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Kronecker-Weierstrass form for matrix pencils Strict equivalence and invariants

Strict equivalence

Set GLk1,...,kr = GLk1(C)× . . .×GLkr (C).

Matrix pencil of size m× n: P = µA+ λB where A,B ∈Mm×n(C).

Mm×n(C[µ, λ]1) = space of matrix pencils of size m× n

Two matrix pencils P and P ′ are strictly equivalent if they are in
the same orbit with respect to the group action

GLm(C)×GLn(C) −→ Aut
(
Mm×n(C[µ, λ]1)

)
(P,Q) 7→

(
µA+ λB 7→ µ(P ·A ·tQ) + λ(P ·B ·tQ)

)
Regular pencil: m = n and det(µA+ λB) 6= 0.
Singular pencil: m 6= n or det(µA+ λB) = 0.
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Kronecker-Weierstrass form for matrix pencils Strict equivalence and invariants

Regular invariants

Set gk(µ, λ) = gcd(k × k minors of P) and r = max{k | gk(µ, λ) 6= 0}.
Invariant polynomials: for i = 1 : r

di(µ, λ) :=
gi
gi−1

= µui
∏
j

eij(µ, λ)wij
C=C
= µui

∏
j

(aijµ+ λ)wij

where eij(1, λ) are irreducible. Note that d1| . . . |dr.
Elementary divisors: the factors µui and eij(µ, λ)wij .
They define pencils of size ui and wij respectively of the form

Hui =


µ λ

. . .
. . .

. . . λ
µ

 , Jwij ,aij =


λ+ aijµ µ

. . .
. . .

. . . µ
λ+ aijµ



4 of 24



Kronecker-Weierstrass form for matrix pencils Strict equivalence and invariants

Singular invariants

Minimal indices for columns: the minima degrees
0 ≤ ε1 ≤ . . . ≤ εp of the (linearly independent) solutions of the
equation (µA+ λB)x(µ, λ) = 0.

Minimal indices for rows: the minima degrees 0 ≤ η1 ≤ . . . ≤ ηq of
the (linearly independent) solutions of the equation
(µ ·tA+ λ ·tB)x(µ, λ) = 0.

Let g and h be such that ε1 = . . . = εg = η1 = . . . = ηh = 0.
For i ≥ g, each εi defines the pencil of size εi × (εi + 1)

Rεi =

[
λ µ

. . .
. . .

λ µ

]

For j ≥ h, each ηj defines the pencil tRηj of size (ηj + 1)× ηj .
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Kronecker-Weierstrass form for matrix pencils Canonical forms

Kronecker-Weierstrass form

Theorem (Weierstrass, 1868 - Kronecker, 1890)
Every projective pencil µA+ λB is strictly equivalent to a canonical
block-direct-sum of the form

0h×g �
( p

�
i=g+1

Rεi
)
�

( q

�
j=h+1

tRηj
)
�

( s

�
k=1

Huk

)
�

(
�
l,z

Jwlz ,alz
)

where εi and ηj are the minimal indices for columns and rows
respectively, and µus and (λ+ aijµ)wij are the elementary divisors.

The Kronecker-Weierstrass form classifies the representatives in

GLm(C)�
Mm×n(C[µ, λ]1)�GLn(C)
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Kronecker-Weierstrass form for matrix pencils Canonical forms

Symmetric pencils
We denote symmetric matrix pencils by Sym2Cm[µ, λ]1.
Two symmetric pencils are congruent if they are in the same orbit
with respect to the group action

GLm(C) −→ Aut
(

Sym2 Cm[µ, λ]1
)

T 7→
(
µA+ λB 7→ µ(tTAT ) + λ(tTBT )

)
Proposition
Two symmetric pencils are strictly equivalent if and only if they are
congruent.

Corollary
Two pencils of quadratic forms can be carried into one another by a
non-singular transformation if and only if the corresponding
symmetric pencils have same minimal indices and elementary divisors.
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Classification of pencils of quadrics in PmC Pencils of quadrics and Segre symbol

Segre symbol

The intersection of two quadrics A =tXAX and B =tXBX in PmC is
described by the symmetric pencil P = µA+ λB. The roots of P are
the roots [yi : −xi] ∈ P1 of the elementary divisors (xiµ+ yiλ)e

i
j .

The Segre symbol of P is the ordered sequence of its invariants

Σ(P) =
[
(e1

1, . . . , e
1
r1) . . . (ek1, . . . , e

k
rk

); εg+1, . . . , εp; g
]

where k is the number of distinct roots and

r1 ≥ . . . ≥ rk , ei1 ≥ . . . ≥ eiri , εg+1 ≤ . . . ≤ εp

Example: Σ
( [λ

µ
0

] )
= [1 1; ; 1], while Σ

( [µ λ
λ

0

] )
= [2; ; 1].

The Segre symbol does not uniquely define the pencil even up to
GL2,m-action (i.e. up to strict equivalence and to GL2-action on P1).
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Classification of pencils of quadrics in PmC Pencils of quadrics and Segre symbol

Up to GL2 y P1, we may assume the roots to be [1 : −xi

yi
], hence

represent them by zi ∈ C or better by a vector in C(k)/∼ where

C(k) =
{
z ∈ Ck | zi 6= zj ∀i 6= j

}

z ∼ w ⇐⇒ ∃
[
a b
c d

]
∈ GL2 : ∀i = 1 : k, wi =

azi + b

czi + d

The quotient C(k)/∼ parametrizes all the possible k-tuples of roots
(up to GL2 y P1): a class [v] is called a continuous modulus.

Proposition
A pencil of quadrics P is uniquely determined (up to GL-action) by
its Segre symbol and a continuous modulus [v] ∈ C(k)/∼.

Theorem
Let P and Q be two pencils of quadrics in Pm with roots [µPi : λPi ]

and [µQi : λQi ] for i = 1 : k. Then P and Q are projectively equivalent
in Pm if and only if they have the same Segre symbols.
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Classification of pencils of quadrics in PmC Position of projective lines of quadrics

Projective space of quadrics

Set W = {Q : Cm+1 → C quadric} ⊃Wr = {Q ∈W | Rk(Q) = r}.
For P = µQ1 + λQ2 defined by linearly independent quadrics
Q1, Q2 ∈W \ {0}, set LP its projective line in PW and V (P) ⊂ Pm.

Claim
The Kronecker class of a pencil of quadrics P is uniquely determined
by the position of the line LP with respect to the subvarieties PWr

and by the singular part Sing(V (P)) of the base locus V (P).

Be careful!
Not only the schematically-singular parts, but also the ones of
dimension greater than the expected one: e.g., in P2 of Sing(V ([2; ; 1]))

is not only the double point (x2, y) but also the line (x).
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Classification of pencils of quadrics in PmC Position of projective lines of quadrics

Position of LP

For LP ⊂ PW projective line of P, set m0(LP) = min{r | LP ⊂ PWr}.
Given {P1, . . . , PqL} = LP ∩ PWm0(L)−1, set ∀i ≤ qL,∀j ≤ ki(LP)

ki(LP) = max{k | Pi ∈ PWm0(L)−k} , mij(LP) = multPi(LP ∩PWm0(LP )−j)

The set of values m0, qL, ki,mij determines the position of LP .

Proposition
If Σ(P) =

[
(e11, . . . , e

1
r1

) . . . (ek1 , . . . , e
k
rk

); εg+1, . . . , εp; g
]
, then LP has

position:

(i) m0(LP) = m+ 1− p;

(ii) q(LP) = k;

(iii) ki(LP) = ri for all i = 1 : k;

(iv) mij(LP) =
∑ri−j+1
l=1 eiri−l+1 for all i = 1 : k and j = 1 : ri.
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Classification of pencils of quadrics in PmC Position of projective lines of quadrics

Lemma
Given P,P ′ two pencil of quadrics, their lines L,L′ have similar
position if and only if the pencils have Segre symbols with the same
multiplicities (i.e k = k′ and eij = (e′)ij) and same number of minimal
indices (i.e. same p = p′), other than same continuous moduli.

If P is regular, then it is uniquely determined by the position of LP .
But if the pencil is singular, its position is enough iff m = 2, 3: this
comes from combinatorial costraints on the sizes of Kronecker blocks.

Σ(P) LP det(P) q(LP ) LP ∩ PW2 LP ∩ PW1

[1 1 1] λx2 + (µ− λ)y2 − µz2 λ(λ+ µ)µ 3 1 + 1 + 1 ∅
[2 1] µx2 − µz2 + 2λxy λ2µ 2 2 + 1 ∅

[(1 1) 1] λx2 − λy2 + µz2 λ2µ 2 2 + 1 1
[3] λy2 + 2λxz + 2µxy λ3 1 3 ∅

[(2 1)] µx2 + 2λxy + λz2 λ3 1 3 1
[; 1; ] µxz + λxy 0 0 LP ∅

[1 1; ; 1] µy2 + λx2 0 2 LP 1 + 1
[2; ; 1] µx2 + λxy 0 1 LP 2
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Classification of pencils of quadrics in PmC Singular parts in base loci

Singular components in V (P)

Lemma
Set k = k −#{i | ri = eiri = 1}. Then Sing(V (P)) has at least t
components S1, . . . ,St (with reduced structure) where

t =


k if p = g = 0 (no minimal indices)
max{k, 1} if p = g > 0 (only zero minimal indices)
k + 1 if p > g (there are non-zero minimal indices)

Moreover, up to permutation of the Si’s, it holds:

(i) each Si is either a linear subspace of dimension di = ri + p− 1
(for eiri > 1) or a quadrics of dimension di − 1 and corank
di + 1−#{j | eij = 1} (for eiri = 1).

(ii) If p > g (i.e. there are non-zero minimal indices), then in
addition St = Sk+1 is either a projective bundle of type
P (εg+1 . . . εp) (for g = 0) or a join variety of type
J(εg+1 . . . εp; g − 1) (for g > 0).
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Classification of pencils of quadrics in PmC Singular parts in base loci

Theorem (Dimca, 1983)
Two pencils of quadrics P and P ′ are equivalent if and only if

(i) the lines LP , LP′ ⊂ PW have similar positions;

(ii) the irreducible components of Sing(V (P)) and Sing(V (P ′)) are
isomorphic.

Σ(P) k t di Sing(V (P))
[1 1 1] 0 0 ∅
[2 1] 1 1 (irred.) 0 one double point

[(1 1) 1] 1 1 (reducible) 0 two double points
[3] 1 1 (irred.) 0 one triple point

[(2 1)] 1 1 (irred.) 0 one (curv.) quadruple point
[; 1; ] 0 1 (reducible) 1 a line and a disjoint point

[1 1; ; 1] 0 1 (irred.) 0 one (non-curv.) quadruple point
[2; ; 1] 1 1 (reducible) 1 a line with embedded double point

(a) [2 1] (b) [(1 1) 1] (c) [3]
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Tensor rank decomposition GL-equivalence in C2 ⊗ Cm ⊗ Cn

2-slice tensors and GL2,m,n-action
2-slice tensor (of size m× n): T ∈ C2 ⊗ Cm ⊗ Cn.
Decomposable ones:

Seg(P1 × Pm−1 × Pn−1) = {[u⊗ v ⊗ w] | u, v, w} ⊂ P(C2 ⊗ Cm ⊗ Cn)

C2 ⊗ Cm ⊗ Cn '−→ Bil(Cm,Cn;C2)
'−→ Mm×n(C)×Mm×n(C)

T 7→ (φT : (v, w) 7→ (a, b)) 7→ (A,B)

where A and B are such that tv ·A · w = a , tv ·B · w = b.

C2 ⊗ Cm ⊗ Cn ←→ Mm×n(C[µ, λ]1)

Two 2-slice tensors are GL2,m,n-equivalent if they are in the same
orbit with respect to the group action

GL2(C)×GLm(C)×GLn(C) −→ Aut
(
C2 ⊗ Cm ⊗ Cn

)
(M,P,Q) 7→

(
u⊗ v ⊗ w 7→Mu⊗ Pv ⊗Qw

)
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Tensor rank decomposition GL-equivalence in C2 ⊗ Cm ⊗ Cn

GL2,m,n-orbits

In general, there are infinitely many GL-orbits in C2 ⊗ Cm ⊗ Cn

Proposition
The tensor space C2 ⊗ Cm ⊗ Cn has finitely many GL-orbits if and
only if m ≤ 3 or n ≤ 3.

γT : GL2(C)×GLm(C)×GLn(C) −→ C2 ⊗ Cm ⊗ Cn
G 7→ G · T

d(γT )I : gl2(C)× glm(C)× gln(C) −→ C2 ⊗ Cm ⊗ Cn

We get:

Im(γT ) = orbGL(T ) , ker(d(γT )I) = LieI(stabGL(T ))

dim(orbGL(T )) = Rk(d(γT )I) = 4 +m2 + n2 − dim
(

ker
(
d(γT )I

))
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Tensor rank decomposition GL-equivalence in C2 ⊗ Cm ⊗ Cn

symRkp in C2 ⊗ Sym2(Cm+1)

Symmetric 2-slice tensors: tensors in C2 ⊗ Sym2(Cm+1).
Decomposable ones:

Seg(P1 × ν2(Pm)) =
{

[u⊗ l2] | u ∈ C2, l ∈ Cm+1} ⊂ P(C2 ⊗ Sym2(Cm+1)
)

C2 ⊗ Sym2(Cm+1) ←→ pencils of quadrics in PmC

GL2(C)×GLm+1(C) −→ Aut
(
C2 ⊗ Sym2(Cm+1)

)
(M,P ) 7→

(
u⊗ l2 7→Mu⊗ P · l2 ·tP

)
The GL2,m+1-orbits are finitely many if and only if m+ 1 ≤ 3.
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Tensor rank decomposition Apolarity Theory

Apolarity Theory

Waring decomposition problem
Express f ∈ Symd V as sum of powers of linear form

∑r
i=0 l

d
i .

Apolar ideal: f⊥ = {g ∈ Sym• V ∨ | g · f = 0} ⊂ C[∂0, . . . , ∂m].

Lemma (Apolarity)
Z finite set of linear forms, IZ = {g ∈ Sym• V ∨ | g(l) = 0 ∀l ∈ Z}.
Then

f =
∑
l∈Z

ld ⇐⇒ IZ ⊆ f⊥

Moral: We look for a decomposition of f in the base locus of
0-dimensional ideals in f⊥.
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Tensor rank decomposition Apolarity Theory

f⊥ = {g ∈ Sym• V ∨ | g · f = 0} =
∑
k

{
ker(

k-th catalecticant map︷ ︸︸ ︷
Ck,f : Symk V ∨ → Symd−k V )

}

Catalecticant algorithm

(1) Construct Cd d2 e,f : Symd
d
2 e V ∨ → Symd−d d2 e V ;

(2) Compute kerCd d2 e,f
;

(3) Compute the Krull dimension dimKrull(kerCd d2 e,f
):

(a) if it is ≥ 1, the method fails!
(b) else compute Z = Z(kerCd d2 e,f

) = {[l1], . . . , [lr]};

(4) Solve the linear system f =
∑r
i=1 cil

d
i where ci are the

indeterminates.

Since Symd(Cm+1)∨ ' H0(Pm,OPm(d)),

Ck,f : H0(Pm,O(k))→ H0(Pm,O(d− k)))∨
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Tensor rank decomposition Nonabelian Apolarity

Nonabelian Apolarity

For E vector bundle over a variety X and L ∈ Pic(X) such that
X ↪→ P(H0(X,L)∨), the natural map

H0(X, E)⊗H0(X, E∨ ⊗ L)→ H0(X,L)

leads to the linear map

H0(X, E)⊗H0(X,L)∨ → H0(X, E∨ ⊗ L)∨

by fixing f ∈ H0(X,L)∨ we have

CE,f : H0(X, E)→ H0(X, E∨ ⊗ L)∨

Let f =
∑r
i=1 zi minimal and Z = {[z1], . . . , [zr]} ⊆ P(H0(X,L)∨).

Lemma (Oeding-Ottaviani, 2013)
If Rk(CE,f ) = r · Rk(E), then H0(X, IZ ⊗ E) = ker(CE,f ).
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Tensor rank decomposition Nonabelian Apolarity

Eigenvectors of tensors

We can look for a decomposition of f in the base locus of ker(CE,f ).
But these are global sections. Anything better?

Get Q from the Euler SES 0→ OPV (−1)→ OPV ⊗ V → Q→ 0.
Set E =

∧a
Q(e), L = O(d) and ρ : L1 → L0 presentation of E :

H0(Pm, L1) H0(Pm, L∨0 ⊗ L)∨

H0(Pm,
∧aQ(e)) H0(Pm,

∧aQ(e)∨ ⊗ L)∨

	

Hom(Syme V,
∧a V ) Hom(

∧m−a V, Symd−e−1 V )

PE,f

α

CE,f

' '

β

Eigenvector of M ∈ Hom(Syme V,
∧a

V ): v ∈ V s.t. M(ve) ∧ v = 0.

ker(CE,f ) and ker(PE,f ) have same common base locus, which
corresponds to common eigenvectors for ker(PE,f ).
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Tensor rank decomposition The case of symmetric pencils

Nonabelian Apolarity for pencils

Goal: Decompose a given (B1, B2) ∈ C2 ⊗ Sym2(Cm+1).

Set

E =

a∧
Q(e) = Q(1) ' TPm , L = O(2) , E∨ ⊗ L = Ω1(2)

Then (B1, B2) ∈ H0(Pm,O(2))∨ ⊕H0(Pm,O(2))∨ and CE,f is

C(B1,B2) : H0(Pm, TPm)→ H0(Pm,Ω1(2))∨ ⊕H0(Pm,Ω1(2))∨

• Up to isomorphism and up to scalars, C(B1,B2) is exactly

C(B1,B2) : slm+1(C) −→
∧2 V ⊕

∧2 V

A 7→
(
AB1 −B1(tA) , AB2 −B2(tA)

)
• (B1, B2) is general, i.e. has Kronecker form of type

diag(λ+ aiµ)i with ai 6= aj 6= 0;

• ker(C(B1,B2)) is invariant for GL2-action.
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Tensor rank decomposition The case of symmetric pencils

Theorem
Let (B1, B2) ∈ C2 ⊗ Sym2Cm+1 be a general symmetric pencil. Then:

(i) all matrices in ker(C(B1,B2)) have the same common eigenvectors
v1, . . . , vm+1 which are induced by the vectors ṽ1, . . . , ṽm+1

defining the Kronecker form

T(B1,B2)
GL∼

m+1∑
i=1

αi ⊗ ṽi ⊗ ṽi

(ii) ker(C(B1,B2)) has dimension m+ 1 in glm+1(C) and m in
slm+1(C);

(iii) for C ∈ ker(C(B1,B2)) general, in glm+1(C) it holds
ker(C(B1,B2)) = 〈I, C, . . . , Cm〉C. In particular, in slm+1(C) it
holds ker(C(B1,B2)) = 〈I, C, . . . , Cm〉C ∩ slm+1(C).

Key: The GLm+1-action conjugates the kernels, that is
∀P ∈ GLm+1(C), ker(C(PB1(tP ),PB2(tP ))) = P−1 · ker(C(B1,B2)) · P .
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Thanks for your attention!
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For ε1 = 0, ε2 = 1, ε3 = 2, η1 = 0, η2 = 0, η3 = 2, µ3, (λ+ µ)2:



0
0

λ µ
λ µ 0
0 λ µ

λ 0
µ λ
0 µ

µ λ 0
0 µ λ
0 0 µ

λ + µ µ
0 λ + µ



For ε1 = 0, ε2 = 0, ε3 = 2, η1 = 0, η2 = 1, η3 = 2, µ2, (λ+ µ)2, λ+ µ:



0 0
λ µ 0
0 λ µ

λ
µ

λ 0
µ λ
0 µ

µ λ
0 µ

λ + µ
λ + µ µ

0 λ + µ


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Rank in C2 ⊗ Cm ⊗ Cn

Rk(Jw,a) = w + (1− δw1) , Rk(Rε) = ε+ 1

Theorem (Grigoriev-JàJà, 1979)
Let T ∈ C2 ⊗ Cm ⊗ Cn with minimal indices ε1, . . . , εp, η1, . . . , ηq and
regular part K of size N . Let δ(K) be the number of its
non-squarefree invariant polynomials. Then

Rk(T ) =

p∑
i=1

(εi + 1) +

q∑
j=1

(ηj + 1) +N + δ(K)

The weight δ(PT ) depends on the number of non-squarefree invariant
polynomials and not on the number of non-squarefree elementary
divisors.
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Some regular base loci in P3C

(a) [(1 1) 1 1] (b) [(2 1) 1] (c) [(1 1) 2]

(d) [(1 1) (1 1)] (e) [(3 1)]

Figura: Some base loci of pencils of quadrics in P3
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Pencils of quadrics in P2C

Pencil Segre sym. A B V (P)λ λ + µ
µ

 [1 1 1] y2 − z2 x2 − y2 four distinct pointsµ λ
λ

µ

 [2 1] x2 − z2 2xy a double point and
two other pointsλ λ

µ

 [(1 1) 1] z2 x2 − y2 two double points µ λ
µ λ
λ

 [3] 2xy y2 + 2xz a curvilinear triple point
and another pointµ λ

λ
λ

 [(2 1)] x2 2xy + z2 a curvilinear
quadruple point λ µ

λ
µ

 [; 1; ] 2xz 2xy a line and
a disjoint pointλ µ

0

 [1 1; ; 1] y2 x2 a non-curvilinear
quadruple pointµ λ

λ
0

 [2; ; 1] x2 2xy a line and an
embedded double point
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GL2,3,3(C)-orbits

PT dim(orbGL(T )) Rk Rk Tλ µ
λ + µ

 18 3 3
a2⊗b1⊗c1+a1⊗b2⊗c2+

+(a2+a1)⊗b3⊗c3λ λ
µ

 15 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+
+a1⊗b3⊗c3λ µ

λ
µ

 17 4 3
a2⊗b1⊗c1+a2⊗b2⊗c2+

+(a1+a2)⊗b3⊗c3+a1⊗b1⊗c2λ λ
λ

 10 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+
+a2⊗b3⊗c3λ µ

λ
λ

 14 4 3 a2⊗b1⊗c1+a2⊗b2⊗c2+
+a2⊗b3⊗c3+a1⊗b1⊗c2λ µ

λ µ
λ

 16 4 3 a2⊗b1⊗c1+a2⊗b2⊗c2+
+a2⊗b3⊗c3+a1⊗b1⊗c2+a1⊗b2⊗c3λ µ

λ µ

 14 3 3 a2⊗b1⊗c1+a2⊗b2⊗c2+
+a1⊗b1⊗c2+a1⊗b2⊗c3λ µ

λ
µ

 14 4 3 a2⊗b1⊗c1+a1⊗b1⊗c2+
+a2⊗b2⊗c3+a1⊗b3⊗c3
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Regular pencils in C2 ⊗ Sym2(C4)

Segre symbol dim symRkp Rk T

[1 1 1 1] 19 4 4 λ⊗x2+(λ+µ)⊗y2+(λ−µ)⊗z2+µ⊗w2

[2 1 1] 19 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+µ⊗z2+(λ+µ)⊗w2

[(1 1) 1 1] 18 4 4 λ⊗x2+λ⊗y2+µ⊗z2+(λ+µ)⊗w2

[3 1] 18 5 4
[(2 1) 1] 17 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+λ⊗z2+µ⊗w2

[(1 1 1) 1] 15 4 4 λ⊗x2+λ⊗y2+λ⊗z2+µ⊗w2

[2 2] 18 5 4
[(1 1) 2] 17 5 4 λ⊗x2+λ⊗y2+µ⊗(z+w)2+(λ−µ)⊗z2−µ⊗w2

[(1 1) (1 1)] 16 4 4 λ⊗x2+λ⊗y2+µ⊗z2+µ⊗w2

[4] 17 5 4
[(3 1)] 17 5 4

[(2 2)] 15 6 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+
+λ⊗(z+w)2+(µ−λ)⊗z2−λ⊗w2

[(2 1 1)] 14 5 4 λ⊗(x+y)2+(µ−λ)⊗x2−λ⊗y2+λ⊗z2+λ⊗w2

[2 2] has one only invariant polynomial (non-squarefree), hence δ = 1;
[(2 2)] has two invariant polynomials (non-squarefree), hence δ = 2.
This is why symRkp([2 2]) = 5 while symRkp([(2 2)]) = 6.
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