matrices into three groups: ei,j with both indexes
less or equal than k, with one greater than k and with both indexes grater than
k. When we perform Xei,jX

t for a matrix of the first group we get a k× k matrix
everywhere zero a part from place (i, j), moreover the quadratic form in this place
contains the monomial x2

0. No other matrix shares this property, hence the k2

matrices of the first group must be multiplied by zero in order to get the result.
Let’s see now how the matrices of the second group behave: taking ei,j+k (with
i ≤ k and j ≤ n) we get a k × k matrix that has only the row i different from
zero and all the forms are multiple by xj. While if we take ei+k,j (with i ≤ n and
j ≤ k) Xei+k,jX t has only the j−th column different from zero and the forms are
multiple by xi.
let’s take ei,j+k with i, j fixed. ej+k,t is the only matrix that shares in place (i, t)
the monomial x0xj after multiplication. So we get one condition on each ej+k,t for
every t = 1, . . . , k. But if we focus on eĩ,j+k, the conditions are again over the ej+k,t
matrices, and these conditions are independent from the previous ones if i 6= ĩ.
So one more time the 2nk matrices of the second group must be multiplied by
zero in order to get the result. We are left with the matrices of the form ei+k,j+k
with i, j ≤ n. Xei+k,j+kX

t is a matrix generally nowhere zero and multiple of
the monomial xixj. Hence only the matrices linked to ei+k,j+k and ej+k,i+k share
the same monomial, but thanks to the generality of a these two matrices are not
multiple, therefore we can conclude that J1 = 0.
To prove that J2 is diagonal we proceed keeping the same notation relative to ei,j
and dividing these matrices again into the same groups we created before, only
now ignoring ei,i for every i because we already know that these are solutions.
When we perform the calculation of Xei,jY t−Y ej,iX t (a skew-symmetric matrix)
with i, j ≤ k we see that this matrix has only places (i, j) and (j, i) different from
zero, and in these places all the possible degree two monomials appear. Moreover
between all these matrices only ei,j and ej,i give a matrix that in place (i, j) has
the monomial x0y0. So let’s keep in mind that the coefficients of ei,j and ej,i must
be multiple, however we can not conclude yet that they are zero. Let’s focus our
attention on the matrices of the form ei,j+k and ei+k,j now: for ei,j+k (with i ≤ k
and j ≤ n) the resultant matrix has only the i−th row and the i−th column
nonzero, moreover the monomials that appear in every place of this matrix are
multiple of yj, similarly ej+k,i creates a matrix with the same property except the
fact that the monomials are multiple of xj.
Finally ei+k,j+k (with i 6= j) creates a scalar matrix multiplied by xiyj.
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So fixing ĩ 6= j̃, the matrices ei,j such that Xei,jY t− Y ej,iX t is different from zero
in the position (̃i, j̃) are exactly n2 +n+ 2, indeed there are 2 from the first group,
2n from the second and n2 − n from the third one, moreover these last n2 − n
matrices are the same for every position.
We have already said that there must be a relation between the 2 matrices of the
first group, the same happens among the matrices of the second group: indeed
these 2n matrices can be coupled by being the only two matrices in this group
that after multiplication in place (̃i, j̃) they present a monomial of the form x0yt
or xty0 where t = 1, . . . , n.
So these matches solve the problem for the quadratic monomials where at least
one between x0 and y0 occurs. We have still n2 + 1 free variables and n2 equations
(the other degree two monomials). In order to solve this system we are forced
to use the free variables obtained by the matrices of the third group. But if we
change position (if k > 2 there are more positions) the equations change and we
have not enough free variables to use. This completes the proof.

Proposition 3.2.3. Let A be the k × (2n+ 2k) matrix of the following form

A =


x0 x1 · · · xn 0 · · · · · · 0 0 · · · · · · 0 y0 · · · yn−1 yn
0 x0 · · · · · · xn 0 · · · 0 0 · · · 0 y0 · · · · · · yn 0
...

. . . . .
. ...

0 · · · 0 x0 x1 · · · · · · xn y0 · · · · · · yn−1 yn 0 · · · 0


(Special symplectic instanton).
The dimension of the space of solutions of the equation AJAt = 0 is 2n + 2k − 1
and the solutions are the following

J1 = J3 = 0, J2 =



α1 α2 α3 · · · αn+k

αn+k+1 α1 α2

. . . αn+k−1

αn+k+2 αn+k+1

. . .
. . .

...
...

. . .
. . . α1 α2

α2n+2k−1 α2n+2k−2 · · · αn+k+1 α1


.

with αi ∈ C.

Proof. First of all by calculation it is easy to see that for every αi the matrices
described above are solutions of AJAt = 0.
In order to prove that there are no others we can treat separately J1, J2 and J3:
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indeed if we set A = (X|Y ), where X and Y are k × (n + k) matrices dealing
respectively with the xi’s and yi’s, we get that

AJAt = XJ1X t − Y J2tX t +XJ2Y t + Y J3Y t.

Hence J1 and J3 are multiplied by quadratic forms in the xi’s and in the yi’s
respectively, while J2 is multiplied by quadratic forms in both variables.
Let’s focus again first on J1:
we need to solve the system XJ1X t = 0 in the unknown J1. The matrix associated
to this linear system is (

(
n+1

2

)
k2)× (n+ k)2 so fixing n and for k sufficiently large

it is enough to show that the matrix has maximal rank, but it is immediate to see
that this matrix is already reduced in echelon form and all the lines are nonzero,
hence it has maximal rank.
This again implies that also J3 = 0. we are left to see which are the solutions of
the system XJ2Y t − Y J2tX t = 0.
if we build the matrix that represents the linear morphism XJ2Y t − Y J2tX t it is
immediate to see that every row of this matrix has only two entries different from
zero, more precisely every row give us a condition j2

(i,j) = j2
(k,t) if i = k + l and

j = t+ l for suitable l ∈ Z.

Proposition 3.2.4. Let A be a k× (2n+ 2k) matrix representing a generic Rao-
Skiti instanton.
The only solution of the equation AJAt = 0 is when

J =

(
0 αIn+k

−αIn+k 0

)
with α ∈ C.

Proof. This matrix for every α is a solution.
Here we apply the idea used in 3.2.2, we need to suppose that the linear forms
in the persymmetric matrix P are only in the variables yi’s. In this way we can
treat the blocks of J separately. J1 = 0 because we can apply the same procedure
used in 3.2.3; moreover also J3 = 0 indeed the second block (the one named Y )
of the special symplectic instanton is a specialization of a persymmetric matrix,
hence if there are no solutions, except the trivial one, for this kind of matrix
there is none for the general case. For the same reason J2 must be a linear
combination of the matrices in the space of solutions described in 3.2.3, i.e. band
matrices (n+ k)× (n+ k) that have only one band different from zero and all the
elements in that band are equal. Indeed J2 must be a solution of the equation
XJ2P t − PJ2tX t = 0, which is a generalization of the equation stated for J2 in
3.2.3. The idea of the proof is to show that the only possibility for J2 is being a
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multiple of the identity.
Let’s call

S1 =


0 . . . 0 0 α1

...
. . . 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , S2 =


0 . . . 0 α2 0
...
. . . 0 0 α2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


...

S2n+2k−2 =


0 . . . 0 0 0
...

. . . 0 0 0
0 0 0 0 0

α2n+2k−2 0 0 0 0
0 α2n+2k−2 0 0 0

 , S2n+2k−1 =


0 . . . 0 0 0
...

. . . 0 0 0
0 0 0 0 0
0 0 0 0 0

α2n+2k−1 0 0 0 0


We can divide these matrices into two groups: the upper triangular and the lower
triangular (we already know that Sn+k belongs to the space of solution hence we
can get rid of it). Let’s focus first on the upper triangular group. Evaluating
the matrix Ti = XSiP

t − PStiX
t for i = 1, . . . , n + k − 1 we can classify it in

the following way: T1 is the only matrix among the Ti’s that has in place (1, 2)
quadratic forms in x0yt for t = 0, . . . , n. Similarly T2 is the only one that has
quadratic forms in the same monomials in place (2, 3). More generally Ti, for
i = 1, . . . , k − 1, is the only matrix that has these forms in place (i, i+ 1).
For the other n matrices it is sufficient to focus our attention on place (k − 1, k) ;
indeed Tk+i is the only matrix which presents in that place the monomials xiyt.
The lower triangular matrices give the following matrices: Ui = XSi+n+kP

t −
PSti+n+kX

t for i = 1, . . . , n+k−1. These can be classified exactly in the same way,
more precisely Ui and Ti are the only matrices that share the property described
above for Ti. Hence in order to get a linear combination of the Ti’s and the Uj’s
equal to zero it should happen that, for i fixed, Ti and Ui must satisfy n + 1
equations if we focus on the entry of the matrix where they share their property
(the number of monomials of degree two that they have in common), but this,
thanks to the generality of the persymmetric matrix, gives only the trivial solution
if n > 1.

Remark 3.2.5. The spaces of solutions studied in the previous propositions could
be used to understand the fibre of the map that associates to a couple (A,B) rep-
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resenting an instanton bundle the matrix A that represents a Steiner bundle.

On a generic Rao-Skiti the map is one to one, while the fibre on the special
symplectic instanton is more complex, the aim for the rest of the section is to
study it.
The first thing we can see is that inside this fibre there is also a ’t Hooft bundle
associated to a different symplectic isomorphism.

Proposition 3.2.6. Let A be the matrix representing the special symplectic in-
stanton bundle, moreover let

Ĩ =

(
In+k 0n+k

0n+k K

)
, Ṽ =

(
V 0n+k

0n+k V

)
where

K =


0 · · · 0 1
... 0 . .

.
0

0 . .
.

0
...

1 0 · · · 0


is a (n+ k)× (n+ k) matrix and

V =

 t1
0 · · · tn+k

0

...
...

t1
n+k−1 · · · tn+k

n+k−1


is a (n+ k)× (n+ k) Vandermonde matrix with ti ∈ C.
Then if we set Ã = AĨṼ we get that ÃJÃt = 0, furthermore Ã represents a
symplectic ’t Hooft instanton bundle.

Proof. In order to see that ÃJÃt = 0 it is sufficient to observe that the matrix
Ĩ Ṽ JṼ tĨ t is of the form shown in proposition 3.2.3. Moreover, exploiting the
calculation, we can see that Ã is a symplectic ’t Hooft bundle with linear forms:

ξi = x0 + ti
1x1 + · · ·+ ti

nxn, µi = yn + ti
1yn−1 + · · ·+ ti

ny0.

The following lemma will be useful to understand deeper the fibre on the special
symplectic bundle:
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Lemma 3.2.7. Every skew symmetric matrix J̃ belonging to the space of solutions
of proposition 3.2.3 (keeping the same notations) can be expressed in the following
form J̃ = QJQt where

Q =

(
In+k 0n+k

0n+k J2
t

)
and J is the classical skew symmetric matrix.

Proof. it is enough to observe that

QJQt =

(
0n+k J2

−J2t 0n+k

)

Remark 3.2.8. One important thing to notice is that moving inside the fibre of the
special symplectic bundle doesn’t imply that we are keeping the same isomorphism
class inside the moduli space, i.e. the matrices of the form of Q described in lemma
3.2.7 are not always symplectic: indeed if we evaulate the Kuranishi map with [GS]
on the two instanton bundles (which lie in the same fibre) described in proposition
3.2.6 we see that it is different, more precisely both the germs are spanned by
the same number of quadrics but the generic quadrics inside these spaces have
different rank. Nevertheless what we can say is that moving along that fibre allows
us to move inside the symplectic moduli space in a path connected way. Hence
we can join the special symplectic instanton (which of course lies in the Rao-
Skiti component) to an element which lies on the symplectic ’t Hooft component
concluding that these two components are path connected.
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Chapter 4

Wishful thinking

This final chapter is devoted to some conjectures and computational results.
From 3.1 to 3.3 it is shown a possible path to prove Ottaviani’s conjecture in
[Ott96] (Theorem 4.4): this conjecture describes the space H1(S2(E)) when E is
a generic symplectic ’t Hooft bundle.
The basic idea is to apply the same method used in Chapter 1 for Steiner bundles,
but in this case the main obstacle is that the inductive step is two and not one:
this implies that we must deal with a sheaf which is not a bundle.
In 3.4 we study the same space whenever E is a Rao-Skiti instanton bundle.

As explained in Remark 1.5 of [Ott96] we can identify the tangent space at
MISn,k (the moduli space of symplectic instanton bundles of charge k in P2n+1) in
E with H1(S2(E)), so solving these conjectures would give an important compre-
hension of the tangent space at the moduli space of symplectic instanton bundles.

4.1 Tangent space at a symplectic ’t Hooft bundle
The following theorem is divided into two parts, the first one will be proved

later in the work while the second part remains a conjecture:

Theorem 4.1.1. Let E be a symplectic instanton bundle of ’t Hooft type over
P2n+1 and let k ≥ 2. Then, with the notations used in proposition 3.1.3,

i) h1(S2E(−1)) = max{q(k, n), 2(k + n)}
ii) h1(S2E) = max{p(k, n), 5kn+ 4n2}

Remark 4.1.2. Let k ≥ 2. The following hold

q(k, n) ≤ 2(k + n)⇐⇒ 2n

n− 1
≤ k
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p(k, n) ≤ 5kn+ 4n2 ⇐⇒


k ≥ 9 for n = 2
k ≥ 6 for n = 3
k ≥ 5 for n = 4, 5
k ≥ 4 for n ≥ 6

Remark 4.1.3 (Variables division). In order to use the results obtained in Chapter
1 for our conjecture we need to deal with a special form of A, a matrix defining a
symplectic ’t Hooft bundle. More precisely:

A = [D(ξi)|a ·D(zi)|D(ωi)|a ·D(ηi)]

where now the forms ξi’s depend only on the x0, . . . , xn variables while the ωi’s
on the xn+1, . . . , x2n+1. this means that the two blocks of A depend on different
variables.
Computational results confirm that if k is small there is a loss of generality in using
this particular form of A, however, if k is enough big, the 2k linear forms regain
generality. We will see later using [GS] that for n = 2 if k ≥ 11 these bundles have
the same behaviour as the generic one.
So from now on we will use this form of A when we describe a symplectic ’t Hooft
bundle.

Remark 4.1.4 (Proof). The first part of the theorem 4.1.1 is an easy con-
sequence of theorem 2.1.7: indeed we can split V into V1 = 〈x0, . . . , xn〉 and
V2 = 〈xn+1, . . . , x2n+1〉 and see A =

[
A1|A2

]
where Ai ∈ Hom(W, I ⊗ Vi) (re-

turning to the notations used in (2.1) ). Then we can consider these two exact
sequences:

0 −→ S∗1 → W ⊗O A1−→ I ⊗O(1) −→ 0

0 −→ S∗2 → W ⊗O A2−→ I ⊗O(1) −→ 0

Hence S1 and S2 are two Steiner bundles of ’t Hooft type over Pn.
Furthermore we can split the matrix of the map in prop 3.1.4 into two parts:

φ : Hom(N∗,M∗) → ∧2N ⊗ V

B =

[
B2

B1

]
7→ AJB +BtJAt

In order to find the kernel of the map above it is sufficient to solve these two
independent conditions:

A1B1 −Bt
1A

t
1 = 0 A2B2 −Bt

2A
t
2 = 0,
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and this means that Bi ∈ H1(S2S∗i (−1)), more precisely the map

ϕ : H1(S2S∗1(−1))⊕H1(S2S∗2(−1)) → H1(S2S∗(−1))

B1 ⊕B2 7→
[
B2

B1

]
is a bijection.
Hence we can conclude.

4.2 Explicit description over P3

We know that the moduli space of instanton bundles with c2 = k over P3 is
irreducible and smooth of dimension 8k− 3. Moreover every instanton is symplec-
tic. Hence if we take E instanton bundle of ’t Hooft type associated to A, with
the same notations as in definition 3.1.7, we know that h1(S2E) = 8k − 3. In the
next proposition we make explicit a basis of H1(S2E), but before that we need to
introduce some matrices:
First set for every i = 1 . . . k:
C ′i with (j, i)-th entry given by

−ajξi0
ξi0ξj1−ξi1ξj0 for j = 1, . . . , k j 6= i

0 for j = i
1 for j = k + 1

with (i, j)-th entry given by{
−ajξj0

ξi0ξj1−ξi1ξj0 for j = 1, . . . , k j 6= i

0 for j = i

and
D′i with (j, i)-th entry given by

−ajωi2

ωi2ωj3−ωi3ωj2
for j = 1, . . . , k j 6= i

0 for j = i
1 for j = k + 1

with (i, j)-th entry given by

.

{ −ajωj2

ωi2ωj3−ωi3ωj2
for j = 1, . . . , k j 6= i

0 for j = i
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Then we can construct the following matrices (same notations used in remark
4.1.4):

Ci =

[
0
C ′i

]
, Di =

[
D′i
0

]
∀i = 1 . . . k.

The next proposition is the equivalent of proposition 2.2.2:

Proposition 4.2.1. ? NOTAZIONI Let assume that ξi0, ωi2 and ai are different
from zero for every i. Then

i) The 2k-dimensional subspace of N ⊗ V generated by N ⊗ 〈x1, x3〉 surjects
over the (2k − 2)-dimensional vector space H1(E) = (N ⊗ V ) /M , where in
the quotient (v1x1 + v2x3) ∼ 0 iff v1 ∈ 〈a1〉 or v2 ∈ 〈a1〉.

ii) The 8k-dimensional subspace K ⊂M ⊗N∗ ⊗ V generated by
〈C1, . . . , Ck, D1, . . . , Dk〉 ⊗ V surjects over the (8k − 3)-dimensional vector
space H1(S2E).

Proof. The proof of i) is the same as the first part of proposition 2.2.2: indeed the
equation v1x1 + v2x3 = Am, where vi ∈ N and m ∈M , gives the conditions

miξi0 = 0
mk+1+iωi2 = 0

miξi1 +mk+1a
1
i = v1

i

mk+1+iωi3 +m2k+2a
1
i = v2

i

hence i).

We already know that h1(S2E) = 8k − 3, moreover it is straightforward to
see that K is contained in ker Φ. So, to prove ii), it is sufficient to see that K in
H1(S2E) has dimension 8k − 3.
The equation

k∑
i=1

(ciCi + diDi) = Atα + SJAt

where ci, dj ∈ V , α ∈ End N∗ and S is a (2k + 2) × (2k + 2) symmetric matrix,
gives the following conditions (for every j = 1 . . . k):
if i = j we get 

ξjo(αjj − sj,j+k+1) = 0
ξj1(αjj − sj,j+k+1)− sj,2k+2a

1
j = 0

ωj2sjj = 0
ωj3sjj + sj,k+1a

1
j = 0

40



obtaining that sj,k+1 = sj,2k+2 = 0.
Similarly, if i = j + k + 1, we get the conditions sj+k+1,k+1 = sj+k+1,2k+2 = 0.
If i = k + 1 or i = 2k + 2 we obtain respectively

d0j = 0

d1j =
∑k

t a
1
tαtj − sk+1,2k+2a

1
j

d2j = 0
d3j = sk+1,k+1a

1
j

c0j = 0
c1j = −s2k+2,2k+2a

1
j

c2j = 0

c3j =
∑k

t a
1
tαtj + sk+1,2k+2a

1
j

Hence, in order to have
∑k

i=1(ciCi + diDi) ∼ 0, we get these k + 3 independent
conditions (the first two are exactly the same as the second part of proposition
2.2.2):

- [c1, . . . , ck] ∈ 〈a1x1〉, and di = 0;

- [d1, . . . , dk] ∈ 〈a1x3〉, and ci = 0;

- [c31 − d11, . . . , c3k − d1k] ∈ 〈a1〉, and all other variables equal to 0.

4.3 Restriction to a codimension 2 variety
Let H ∼= P2n−1 be the variety given by the equations xn = 0 and x2n+1 = 0.

Let A|P2n−1 ∈ Hom(M,N ⊗ V ′) be given by substituting xn = 0 and x2n+1 = 0 in
A. In matrix form there are two columns of A|P2n−1 which are zero (more precisely
the (n+ k)−th and the last one) and we set A′ the matrix obtained by A deleting
these two columns. We set M = M ′ ⊕C2, so that A′ ∈ Hom(M ′, N ⊗ V ′) defines
an instanton bundle E ′.
If we call IH its sheaf of ideals, we get the following exact sequence

0 −→ O(−2)
θ1−→ O(−1)2 θ2−→ IH −→ 0 (4.1)

with
θ1 =

(
x2n+1

−xn

)
θ2 =

(
xn x2n+1

)
.
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Together with the defining sequence of H we get

0 −→ O(−2)
θ1−→ O(−1)2 θ2−→ O −→ OH −→ 0

Tensoring the previous sequence with S2E we thus obtain

0 −→ S2E(−2) −→ S2E(−1)2 −→ S2E −→ S2E|H −→ 0 (4.2)

and this leads to the following two long exact sequences:

0 −→ H1(S2E(−1))2 −→ H1(F) −→ H2(S2E(−2))
ϕ−→ H2(S2E(−1))2 −→ H2(F) −→ 0

(4.3)

0 −→ H0(S2E|H) −→ H1(F) −→ H1(S2E) −→ H1(S2E|H)
δ−→

−→ H2(F) −→ H2(S2E) −→ H2(S2E|H) −→ 0 (4.4)

where F is the sheaf which appears when we split (4.2) into two short exact se-
quences.
Let’s focus on (4.3) first, especially on ϕ:

ϕ : ∧2N → H2(S2E(−1))2

T 7→ (Tx2n+1,−Txn)

In order to study the kernel of this map, first we study the case n = 2. If we set

ϕ1 : ∧2N → H2(S2E(−1))

T 7→ −Tx2

we have the following

Lemma 4.3.1. A basis for the solutions of the system

ϕ1(T ) = φ(B)

(with φ and B as in remark 4.1.4 and B0 = 0) in the unknown B1 =

[
C0

C1

]
,

where C0 = (c0
ij) is a k× k matrix, C1 = (c1

i,j) is a 2× k matrix and T is a generic
skew-symmetric k × k matrix, is given by the 3k solutions (for every 1 ≤ t ≤ k):

c0
t,t = 1, all other unknowns equal to zero (k solutions)
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c1
2,t = 1, all other unknowns equal to zero (k solutions)

c1
1,t = 1

c0
t,i = ai,1

ξi,0
ξt,1ξi,0−ξt,0ξi,1 c0

i,t = c0
t,i
ξt,0
ξi,0

0 < i < t

c0
j,t = −aj,1 ξt,0

ξj,1ξt,0−ξj,0ξt,1 c0
t,j = c0

j,t
ξj,0
ξt,0

t < j ≤ k

all other unknowns equal to zero

(k solutions)

Proof. It is straightforward to see that the expressions written above are solutions
and are linearly independent. Moreover, for every (i, j) with 1 ≤ i < j ≤ k, we
have: {

ξi,1c
0
i,j − ξj,1c0

j,i + ai,1c
1
1,j − aj,1c1

1,i = 0
ξi,0c

0
i,j − ξj,0c0

j,i = 0

So there are k2−k equations and k2 +2k variables. In order to prove the lemma it
is sufficient to show that the matrix associated to this system has maximal rank.
Just to fix the ideas, we show the shape of the matrix when k = 3, in this case we
have the following:

ξ1,1 −ξ2,1 −a2,1 a1,1

ξ1,0 −ξ2,0

ξ1,1 −ξ3,1 −a3,1 a1,1

ξ1,0 −ξ3,0

ξ2,1 −ξ3,1 −a3,1 a2,2

ξ2,0 −ξ3,0


Focusing on the left part of the matrix (the one which refers to c0

i,j) it is immediate
to see that this submatrix has maximal rank.

Lemma 4.3.2. Set Y the space of the solutions of the system in lemma 4.3.1.
Then, if k ≥ 4, the dimension of φ(Y ) is 2k − 2. Moreover a basis is given by the
following matrices multiplied by x2 (for every 1 ≤ t ≤ k − 1):

a2
1

0
... 0

a2
t−1

−a2
1 · · · −a2

t−1 0 a2
t+1 · · · a2

k

−a2
t+1

0
... 0
−a2

k


, (4.5)
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

a1
1ξ(t, 1)

0
... 0

a1
t−1ξ(t, t− 1)

−a1
1ξ(t, 1) · · · −a1

t−1ξ(t, t− 1) 0 −a1
t+1ξ(t, t+ 1) · · · −a1

kξ(t, k)
a1
t+1ξ(t, t+ 1)

0
... 0

a1
kξ(t, k)


(4.6)

where the only rows and columns which appear are the t−eth and
ξ(i, j) =

ξi,0ξj,2
ξi,1ξj,0−ξi,0ξj,1 .

Proof. In order to get easier calculation we can observe that if we take B in Y
then AJB +BtJAt = (A2JB +BtJAt2)x2.
The first k solutions in lemma 4.3.1 are sent to 0 by φ.
The second k solutions are sent by φ to the matrices of the form (4.5) multiplied
by x2 with 1 ≤ t ≤ k, but for t = k the matrix we get is a linear combination
of the others (just to fix the ideas, in fact everyone is a linear combination of the
remaining k − 1 matrices). We call these matrices v1, . . . , vk−1.
The same happens for the matrices of the form (4.6) multiplied by x2 which are
image of the last k solutions. These matrices will be denoted by w1, . . . , wk−1.
Now we are left to prove that these 2k − 2 matrices are linearly independent.
In order to do it we write α1v1 + . . . + αk−1vk−1 + β1w1 + . . . + βk−1wk−1 = 0.
There are 2k− 2 variables and k(k−1)

2
conditions. If k ≥ 4 there are at least 2k− 2

conditions, moreover, thanks to the generality of a and ξi,j, these are independent.
So the only solution is the one with all the coefficients equal to 0, hence the
matrices are independent.

Now we are able to study kerϕ:

Proposition 4.3.3. The dimension of kerϕ is k− 1. Moreover a basis is given by
the matrices of the form (4.5).
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Proof. We have already studied kerϕ1. If we set

ϕ2 : ∧2N → H2(S2E(−1))

T 7→ Tx5

then a basis of kerϕ2 is given by the same matrices as in lemma 4.3.2 replacing
ξi,j with ωi,2+j.
Obviously kerϕ = kerϕ1 ∩ kerϕ2, hence the matrices of the form (4.5) belong to
kerϕ. In order to prove that there are no other elements in this intersection we
can apply the same argument used in the last part of the proof of lemma 4.3.2
applied to the k − 1 matrices of the form (4.6) in kerϕ1 and the k − 1 matrices
of the same form in kerϕ2. Consequently we get that these matrices are linearly
independent, hence we can conclude.

Now we return to the general case: first of all we still split ϕ in two:

ϕ1 : ∧2N → H2(S2E(−1))

T 7→ −Txn

ϕ2 : ∧2N → H2(S2E(−1))

T 7→ Tx2n+1

Let’s give the equivalent of lemma 4.3.1 and lemma 4.3.2 when n > 2, because, in
this case, the things change:

Lemma 4.3.4. Assume n = 3 and k ≥ 4 or n ≥ 4 and k ≥ 3. Then a basis for
the solutions of the system

ϕ1(T ) = φ(B)

(with φ and B as in remark 4.1.4 and B0 = 0) in the unknown B1 =

[
C0

C1

]
, where

C0 = (c0
ij) is a k× k matrix, C1 = (c1

i,j) is a n× k matrix and T is a generic skew-
symmetric k × k matrix, is given by the 2k + n− 1 solutions (for every 1 ≤ t ≤ k
and 1 ≤ r ≤ n− 1):

c0
t,t = 1, all other unknowns equal to zero (k solutions)

c1
n,t = 1, all other unknowns equal to zero (k solutions)

c1
r,j = aj,r all other unknowns equal to zero (n− 1 solutions)

Proof. The expressions written above are independent solutions. In order to see
that there are no others we write the system which corresponds to ϕ1(T ) = φ(B) :{

ξi,rc
0
i,j − ξj,rc0

j,i + ai,rc
1
r,j − aj,rc1

r,i = 0
ξi,0c

0
i,j − ξj,0c0

j,i = 0
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for every 1 ≤ r ≤ n− 1 and every 1 ≤ i < j ≤ k.
Hence the matrix of this system is nk(k−1)

2
× (k2 + kn). we can split this matrix

into two submatrices: the one of the c0
ij which is nk(k−1)

2
× k2, and the one of the

c1
ij which is nk(k−1)

2
× kn.

if we focus on the rows referred to an r fixed then the second matrix has the
same properties of (2.8), then we can perform Gaussian elimination with the same
method (taking into account the whole matrix). Swapping properly the rows we
get the first (n−1)(k−1) rows linearly independent, and the remaining rows have
only zero entries under the c1

ij. The remaining variables involved in the system are
the c0

ij, with i 6= j, so they are k(k − 1). Thanks to the generality of a and ξij the
remaining rows have rank k(k − 1) provided that there are enough equations left,
more precisely provided that

nk(k − 1)

2
− (n− 1)(k − 1) ≥ k2 − k

and this inequality is true if n = 3 and k ≥ 4 or n ≥ 4 and k ≥ 3.

Thanks to the next lemma we can observe that, despite the differences in kerϕ1

between the case n = 2 and the others, kerϕ shows the same structure:

Lemma 4.3.5. Set Y the space of the solutions of the system in lemma 4.3.4.
Then, with the same assumptions stated in lemma 4.3.4, the dimension of φ(Y ) is
k − 1. Moreover a basis is given by the following matrices multiplied by xn (for
every 1 ≤ t ≤ k − 1):

an1

0
... 0

ant−1

−an1 · · · −ant−1 0 ant+1 · · · ank
−ant+1

0
... 0
−ank


, (4.7)

Proof. the proof is the same as in lemma 4.3.2 observing that the n− 1 solutions
found in lemma 4.3.4 are sent to 0 by φ.

Returning to (4.4), we focus our attention on

δ : H1(S2(E|H)) → H2(F)
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We know by Proposition 3.4 in [Ott96] that E|P2n+1−2 ' E ′ ⊕O2 where E ′ is a ’t
Hooft bundle over P2n+1−2. Hence we have the following natural decomposition:

H1(S2E|H) ' H1(S2E ′)⊕H1(E ′)2.

Moreover:
let

Φ|P2n−1 : Hom(N∗,M∗ ⊗ V ′) −→ ∧2N ⊗ S2V ′

B 7→
(
A|P2n−1

)
JB +BtJ

(
A|P2n−1

)t
and denote K|P2n−1 := ker Φ|P2n−1 . In particular the decomposition

Hom(N∗,M∗ ⊗ V ′) = Hom(N∗,M ′∗ ⊗ V ′)⊕ (N ⊗ V ′)2

induces the following splitting

K|Pn−1 = K ′ ⊕ (N ⊗ V ′)2

.

In the same spirit of proposition 2.3.2 we have:

Proposition 4.3.6. Given B′ =

[
B′2
B′1

]
∈ Hom(N∗,M ′∗ ⊗ V ′) represented by a

(2k + 2n − 2) × k matrix with linear entries and b1, b2 ∈ N ⊗ V ′ represented by
a 1× k matrix with linear entries let us construct B ∈ Hom(N∗,W ∗ ⊗ V ) in the

following way: B :=


B′2
b2

B′1
b1

.
Then the boundary map

H1(S2E|P2n−1) ' H1(P2n−1, S2E ′)⊕H1(P2n−1, E ′)2 δ−→ H2(F)

fits into the following commutative diagram

K ′ ⊕ (N ⊗ V ′)2 δ′−→ (∧2N ⊗ V )2y y
H1(P2n−1, S2E ′)⊕H1(P2n−1, E ′)2 δ−→ H2(F)

where δ′(B′, b1, b2) =

(
AnJB +BtJAtn, A2n+1JB +BtJAt2n+1

)
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Proof. The same diagram chasing applied in proposition 2.3.2

Let’s split δ′ of prop 4.3.6 into two (keeping the same notations):

δ′1 : K ′ ⊕ (N ⊗ V ′)2 −→ ∧2N ⊗ V
(B′, b1, b2) 7→ AnJB +BtJAtn

δ′2 : K ′ ⊕ (N ⊗ V ′)2 −→ ∧2N ⊗ V
(B′, b1, b2) 7→ A2n+1JB +BtJAt2n+1

From here to the end of the section the propositions staten are without proof,
hence they have to be considered conjectures .

First we study P5:

Lemma 4.3.7. Let n = 2. Using the same notation as in proposition 4.2.1, a
basis for the solution of the system

δ′1

( k∑
i=1

ciCi, v
1x1 + v2x4, 0

)
= AJS + StJAt + Tx5 (4.8)

in the unknowns ci = c0ix0 + c1ix1 + c3ix3 + c4ix4,
v1, v2 ∈ Ck, S ∈ N ⊗M∗ and T ∈ ∧2N
is given by the 8k + 7 solutions:
(in every solution the unknowns omitted are supposed to be taken equal to zero){

c0p = γpξp0 c1p = γpξp1

sp+2+k,q = − (γqξq0a1p−γpξp0a1q)ξq2
ξp0ξq1−ξp1ξq0 s2+2k+1,p = −γpξp2

∀(γ1, . . . , γk) ∈ Ck

(k solutions)

c0p = a1
p (k + 1− th)

v1
p = a2

p (k + 2− th)

s2+k+p,q =
a2
pa

2
q

ξp0
s2+2k+2,p =

a2
pξp2

ξp0
v1
p = a2

p

ξp1
ξp0

(k + 3− th)

c1p = a1
p (k + 4− th)

v1
p = a1

p s2+2k+1,p = −a2
p (k + 5− th)
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s2+2k+1,p = a1
p (k + 6− th)

s2+2k+2,p = a2
p (k + 7− th)

s2+k+p,p = γp ∀(γ1, . . . , γk) ∈ Ck (k solutions)

sp,p = γp ∀(γ1, . . . , γk) ∈ Ck (k solutions)

sk+2,p = γp tpq = a2
qγp − a2

pγq ∀(γ1, . . . , γk) ∈ Ck (k solutions)


sk+1,p = γp

spq = − ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

tpq = −ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)
∀(γ1, . . . , γk) ∈ Ck (k solutions)


v2
p = γp

spq = − ωq3

ωp3ωq4−ωp4ωq3
(a2
qγp − a2

pγq)

tpq = −ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a2
qγp − a2

pγq)
∀(γ1, . . . , γk) ∈ Ck (k solutions)


c4p = γp

spq = ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0

ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

tpq = ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0

ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

∀(γ1, . . . , γk) ∈ Ck

(k solutions)


c3p = γp

spq = − ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0

ωq4

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

tpq = − ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0

ωp4ωq5−ωp5ωq4

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

∀(γ1, . . . , γk) ∈ Ck

(k solutions)

Proof. (sketch) Let’s write more explicit the system (4.8):
for every 1 ≤ i < j ≤ k the coefficients of the xi’s of the left part of the equation
are:
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

− ξi2ξj0−ξi0ξj2
ξi0ξj1−ξi1ξj0 (a1

jc0i − a1
i c0j)

− ξi2ξj0−ξi0ξj2
ξi0ξj1−ξi1ξj0 (a1

jc1i − a1
i c1j) + a2

i v
1
j − a2

jv
1
i

0

− ξi2ξj0−ξi0ξj2
ξi0ξj1−ξi1ξj0 (a1

jc3i − a1
i c3j)

− ξi2ξj0−ξi0ξj2
ξi0ξj1−ξi1ξj0 (a1

jc4i − a1
i c4j) + a2

i v
2
j − a2

jv
2
i

0

While on the right part

ξi0s2+k+i,j − ξj0s2+k+j,i

ξi1s2+k+i,j − ξj1s2+k+j,i + a1
i s2+2k+1,j − a1

js2+2k+1,i

ξi2s2+k+i,j − ξj2s2+k+j,i + a2
i s2+2k+2,j − a2

js2+2k+2,i

ωj3sji − ωi3sij
ωj4sji − ωi4sij + a1

jsk+1,i − a1
jsk+1,j

ωj5sji − ωi5sij + a2
jsk+2,i − a2

i sk+2,j + tij

We can split the system into two: the equations which come from the coefficients
of x0, x1, x2 and the others; indeed there is no unknown involved in both of these
groups.
Hence we can notice that the first part is exactly the same as the one found in
lemma 2.4.2, so the first 2k+7 solutions written above are the contribution of this
part.
We are left to prove that the matrix of the second part of the system has maximal
rank.

Lemma 4.3.8. With the same assumptions of lemma 4.3.7, a basis for the solution
of the system

δ′2

( k∑
i=1

diDi, 0, r
1x1 + r2x4

)
= AJU + U tJAt − Tx2

in the unknowns di = d0ix0 + d1ix1 + d3ix3 + d4ix4,
r1, r2 ∈ Ck, U ∈ N ⊗M∗ and T ∈ ∧2N
is given by the 8k + 7 solutions:{

d3p = γpωp3 d4p = γpωp4

upq = − (γqωq3a1p−γpωp3a1q)ωq5

ωp3ωq4−ωp4ωq3
uk+1,p = −γpωp5

∀(γ1, . . . , γk) ∈ Ck

(k solutions)

d3p = a1
p (k + 1− th)
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r2
p = a2

p (k + 2− th)

upq =
a2
pa

2
q

ωp3
uk+2,p =

a2
pωp5

ωp3
r2
p = −a2

p

ωp4
ωp3

(k + 3− th)

d4p = a1
p (k + 4− th)

r2
p = a1

p uk+1,p = −a2
p (k + 5− th)

uk+1,p = a1
p (k + 6− th)

uk+2,p = a2
p (k + 7− th)

up,p = γp ∀(γ1, . . . , γk) ∈ Ck (k solutions)

u2+k+p,p = γp ∀(γ1, . . . , γk) ∈ Ck (k solutions)

u2+2k+2,p = γp tpq = a2
pγq − a2

qγp ∀(γ1, . . . , γk) ∈ Ck (k solutions)


u2+2k+1,p = γp

u2+k+p,q = − ξq0
ξp0ξq1−ξp1ξq0 (a1

qγp − a1
pγq)

tpq = ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0 (a1

qγp − a1
pγq)

∀(γ1, . . . , γk) ∈ Ck (k solutions)


r1
p = γp

u2+k+p,q = − ξq0
ξp0ξq1−ξp1ξq0 (a2

qγp − a2
pγq)

tpq = ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0 (a2

qγp − a2
pγq)

∀(γ1, . . . , γk) ∈ Ck (k solutions)


d1p = γp

u2+k+p,q = ξq0
ξp0ξq1−ξp1ξq0

ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

tpq = − ξp0ξq2−ξp2ξq0
ξp0ξq1−ξp1ξq0

ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

∀(γ1, . . . , γk) ∈ Ck

(k solutions)
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
d0p = γp

u2+k+p,q = − ξq1
ξp0ξq1−ξp1ξq0

ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

tpq = ξp1ξq2−ξp2ξq1
ξp0ξq1−ξp1ξq0

ωp3ωq5−ωp5ωq3

ωp3ωq4−ωp4ωq3
(a1
qγp − a1

pγq)

∀(γ1, . . . , γk) ∈ Ck

(k solutions)

In order to study the kernel of the map δ in proposition 4.3.6 we need to com-
bine the solutions given in 4.3.7 and 4.3.8, taking into account that the variables
tij must be the same.
Once we get the dimension of the kernel of δ we have almost finished indeed we
can proceed in the same way we have done in proposition 2.4.3 having all the
dimensions we need.

4.4 Computational results
Throughout the whole work I used the software Macaulay2 [GS] (version 1.7).

This program allowed me to picture the structure of the moduli space of instanton
bundles in particular cases.
The next tables will sum up the behaviour in P5 of both the generic ’t Hooft bundle
and the generic Rao-Skiti bundle.
Symplectic t’Hooft bundle:

k 6 7 8 9 10 11 12
h1(S2(E)) 89 95 98 106 116 126 136
h1(End(E)) 94 101 105 114 125 136 147

Rao-Skiti bundle:

k 6 7 8 9 10 11 12
h1(S2(E)) 89 95 98 106 116 126 136
h1(End(E)) 89 95 98 106 116 126 136

Remark 4.4.1. The first thing to notice is that the values of h1(S2(E)), when E
is ’t Hooft, agree with Ottaviani conjecture.
In P5 these two families of instantons seem to share the same dimension ofH1(S2(E)),
10k+16, while the difference is when we study the moduli space of instantons (not
necessarily symplectic): indeed the dimension of the tangent space on a ’t Hooft
bundle increases while the one on a Rao-Skiti remains unchanged: this means that
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inside the Rao-Skiti component the two moduli spaces are the same, on the con-
trary the component which includes the ’t Hooft bundles is different somehow.
Moreover the Kuranishi map is always identically zero evaluated on a Rao-Skiti
bundle, both for the symplectic case and the general case. This does not happen
for ’t Hooft bundles: in fact they are a smooth point in MIS2,k but for k < 9
are singular in MI2,k. While for k ≥ 9, when it is supposed that their dimension
stabilizes to 10k + 16, they become a smooth point too.

In the next section we are attaching the scripts used to achieve these results.
The thesis is hence concluded.

4.4.1 Scripts

−−−−−−−−−−−−−−−−−
−− Input : n i n t e g e r .
−− Output : none .
−− The program c r e a t e s : kk a f i e l d ( could be Q or Z_p) .
−− S polynomial r i ng in 2n+2
−− i nde te rminate s over kk .
−− I i d e a l ( vars S)
−− S’=S/ I^2
−− S’ ’=S/ I^3
−− S ’ ’ ’=S/ I^4
−− Functions used : none .
−−−−−−−−−−−−−−−−−

s t a r t=(n)−>
(
−−kk=QQ;
kk=ZZ/32749;
S=kk [ x_0 . . x_n , y_0 . . y_n ] ;
Ide=i d e a l ( vars S ) ;
S’=S/ Ide ^2;
S ’ ’=S/ Ide ^3;
S ’ ’ ’=S/ Ide ^4;
use S ;

)

−−−−−−−−−−−−−−−−−−−−

53



−− Input : n , k i n t e g e r s .
−− Output : A, J matr i ce s .
−− A de f i n e s the s p e c i a l symplec t i c in s tanton o f quant ic number k
−− on P^{2n+1}, i e AJA^t=0.
−− Functions used : none
−−−−−−−−−−−−−−−−−−−−

s p e c i a l i n s t a n t on=(n , k)−>
(
use S ;
var1=matrix {{y_0 . . y_n}} ;
var2=matrix {{x_0 . . x_n}} ;
I=map S^(n+k ) ;
O=I−I ;
J=matrix {{O, I },{− I ,O}} ;
f o r j to (k−1) do

(
ze ro s1=map(S^1 ,S^j , 0 ) ;
z e ro s2=map(S^1 ,S^(2∗k−2−2∗ j ) , 0 ) ;
i f j !=0 then vect=ze ro s1 | var2 e l s e vect=var2 ;
i f j !=k−1 then vect=vect | z e ro s2 | var1 e l s e vect=vect | var1 ;
i f j !=0 then vect=vect | z e ro s1 ;
i f j==0 then A=vect e l s e A=A| | vect ;

) ;
A=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,A) ;
r e turn (A, J ) ;

)

−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s ; alpha , beta r a t i o n a l .
−− Output : A, J matr i ce s .
−− A( alpha , beta ) d e f i n e s the symplec t i c s p e c i a l in s tanton
−− o f quant ic number k on P^{2n+1} o f the form desc r ibed in
−− [AO00 ] p . 98
−− Functions used : s p e c i a l i n s t a n t on .
−−−−−−−−−−−−−−−−−−−−−−

s p e c i a l i n s t an t onpa r=(n , k , alpha , beta)−>
(
(A, J)= sp e c i a l i n s t a n t on (n , k ) ;
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G=mutableMatrix (A) ;
G1=G_( 0 . . k−1 ,0 . . n+k−1);
G1_(0 ,1)=G1_(0 ,1 )∗ alpha ;
G1’=matrix (G1 ) ;
G2=G_( 0 . . k−1,n+k . . 2 ∗ n+2∗k−1);
f o r i to k−1 do

i f i<k−1− i then
rowSwap(G2, i , k−i −1);

G2_(0 ,1)=G2_(0 ,1 )∗ beta ;
J’=mutab le Ident i ty (S , n+k ) ;
rowSwap(J ’ , 0 , 1 ) ;
f o r i to n+k−3 do

i f i <(n+k−3)/2 then
rowSwap(J ’ ,2+ i , n+k−i −1);

G2’=matrix (G2 ) ;
K=matrix (J ’ ) ;
G=G1 ’ | ( G2’∗(−K) ) ;
A=matrix (G) ;
A= map(S^{k : 1} , S^{2∗n+2∗k : 0} ,A) ;
r e turn (A, J ) ;

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : A, J matr i ce s .
−− A de f i n e s a ( random) ’ t Hooft symplec t i c in s tanton
−− o f quant ic number k on P^{2n+1}, i e AJA^t=0.
−− The form o f A i s the one de s c r ibed in d e f i n i t i o n 2 . 1 . 7
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

tHooft=(n , k)−>
(
T=vars S ;
a=random(kk^k , kk^n ) ;
a=sub s t i t u t e ( a , S ) ;
D=mutable Ident i ty (S , k ) ;
x i=random(kk^k , kk^(2∗n+2)) ;
I=map S^(n+k ) ;
O=I−I ;
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J=matrix {{O, I },{− I ,O}} ;
f o r j to k−1 do

(
element_j=0;
f o r t to 2∗n+1 do

(
element_j=element_j+xi_ ( j , t )∗T_(0 , t ) ;

) ;
D_( j , j )=D_( j , j )∗ element_j ;
) ;

D=matrix (D) ;
D1=mutable Ident i ty (S , n ) ;
f o r j to n−1 do

(
D1_( j , j )=D1_( j , j )∗T_(0 , j +1);
) ;

D1=matrix (D1 ) ;
A1=(D| ( a∗D1 ) ) ;
A1=map(S^{k : 1} , S^{n+k :0} ,A1 ) ;
omega=random(kk^k , kk^(2∗n+2)) ;
D=mutable Ident i ty (S , k ) ;
f o r j to k−1 do

(
element_j=0;
f o r t to 2∗n+1 do

(
element_j=element_j+omega_( j , t )∗T_(0 , t ) ;

) ;
D_( j , j )=D_( j , j )∗ element_j ;
) ;

D=matrix (D) ;
D1=mutable Ident i ty (S , n ) ;
f o r j to n−1 do

(
D1_( j , j )=D1_( j , j )∗T_(0 , n+2+j ) ;
) ;

D1=matrix (D1 ) ;
A2=(D| ( a∗D1 ) ) ;
A2=map(S^{k : 1} , S^{n+k :0} ,A2 ) ;
A=A1 |A2 ;
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r e turn (A, J )
)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : A, J matr i ce s .
−− A de f i n e s a symplec t i c ’ t Hooft in s tanton
−− o f quant ic number k on P^{2n+1}, i e AJA^t=0
−− The form o f (A,B) i s the one de s c r ibed in remark 2 . 1 . 1 0
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

tHooft1=(n , k)−>
(
T=vars S ;
a=random(kk^k , kk^(n+k ) ) ;
a=sub s t i t u t e ( a , S ) ;
I=map S^(n+k ) ;
O=I−I ;
J=matrix {{O, I },{− I ,O}} ;
D1=mutable Ident i ty (S , k+n ) ;
D2=mutable Ident i ty (S , k+n ) ;
x i=random(kk^(k+n ) , kk^(2∗n+2)) ;
mu=random(kk^(k+n ) , kk^(2∗n+2)) ;
f o r j to k+n−1 do

(
element1_j=0;
element2_j=0;
f o r t to 2∗n+1 do

(
element1_j=element1_j+xi_ ( j , t )∗T_(0 , t ) ;
element2_j=element2_j+mu_( j , t )∗T_(0 , t ) ;

) ;
D1_( j , j )=D1_( j , j )∗ element1_j ;
D2_( j , j )=D2_( j , j )∗ element2_j ;
) ;

D1=matrix (D1 ) ;
D2=matrix (D2 ) ;
A=a∗(D1 |D2 ) ;
A=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,A) ;
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r e turn (A, J )
)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : A,B matr i ce s .
−− A,B de f i n e s a ( random) gene r i c ’ t Hooft in s tanton
−− o f quant ic number k on P^{2n+1}, i e AB^t=0.
−− The form o f (A,B) i s the one de s c r ibed in d e f i n i t i o n 2 . 1 . 1 6
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

gene r i c tHoo f t=(n , k)−>
(
T=vars S ;
a=random(kk^k , kk^n ) ;
a=sub s t i t u t e ( a , S ) ;
b=random(kk^k , kk^n ) ;
b=sub s t i t u t e (b , S ) ;
D=mutable Ident i ty (S , k ) ;
x i=random(kk^k , kk^(n+1)) ;
f o r j to k−1 do

(
element_j=0;
f o r t to n do

(
element_j=element_j+xi_ ( j , t )∗T_(0 , t ) ;

) ;
D_( j , j )=D_( j , j )∗ element_j ;
) ;

D=matrix (D) ;
D1=mutable Ident i ty (S , n ) ;
f o r j to n−1 do

(
D1_( j , j )=D1_( j , j )∗T_(0 , j +1);
) ;

D1=matrix (D1 ) ;
A1=(D| ( a∗D1 ) ) ;
B2=(D| ( b∗D1 ) ) ;
omega=random(kk^k , kk^(n+1)) ;
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D=mutable Ident i ty (S , k ) ;
f o r j to k−1 do

(
element_j=0;
f o r t to n do

(
element_j=element_j+omega_( j , t )∗T_(0 , n+1+t ) ;

) ;
D_( j , j )=D_( j , j )∗ element_j ;
) ;

D=matrix (D) ;
D1=mutable Ident i ty (S , n ) ;
f o r j to n−1 do

(
D1_( j , j )=D1_( j , j )∗T_(0 , n+2+j ) ;
) ;

D1=matrix (D1 ) ;
A2=(D| ( a∗D1 ) ) ;
B1=−(D| ( b∗D1 ) ) ;
A=A1 |A2 ;
B=B1 |B2 ;
A=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,A) ;
B=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,B) ;
r e turn (A,B)

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : A,B matr i ce s .
−− A,B de f i n e s a ( random) gene r i c ’ t Hooft in s tanton
−− o f quant ic number k on P^{2n+1}, i e AB^t=0.
−− The form o f (A,B) i s the one de s c r ibed in remark 2 . 1 . 1 7
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

gene r i c tHoo f t1=(n , k)−>
(
T=vars S ;
a=random(kk^k , kk^(n+k ) ) ;
a=sub s t i t u t e ( a , S ) ;
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D1=mutable Ident i ty (S , k+n ) ;
D2=mutable Ident i ty (S , k+n ) ;
x i=random(kk^(k+n ) , kk^(n+1)) ;
mu=random(kk^(k+n ) , kk^(n+1)) ;
f o r j to k+n−1 do

(
element1_j=0;
element2_j=0;
f o r t to n do

(
element1_j=element1_j+xi_ ( j , t )∗T_(0 , t ) ;
element2_j=element2_j+mu_( j , t )∗T_(0 , t+n+1);

) ;
D1_( j , j )=D1_( j , j )∗ element1_j ;
D2_( j , j )=D2_( j , j )∗ element2_j ;
) ;

D1=matrix (D1 ) ;
D2=matrix (D2 ) ;
A=a∗(D1 |D2 ) ;
B=a∗((−D2 ) |D1 ) ;
A=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,A) ;
B=map(S^{k : 1} , S^{2∗n+2∗k : 0} ,B) ;
r e turn (A,B)

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : A, J matr i ce s .
−− A de f i n e s a ( random) Rao−Sk i t i symplec t i c in s tanton
−−o f quant ic number k on P^{2n+1}, i e AJA^t=0.
−− The form o f A i s the one de s c r ibed in d e f i n i t i o n 2 . 1 . 1 3
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

RSinstanton=(n , k)−>
(
T=vars S ;
vars1=matrix {{T_( 0 , 0 ) . .T_(0 , n ) } } ;
I=map S^(n+k ) ;
O=I−I ;
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J=matrix {{O, I },{− I ,O}} ;
f i r s tma t=mutableMatrix (S , k , n+k ) ;
f o r i to n do

f o r j to k−1 do
f i r stmat_ ( j , j+i )=T_(0 , i ) ;

f i r s tma t=matrix ( f i r s tma t ) ;
f i r s tma t=map(S^{k : 1} , S^{n+k :0} , f i r s tma t ) ;
x i=random(kk^(2∗k+n−1) ,kk^(2∗n+2)) ;
f o r i to 2∗k+n−2 do

(
f_i=0;
f o r j to 2∗n+1 do

f_i=f_i+xi_ ( i , j )∗T_(0 , j ) ;
) ;

secondmat=mutableMatrix (S , k , n+k ) ;
f o r i to k−1 do

f o r j to n+k−1 do
(
secondmat_ ( i , j )=f_( i+j ) ;
) ;

secondmat=matrix ( secondmat ) ;
secondmat=map(S^{k : 1} , S^{n+k : 0} , secondmat ) ;
RSmat=f i r s tma t | secondmat ;
r e turn (RSmat , J )

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : J matrix .
−− J i s a ( random) matrix which has the property AJA^t=0
−− i f A d e f i n e s a symplec t i c ’ tHooft bundle .
−− The form o f J i s the one de s c r ibed in p ropo s i t i on 2 . 2 . 3
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

JtHooft=(n , k)−>
(
use S ;
Id=map S^(n+k ) ;
I=map S^(n+k ) ;
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O=I−I ;
I=mutableMatrix ( I ) ;
f o r i to n+k−1 do

I_( i , i )= random kk ;
I=matrix ( I ) ;
J=matrix {{O, I },{− t ranspose ( I ) ,O}} ;
r e turn J ;

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : n , k i n t e g e r s .
−− Output : J matrix .
−− J i s a ( random) matrix which has the property AJA^t=0,
−− i f A d e f i n e s the s p e c i a l symplec t i c in s tanton bundle .
−− The form o f J i s the one de s c r ibed in p r opo s i t i on 2 . 2 . 2
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−−−−−

J s p e c i a l=(n , k)−>
(
use S ;
Id=map S^(n+k ) ;
I=map S^(n+k ) ;
O=I−I ;
I=mutableMatrix ( I ) ;
f o r cont to 2∗n+2∗k−2 do

l istarandom_cont= random kk ;
f o r i to n+k−1 do

f o r j to n+k−1 do
I_( i , j )=listarandom_ ( i−j+n+k−1);

I=matrix ( I ) ;
J= (O| I ) | | ( ( − t ranspose I ) |O) ;
r e turn J ;

)

−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : C matrix
−− Output : s i z matrix .
−− The columns o f s i z are a s e t o f g ene ra to r s
−− o f the degree 1 s y z i g i e s o f C ex t r a c t i n g
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−− those which de r i v e from degree 0 s y z i g i e s .
−− Functions used : none
−−−−−−−−−−−−−−−−−−−−−−−−
c r e a t e s y z=(C)−>
(
n=f l o o r ( ( numColumns( vars S)−2)/2);
R=syz (C, DegreeLimit =>1);
stop=(numColumns R)−1;
t=b e t t i (R) ;
num=t_(1 , { 0} , 0 ) ;
f o r i to num−1 do

(
ve t t=R_{ i } ;
f o r j to n do

(
vet t1=x_j∗∗ vet t ;
ve t t2=y_j∗∗ vet t ;
i f ( i , j )==(0 ,0) then

s i z=vett1 | vet t2
e l s e

s i z=vett1 | vet t2 | s i z ;
) ;

) ;
s i z=s i z |R_{num . . stop } ;
r e turn s i z ;

)

−−−−−−−−−−−−−−−−−−−−
−− Input : deg , l enght i n t e g e r s ; RING r ing .
−− Output : bas matrix .
−− The columns o f bas are a ba s i s o f the space o f homogeneous
−− vec to r s o f degree deg in RING^lenght .
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−

c r e a t e g en e r a t o r s=(deg ,RING, l enght)−>
(
vet t=ba s i s ( deg ,RING) ;
nmcol=numColumns( ve t t ) ;
T=RING^lenght ;
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f o r i to lenght−1 do
(
f o r j to nmcol−1 do

(
vet t1=T_{ i }∗∗vett_ (0 , j ) ;
i f ( i , j )==(0 ,0) then

bas=vett1
e l s e

bas=vett1 | bas ;
) ;

) ;
r e turn bas ;

)

−−−−−−−−−−−−−−−−−−−−
−− Input : deg , s q r t l e ngh t i n t e g e r s ; RING r ing .
−− Output : basisskewsymm matrix .
−− The columns o f basisskewsymm are a ba s i s
−− o f the space o f homogeneous skew−symmetric
−− matr i ce s ( s q r t l e ngh t x sq r t l e ngh t ) o f degree deg .
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−

createskewsymm=(deg ,RING, sq r t l e ngh t)−>
(
vet t=ba s i s ( deg ,RING) ;
nmcol=numColumns( ve t t ) ;
f o r i to sq r t l enght−1 do

(
f o r j from i+1 to sq r t l enght−1 do

(
U=mutableMatrix (S , sq r t l enght , s q r t l e ngh t ) ;
U_( i , j )=1;
U_( j , i )=−1;
U=matrix (U) ;
f o r w to nmcol−1 do

(
U1=U∗vett_ (0 ,w) ;
newvett=map(S^{ sq r t l e ngh t ^2:0} ,S^{1:−deg } ,

reshape (S^( sq r t l e ngh t ^2) ,S^1 , t ranspose U1 ) ) ;

64



i f ( i , j ,w)==(0 ,1 ,0) then
basisskewsymm=newvett

e l s e
basisskewsymm=basisskewsymm | newvett ;

) ;
) ;

) ;
r e turn basisskewsymm ;

)

−−−−−−−−−−−−−−−−−−−−
−− Input : deg , s q r t l e ngh t (must be even ) i n t e g e r s ; RING r ing .
−− Output : basissymp matrix .
−− The columns o f basissymp are a ba s i s
−− o f the space o f homogeneous symplec t i c
−− matr i ce s ( s q r t l e ngh t x sq r t l e ngh t ) o f degree deg .
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−

createsympl=(deg ,RING, sq r t l e ngh t)−>
(
vet t=ba s i s ( deg ,RING) ;
nmcol=numColumns( ve t t ) ;
c on t r o l =0;
f o r i to sq r t l enght−1 do

(
f o r j to sq r t l enght−1 do

(
U=mutableMatrix (RING, sq r t l enght , s q r t l e ngh t ) ;
i f i< f l o o r ( s q r t l e ngh t /2) then

(
i f j< f l o o r ( s q r t l e ngh t /2) then

(
U_( i , j )=1;
U_( j+f l o o r ( s q r t l e ngh t /2) ,

i+f l o o r ( s q r t l e ngh t /2))=−1;
)

e l s e
(
U_( i , j )=1;
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U_( j−f l o o r ( s q r t l e ngh t /2) ,
i+f l o o r ( s q r t l e ngh t /2))=1;

)
)

e l s e
(
i f j< f l o o r ( s q r t l e ngh t /2) then

(
U_( i , j )=1;
U_( j+f l o o r ( s q r t l e ngh t /2) ,

i−f l o o r ( s q r t l e ngh t /2))=1;
)

e l s e
c on t r o l =1;

) ;
U=matrix (U) ;
i f c on t r o l==0 then

(
f o r w to nmcol−1 do

(
U1=U∗vett_ (0 ,w) ;
newvett=map(RING^{ sq r t l e ngh t ^2:0} ,

RING^{1:−deg } , reshape (RING^( sq r t l e ngh t ^2) ,
RING^1 , t ranspose U1 ) ) ;

i f ( i , j ,w)==(0 ,0 ,0) then
basissymp=newvett

e l s e
basissymp=basissymp | newvett ;

) ;
)

e l s e
c on t r o l =0;

) ;
) ;

r e turn basissymp ;
)

−−−−−−−−−−−−−−−−−−−−
−− Input : deg , s q r t l e ngh t i n t e g e r s ; RING r ing .
−− Output : basissymm matrix .
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−− The columns o f basissymm are a ba s i s
−− o f the space o f homogeneous symmetric
−− matr i ce s ( s q r t l e ngh t x sq r t l e ngh t ) o f degree deg .
−− Functions used : none .
−−−−−−−−−−−−−−−−−−−−

createsymm=(deg ,RING, sq r t l e ngh t)−>
(
vet t=ba s i s ( deg ,RING) ;
nmcol=numColumns( ve t t ) ;
f o r i to sq r t l enght−1 do

(
f o r j from i to sq r t l enght−1 do

(
U=mutableMatrix (S , sq r t l enght , s q r t l e ngh t ) ;
U_( i , j )=1;
U_( j , i )=1;
U=matrix (U) ;
f o r w to nmcol−1 do

(
U1=U∗vett_ (0 ,w) ;
newvett=map(S^{ sq r t l e ngh t ^2:0} ,S^{1:−deg } ,

reshape (S^( sq r t l e ngh t ^2) ,S^1 , t ranspose U1 ) ) ;
i f ( i , j ,w)==(0 ,0 ,0) then

basissymm=newvett
e l s e

basissymm=basissymm | newvett ;
) ;

) ;
) ;

r e turn basissymm ;
)

−−−−−−−−−−−−−−−−−−−−
−− Input : A,B matr i ce s .
−− Output : H1endE module .
−− A and B must be matr i ce s which de f i n e E, an ins tanton bundle .
−− H1endE i s H^1(End E) seen as an S’−module .
−− Functions used : c r e a t e s y z .
−−−−−−−−−−−−−−−−−−−−
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H1=(A,B)−>
(
use S ;
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
T1=map(S^k , S^k , 1 ) ;
T2=map(S^r , S^r , 1 ) ;
N1=T1∗∗B;
G=en t r i e s (A) ;
f o r i to k−1 do

i f i==0 then
N2=T1∗∗( matrix ({G_i}) )

e l s e
N2=N2 | | ( T1∗∗( matrix ({G_i } ) ) ) ;

C=N1 |N2 ;
C=map(S^{k^2:1} ,S^{2∗k∗ r : 0 } ,C) ;
O=map(S^(k∗ r ) , S^(k ^2 ) , 0 ) ;
M1=T1∗∗ t ranspose A;
M4=transpose N1 ;
f o r i to k−1 do

i f i==0 then
M2=T2∗∗( matrix ({G_i}) )

e l s e
M2=M2 | | ( T2∗∗( matrix ({G_i } ) ) ) ;

f o r i to k−1 do
(
f o r j to ( r−1) do

i f j==0 then
e l=−B_( i , j )∗T2

e l s e
e l=e l |(−B_( i , j )∗T2 ) ;

i f i==0 then
M3=e l

e l s e
M3=M3 | | e l ;

) ;
G=(M1|M2|O) | | (O|M3|M4) ;
G=map(S^{2∗k∗ r : 0 } , S^{2∗k^2+r ^2:−1} ,G) ;
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s i z=c r e a t e s y z (C) ;
s i z ’= sub s t i t u t e ( s i z , S ’ ) ;
W=sub s t i t u t e ( image G, S ’ ) ;
V=sub s t i t u t e ( image s i z , S ’ ) ;
H1endE=V/W;
dimH1endE=rank H1endE ;
re turn H1endE ;

)

−−−−−−−−−−−−−−−−−−−−
−− Input : A,B matr i ce s .
−− Output : H2endE module .
−− A and B must be matr i ce s which de f i n e E, an ins tanton bundle .
−− H2endE i s H^2(End E) seen as an S’ ’−module .
−− Functions used : c r e a t e g en e r a t o r s
−−−−−−−−−−−−−−−−−−−−

H2=(A,B)−>
(
use S ;
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
N1=T1∗∗B;
G=en t r i e s (A) ;
f o r i to k−1 do

i f i==0 then
N2=T1∗∗( matrix ({G_i}) )

e l s e
N2=N2 | | ( T1∗∗( matrix ({G_i } ) ) ) ;

C=N1 |N2 ;
C=map(S^{k^2:1} ,S^{2∗k∗ r : 0 } ,C) ;
bas=c r e a t e g en e r a t o r s (1 , S ,2∗ k∗ r ) ;
mat=map (S^{k^2:0} ,S^{numColumns bas :−2} ,C∗bas ) ;
bas=c r e a t e g en e r a t o r s (2 , S , k ^2) ;
Z=sub s t i t u t e ( image mat , S ’ ’ ) ;
bas ’= sub s t i t u t e ( image bas , S ’ ’ ) ;
H2endE=bas ’ /Z ;
dimH2endE=rank H2endE ;
re turn H2endE ;
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)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : A, J matr i ce s .
−− Output : H1S2E module .
−− A must be a matrix which de f i n e E, a symplec t i c in s tanton bundle .
−− H1S2E i s H^1(S^2 E) seen as an S’−module .
−− Functions used : c r e a t e s y z
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SH1=(A, J)−>
(
use S ;
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
d=k+n ;
idk=id_(S^k ) ;
idd=id_(S^d ) ;
nul=map(S^d , S^(d∗d ) , 0 ) ;
mat1=idk ∗∗ t ranspose A;
f o r i to k−1 do

(
mint=(idd ∗∗A^{ i }_{ 0 . . d−1})| |((−A^{ i }_{d . . r−1})∗∗ idd ) ;
i f i==0 then

mat2=mint
e l s e

mat2=mat2 | | mint ;
) ;

f o r i to k−1 do
(
mint=nul | | ( idd ∗∗A^{ i }_{ 0 . . d−1});
i f i==0 then

mat3=mint
e l s e

mat3=mat3 | | mint ;
) ;

f o r i to k−1 do
(
mint=(idd ∗∗A^{ i }_{d . . r −1}) | | nul ;
i f i==0 then
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mat4=mint
e l s e

mat4=mat4 | | mint ;
) ;

endsympaction=mat1 | mat2 | mat3 | mat4 ;
−− the columns o f endsympaction are a gene ra t ing s e t
−− o f the ac t i on o f End_k \ oplus Symp_r given by (a , b)−−> aA+Ab
endsympaction=map(S^{numRows( endsympaction ) : 1 } ,

S^{numColumns( endsympaction ) : 0 } , endsympaction ) ;
endsympaction=sub s t i t u t e ( image endsympaction , S ’ ) ;
AA=A∗ t ranspose J ;
f o r i to k−1 do

f o r j to k−1 do
(
O=map(S^{1:1} ,S^{k : 0 } , 0 ) ;
O=mutableMatrix O;
O_(0 , i )=1;
O=matrix O;
O=O∗∗AA^{ j } ;
O1=map(S^{1:1} ,S^{k : 0 } , 0 ) ;
O1=mutableMatrix O1 ;
O1_(0 , j )=1;
O1=matrix O1 ;
O1= −(O1∗∗AA^{ i } ) ;
KK=O+O1;
i f ( i , j )==(0 ,0) then

newm=KK
e l s e

newm=newm | |KK;
) ;

newm=map(S^{numRows(newm) : 1 } , S^{r∗k : 0} ,newm) ;
−− newm i s the matrix r ep r e s en t i n g the morphism A’−−>A’JA^t+AJA’^ t .
s i z=c r e a t e s y z (newm) ;
s i z=map(S^{numRows( s i z ) : 1 } , S^{numColumns( s i z ) : 0 } , s i z ) ;
s i z=sub s t i t u t e ( image s i z , S ’ ) ;
H1S2E=s i z / endsympaction ;
dimH1S2E=rank H1S2E ;
re turn H1S2E ;

)
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : A, J matr i ce s .
−− Output : H1S2E module .
−− A must be a matrix which de f i n e E, a symplec t i c in s tanton bundle .
−− H1S2E i s H^1(S^2 E) seen as an S’−module .
−− This func t i on does the same as SH1 but f o r every J symplec t i c .
−− Functions used : createsympl
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

JSH1=(A, J)−>
(
use S ;
d=k+n ;
r=2∗k+2∗n ;
basissymp=createsympl (0 , S ,2∗n+2∗k ) ;
f o r i to numColumns( basissymp)−1 do

(
mm=transpose reshape (S^(2∗n+2∗k ) ,

S^(2∗n+2∗k ) , matrix ( basissymp_i ) ) ;
mm=A∗mm;
mm=reshape (S^(k∗(2∗n+2∗k ) ) , S^1 ,mm) ;
i f i==0 then

endsympaction=mm
e l s e

endsympaction=endsympaction |mm;
) ;

f o r i to k−1 do
f o r j to k−1 do

(
alpha=mutableMatrix (S , k , k ) ;
alpha_ ( i , j )=1;
alpha=matrix ( alpha ) ;
mm=alpha∗A;
mm=reshape (S^(k∗(2∗n+2∗k ) ) , S^1 ,mm) ;
endsympaction=endsympaction |mm;

) ;
−− the columns o f endsympaction are a gene ra t ing s e t
−− o f the ac t i on o f End_k \ oplus Symp_r given by (a , b)−−> aA+Ab
endsympaction=map(S^{numRows( endsympaction ) : 1 } ,

S^{numColumns( endsympaction ) : 0 } , endsympaction ) ;
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endsympaction=sub s t i t u t e ( image endsympaction , S ’ ) ;
numero=f l o o r ( k∗(2∗n+2∗k ) ) ;
T=S [ j_1 . . j_numero ] ;
B=transpose reshape (T^k ,T^(2∗n+2∗k ) , vars T) ;
matr ice=A∗J∗B+transpose (B)∗J∗ t ranspose (A) ;
numero1=f l o o r ( k∗(k−1)/2);
matricemut=mutableMatrix (T, 1 , numero1 ) ;
f o r i from 1 to numero1 do

(
div=i ;
quot=k−1;
i 1 =0;
whi l e ( ( div−1)//quot)>0 do

(
div=div−quot ;
quot=quot−1;
i 1=i 1 +1;

) ;
i 2=i 1+div ;
matricemut_ (0 , i−1)=matrice_ ( i1 , i 2 ) ;
) ;

matricemut=matrix ( matricemut ) ;
s t r i n g a=c o e f f i c i e n t s matricemut ;
matf in=transpose str inga_1 ;
v a r i a b i l i=str inga_0 ;
zeromap=map(T^numero1 ,T^1 ,0 ) ;
f o r i to numero−1 do

(
i f i>numColumns( v a r i a b i l i )−1 then

(
v a r i a b i l i=v a r i a b i l i | matrix ( j_ ( i +1)) ;
matf in=matf in | zeromap ;

) ;
i f v a r i a b i l i_ (0 , i )!=j_( i +1) then

(
i f i==0 then

(
v a r i a b i l i=matrix ( j_1 ) | v a r i a b i l i ;
matf in=zeromap | matf in ;

) ;
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i f i !=0 and i !=numero−1 then
(
v a r i a b i l i=submatrix ( v a r i a b i l i , { 0} ,

{ 0 . . i −1})| matrix ( j_ ( i +1)) |
submatrix ( v a r i a b i l i , { 0} ,
{ i . . ( numColumns( v a r i a b i l i )−1)});

matf in=submatrix ( matfin , { 0 . . numrows ( matf in )−1} ,
{ 0 . . i −1})| zeromap | submatrix (
matfin , { 0 . . numrows ( matf in )−1} ,
{ i . . ( numColumns( matf in )−1)});

) ;
) ;

) ;
matf in=sub ( matfin , S ) ;
matf in= map(S^{numRows( matf in ) : 1 } , S^{numColumns( matf in ) : 0 } , matf in ) ;
s i z=c r e a t e s y z ( matf in ) ;
s i z=map(S^{numRows( s i z ) : 1 } , S^{numColumns( s i z ) : 0 } , s i z ) ;
s i z=sub s t i t u t e ( image s i z , S ’ ) ;
H1S2E=s i z / endsympaction ;
dimH1S2E=rank H1S2E ;
re turn H1S2E ;

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : A, J matr i ce s .
−− Output : H2S2E module .
−− A must be a matrix which de f i n e E, a symplec t i c in s tanton bundle .
−− H2S2E i s H^2(S^2 E) seen as an S’ ’−module .
−− Functions used : c r ea t eg ene ra to r s , createantisymm , dimk .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SH2=(A, J)−>
(
use S ;
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
b=createskewsymm (2 ,S , k ) ;
domain=c r e a t e g en e r a t o r s (1 , S , k∗ r ) ;
nco l=numColumns domain ;
AA=A∗ t ranspose J ;
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f o r i to k−1 do
f o r j to k−1 do

(
O=map(S^{1:1} ,S^{k : 0 } , 0 ) ;
O=mutableMatrix O;
O_(0 , i )=1;
O=matrix O;
O=O∗∗AA^{ j } ;
O1=map(S^{1:1} ,S^{k : 0 } , 0 ) ;
O1=mutableMatrix O1 ;
O1_(0 , j )=1;
O1=matrix O1 ;
O1= −(O1∗∗AA^{ i } ) ;
KK=O+O1;
i f ( i , j )==(0 ,0) then

newm=KK
e l s e

newm=newm | |KK;
) ;

rows=numRows(newm) ;
newm=map(S^{rows : 1} , S^{r∗k : 0} ,newm) ;
f o r i to ncol−1 do

(
im=newm∗domain_{ i } ;
im=map(S^{k^2:0} ,S^{1:−2} , im ) ;
i f i==0 then

mat=im
e l s e

mat=mat | im ;
) ;

base ’= sub s t i t u t e ( image b , S ’ ’ ) ;
Z=sub s t i t u t e ( image mat , S ’ ’ ) ;
H2S2E= base ’ /Z ;
dimH2S2E=rank H2S2E ;
re turn H2S2E ;

)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : A,B matr i ce s
−− Output : quadrat i c forms and t h e i r rank .
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−− Given a couple o f matr i ce s (A,B) which de f i n e an
−− i n s tanton bundle E the program computes the Kuranishi map
−− from H^1(End E) to H^2(End E) . The quadrat i c forms
−− r ep r e s en t l o c a l equat ions o f the
−− moduli space o f in s tanton bundles near E.
−− Functions used : H1 , H2 .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kura=(A,B)−>
(
use S ;
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
H1E=H1(A,B) ;
H2E=H2(A,B) ;
baseH1=sub s t i t u t e (mingens (H1E) , S ) ;
nbase=numColumns( baseH1 ) ;
f o r i to nbase−1 do

(
z_i=map(S^{k : 0} , S^{r :−1} , t ranspose (

reshape (S^r , S^k , baseH1_{ i }^{0 . . k∗r −1}))) ;
z ’ _i=map(S^{r :−1} ,S^{k:−2} ,

reshape (S^r , S^k , baseH1_{ i }^{k∗ r . . 2 ∗ k∗r −1})) ;
) ;

contato re =0;
f o r i to nbase−1 do

f o r j from i to nbase−1 do
i f ( z_i∗z ’ _j+z_j∗z ’ _i )!=0 then

(
P_( i , j )=map(S^{k^2:0} ,S^{1:−2} , reshape (S^(k^2) ,S^1 ,

t ranspose ( z_i∗z ’ _j+z_j∗z ’ _i ) ) ) ;
i f i sSubquot i en t ( image P_( i , j ) , image mat)==f a l s e then

(
i f contato re==0 then

(
mapk=P_( i , j ) ;
contato re =1;
i n d i c i=matrix {{ i , j }} ;

)
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e l s e
(
mapk=mapk |P_( i , j ) ;
i n d i c i=i n d i c i | | matrix {{ i , j }} ;

)
) ;

) ;
i f contato re==0 then

(
mapk=0;
dimkura=0;

)
e l s e

(
mapk’= sub s t i t u t e (mapk , S ’ ’ ) ;
) ;

i f mapk!=0 then
(
temp=syz ( (mapk | mingens image mat ) , DegreeLimit=>2);
matkura=gens ke rne l t ranspose submatrix (

temp , 0 . . ( numcols mapk−1) , 0 . . numcols temp−1);
h1e=f l o o r (dimH1endE)−1;
R=kk [w_0 . . w_h1e ] ;
matkk=sub (matkura ,R) ;
f o r i from 0 to ( numcols matkura−1) do

(
quad_i=0;
f o r j from 0 to (numrows matkura−1) do

quad_i=quad_i+matkk_( j , i )∗w_( ind i c i_ ( j , 0 ) ) ∗
w_( ind i c i_ ( j , 1 ) ) ;

) ;
i d e a l e=i d e a l ( 0 ) ;
f o r i from 0 to ( numcols matkura−1) do

(
i d e a l e=i d e a l { i d ea l e , quad_i } ;
p r i n t ( quad_i ) ;
p r i n t (" rank " , rank d i f f ( t ranspose ba s i s (1 ,R) ,

d i f f ( b a s i s (1 ,R) , quad_i ) ) ) ;
) ;

) ;
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)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Input : A, J matr i ce s
−− Output : quadrat i c forms and t h e i r rank .
−− Given a matrix A which de f i n e a symplec t i c
−− i n s tanton bundle E the program compi les the Kuranishi map
−− from H^1(S^2E) to H^2(S^2E) . The quadrat i c forms
−− r ep r e s en t l o c a l equat ions o f the
−− moduli space o f symplec t i c in s tanton bundles near E.
−− Functions used : SH1 , SH2 .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Skura=(A,B)−>
(
k=numRows(A) ;
n=(numColumns(A)−2∗k )//2 ;
r=2∗k+2∗n ;
use S ;
H1E=SH1(A,B) ;
H2E=SH2(A,B) ;
baseH1=sub s t i t u t e (mingens (H1E) , S ) ;
nbase=numColumns( baseH1 ) ;
f o r i to nbase−1 do

z_i=map(S^{k : 0} , S^{r :−1} , t ranspose (
reshape (S^r , S^k , baseH1_{ i }^{0 . . k∗r −1}))) ;

contato re =0;
f o r i to nbase−1 do

f o r j from i to nbase−1 do
i f ( z_i∗J∗ t ranspose z_j+z_j∗J∗ t ranspose z_i )!=0 then

(
P_( i , j )=map(S^{k^2:0} ,S^{1:−2} ,

reshape (S^(k^2) ,S^1 , t ranspose (
z_i∗J∗ t ranspose z_j+z_j∗J∗ t ranspose z_i ) ) ) ;

i f i sSubquot i en t ( image P_( i , j ) , image mat)==f a l s e then
i f contato re==0 then

(
mapk=P_( i , j ) ;
contato re =1;
i n d i c i=matrix {{ i , j }} ;
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)
e l s e

(
mapk=mapk |P_( i , j ) ;
i n d i c i=i n d i c i | | matrix {{ i , j }} ;

)
) ;

i f contato re==0 then
(
mapk=0;
dimkura=0;

)
e l s e

(
mapk’= sub s t i t u t e (mapk , S ’ ’ ) ;
) ;

i f mapk!=0 then
(
temp=syz ( (mapk | mingens image mat ) , DegreeLimit=>2);
matkura= gens ke rne l t ranspose submatrix (

temp , 0 . . ( numcols mapk−1) , 0 . . numcols temp−1);
h1e=f l o o r (dimH1S2E)−1;
R=kk [w_0 . . w_h1e ] ;
matkk=sub (matkura ,R) ;
f o r i from 0 to ( numcols matkura−1) do

(
quad_i=0;
f o r j from 0 to (numrows matkura−1) do

quad_i=quad_i+matkk_( j , i )∗w_( ind i c i_ ( j , 0 ) ) ∗
w_( ind i c i_ ( j , 1 ) ) ;

) ;
i d e a l e=i d e a l ( 0 ) ;
f o r i from 0 to ( numcols matkura−1) do

(
i d e a l e=i d e a l { i d ea l e , quad_i } ;
p r i n t ( quad_i ) ;
p r i n t (" rank " , rank d i f f ( t ranspose ba s i s (1 ,R) ,

d i f f ( b a s i s (1 ,R) , quad_i ) ) ) ;
) ;

) ;
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