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Kronecker-Weierstrass form for matrix pencils [ESI33TGARICIAEIIT TTIES Ts TS S LR oL 1]

Strict equivalence

Set GLk’l,...,k’T e GLkl ((C) X ... X GLkT ((C)
Matrix pencil of size m x n: P = pA + AB where A, B € M, (C).

M sen (Clu, AJ1) = space of matrix pencils of size m x n

Two matrix pencils P and P’ are strictly equivalent if they are in
the same orbit with respect to the group action

GLm(C) x GL,(C) —» Aut (smmxn(qu,x]l))
(P,Q) > (MA+/\B»—>M(P~A~tQ)+,\(P,B.tQ))

Regular pencil: m = n and det(uA + AB) # 0.
Singular pencil: m # n or det(uA + AB) = 0.




Kronecker-Weierstrass form for matrix pencils [ESI33TGARICIAEIIT TTIES Ts TS S LR oL 1]

Regular invariants

Set gi(p, A) = ged(k x k minors of P) and r = max{k | gx(u, \) # 0}.

Invariant polynomials: fori=1:r

dilp, V) = = e V) s =" p T (aim + 2o
Z‘ j j

where e;;(1, \) are irreducible. Note that d:|...|d,.
Elementary divisors: the factors p" and e;;(u, A)"#.

They define pencils of size u; and w;; respectively of the form

oA Ataijp p

Hui - ’ . ' ) Jwi]-,aij = )
Iz A+ aijp




Kronecker-Weierstrass form for matrix pencils [ESI33TGARICIAEIIT TTIES Ts TS S LR oL 1]

Singular invariants

Minimal indices for columns: the minima degrees
0 <e <...<g, of the (linearly independent) solutions of the
equation (uA + AB)x(u, \) = 0.

Minimal indices for rows: the minima degrees 0 <n; < ... <9, of
the (linearly independent) solutions of the equation
(-t A+ N B)a(p,\) = 0.

Let g and h be such that e, = ... =€, =11 = ... =n, = 0.
For i > g, each ¢; defines the pencil of size ¢; x (¢; + 1)

R, =

7




Kronecker-Weierstrass form for matrix pencils [OESte}sbteEN e} gsst:]

Kronecker-Weierstrass form

Theorem (Weierstrass, 1868 - Kronecker, 1890)

Every projective pencil uA + AB is strictly equivalent to a canonical

block-direct-sum of the form

p q s
Onsg B ( B Re)B( B ‘Ry )8 (B Hy)B(BIu.a.)
i=g+1 j=h+1 fe=il l,z
where €; and 7; are the minimal indices for columns and rows
respectively, and p"s and (A4 a;ju)"# are the elementary divisors.

’

The Kronecker-Weierstrass form classifies the representatives in

\?ﬁmxn(C[ﬂa A]l)/GL ((C)

GLn(C)




Kronecker-Weierstrass form for matrix pencils [OESte}sbteEN e} gsst:]

Symmetric pencils

We denote symmetric matrix pencils by Sym? C™ [, A1
Two symmetric pencils are congruent if they are in the same orbit
with respect to the group action

GLn(C) — Aut (Sym2 ™[y, )\]1)
T > ( pA 4+ AB v u(*TAT) + \('TBT) )

Proposition

Two symmetric pencils are strictly equivalent if and only if they are
congruent.

| \

Corollary

Two pencils of quadratic forms can be carried into one another by a
non-singular transformation if and only if the corresponding

symmetric pencils have same minimal indices and elementary divisors.




Classification of pencils of quadrics in B Pencils of quadrics and Segre symbol

Segre symbol

The intersection of two quadrics A =! XAX and B =' XBX in P is
described by the symmetric pencil P = uA + AB. The roots of P are

the roots [y; : —x;] € P! of the elementary divisors (x;p + y;\)% .
The Segre symbol of P is the ordered sequence of its invariants

Y(P) = [(e%, . 76%1) N . ,6§k);€g+1, o €pi 9]
where k is the number of distinct roots and

TL> . >Te , €122, 1< ...<¢

. 0} ) —[11; ;1], while 2( {& g J ) — 2 :1].

The Segre symbol does not uniquely define the pencil even up to J

A
Ezxample: ¥ <

GLg p-action (i.e. up to strict equivalence and to GLs-action on P1).




Classification of pencils of quadrics in ]P’E'L Pencils of quadrics and Segre symbol

Up to GLy ~ P!, we may assume the roots to be [1 : —%t], hence
represent them by z; € C or better by a vector in C*) / _ where

(C(k)z{ze(ck\zz'aézjw;éj}

az; +b
czi +d

ZN~w = EI[Z Z}GGLQ:Vizlzk, w; =

The quotient C*) /~ parametrizes all the possible k-tuples of roots
(up to GLy ~ P1): a class [v] is called a continuous modulus.

Proposition

A pencil of quadrics P is uniquely determined (up to GL-action) by
its Segre symbol and a continuous modulus [v] € C*)/

| Z
N

Theorem
Let P and Q be two pencils of quadrics in P™ with roots [u : AT
and [,uQ )\Q} for i =1: k. Then P and Q are projectively equivalent

in P™ if and only if they have the same Segre symbols.




Classification of pencils of quadrics in B Position of projective lines of quadrics

Projective space of quadrics

Set W ={Q : C™*! — C quadric} D W, = {Q € W | Rk(Q) =r}.
For P = Q1 + AQ2 defined by linearly independent quadrics
Q1,Q2 € W\ {0}, set Lp its projective line in PW and V(P) C P™.

Claim

The Kronecker class of a pencil of quadrics P is uniquely determined
by the position of the line Lp with respect to the subvarieties PW,.
and by the singular part Sing(V (P)) of the base locus V (P).

Be careful!
Not only the schematically-singular parts, but also the ones of
dimension greater than the expected one: e.g., in P? of Sing(V([2;;1]))

is not only the double point (22,y) but also the line (z).




Classification of pencils of quadrics in B Position of projective lines of quadrics

Position of Lp

For Lp C PW projective line of P, set mo(Lp) = min{r | Lp C PW,.}.
Given {Pl, c. ,PqL} =LpnN ]PWmU(L)—lv set Vi < qr,Vj < kZ(LP)
ki(Lp) = max{k‘ | P; € ]P)Wmo(L)—k} s mij([rp) = multp,L (LpﬂPWmO(LP)_j)

The set of values myg, qr,, k;, m;; determines the position of Lp.

Proposition

If 5(P) = [(e},...,eil)...(e’f,...,e’,fk);egﬂ,...,ep;g], then Lp has
position:

(i) mo(Lp) =m+1—p;

(i) o(Tp) = k;

(7it) ki(Lp) =r; for all i =1:k;
)

(iv) my(Lp) =S/t ey foralli=1:kandj=1:r:




Classification of pencils of quadrics in ]P“En Position of projective lines of quadrics

Lemma

Given P, P’ two pencil of quadrics, their lines L, L’ have similar

position if and only if the pencils have Segre symbols with the same
;) and same number of minimal

indices (i.e. same p = p'), other than same continuous moduli.

multiplicities (i.e k = &’ and ¢ = (¢/)

If P is regular, then it is uniquely determined by the position of Lp.
But if the pencil is singular, its position is enough iff m = 2, 3: this

comes from combinatorial costraints on the sizes of Kronecker blocks. )

S(P) Lp det(P)  q(Lp) LpNPWy LpNnPW;
D11 X+ (p—Ny? —pz2 A +p)u 3 1+1+1 0
2 1] ux? — pz? 4 2y A2 2 2+1 0
[(11)1] Az? — Ay? + pz? A2p 2 241 1
[3] \y? + 2 zz + 2uxy A3 1 3 0
[(2 1)] ur? + 2 zy + A22 A3 1 3 1
1] urz + Azy 0 0 Lp 0

[11;;1] uy? + Az? 0 2 Lp 141

[25;1] ux? + \zy 0 1 Lp 2




Classification of pencils of quadrics in B Singular parts in base loci

Singular components in V(P)

Lemma

Set k =k — #{i | r; = .. = 1}. Then Sing(V(P)) has at least ¢
components Sy, ...,S; (with reduced structure) where

k if p =g =0 (no minimal indices)
t =< max{k,1} if p=g > 0 (only zero minimal indices)

k+1 if p > g (there are non-zero minimal indices)
Moreover, up to permutation of the S;’s, it holds:

(i) each S; is either a linear subspace of dimension d; = r; +p — 1
(for eﬁ,i > 1) or a quadrics of dimension d; — 1 and corank
di +1—#{j | 63- =1} (for eii =1).

(27) If p > g (i.e. there are non-zero minimal indices), then in
addition &; = &g, is either a projective bundle of type
P(egi1...€p) (for g =0) or a join variety of type
J(€g41..-€p;9— 1) (for g > 0).




Classification of pencils of quadrics in P{" [JEIIPNESSEI Tt LT (1]

Theorem (Dimca, 1983)

Two pencils of quadrics P and P’ are equivalent if and only if

(7) the lines Lp, Lp, C PW have similar positions;

(71) the irreducible components of Sing(V (P)) and Sing(V (P’)) are

isomorphic.
S(P)  k t d; Sing(V (P))
111 o 0 0
2 1] 1 1 (irred.) 0 one double point
[(11)1] 1 1 (reducible) 0 two double points
(3] 1 1 (irred.) 0 one triple point
(21)] 1 1 (irred.) 0 one (curv.) quadruple point
[1;] 0 1 (reducible) 1 a line and a disjoint point
1151 o0 1 (irred.) 0 one (non-curv.) quadruple point
[2;51] 1 1 (reducible) 1 a line with embedded double point
(7"‘:1) o (y,%~2) 531.':2},._2_70 NERD)
MO S ey - S bt
(x,22) Ce?, x-4) (.‘iz*?-*&’tj,xa‘)

(a) [2 1] (b) [(1 1) 1 (c) 3]




Tensor rank decomposition [EIFIIIICIIS TS WO

2-slice tensors and GLj,, ,-action

2-slice tensor (of size m x n): T € C> @ C™ ® C".
Decomposable ones:

Seg(P' x P ' xP" N ={[u®v@w] | u,v,w} CP(C?QC" o C")

CPeC"eC" = Bil(C™, C™; C?) = Msen(CT) X My sen (C)
T = (o7 (v,w) — (a,b)) — (A, B)
where A and B are such that ‘v- A-w=a, ‘v-B-w=b.

C2@C™ ® C™ +— Muxn(Clu, A1) J

Two 2-slice tensors are GLg ,,, n-equivalent if they are in the same
orbit with respect to the group action

GL(C) x GL,, (C) x GL,(C) — Aut (<c2 QC™® cn)

(M, P,Q) — (u@v@w»—)Mu@Pv@Qw)




Tensor rank decomposition [EIFIIIICIIS TS WO

GLQmI,J'L'OrbitS

In general, there are infinitely many GL-orbits in C? ® C™ @ C*

Proposition

The tensor space C2 ® C™ ® C™ has finitely many GL-orbits if and
only if m <3 orn < 3.

7 : GL2(C) X GL,(C) x GL,(C) — C*®C™eC"
G — G-T

d(yr)r: 6ly(C) x gl,,(C) x g, (C) — C*@C"eC"
We get:

Im(yr) = orbar(T) , ker(d(yr)r) = Lier(staber (7))

dim(orbar, (T)) = Rk(d(yr)1) = 4 +m> 4+ n® — dim(ker (d('yT)I))




Tensor rank decomposition [E)IFRIIIIICNIS LI N0

symRk, in C? ® Sym*(C™ 1)

Symmetric 2-slice tensors: tensors in C? ® Sym?(C™*1).
Decomposable ones:

Seg(IP’1 x va(P™)) = {[u ® 12] | ue C? le C"LH} - ]P’((C2 ® Sym2((Cm+1))

C? ® Sym?(C™*!) +— pencils of quadrics in P J

GLy(C) X GLymi1(C) —s  Aut (((22 ® sym2(<cm+1))
(M, P) - (u@lQHZV[u®P~l2 -tP)

The GL3 y,+1-orbits are finitely many if and only if m +1 < 3. J




Tensor rank decomposition [EENIIESSIAMNTIIRY

Apolarity Theory

Waring decomposition problem
Express f € Sym? V' as sum of powers of linear form D i 14, J

Apolar ideal: fX={geSym* V" |g-f =0} CC[d,...,0mn]

Lemma (Apolarity)

Z finite set of linear forms, Zz = {g € Sym®* VY | g(I) =0Vl € Z}.
Then
f=>1" = ZzCft

lez

Moral: We look for a decomposition of f in the base locus of
0-dimensional ideals in f.




Tensor rank decomposition [EENIIEISIAMNTISRY

k-th catalecticant map

ff={geSym* VY |g-f=0} = Z{ker(C’k,f : Sym* VY — Sym?~* V)}
&

Catalecticant algorithm

(1) Construct Crays: Sym!21 V'V - Sym® 21 v,
(2) Compute kerC(%]’f;

(3) Compute the Krull dimension dimg,j(ker C(%],f):

(a) if it is > 1, the method fails!
(b) else compute Z = Z(ker Of%hf) ={ll],---, [lr]}s

(4) Solve the linear system f ="', ¢;I¢ where ¢; are the

indeterminates.

Since Sym?(C" 1)V ~ HO(P™, Opm (d)),
Cr.p: H(P™, 0(k)) — H°(P™,0(d — k)))¥




Tensor rank decomposition [EENfeSeENTIIE:R WY Yol E:5 510’

Nonabelian Apolarity

For £ vector bundle over a variety X and £ € Pic(X) such that
X — P(H(X, L)), the natural map

H(X,8) @ H'(X,£Y ® L) — H°(X, L)
leads to the linear map
H(X,&) @ H'(X, L)Y — H' (X, ¥ o L)"
by fixing f € H°(X, L)Y we have
Ces:H'(X,E) = H (X, o L)

Let f=3"_, z; minimal and Z = {[z1],..., [z]} CP(H(X,L)Y).

Lemma (Oeding-Ottaviani, 2013)

If Rk(C&f) =r-Rk(E), then HO(X,IZ ®E) = ker(C&f).




Tensor rank decomposition [EENfeSeENTIIE:R WY Yol E:5 510’

Eigenvectors of tensors

We can look for a decomposition of f in the base locus of ker(Cg ).
But these are global sections. Anything better? J

Get @ from the Euler SES 0 — Opy(—1) > Opy @V — Q — 0.
Set £ = A\"Q(e), L= 0(d) and p: Ly — Lo presentation of &:

Hom(Sym® V, A* V) Hom(A™ ™V, Sym?—¢~1V)

HOP™, L1)------- > HO(P™, LV®£

N

HO(P™, A" Q(e)) T HO(P™, \"“Q(e)¥ ® L)Y
E.f
Eigenvector of M € Hom(Sym®V,\“V): v € V s.t. M(v¢) Av = 0.

ker(Cg ) and ker(Pg ¢) have same common base locus, which
corresponds to common eigenvectors for ker(Pg 5).




Tensor rank decomposition The case of symmetric pencils

Nonabelian Apolarity for pencils

Goal: Decompose a given (Bj, By) € C? ® Sym?(C™+1).

Set
E=N\Q)=Q)~TP" , L=0(2), £'®L=0'(2)
Then (Bi, B2) € HO(P™,0(2))Y & HO(P™,0(2))Y and Cg  is

C(By.By) : H (P, TP™) — H°(P™, Q' (2))" @ H°(P™, Q' (2))"

® Up to isomorphism and up to scalars, Cp, p,) is exactly

Cigy,By): Slmi1(C) — /\2 V@a/\2V
A — (AB1 —Bi(*A) , ABy — Bz(tA))

® (By, Bs) is general, i.e. has Kronecker form of type
diag(X + a;p); with a; # a; # 0;

® ker(C(p, B,)) is invariant for GLy-action.




Tensor rank decomposition The case of symmetric pencils

Let (B1,B2) € C? ® Sym? C™*! be a general symmetric pencil. Then:

(i) all matrices in ker(C(p, p,)) have the same common eigenvectors
V1, ...,Um+1 Which are induced by the vectors vy, ..., V41
defining the Kronecker form

m—+1

GL I
T(By,By) ~ Z o ® U ® U

1=1

(ii) ker(C(p,,B,)) has dimension m + 1 in gl,,,;(C) and m in
8lm41(C);

(i77) for C € ker(C(p, ,p,)) general, in gl,, . ;(C) it holds
ker(C(p,,B,)) = (I,C,...,C™)c. In particular, in sl,,11(C) it
holds keI"(C(Bl’B2)) = <I, C,..., Cm>c ﬂs[m+1(C).

Key: The GL,,;1-action conjugates the kernels, that is
VP ¢ GLm+1(C), ker(C(pBl(tp)’pBQ(tp))) =p1 -ker(C(31732)) - P.




Thanks for your attention!




Fore; =0,e2=1,e3=2,m =0,7m2 = 0,13 = 2, N’Sv()‘+:u)2:

o o

o >




Rank in C2 @ C" ® C"

Rk(Juw.a) =w+ (1 = 0u1) , Rk(R) =€+ 1 J

Theorem (Grigoriev-JaJa, 1979)

Let T € C? ® C™ ® C" with minimal indices €1, ..., €y, M, ...,7, and
regular part C of size N. Let §(KC) be the number of its
non-squarefree invariant polynomials. Then

P q

RK(T) =) (e+1)+ > (m;+1)+ N +3(K)

i=1 j=1

The weight d(Pr) depends on the number of non-squarefree invariant
polynomials and not on the number of non-squarefree elementary

divisors.




Some regular base loci in P},

(d) (1 1) (1 1)] (e) (3 1)]

Figura: Some base loci of pencils of quadrics in P3




of quadrics in P%

Pencil Segre sym. A B V(P)
A+ p [111] 2 _ 22 22 — y2 four distinct points
N A 2 2 doubl int d
a double point an
A (2 1] -z 2y two other points
m
A - -
A [(11) 1] 22 22 — y? two double points
m
N A 2 ili tripl int
. a curvilinear triple poin
l; A (3] 2zy Yy~ + 22z and another point
K A 2 2 ili
a curvilinear
A N [(2 1)] T 2wy + =z quadruple point
| Aom li d
1. a line an
A (1] 2z 2y a disjoint point
I
A 2 2 ili
a non-curvilinear
I o [11551] Y T quadruple point
-H A 2 1i 1
N (2::1] . 2wy a line and an

embedded double point




GL3 33(C)-orbits

Pr dim(orbgr (7)) Rk Rk T
A “ 1s 3 3 a2®b1®c1+a1®@b2®@ca+
Atp +(az+a1)®@bz®cs
o i
a2®b1®@c1+a2@ba@ca+
A " o 3 3 +a1®bsRcs
A N 17 4 3 a2®b1 ®@c1+az@ba®ca+
B +(a1+a2)®bz®c3+a1 @b ®ca
F ]
a2®b1®c1+a2@ba®ca+
A N 10 3 3 +az2®@bzRcs
A 5 14 4 3 a2®b1 ®c1+a2@ba®ca+
A +a2®@b3®c3+a1®b1Rca
A N 16 4 a2®b1®c1+a2@b2®@ca+
N +a2®b3z®cz+a1®b1 ®co+a1@ba®cs
B 14 s 3 as®b1 ®c1+as@ba@co+
+a1®b1 ®c2+a1Rb2®cs
Ao A 14 4 3 a2®b1 ®c1+a1®@b1®ca+
" +a2®@b2®c3+a1®bzRcs




Regular pencils in C?> @ Sym?(C*

Segre symbol dim symRk, Rk T
[1111] 19 4 4 AQz2+ (A1) Qu2+(A—p) @22+ p@w?
[2 1 1] 19 5 4 AR (2 +y) 2+ (p—N) @22 - AQy?+pu®22 + (A +p) Qu?
[(11)11] 18 4 4 ARz +A®@Y2 +p®22 +(A+p)Qw?
31] 18 5 4
[(21)1] 17 5 4 AR (w+y)2 +(p—N) @27 - ARYZ+A® 22 +u@w?
[(111)1] 15 4 4 2@z +AQy2 +A®22 +u@w?
[2 2] 18 5 4
[(1 1) 2] 17 5 4 )\®a:2+/\®y2+u®(z+w)2+()\f,u)®z27;L®'Lu2
[(11)(11)] 16 4 4 Az 4 A@y% +u®z2 4 p@w?
[4] 17 5 4
[(31)] 17 5 4
. A®(z4y) 2+ (u—A) @22 —A@y2 +
[(2 2)] 15 6 4 +)\é(z+')w)25k(y,7)/\)®zzf)\®w2
[(211)] 14 5 4 A (2+y) 2+ (p—N) @2 - AQY2 + AR 2%+ A@w?

[2 2] has one only invariant polynomial (non-squarefree), hence 6 = 1;

[(2 2)] has two invariant polynomials (non-squarefree), hence 6 = 2.
This is why symRk,([2 2]) = 5 while symRk,([(2 2)]) = 6.
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