1 COOMOLOGIA DI DE RHAM

1.1 Forme differenziali

Sia X una varietà differenziabile di dimensione n; siano $\Lambda^{k}(X)$ lo spazio vettoriale delle k-forme su X, con $0 \le k \le n$ e

$$d: \Lambda^k(X) \to \Lambda^{k+1}(X)$$

l'applicazione lineare, detta differenziazione esterna, con le seguenti proprietà:

- d1) se $f \in \Lambda^0(X)$, allora d(f) = df (differenziale ordinario);
- d2) date $\mu \in \Lambda^k(X)$ e $\omega \in \Lambda^h(X)$ risulta: $d(\mu \wedge \omega) = d(\mu) \wedge \omega + (-1)^k \mu \wedge d\omega$;
- d3) $d^2 = 0$.

Vale il seguente:

Lemma 1 Sia $\mu \in \Lambda^{k}(X)$ tale che $\mu = 0$ su un aperto V di X, allora $d\mu = 0$ su V.

1.2 Gruppi di coomologia di De Rham

Poniamo la seguente:

Definizione 1 Sia $\omega \in \Lambda^k(X)$, ω si dice chiusa se $d\omega = 0$; ω si dice esatta se esiste $\tau \in \Lambda^{k-1}(X)$ tale che $d\tau = \omega$.

Osservazione 1 Per la proprietà d3) della differenziazione esterna, ogni k-forma esatta è chiusa.

Denotiamo:

$$Z^{k}(X,d)=\left\{ \omega\in\Lambda^{k}\left(X\right)\ \mid\omega\ \grave{e}\ chiusa\right\}$$

$$B^{k}(X,d)=\{\omega\in\Lambda^{k}\left(X\right)\ |\ \omega\ \grave{e}\ esatta\}.$$

Si verifica facilmente che $Z^k(X,d)$ e $B^k(X,d)$ sono sottospazi vettoriali di $\Lambda^k(X)$ e dall'osservazione 1 segue che:

$$B^k(X,d) \subseteq Z^k(X,d).$$

Pertanto poniamo la seguente:

Definizione 2 Si dice k – esimo gruppo di coomologia di De Rham di X il quoziente:

$$H^{k}(X,d) = \frac{Z^{k}(X,d)}{B^{k}(X,d)}.$$

Osservazione 2 Come conseguenza del teorema di De Rham otterremo che, se X è compatta, allora $H^k(X,d)$ è uno spazio vettoriale reale di dimensione finita e tale dimensione si chiama $k-esimo\ numero\ di\ Betti\ di\ X$.

Per i gruppi di coomologia di De Rham vale il seguente risultato:

Lemma di Poincaré Sia X un aperto stellato di \mathbb{R}^n . Allora, per ogni $k \geq 1$ $H^k(X,d) = 0$, cioè ogni k-forma chiusa è anche esatta.

Diamo ora la seguente:

Definizione 3 Siano X e Y due varietà differenziabili e sia $f: X \to Y$ un'applicazione differenziabile. f definisce un'applicazione indotta

$$f^*: \Lambda^k(Y) \to \Lambda^k(X)$$

 $in\ questo\ modo:$

*1) se $\omega \in \Lambda^0(Y)$, allora:

$$f^*(\omega) = \omega \circ f;$$

*2) se $\omega \in \Lambda^k(Y)$, con k > 0, allora, per ogni $x \in X$ e per ogni $v_1, \ldots, v_k \in T(X, x)$:

$$f^*(\omega)(x)(v_1, ..., v_k) = \omega(f(x))(df(v_1), ..., df(v_k)).$$

Osservazione 3 f^* ha le seguenti proprietà:

- 1) f^* è un'applicazione lineare;
- 2) f^* commuta con il differenziale esterno, cioè $d \circ f^* = f^* \circ d$;
- 3) $f^*: Z^k(Y,d) \to Z^k(X,d)$, cioè f^* manda k-forme chiuse su Y in k-forme chiuse su X. Infatti: sia $\omega \in Z^k(Y,d)$, da 1) e 2) otteniamo che $d(f^*(\omega)) = f^*(d(\omega)) = f^*(0) = 0$, cioè $f^*(\omega) \in Z^k(X,d)$;
- 4) $f^*: B^k(Y,d) \to B^k(X,d)$, cioè f^* manda k-forme esatte su Y in k-forme esatte su X. Infatti: sia $\omega = d\tau \in B^k(Y,d)$, dalla 2) segue che $f^*(\omega) = f^*(d\tau) = d(f^*(\tau))$, cioè $f^*(\omega) \in B^k(X,d)$;
- 5) da 3) e 4) segue che f^* induce un'applicazione lineare

$$\widetilde{f}: H^k(Y,d) \to H^k(X,d),$$

cioè è possibile passare al quoziente.

1.3 Esempi

1) $H^1(S^1, d) \cong \mathbb{R}$.

Dimostrazione. Poichè dim $S^1=1$, si ha che $Z^1(S^1,d)=\Lambda^1\left(S^1\right)$; inoltre $B^1(S^1,d)=\{d\omega\mid\omega\in\Lambda^0\left(S^1\right)\}$. Sia θ la coordinata polare su S^1 (è una coordinata locale), risulta che $\frac{\partial}{\partial\theta}$ è un campo di vettori non nullo su S^1 e $d\theta=(\frac{\partial}{\partial\theta})^*$ è una 1-forma non nulla su S^1 . Sia ora $\omega\in\Lambda^1\left(S^1\right)$, localmente $\omega=g(\theta)d\theta$; è facile verificare che esiste $c\in\mathbb{R}$ tale che $\omega-cd\theta\in B^1(S^1,d)$. Dunque $H^1(S^1,d)=\{c[d\theta]\mid c\in\mathbb{R}\}\cong\mathbb{R}$.

2) Sia X una varietà differenziabile e siano $X_1,....,X_h$ le sue componenti connesse. Si verifica facilmente che dim $H^0(X,d)=h$.

2 OMOLOGIA SIMPLICIALE

2.1 Complessi simpliciali

Poniamo la seguente:

Definizione 1 Siano $\{v_0,, v_k\}$ k+1 punti indipendenti nello spazio affine \mathbb{A}^n . Si dice k-simplesso (chiuso), e si indica con $[s] = [v_0,, v_k]$, l'inviluppo convesso di tali punti; l'intero k rappresenta la dimensione del simplesso.

Osservazione 1 Risulta che:

$$v \in [s] \Leftrightarrow v = \sum_{i=0}^{k} a_i v_i$$
, dove $a_i \ge 0$ per ogni $i \in \{0,, k\}$ e $\sum_{i=0}^{k} a_i = 1$;

inoltre tale espressione è unica e i coefficienti a_i che compaiono in essa prendono il nome di coordinate baricentriche di v.

Definizione 2 Sia $[s] = [v_0,, v_k]$ un k-simplesso chiuso. Si dice k - simplesso (aperto), e si indica con $(s) = (v_0,, v_k)$, l'insieme

$$\{v \in [s] \mid a_i(v) > 0, \text{ per ogni } i \in \{0,, k\}\}.$$

Definizione 3 Sia $[s] = [v_0,, v_k]$ un k-simplesso chiuso. I punti $v_0,, v_k$ sono i vertici di [s]; inoltre, se $\{j_0,, j_h\}$ è un sottoinsieme non vuoto di $\{0,, k\}$, i simplessi chiusi $[v_{j_0},, v_{j_h}]$ sono facce chiuse di [s] e i simplessi aperti $(v_{j_0},, v_{j_h})$ sono facce aperte di [s].

Poniamo ora la seguente:

Definizione 4 Un complesso simpliciale K è un insieme finito di simplessi aperti di \mathbb{R}^n con le seguenti proprietà:

K1) per ogni $(s) \in K$, tutte le facce aperte di [s] appartengono a K;

K2) per ogni
$$(s_1)$$
, $(s_2) \in K$ tali che $(s_1) \cap (s_2) \neq \emptyset$ vale $(s_1) = (s_2)$.

 $Inoltre\ si\ dice\ dimensione\ di\ K\ il\ massimo\ delle\ dimensioni\ dei\ simplessi\ che\ lo\ costituiscono.$

Denotiamo:

$$[K] = \bigcup_{(s) \in K} (s) = \bigcup_{(s) \in K} [s];$$

[K] è uno spazio topologico compatto, poichè unione finita di compatti di \mathbb{R}^n .

Definizione 5 Siano K un complesso simpliciale $e \ r \in \mathbb{N}$ tale che $r \leq \dim K$. Si dice r - scheletro di K, e si indica con K^r , l'insieme

$$\{(s) \in K \mid \dim(s) \le r\}.$$

Infine diamo la seguente:

Definizione 6 Siano K un complesso simpliciale e v un suo vertice. Si dice stella di v l'insieme

$$St(v) = \bigcup_{(s) \in K \ t.c. \ v \in [s]} (s).$$

Osservazione 2 In base alla precedente definizione si ottiene che:

- 1) $St(v) \subseteq [K]$ è un aperto;
- 2) v è l'unico vertice di K in St(v);
- 3) $\{St(v)\}_{v\in K}$ è un ricoprimento aperto di [K].

2.2 Gruppi di omologia di complessi simpliciali

Sia s un l-simplesso di vertici $v_0,, v_l$; è ovvio che, se $l \geq 1$, tali vertici individuano due possibili orientazioni per s, cioè si ottengono i cosiddetti simplessi $orientati \langle v_0, v_1,, v_k \rangle$ e $\langle v_1, v_0,, v_k \rangle$.

Siano ora K un complesso simpliciale, \mathcal{G} un gruppo abeliano e $l \in \mathbb{N}$ tale che $0 \le l \le \dim K$; diamo quindi la seguente:

Definizione 1 Si dice gruppo delle l – catene di K con coefficienti in \mathcal{G} , e si indica con $C_l(K,\mathcal{G})$, il gruppo abeliano ottenuto quozientando il gruppo abeliano libero generato dagli l–simplessi orientati di K sul sottogruppo generato dagli elementi del tipo $\langle v_0, v_1,, v_k \rangle + \langle v_1, v_0,, v_k \rangle$. Dunque, se $\beta \in C_l(K,\mathcal{G})$,

$$\beta = \sum_{l-simplesso\ s\ di\ K} g_s \langle s \rangle,$$

con $g_s \in \mathcal{G}$, $\langle s \rangle$ l-simplesso orientato di K e dove poniamo:

$$-g_s \langle v_0, v_1, \dots, v_k \rangle = g_s \langle v_1, v_0, \dots, v_k \rangle.$$

Osservazione 1 Se $\mathcal{G} = \mathbb{R}$ o $\mathcal{G} = \mathbb{C}$, $C_l(K,\mathcal{G})$ è uno spazio vettoriale con dimensione pari al numero degli l-simplessi di K.

Poniamo ora le seguenti:

Definizione 2 Sia $\langle s \rangle = \langle v_0, v_1,, v_{l+1} \rangle$ un (l+1)-simplesso orientato. Si dice frontiera di $\langle s \rangle$, e si indica con $\partial \langle s \rangle$, la l-catena così definita:

$$\partial \langle s \rangle = \sum_{j=0}^{l+1} (-1)^j \langle v_0, ..., \widehat{v_j}, ..., v_{l+1} \rangle,$$

dove con $\widehat{v_j}$ si intende che v_j è stato soppresso. Per completezza, se $\langle s \rangle = \langle v \rangle$, poniamo $\partial \langle s \rangle = 0$.

Definizione 3 Si dice applicazione di frontiera di l'omomorfismo di gruppi

$$\partial: C_{l+1}(K,\mathcal{G}) \to C_l(K,\mathcal{G})$$

così definito:

$$\partial \left(\sum_{(l+1)-simplesso\ s\ di\ K} g_s \left\langle s \right\rangle \right) = \sum_{(l+1)-simplesso\ s\ di\ K} g_s \partial \left\langle s \right\rangle.$$

Per completezza, se $c \in C_0(K, \mathcal{G})$, si pone $\partial c = 0$.

Con un calcolo diretto è possibile provare il seguente:

Lemma 1 L'applicazione di frontiera soddisfa $\partial^2 = 0$.

Analogamente a quanto abbiamo fatto per la coomologia di De Rham, poniamo la seguente:

Definizione 4 Sia $c \in C_l(K, \mathcal{G})$, c si dice ciclo se $\partial c = 0$; c si dice frontiera (o bordo) se esiste $\widetilde{c} \in C_{l+1}(K, \mathcal{G})$ tale che $c = \partial \widetilde{c}$.

Denotiamo:

$$Z_l(K,\mathcal{G}) = \{ c \in C_l(K,\mathcal{G}) \mid c \text{ è un ciclo} \}$$

$$B_l(K,\mathcal{G}) = \{ c \in C_l(K,\mathcal{G}) \mid c \text{ è un bordo} \}.$$

Osservazione 2 Dal lemma 1 segue che:

$$B_l(K,\mathcal{G}) \subset Z_l(K,\mathcal{G}),$$

cioè ogni bordo è un ciclo.

Pertanto poniamo la seguente:

Definizione 5 Si dice l-esimo gruppo di omologia di K con coefficienti in \mathcal{G} il quoziente:

$$H_l(K,\mathcal{G}) = rac{Z_l(K,\mathcal{G})}{B_l(K,\mathcal{G})}.$$

Osservazione 3 Dall'osservazione 1 segue che, se $\mathcal{G} = \mathbb{R}$ o $\mathcal{G} = \mathbb{C}$, allora $H_l(K, \mathcal{G})$ è uno spazio vettoriale.

Osservazione 4 Si potrebbe dimostrare che i gruppi $H_l(K, \mathcal{G})$ sono invarianti topologici, cioè se K ed L sono complessi simpliciali tali che [K] ed [L] sono omeomorfi, allora i corrispondenti gruppi di omologia sono isomorfi.

Abbiamo introdotto nel secondo paragrafo i gruppi di coomologia di De Rham e in questo paragrafo i gruppi di omologia simpliciale: apparentemente sono di natura diversa, ma vedremo come il teorema di De Rham unifichi i due concetti. Serve ancora un passaggio: dobbiamo introdurre la coomologia simpliciale.

2.3 Esempi

1) Sia K un complesso simplicale e siano $[K_1],....,[K_n]$ le componenti connesse di [K]. Allora dim $H_0(K,\mathbb{R})=n$, cioè

$$H_0(K,\mathbb{R}) = H_0(K_1,\mathbb{R}) \oplus \ldots \oplus H_0(K_n,\mathbb{R}).$$

Più in generale vale:

$$H_l(K, \mathbb{R}) = H_l(K_1, \mathbb{R}) \oplus \ldots \oplus H_l(K_n, \mathbb{R}).$$

2) Sia
$$K = \{(v_0)\}$$
; allora $H_0(K, \mathbb{R}) \cong \mathbb{R}$.

- 3) Sia $K = \{(v_0), (v_1)\};$ allora $H_0(K, \mathbb{R}) \cong \mathbb{R}^2$.
- 4) Sia $K = \{(v_0), (v_1), (v_0, v_1)\}$; allora $H_0(K, \mathbb{R}) \cong \mathbb{R}$ e $H_1(K, \mathbb{R}) = 0$.
- 5) Sia K l'1—scheletro di un 2—simplesso di vertici v_0,v_1 e v_2 ; allora $H_0(K,\mathbb{R})\cong\mathbb{R}$ e $H_1(K,\mathbb{R})\cong\mathbb{R}$.
- 6) Sia $K = \{(v_0), (v_1), (v_2), (v_3), (v_0, v_1), (v_1, v_2), (v_2, v_3), (v_3, v_0)\}$; allora $H_0(K, \mathbb{R}) \cong \mathbb{R}$ e $H_1(K, \mathbb{R}) \cong \mathbb{R}$.
- 7) Sia K il complesso simpliciale costituito dalle facce aperte di $[v_0, v_1, v_2]$; allora $H_0(K, \mathbb{R}) \cong \mathbb{R}$, $H_1(K, \mathbb{R}) = 0$ e $H_2(K, \mathbb{R}) = 0$.
- 8) Sia K il 2-scheletro di un 3-simplesso di vertici v_0, v_1, v_2 e v_3 ; allora $H_0(K, \mathbb{R}) \cong \mathbb{R}$, $H_1(K, \mathbb{R}) = 0$ e $H_2(K, \mathbb{R}) \cong \mathbb{R}$.

Osservazione 1 I risultati precedenti valgono anche se al posto di \mathbb{R} mettiamo \mathbb{Z} .

Osservazione 2 La dimostrazione delle affermazioni riportate negli esempi precedenti si ottiene con un calcolo diretto; per completezza riportiamo quella dell'esempio 8).

Dimostrazione esempio 8). Poichè [K] è connesso, dall'esempio 1) segue che $H_0(K,\mathbb{R}) \cong \mathbb{R}$.

Calcoliamo ora $H_1(K,\mathbb{R})$: sia $z \in Z_1(K,\mathbb{R})$, dunque $z = n_1 \langle v_0, v_1 \rangle + n_2 \langle v_1, v_2 \rangle + n_3 \langle v_2, v_0 \rangle + n_4 \langle v_0, v_3 \rangle + n_5 \langle v_1, v_3 \rangle + n_6 \langle v_2, v_3 \rangle$ e $0 = \partial z = n_1(\langle v_1 \rangle - \langle v_0 \rangle) + n_2(\langle v_2 \rangle - \langle v_1 \rangle) + n_3(\langle v_0 \rangle - \langle v_2 \rangle) + n_4(\langle v_3 \rangle - \langle v_0 \rangle) + n_5(\langle v_3 \rangle - \langle v_1 \rangle) + n_6(\langle v_3 \rangle - \langle v_2 \rangle)$, cioè

$$\begin{cases} n_1 - n_3 + n_4 = 0 \\ n_1 - n_2 - n_5 = 0 \\ n_2 - n_3 - n_6 = 0 \\ n_4 + n_5 + n_6 = 0 \end{cases}$$
(*).

Dal teorema di Rouchè-Capelli segue che il sistema ha ∞^3 soluzioni; quindi possiamo scrivere tre delle sei incognite in funzione delle restanti tre:

$$\begin{cases} n_1 = n_3 - n_4 \\ n_2 = n_3 + n_6 \\ n_5 = -n_4 - n_6 \end{cases} (**).$$

Sia ora $\widetilde{z} \in B_1(K, \mathbb{R})$, allora $\widetilde{z} = \partial(m_1 \langle v_0, v_1, v_2 \rangle + m_2 \langle v_1, v_2, v_3 \rangle + m_3 \langle v_2, v_3, v_0 \rangle + m_4 \langle v_0, v_1, v_3 \rangle)$; vogliamo dimostrare che, per ogni $n_1, n_2, ..., n_6$ soluzioni di (*), esistono m_1, m_2, m_3 e m_4 soluzioni di

$$\begin{cases} m_1 + m_4 = n_1 \\ m_1 + m_2 = n_2 \\ m_1 - m_3 = n_3 \\ -m_3 - m_4 = n_4 \\ -m_2 + m_4 = n_5 \\ m_2 + m_3 = n_6 \end{cases}$$

cioè che ogni ciclo è un bordo. Utilizzando (**), il sistema precedente diventa:

$$\begin{cases} m_1 - m_3 = n_3 \\ -m_3 - m_4 = n_4 \\ m_2 + m_3 = n_6 \end{cases};$$

dal teorema di Rouchè-Capelli segue che esso ha ∞^1 soluzioni, pertanto $H_1(K,\mathbb{R})=0$

Infine calcoliamo $H_2(K,\mathbb{R})$: si verifica facilmente che $H_2(K,\mathbb{R}) = Z_2(K,\mathbb{R}) = \{n(\langle v_0, v_1, v_2 \rangle + \langle v_1, v_0, v_3 \rangle + \langle v_0, v_2, v_3 \rangle + \langle v_2, v_1, v_3 \rangle) \mid n \in \mathbb{R}\} \cong \mathbb{R}.$

2.4 Caratteristica di Eulero di complessi simpliciali

Sia K un complesso simpliciale, poniamo le seguenti:

Definizione 1 Si dice l-esimo numero di Betti β_l di K l'intero

$$\beta_l = \dim H_l(K, \mathbb{R}).$$

Definizione 2 Si dice caratteristica di Eulero $\chi(K)$ di K l'intero

$$\chi(K) = \sum_{l=0}^{\dim K} (-1)^l \beta_l.$$

Per la caratteristica di Eulero vale il seguente:

Teorema 1 Sia α_l , con $0 \le l \le \dim K$, il numero degli l-simplessi presenti in K. Allora

$$\chi(K) = \sum_{l=0}^{\dim K} (-1)^l \alpha_l.$$

Osservazione 1 Vedremo con il teorema di De Rham che, se K è un complesso simpliciale tale che [K] è omeomorfo a una varietà differenziabile X connessa, compatta, orientabile e di dimensione 2, allora $\beta_0 = 1$ e $\beta_2 = 1$. Dunque $\chi(K) = 2 - \beta_1$, da cui $\beta_1 = 2 - \chi(K)$ (in queste ipotesi β_1 è un numero pari). Si può provare che ogni superficie X con tali caratteristiche è omeomorfa a una sfera con $\frac{1}{2}\beta_1$ "manici"; la classe di omeomorfismo di una tale X è completamente determinata dai gruppi di omologia.

3 COOMOLOGIA SIMPLICIALE

3.1 Gruppi di coomologia di complessi simpliciali

Siano K un complesso simpliciale e $l \in \mathbb{N}$ tale che $0 \leq l \leq \dim K$; diamo le seguenti:

Definizione 1 Si dice l – cocatena un elemento di $C^l(K) = [C_l(K, \mathbb{R})]^*$.

Definizione 2 L'operatore di cobordo è l'applicazione

$$\partial^*: C^l(K) \to C^{l+1}(K)$$

definita da

$$[\partial^*(\varphi)](c) = \varphi(\partial c),$$

 $con \ \varphi \in C^l(K) \ e \ c \in C_{l+1}(K, \mathbb{R}).$

Osservazione 1 L'operatore di cobordo soddisfa $\partial^{*^2} = 0$.

Definizione 3 Sia $\varphi \in C^l(K)$, φ si dice cociclo se $\partial^* \varphi = 0$; φ si dice cofrontiera (o cobordo) se esiste $\psi \in C^{l-1}(K)$ tale che $\varphi = \partial^* \psi$.

Denotiamo:

$$Z^{l}(K) = \{ \varphi \in C^{l}(K) \mid \varphi \stackrel{\circ}{e} un \ cociclo \}$$

$$B^l(K) = \{ \varphi \in C^l(K) \mid \varphi \ \hat{e} \ un \ cobordo \}.$$

Osservazione 2 Dall'osservazione 1 segue che:

$$B^l(K) \subseteq Z^l(K)$$
,

cioè ogni cobordo è un cociclo.

Pertanto poniamo la seguente:

Definizione 4 Si dice l-esimo gruppo di coomologia di K il quoziente:

$$H^{l}(K) = \frac{Z^{l}(K)}{B^{l}(K)}.$$

Osservazione 3 $H^l(K) \cong [H_l(K,\mathbb{R})]^*$.

Siano $\langle s \rangle$ un l-simplesso orientato di K e $\varphi_{\langle s \rangle} \in C^l(K)$ così definita:

$$\varphi_{\langle s \rangle} \left< t \right> = \left\{ \begin{array}{ccc} 1 & se & \left< t \right> = \left< s \right> \\ -1 & se & \left< t \right> = -\left< s \right> \\ 0 & se & t \neq s \end{array} \right..$$

Se $\{\langle s_1 \rangle,, \langle s_m \rangle\}$ è una base per $C^l(K)$, dove m è il numero degli l-simplessi di K, $\{\varphi_{\langle s_1 \rangle},, \varphi_{\langle s_m \rangle}\}$ è la corrispondente base duale per $C^l(K)$; per capire come opera ∂^* basta vederlo su $\varphi_{\langle s_j \rangle}$, con j tale che $1 \leq j \leq m$, poichè ∂^* è lineare. Possiamo quindi enunciare il seguente:

Lemma 1

$$\partial^* \big(\varphi_{\langle v_0,....,v_l \rangle} \big) = \sum_{\substack{v \ vertice \ di \ K \\ t.c. \ (v,v_0,....,v_l) \ \grave{e} \ un \ (l+1)-simplesso \ di \ K}} \varphi_{\langle v,v_0,....,v_l \rangle}.$$

4 TEOREMA DI DE RHAM

4.1 Definizioni preliminari

Definizione 1 Siano X una varietà differenziabile, K un complesso simpliciale $e h : [K] \to X$ un omeomorfismo con la seguente proprietà: per ogni s simplesso di K, l'applicazione $h_{[s]} : [s] \to X$ si può estendere a $h_s : U \to X$, con U intorno di [s] nel piano di giacitura di [s], cosicchè $h_s(U)$ è una sottovarietà differenziabile. Una terna (X,K,h) siffatta è una varietà differenziabilmente triangolata.

Osservazione 1 Sia (X,K,h) una varietà differenziabilmente triangolata; poichè [K] è compatto e h è un omeomorfismo, risulta che X è compatta. Inoltre vale che, se X è una varietà differenziabile compatta, allora X ammette una triangolazione.

Poniamo ora la seguente:

Definizione 2 Sia K un complesso simpliciale di vertici $v_1,, v_m$ e sia $x \in [K]$. La j – esima coordinata baricentrica $b_j(x)$ di x, con $1 \le j \le m$, è così definita:

- b1) se $x \notin St(v_i)$, allora $b_i(x) = 0$;
- b2) se $x \in St(v_j)$, cioè esiste $(s) \in K$ tale che $v_j \in [s]$ e $x \in (s)$, allora $b_j(x)$ è la coordinata baricentrica di x in [s] relativa a v_j .

Osservazione 2 Risulta che:

- 1) per ogni j tale che $1 \leq j \leq m, b_j : [K] \to \mathbb{R}$ è un' applicazione continua;
- 2) per ogni j tale che $1 \le j \le m$ e per ogni $x \in [K], b_j(x) \ge 0$;
- 3) per ogni $x \in [K], \sum_{j=1}^{m} b_{j}(x) = 1;$
- 4) per ogni $x \in [K], x = \sum_{j=1}^{m} b_{j}(x)v_{j};$

5) $b_{j_0}(x) \neq 0,, b_{j_l}(x) \neq 0$ per $x \in [K]$ se e solo se $v_{j_0},, v_{j_l}$ sono i vertici di un l-simplesso di K.

Definizione 3 Siano K un complesso simpliciale e s un simplesso di K. Si dice stella di s l'insieme

$$St(s) = \bigcup_{\substack{(t) \in K \ t.c.(s) \ \grave{e} \ una \ faccia \ di \ (t)}} (t).$$

Osservazione 3 Valgono i seguenti fatti:

- 1) se s = v, allora St(s) = St(v);
- 2) $St(s) \subseteq [K]$ è un aperto;
- 3) siano $(s) = (v_{j_0},, v_{j_l})$ e $x \in [K]$, allora:

$$x \in St(s)$$
 se e solo se $b_{j_0}(x) \neq 0,, b_{j_l}(x) \neq 0$;

4) sia $(s) = (v_{i_0},, v_{i_l})$, allora:

$$[K] - St(s) = \{x \in [K] \mid esiste \ i \ tale \ che \ 0 \le i \le l \ per \ cui \ b_{j_i}(x) = 0\};$$

5) siano s_1 e s_2 due simplessi di K tale che $s_1 \neq s_2$, allora $s_1 \subseteq [K] - St(s_2)$.

4.2 Dimostrazione del teorema di De Rham

Sia (X, K, h) una varietà differenzia
bilmente triangolata. Definiamo una successione di applicazioni lineari

$$\int_{l} : \Lambda^{l}(X) \to C^{l}(K),$$

con $0 \leq l \leq \dim X$: se $\omega \in \Lambda^l(X)$, sarà sufficiente vedere come agisce $\int_l(\omega)$ sugli l-simplessi orientati $\langle s \rangle$ di K, cioè su una base di $C_l(K, \mathbb{R})$. Consideriamo l'applicazione differenziabile $h_s: U \to X$, l'applicazione indotta h_s^* di h_s definisce una l-forma $h_s^*(\omega)$ su U. Pertanto possiamo porre

$$\int_{l} (\omega)(\langle s \rangle) = \int_{\langle s \rangle} h_s^*(\omega).$$

Osservazione 1 Vale la seguente proprietà:

$$\partial^* \circ \int_l = \int_{l+1} \circ d.$$

Dimostrazione. Siano $\omega \in \Lambda^l(X)$ e $\langle s \rangle$ un (l+1)-simplesso orientato di K, si ha:

$$\left[\left(\int_{l+1} \circ d \right) (\omega) \right] (\langle s \rangle) = \int_{\langle s \rangle} h_s^*(d\omega) = \int_{\langle s \rangle} d(h_s^*(\omega)) = \int_{\partial \langle s \rangle} h_s^*(\omega) =$$

$$= \int_l (\omega) (\partial \langle s \rangle) = \left[\left(\partial^* \circ \int_l \right) (\omega) \right] (\langle s \rangle).$$

Osservazione 2 Dall'osservazione 1 segue che ciascuna \int_l induce un omomorfismo

$$\int_{l}^{\infty} : H^{l}(X, d) \to H^{l}(K).$$

Dimostrazione. Sia $\omega \in Z^l(X,d)$, si ha che:

$$\partial^* \left(\int_l (\omega) \right) = \int_{l+1} (d\omega) = \int_{l+1} 0 = 0;$$

quindi $\int_l (Z^l(X,d)) \subseteq Z^l(K)$. Sia ora $\omega \in B^l(X,d)$, risulta:

$$\int_{l}(\omega) = \int_{l}(d\tau) = \partial^{*}\left(\int_{l-1}(\tau)\right);$$

quindi $\int_{l} (B^{l}(X, d)) \subseteq B^{l}(K)$.

Dunque possiamo passare al quoziente e ottenere la tesi.

La dimostrazione del teorema di De Rham si ottiene come conseguenza dei seguenti lemma 1 e lemma 2, che enunciamo riportando successivamente la dimostrazione.

Lemma 1 Sia (X, K, h) una varietà differenziabilmente triangolata; allora esiste una successione di applicazioni lineari

$$\alpha_l: C^l(K) \to \Lambda^l(X),$$

con $0 \le l \le \dim X$, tali che:

- 1) $d \circ \alpha_l = \alpha_{l+1} \circ \partial^*;$
- 2) $\int_{l} \circ \alpha_{l} = id_{C^{l}(K)};$
- 3) se c^0 è la 0-cocatena tale che $c^0(v)=1$, per ogni vertice v di K, allora $\alpha_0(c^0)=1$;
- 4) se $\langle s \rangle$ è un l-simplesso orientato di K, allora $\alpha_l(\varphi_{\langle s \rangle})$ è una l-forma identicamente nulla in un intorno di X St(s).

Lemma 2 Sia $\omega \in Z^l(X,d)$. Se esiste $c \in C^{l-1}(K)$ tale che $\int_l(\omega) = \partial^* c$, allora esiste $\tau \in \Lambda^{l-1}(X)$ tale che $\int_{l-1}(\tau) = c$ e $\omega = d\tau$.

A questo punto possiamo enunciare e dimostrare il:

Teorema di De Rham Sia (X, K, h) una varietà differenziabilmente triangolata. Allora, per ogni l tale che $0 \le l \le \dim X$,

$$\int_{l}:H^{l}(X,d)\to H^{l}(K)$$

è un isomorfismo.

Dimostrazione. La suriettività dell'applicazione $\widetilde{\int}_l$ segue dal lemma 1, infatti: sia $z \in Z^l(K)$ tale che $\omega = \alpha_l(z)$; risulta:

$$d\omega = d \circ \alpha_l(z) = \alpha_{l+1} \circ \partial^*(z) = 0,$$

cioè $\omega \in Z^l(X,d)$. Inoltre

$$\int_{l}(\omega) = \int_{l} \circ \alpha_{l}(z) = z.$$

Pertanto $\int_l: Z^l(X,d) \to Z^l(K)$ è suriettivo e anche $\widetilde{\int_l}$ lo è.

L'iniettività dell'applicazione $\widetilde{\int}_l$ segue dal lemma 2, infatti: sia $\omega \in Z^l(X,d)$ tale che $\int_l(\omega) \in B^l(K)$, allora $\omega \in B^l(X,d)$.

Dimostrazione lemma 1. Senza perdere di generalità, possiamo supporre che [K] = X e $h = id_{[K]}$.

Passo 1 Siano $v_1,, v_m$ i vertici di K; costruiamo una partizione dell'unità associata al ricoprimento aperto finito di X, $S = \{St(v_j)\}_{j \in \{1,....,m\}}$. Consideriamo gli insiemi

$$F_j = \left\{ x \in X \mid b_j(x) \ge \frac{1}{n+1} \right\}$$

е

$$G_j = \left\{ x \in X \mid b_j(x) \le \frac{1}{n+2} \right\},$$

con $j \in \{1,, m\}$ e $n = \dim X$. Per F_j e G_j valgono le seguenti proprietà:

- 1) F_j e G_j sono chiusi di X, poichè immagini inverse di chiusi tramite un'applicazione continua;
- 2) $F_i \subseteq St(v_i)$;
- 3) $X St(v_i) \subseteq G_i$;
- 4) $F_j \cap G_j = \emptyset$;
- 5) esiste una funzione differenziabile $f_j \geq 0$ tale che $f_j > 0$ su F_j e $f_j = 0$ su G_j , poichè X è compatto e $F_j \subseteq X$ chiuso, dunque compatto;
- 6) $\{F_j\}_{j\in\{1,....,m\}}$ è un ricoprimento di X, infatti: sia $x\in X$, cioè esiste $(s)=(v_{j_0},....,v_{j_l})$, con $l\leq n$, per cui $x\in (s)$; per le proprietà delle coordinate

baricentriche si ha che, per ogni $j \notin \{j_0,, j_l\}$, $b_j(x) = 0$ e $\sum_{i=0}^l b_{j_i}(x) = 1$, quindi, poichè $l+1 \le n+1$, esiste $\tilde{j} \in \{j_0,, j_l\}$ tale che $b_{\tilde{j}}(x) \ge \frac{1}{n+1}$, cioè $x \in F_{\tilde{j}}$. Dunque, dalla 5) segue che per ogni $x \in X$ esiste $j \in \{1,, m\}$ tale che $f_j(x) \ne 0$ e dalla 4) segue che $\{C_X G_j\}_{j \in \{1,, m\}}$ è un ricoprimento aperto e finito di X;

7) $\sum_{j=1}^m f_j(x) \geqq 0,$ per ogni $x \in X,$ poichè vale la 6). Pertanto la funzione a valori reali

$$g_j = \frac{f_j}{\sum_{k=1}^m f_k}$$

è ben definita e differenziabile su X. In base alle affermazioni precedenti, la coppia

$$\left\{ \left\{ C_X G_j \right\}_{j \in \{1,....,m\}}, \left\{ g_j \right\}_{j \in \{1,....,m\}} \right\}$$

è una partizione dell'unità su X; in particolare, poichè per la 3) $C_XG_j\subseteq St(v_j)$ per ogni $j\in\{1,....,m\}$, la coppia

$$\left\{\left\{St(v_j)\right\}_{j\in\left\{1,....,m\right\}},\left\{g_j\right\}_{j\in\left\{1,....,m\right\}}\right\}$$

è una partizione dell'unità su X.

<u>Passo 2</u> Sia $\langle s \rangle = \langle v_{j_0},....,v_{j_l} \rangle$ un l-simplesso orientato di K, definiamo le applicazioni lineari

$$\alpha_l:C^l(K)\to\Lambda^l(X)$$

nel modo seguente:

$$\alpha_l(\varphi_{\langle s \rangle}) = l! \left(\sum_{i=0}^l (-1)^i g_{j_i} dg_{j_0} \wedge \ldots \wedge \widehat{dg_{j_i}} \wedge \ldots \wedge dg_{j_l} \right),$$

dove $\varphi_{\langle s \rangle}$ è un generatore di $C^l(K)$.

Dimostriamo ora che queste funzioni soddisfano le proprietà 1)-4) enunciate nel lemma.

Proprietà 1 Calcoliamo il primo membro dell'uguaglianza da verificare, utilizzando le proprietà di d e \wedge :

$$\begin{split} d\circ\alpha_l(\varphi_{\langle s\rangle}) &= d\left[l! \sum_{i=0}^l (-1)^i g_{j_i} dg_{j_0} \wedge \ldots \wedge \widehat{dg_{j_i}} \wedge \ldots \wedge dg_{j_l}\right] \\ &= l! \left[\sum_{i=0}^l (-1)^i d(g_{j_i} dg_{j_0} \wedge \ldots \wedge \widehat{dg_{j_i}} \wedge \ldots \wedge dg_{j_l})\right] \\ &= l! \left[\sum_{i=0}^l (-1)^i (dg_{j_i} \wedge dg_{j_0} \wedge \ldots \wedge dg_{j_l})\right] \\ &= l! \left[\sum_{i=0}^l (-1)^i (-1)^i (dg_{j_0} \wedge \ldots \wedge dg_{j_l})\right] \\ &= (l+1)! dg_{j_0} \wedge \ldots \wedge dg_{j_l}. \end{split}$$

Calcoliamo ora il secondo membro, utilizzando le proprietà di ∂^* (lemma 1,paragrafo 3.1):

$$\alpha_{l+1} \circ \partial^*(\varphi_{\langle s \rangle}) = \alpha_{l+1} \left[\sum_{\substack{v_k \text{ t.c. } v_k \text{ è un vertice } di \ K \\ e \ (v_k, v_{j_0}, \dots, v_{j_l}) \text{ è un } (l+1) - simplesso } di \ K} \varphi_{\langle v_k, v_{j_0}, \dots, v_{j_l} \rangle} \right]$$

$$= \sum_{v_k} \alpha_{l+1} (\varphi_{\langle v_k, v_{j_0}, \dots, v_{j_l} \rangle})$$

$$= \sum_{v_k} (l+1)! \left[(g_k dg_{j_0} \wedge \dots \wedge dg_{j_l}) \right] +$$

$$+ \sum_{v_k} (l+1)! \left[\sum_{i=0}^l (-1)^{i+1} g_{j_i} dg_{j_k} \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= (l+1)! \sum_{v_k} \sum_{i=0}^l (-1)^i g_{j_i} dg_{j_k} \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l}.$$

Proviamo ora che, se $v_k, v_{j_0}, \dots, v_{j_l}$ sono vertici distinti di K ma non sono vertici di un (l+1)-simplesso di K, allora

$$g_k dg_{j_0} \wedge ... \wedge dg_{j_l} = 0.$$

Infatti, sia $x \in X$, si hanno due casi:

- 1) se $x \notin St(v_k)$, allora, per la proprietà 5) dimostrata al passo 1, $g_k(x) = 0$;
- 2) se $x \in St(v_k)$, allora $b_k(x) \neq 0$. Poichè $(v_k, v_{j_0},, v_{j_l})$ non è un $(l + v_k)$
- 1)—simplesso di K, allora esiste $i \in \{0,....,l\}$ tale che $b_{j_i}(x)=0$. Mediante questo i definiamo l'insieme

$$U = \left\{ y \in X \mid b_{j_i}(y) < \frac{1}{n+2} \right\};$$

per U valgono i seguenti fatti:

- 1) $x \in U$;
- 2) U è un aperto di X, poichè immagine inversa di un aperto tramite un'applicazione continua;
- 3) $g_{j_i} = 0$ su U, poichè $U \subseteq G_{j_i}$; quindi, per il lemma 1 del paragrafo 1.1, $dg_{j_i} = 0$ su U. Pertanto esiste $i \in \{0,, l\}$ tale che $dg_{j_i}(x) = 0$.

Dall'affermazione appena dimostrata risulta:

$$\sum_{\substack{v_k \text{ t.c. } v_k \text{ è un vertice } di \text{ } K \\ e \text{ } (v_k, v_{j_0}, \dots, v_{j_l}) \text{ è un } (l+1) - simplesso } di \text{ } K}} g_k dg_{j_0} \wedge \dots \wedge dg_{j_l}$$

$$= \sum_{\substack{v_k \text{ vertice } di \text{ } K \text{ t.c. } k \notin \{j_0, \dots, j_l\}}} g_k dg_{j_0} \wedge \dots \wedge dg_{j_l}$$

e anche:

$$\sum_{\substack{v_k \ t.c. \ v_k \ \grave{e} \ un \ vertice \ di \ K \ e \ (v_k, v_{j_0}, \dots, v_{j_l}) \ \grave{e} \ un \ (l+1) - simplesso \ di \ K}} \left[\sum_{i=0}^l (-1)^i g_{j_i} dg_k \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= \sum_{i=0}^l (-1)^i \left[\sum_{v_k} g_{j_i} dg_k \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= \sum_{i=0}^l (-1)^i \left[\sum_{v_k \ vertice \ di \ K \ t.c. \ k \notin \{j_0, \dots, j_l\}} g_{j_i} dg_k \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= \sum_{i=0}^l (-1)^i \left[\sum_{v_k \ vertice \ di \ K \ t.c. \ k \neq j_i} g_{j_i} dg_k \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= \sum_{i=0}^l (-1)^i g_{j_i} \left[\left(\sum_{v_k \ vertice \ di \ K \ t.c. \ k \neq j_i} dg_k \right) \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l} \right]$$

$$= \sum_{i=0}^l (-1)^i g_{j_i} \left(-dg_{j_i} \right) \wedge dg_{j_0} \wedge \dots \wedge \widehat{dg_{j_i}} \wedge \dots \wedge dg_{j_l}$$

$$= -\sum_{i=0}^l g_{j_i} dg_{j_0} \wedge \dots \wedge dg_{j_l}$$

nel penultimo passaggio abbiamo usato il fatto che:

$$\sum_{k=1}^{m} g_k = 1 \Rightarrow \sum_{k=1}^{m} dg_k = 0.$$

Pertanto abbiamo:

$$\begin{array}{lcl} \alpha_{l+1} \circ \partial^*(\varphi_{\langle s \rangle}) & = & (l+1)! \left(\sum_{v_k \ vertice \ di \ K \ t.c. \ k \notin \{j_0, \ldots, j_l\}} g_k dg_{j_0} \wedge \ldots \wedge dg_{j_l} \right) + \\ & & + (l+1)! \left(\sum_{i=0}^l g_{j_i} dg_{j_0} \wedge \ldots \wedge dg_{j_l} \right) \\ & = & (l+1)! \left(\sum_{k=1}^m g_k dg_{j_0} \wedge \ldots \wedge dg_{j_l} \right) \\ & = & (l+1)! \left(\sum_{k=1}^m g_k \right) dg_{j_0} \wedge \ldots \wedge dg_{j_l} \\ & = & (l+1)! dg_{j_0} \wedge \ldots \wedge dg_{j_l} \\ & = & d \circ \alpha_l(\varphi_{\langle s \rangle}). \end{array}$$

Proprietà 3 Sia v_j un vertice di K, con $j \in \{1, ..., m\}$; risulta:

$$\alpha_0 \left(\varphi_{\langle v_j \rangle} \right) = g_j.$$

Dunque abbiamo:

$$\alpha_0(c^0) = \alpha_0 \left(\sum_{j=1}^m \varphi_{\langle v_j \rangle} \right)$$

$$= \sum_{j=1}^m \alpha_0 \left(\varphi_{\langle v_j \rangle} \right)$$

$$= \sum_{j=1}^m g_j = 1.$$

Proprietà 4 Siano $\langle s \rangle = \langle v_{j_0},...,v_{j_l} \rangle$ un l-simplesso orientato di K e $x \in X$ tale che $b_{j_h}(x) < \frac{1}{n+2}$, per qualche $h \in \{0,....,l\}$; si ha che $x \in G_{j_h}$ e quindi $g_{j_h}(x) = dg_{j_h}(x) = 0$. Pertanto $\alpha_l\left(\varphi_{\langle s \rangle}\right)(x) = 0$. Sia ora

$$A = \left\{ x \in X \mid b_{j_h}(x) < \frac{1}{n+2}, \text{ per qualche } h \in \{0, \dots, l\} \right\};$$

per A valgono i seguenti fatti:

- 1) A è un aperto di X, poichè unione di aperti di X;
- 2) $X St(s) \subseteq A$;
- 3) $\alpha_l \left(\varphi_{\langle s \rangle} \right) = 0 \text{ su } A.$

Pertanto $\alpha_l\left(\varphi_{\langle s\rangle}\right)$ è identicamente nulla in un intorno aperto di X-St(s).

Proprietà 2 Procediamo per induzione su l.

Base dell'induzione: l = 0. Siano $j, k \in \{1,, m\}$; si ha che:

$$\left[\int_{0} \circ \alpha_{0} \left(\varphi_{\langle v_{j} \rangle}\right)\right] \left(\langle v_{k} \rangle\right) = \int_{0} \left(g_{j}\right) \left(\langle v_{k} \rangle\right) = \int_{\langle v_{k} \rangle} g_{j} = g_{j} \left(v_{k}\right).$$

Se $k \neq j$, allora $g_j(v_k) = 0$, poichè $v_k \notin St(v_j)$ e g_j è identicamente nulla fuori di $St(v_j)$. Inoltre, per ogni $k \in \{1,, m\}$, risulta

$$1 = \sum_{j=1}^{m} g_j(v_k) = g_j(v_j).$$

Dunque

$$\left[\int_{0} \circ \alpha_{0} \left(\varphi_{\langle v_{j} \rangle} \right) \right] (\langle v_{k} \rangle) = \left\{ \begin{array}{ll} 1 & se \ k = j \\ 0 & se \ k \neq j \end{array} \right. = \varphi_{\langle v_{j} \rangle} \left\langle v_{k} \right\rangle.$$

Per l'arbitrarietà di $j \in k$, $\int_0 \circ \alpha_0 = id_{C^0(K)}$.

Passo induttivo: supponiamo che la proprietà 2 sia vera per l-1, dobbiamo provarlo anche per l. Siano $\langle s \rangle$ e $\langle t \rangle$ due l-simplessi orientati di K; risulta che

$$\left[\int_{l} \circ \alpha_{l} \left(\varphi_{\langle s \rangle} \right) \right] (\langle t \rangle) = \int_{\langle t \rangle} \alpha_{l} \left(\varphi_{\langle s \rangle} \right).$$

Ci sono due possibilità:

1) se $t \neq s$, allora $t \notin St(s)$; dunque, per la proprietà 4),

$$\int_{\langle t \rangle} \alpha_l \left(\varphi_{\langle s \rangle} \right) = \int_{\langle t \rangle} 0 = 0;$$

2) se $\langle t \rangle = \langle s \rangle$, siano $\langle s \rangle = \langle v_{j_0}, ..., v_{j_l} \rangle$ e $\langle r \rangle = \langle v_{j_1}, ..., v_{j_l} \rangle$. Applicando rispettivamente la proprietà 1) e il teorema di Stokes otteniamo

$$\int_{\langle s \rangle} \alpha_l \left(\partial^* \varphi_{\langle r \rangle} \right) = \int_{\langle s \rangle} d \circ \alpha_{l-1} \left(\varphi_{\langle r \rangle} \right) = \int_{\partial \langle s \rangle} \alpha_{l-1} \left(\varphi_{\langle r \rangle} \right).$$

Osserviamo che $\partial \langle s \rangle = \langle r \rangle$ più una somma a segni alterni di altri (l-1)-simplessi orientati di K; quindi, per ipotesi induttiva, risulta

$$\int_{\partial \langle s \rangle} \alpha_{l-1} \left(\varphi_{\langle r \rangle} \right) = \int_{\langle r \rangle} \alpha_{l-1} \left(\varphi_{\langle r \rangle} \right) = 1.$$

Pertanto, per le proprietà di ∂^* ,

$$1 = \int_{\langle s \rangle} \alpha_l \left(\partial^* \varphi_{\langle r \rangle} \right) = \int_{\langle s \rangle} \alpha_l \left(\varphi_{\langle s \rangle} + termini \ del \ tipo \ \varphi_{\langle t \rangle}, \ con \ t \neq s \right) = \int_{\langle s \rangle} \alpha_l \left(\varphi_{\langle s \rangle} \right).$$

Per l'arbitrarietà di $\langle s \rangle$ e $\langle t \rangle$, $\int_{I} \circ \alpha_{l} = id_{C^{l}(K)}$.

Il lemma 2 è un corollario del seguente lemma:

Lemma 3 Sia s un k-simplesso di \mathbb{R}^n . Valgono i seguenti fatti:

- (a_r) siano r e k due interi tali che $r \ge 0$ e $k \ge 1$ e sia ω una r-forma chiusa, definita in un intorno di $[s^{k-1}]$; se k = r+1, ipotizziamo anche $\int_{\partial \langle s \rangle} \omega = 0$. Allora esiste una r-forma τ chiusa e definita in un intorno di [s], tale che $\tau = \omega$ in un intorno di $[s^{k-1}]$;
- (b_r) siano r e k due interi tali che r, $k \geq 1$; siano ω una r-forma chiusa, definita in un intorno di [s] e τ una (r-1)-forma, definita in un intorno di $[s^{k-1}]$ e tale che $d\tau = \omega$ in un intorno di $[s^{k-1}]$; se k = r, ipotizziamo anche $\int_{\langle s \rangle} \omega = \int_{\partial \langle s \rangle} \tau$. Allora esiste una (r-1)-forma $\tilde{\tau}$, definita in un intorno di [s], per cui $\tau = \tilde{\tau}$ in un intorno di $[s^{k-1}]$ e $d\tilde{\tau} = \omega$ in un intorno di [s].

Osservazione 3 Le ipotesi aggiuntive introdotte in (a_r) e (b_r) sono condizioni necessarie poichè vale il teorema di Stokes. Infatti:

1) in (a_r) , se esiste una τ che soddisfa la tesi, allora

$$\int_{\partial \langle s \rangle} \omega = \int_{\partial \langle s \rangle} \tau = \int_{\langle s \rangle} d\tau = \int_{\langle s \rangle} 0 = 0;$$

2) in (b_r) , se esiste una $\tilde{\tau}$ che soddisfa la tesi, allora

$$\int_{\langle s \rangle} \omega = \int_{\langle s \rangle} d\widetilde{\tau} = \int_{\partial \langle s \rangle} \widetilde{\tau} = \int_{\partial \langle s \rangle} \tau.$$

 $Dimostrazione\ lemma\ 3.$ Procediamo per induzione su r.

Per prima cosa verifichiamo che vale (a_0) : se r=0, ω è una funzione differenziabile, definita in un intorno di $[s^{k-1}]$ e $d\omega=0$; dunque ω è costante sulle componenti connesse del suo dominio. A seconda del valore di k si hanno due possibilità:

- 1) se k > 1, $[s^{k-1}]$ è connesso; quindi esiste $c \in \mathbb{R}$ tale che $\omega = c$ in un intorno di $[s^{k-1}]$. Pertanto poniamo $\tau = c$ in un intorno di [s];
- 2) se k=1, allora $\langle s \rangle = \langle v_0, v_1 \rangle$; per la formula fondamentale del calcolo integrale risulta

$$0 = \int_{\partial \langle s \rangle} \omega = \omega (v_1) - \omega (v_0),$$

per cui il valore costante di ω vicino a v_1 è uguale al valore costante di ω vicino a v_0 . Quindi esiste $c \in \mathbb{R}$ tale che $\omega = c$ in un intorno di $[s^0]$; come prima, poniamo $\tau = c$ in un intorno di [s].

Verifichiamo ora che (a_{r-1}) implica (b_r) : per ipotesi ω è una r-forma chiusa, definita in un intorno aperto di [s]. A meno di restrizioni, possiamo supporre che questo aperto sia stellato; dunque, per il lemma di Poincaré (paragrafo 1.2), esiste una (r-1)-forma τ_1 definita in un intorno di [s] tale che $d\tau_1 = \omega$ nel medesimo intorno. In un intorno di $[s^{k-1}]$ la (r-1)-forma $\tau_1 - \tau$ è chiusa, poichè $d(\tau_1 - \tau) = d\tau_1 - d\tau = \omega - \omega = 0$; inoltre, se k = (r-1) + 1 = r, risulta

$$\int_{\partial \langle s \rangle} \tau_1 - \tau = \int_{\partial \langle s \rangle} \tau_1 - \int_{\partial \langle s \rangle} \tau = \int_{\langle s \rangle} d\tau_1 - \int_{\partial \langle s \rangle} \tau = \int_{\langle s \rangle} \omega - \int_{\partial \langle s \rangle} \tau = 0.$$

Perciò $\tau_1 - \tau$ verifica le ipotesi di (a_{r-1}) : quindi esiste una (r-1)-forma chiusa μ definita in un intorno di [s] e tale che $\mu = \tau_1 - \tau$ in un intorno di $[s^{k-1}]$. Chiamiamo $\tilde{\tau} = \tau_1 - \mu$: si tratta di una (r-1)-forma, definita in un intorno di [s], tale che $\tilde{\tau} = \tau_1 - \mu = \tau_1 - \tau_1 + \tau = \tau$ in un intorno di $[s^{k-1}]$ e $d\tilde{\tau} = d\tau_1 - d\mu = \omega - 0 = \omega$ in un intorno di [s].

Infine proviamo che (b_r) implica (a_r) : siano $\langle s \rangle = \langle v_0,, v_k \rangle$ e $\langle t \rangle = \langle v_1,, v_k \rangle$; per ipotesi ω è una r-forma chiusa e definita in un intorno di $[s^{k-1}]$. A seconda del valore di k si hanno due possibilità:

1) se k > 1, sia $F = [s^{k-1}] - (t)$; F è stellato, quindi ogni aperto che lo contiene, contiene a sua volta un intorno stellato U di F. Pertanto, per il lemma di Poincaré, esiste una (r-1)-forma μ , definita in un intorno di F contenuto nel

dominio di ω e tale che $d\mu = \omega$ in tale intorno. Inoltre $d\mu = \omega$ in un intorno di $[t^{k-2}]$. Supponiamo ora che k-1=r e sia $c=\partial \langle s\rangle - \langle t\rangle$, da cui $\partial c=-\partial \langle t\rangle$; risulta

$$\int_{\langle t \rangle} \omega - \int_{\partial \langle t \rangle} \mu = \int_{\langle t \rangle} \omega + \int_{\partial c} \mu = \int_{\langle t \rangle} \omega + \int_{c} d\mu = \int_{\langle t \rangle} \omega + \int_{c} \omega = \int_{\partial \langle s \rangle} \omega = 0.$$

Dunque ω , μ e il (k-1) –simplesso $\langle t \rangle$ verificano le ipotesi di (b_r) : quindi esiste una (r-1)–forma $\widetilde{\mu}$ definita in un intorno di [t], per cui $\widetilde{\mu} = \mu$ in un intorno di $[t^{k-2}]$ e $d\widetilde{\mu} = \omega$ in un intorno di [t]. Indichiamo con μ_2 la forma definita in un intorno di $[s^{k-1}]$ che si ottiene incollando μ e $\widetilde{\mu}$ lungo il loro dominio comune: quindi $d\mu_2 = \omega$ in un intorno di $[s^{k-1}]$;

2) se k=1, sia U_i , con $i \in \{0,1\}$, un intorno stellato di $\{v_i\}$ contenuto nel dominio di ω . Poichè ω è chiusa, per il lemma di Poincaré esistono (r-1)-forme μ_i definite su U_i e tali che $d\mu_i = \omega$ su U_i ; restringendo U_0 e U_1 , possiamo supporre che $U_0 \cap U_1 = \emptyset$. Come al punto 1), poniamo

$$\mu_2 = \left\{ \begin{array}{cc} \mu_0 & su \ U_0 \\ \mu_1 & su \ U_1 \end{array} \right. :$$

si tratta di una (r-1)-forma definita in un intorno di $[s^0]$ e per cui $d\mu_2 = \omega$ in tale intorno.

Sia ora f una funzione differenziabile che vale 1 in un piccolo intorno di $[s^{k-1}]$ e 0 fuori del dominio di μ_2 : $f\mu_2$ è una (r-1)-forma definita in un intorno di [s]. Se poniamo $\tau = d(f\mu_2)$, l'affermazione (a_r) è dimostrata; infatti:

- 1) τ è una r-forma chiusa;
- 2) τ è definita in un intorno di [s];
- 3) in un piccolo intorno di $[s^{k-1}]$,

$$\tau=d\left(f\mu_{2}\right)=d\left(f\wedge\mu_{2}\right)=df\wedge\mu_{2}+\left(-1\right)^{0}f\wedge d\mu_{2}=0\wedge\mu_{2}+1\wedge d\mu_{2}=d\mu_{2}=\omega.$$

Abbiamo così provato la catena di implicazioni

$$(a_0) \Rightarrow (b_1) \Rightarrow (a_1) \Rightarrow (b_2) \Rightarrow \dots$$

Dimostrazione lemma 2. Sia $n = \dim X$; costruiamo, per induzione, una sequenza di (l-1)-forme $\tau_0, \tau_1, \ldots, \tau_n = \tau$ con le seguenti proprietà:

- 1) ogni τ_k è definita in un intorno di $[K^k]$;
- 2) per ogni $k\in\{0,....,n\},\,d\tau_k=\omega$ in un intorno di $\left[K^k\right];$
- 3) per ogni $k \in \{1,, n\}, \tau_k = \tau_{k-1}$ in un intorno di $[K^{k-1}]$;
- 4) $\int_{l-1} (\tau_{l-1}) = c$.

Con questa costruzione dimostriamo il lemma 2; infatti: sia $\langle s \rangle$ un (l-1)-simplesso orientato di K e sia $k \geq l-1$, dalle proprietà 3) e 4) segue

$$\int_{l-1} (\tau_k) (\langle s \rangle) = \int_{\langle s \rangle} \tau_k = \int_{\langle s \rangle} \tau_{l-1} = \int_{l-1} (\tau_{l-1}) (\langle s \rangle) = c (\langle s \rangle).$$

Inoltre la proprietà 2) afferma che $d\tau = \omega$ su X.

Base dell'induzione: k=0. Consideriamo un ricoprimento di $\begin{bmatrix} K^0 \end{bmatrix}$ costituito da palle a due a due disgiunte; per ipotesi ω è chiusa, dunque, per il lemma di Poincaré, ω è esatta su ogni palla del ricoprimento: in altre parole esiste $\tilde{\tau}_0$ (l-1)-forma, definita sull'unione di tali palle, per cui $d\tilde{\tau}_0 = \omega$ su di esse. Dunque $\tilde{\tau}_0$ verifica le proprietà 1) e 2). Ora, se $l-1 \neq 0$, poniamo $\tau_0 = \tilde{\tau}_0$; se invece l-1=0, dobbiamo costruire una τ_0 che soddisfi anche 4): sia v_j un vertice di K, risulta

$$\int_{0} (\widetilde{\tau_{0}}) (\langle v_{j} \rangle) = \int_{\langle v_{j} \rangle} \widetilde{\tau_{0}} = \widetilde{\tau_{0}} (v_{j});$$

sia ora $a_j = c(v_j) - \widetilde{\tau_0}(v_j)$, sulla palla intorno a v_j poniamo $\tau_0 = \widetilde{\tau_0} + a_j$: risulta che $d\tau_0 = d\widetilde{\tau_0} = \omega$ in un intorno di $\begin{bmatrix} K^0 \end{bmatrix}$ e $\int_0 (\tau_0) = c$, cioè sono soddisfatte le proprietà 1), 2) e 4).

Passo induttivo: per ipotesi abbiamo costruito una τ_{k-1} che soddisfa 1)-4), dobbiamo costruire una τ_k che soddisfi anch'essa 1)-4).

Sia s un k-simplesso di K; per ipotesi ω è una l-forma chiusa, definita in un intorno di [s] e per ipotesi induttiva τ_{k-1} è una (l-1)-forma definita in un intorno di $[s^{k-1}]$. Inoltre, se k=l, vale che

$$\int_{\langle s \rangle} \omega = \int_{l} \left(\omega \right) \left(\langle s \rangle \right) = \partial^{*} c \left(\langle s \rangle \right) = c \left(\partial \left\langle s \right\rangle \right) = \int_{k-1} \left(\tau_{k-1} \right) \left(\partial \left\langle s \right\rangle \right) = \int_{\partial \left\langle s \right\rangle} \tau_{k-1}.$$

Dunque per la (b_l) del lemma 3, esiste una (l-1) –forma $\tau_k(s)$ (τ_k dipende da s) definita in un intorno di [s], tale che $\tau_k(s) = \tau_{k-1}$ in un intorno di $[s^{k-1}]$ e $d\tau_k(s) = \omega$ in un intorno di [s]. Questa costruzione è possibile per qualsiasi k-simplesso s di K; pertanto, incollando le varie forme così costruite, si ottiene una (l-1) –forma $\widetilde{\tau_k}$ che soddisfa 1), 2) e 3). Ora, se $k \neq l-1$, poniamo $\tau_k = \widetilde{\tau_k}$; se invece k = l-1, dobbiamo costruire una τ_k che soddisfi anche 4). Sia $c_1 = c - \int_{l-1} (\widetilde{\tau_{l-1}})$; poniamo $\tau_{l-1} = \widetilde{\tau_{l-1}} + \alpha_{l-1}(c_1)$ in un intorno di $[K^{l-1}]$. Dalla proprietà 4) del lemma 1 segue che, fissati un intero r tale che $0 \leq r \leq n$ e un r-simplesso orientato $\langle s \rangle$ di K, la r-forma $\alpha_r(\varphi_{\langle s \rangle})$ è identicamente nulla in un intorno di $[K^{r-1}]$. Dunque, poichè α_r è un'applicazione lineare, per ogni $c \in C^r(K)$, $\alpha_r(c)$ è identicamente nulla in un intorno di $[K^{r-1}]$. In base a quanto appena detto risulta che

$$d\tau_{l-1} = d\widetilde{\tau_{l-1}} + d \circ \alpha_{l-1}\left(c_{1}\right) = d\widetilde{\tau_{l-1}} + \alpha_{l} \circ \partial^{*}\left(c_{1}\right) = d\widetilde{\tau_{l-1}} = \omega$$

in un intorno di $[K^{l-1}]$, e

$$\tau_{l-1} = \widetilde{\tau_{l-1}} + \alpha_{l-1} (c_1) = \widetilde{\tau_{l-1}} = \widetilde{\tau_{l-2}} = \tau_{l-2}$$

in un intorno di $[K^{l-2}]$; inoltre

$$\int_{l-1} (\tau_{l-1}) = \int_{l-1} (\widetilde{\tau_{l-1}} + \alpha_{l-1} (c_1))$$

$$= \int_{l-1} (\widetilde{\tau_{l-1}}) + \int_{l-1} \circ (\alpha_{l-1} (c_1))$$

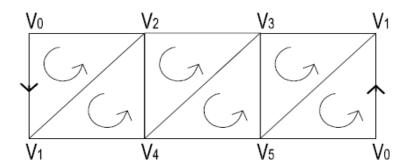
$$= (c - c_1) + c_1 = c.$$

Pertanto τ_{l-1} è una (l-1) –forma che soddisfa 1)-4).

Osservazione 4 Il teorema di De Rham afferma che i gruppi di coomologia simpliciale (a coefficienti in \mathbb{R}) di una varietà differenziabilmente triangolata (X, K, h) sono isomorfi ai gruppi di coomologia di De Rham di X. Dunque i gruppi di coomologia simpliciale non dipendono dalla triangolazione (K, h) di X. Inoltre, poichè i gruppi di coomologia sono i duali dei gruppi di omologia, i gruppi $H_l(K, \mathbb{R})$ per una varietà differnziabile [K] non dipendono dalla particolare suddivisione simpliciale di K, ma solo da [K].

4.3 Esempi

- 1) Siano $X = S^n$, K l' n-scheletro di un (n+1)-simplesso e $h: [K] \to S^n$ la proiezione radiale; allora (S^n, K, h) è una varietà differenziabilmente triangolata. Pertanto, per il teorema di De Rham, per ogni l tale che $0 \le l \le n$, risulta $H^l(S^n, d) \cong H_l(K, \mathbb{R})$.
- 2) Sia X il nastro di Möbius; allora $H^0(X,d) \cong \mathbb{R}$, $H^1(X,d) \cong \mathbb{R}$ e $H^2(X,d) = 0$. Dimostrazione. Sia K il seguente complesso simpliciale:



Si verifica facilmente che K è una triangolazione per il nastro di Möbius. Quindi, poichè vale il teorema di De Rham, per ottenere la tesi basterà calcolare i corrispondenti gruppi di omologia simpliciale di K. Per prima cosa osserviamo

che dalla connessione di [K] segue $H_0(K,\mathbb{R}) \cong \mathbb{R}$. Calcoliamo ora $H_2(K,\mathbb{R})$: poichè K ha dimensione 2, $B_2(K,\mathbb{R}) = 0$, da cui $H_2(K,\mathbb{R}) = Z_2(K,\mathbb{R})$. Sia $z = i \langle v_0, v_1, v_2 \rangle + j \langle v_2, v_1, v_4 \rangle + k \langle v_2, v_4, v_3 \rangle + l \langle v_3, v_4, v_5 \rangle + m \langle v_3, v_5, v_1 \rangle + n \langle v_1, v_5, v_0 \rangle \in Z_2(K,\mathbb{R})$; dunque $\partial z = 0$, cioè i = j = k = l = m = n = 0. Quindi $H_2(K,\mathbb{R}) = Z_2(K,\mathbb{R}) = 0$. Infine calcoliamo $H_1(K,\mathbb{R})$: sia

$$z = \langle v_0, v_1 \rangle + \langle v_1, v_4 \rangle + \langle v_4, v_5 \rangle + \langle v_5, v_0 \rangle \in Z_1(K, \mathbb{R});$$

osserviamo che ogni ciclo è omologo a nz, con $n \in \mathbb{R}$: ad esempio se

$$z_1 = \left\langle v_1, v_2 \right\rangle + \left\langle v_2, v_3 \right\rangle + \left\langle v_3, v_5 \right\rangle + \left\langle v_5, v_1 \right\rangle,$$

$$z - z_1 = \partial (\langle v_2, v_1, v_4 \rangle + \langle v_2, v_4, v_3 \rangle + \langle v_3, v_4, v_5 \rangle + \langle v_1, v_5, v_0 \rangle),$$

mentre se

$$z_1 = \langle v_1, v_4 \rangle + \langle v_4, v_5 \rangle + \langle v_5, v_0 \rangle + \langle v_0, v_2 \rangle + \langle v_2, v_3 \rangle + \langle v_3, v_1 \rangle,$$

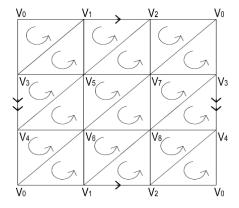
risulta che

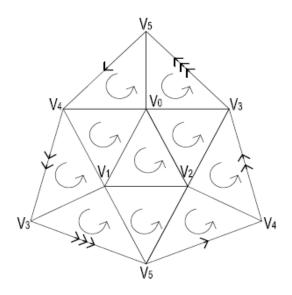
$$2z - z_1 = \partial(\langle v_0, v_1, v_2 \rangle + \langle v_1, v_4, v_2 \rangle + \langle v_2, v_4, v_3 \rangle + \langle v_3, v_4, v_5 \rangle + \langle v_3, v_5, v_1 \rangle + \langle v_0, v_1, v_5 \rangle).$$

Quindi $H_1(K, \mathbb{R}) = \{ n [z] \mid n \in \mathbb{R} \} \cong \mathbb{R}.$

- 3) Sia $X=T^2$; allora $H^0(X,d)\cong \mathbb{R}, H^1(X,d)\cong \mathbb{R}^2$ e $H^2(X,d)\cong \mathbb{R}$.
- 4) Sia $X = \mathbb{R}P^2$; allora $H^0(X, d) \cong \mathbb{R}$, $H^1(X, d) = 0$ e $H^2(X, d) = 0$.

Osservazione 1. Per dimostrare le affermazioni degli esempi 3) e 4) si utilizzano rispettivamente le triangolazioni illustrate nelle due figure sottostanti.





Bibliografia

- [1] Bott, R. "Georges de Rham 1901-1990" Notices Amer. Math. Soc. 38 (2), 1991, 114-115
- [2] Nakahara, M. " $Geometry,\ Topology\ and\ Physics$ " Graduate Student Series in Physics, 1990
- [3] Singer, I. M. Thorpe, J. A. "Lezioni di topologia elementare e di geometria" Boringhieri, 1980