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Abstract. We study some properties of the natural action of SL�V0� � � � � � SL�Vp� on non-
degenerate multidimensional complex matrices A A P�V0 n � � � nVp� of boundary format (in
the sense of Gelfand, Kapranov and Zelevinsky); in particular we characterize the non-stable
ones as the matrices which are in the orbit of a ``triangular'' matrix, and the matrices with a
stabilizer containing C� as those which are in the orbit of a ``diagonal'' matrix. For p � 2 it
turns out that a non-degenerate matrix A A P�V0 nV1 nV2� detects a Steiner bundle SA (in
the sense of Dolgachev and Kapranov) on the projective space Pn, n � dim�V2� ÿ 1. As a
consequence we prove that the symmetry group of a Steiner bundle is contained in SL�2� and
that the SL�2�-invariant Steiner bundles are exactly the bundles introduced by Schwarzen-
berger [Schw], which correspond to ``identity'' matrices. We can characterize the points of the
moduli space of Steiner bundles which are stable for the action of Aut�Pn�, answering in the
®rst nontrivial case a question posed by Simpson. In the opposite direction we obtain some
results about Steiner bundles which imply properties of matrices. For example the number of
unstable hyperplanes of SA (counting multiplicities) produces an interesting discrete invariant
of A, which can take the values 0; 1; 2; . . . ; dim V0 � 1 or y; the y case occurs if and only
if SA is Schwarzenberger (and A is an identity). Finally, the Gale transform for Steiner bun-
dles introduced by Dolgachev and Kapranov under the classical name of association can be
understood in this setting as the transposition operator on multidimensional matrices.

1 Introduction

A multidimensional matrix of boundary format is an element A A V0 n � � � nVp

where Vi is a complex vector space of dimension ki � 1 for i � 0; . . . ; p and

k0 �
Xp

i�1

ki:
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We denote by Det A the hyperdeterminant of A (see [GKZ]). Let e
� j�
0 ; . . . ; e

� j�
kj

be a
basis in Vj so that every A A V0 n � � � nVp has a coordinate form

A �
X

ai0;...; ip e
�0�
i0

n � � � n e
�p�
ip
:

Let x
� j�
0 ; . . . ; x

� j�
kj

be the coordinates in Vj. Then A has the following di¨erent
descriptions:

1) A multilinear form X
�i0;...; ip�

ai0;...; ip x
�0�
i0

n � � � n x
�p�
ip
:

2) An ordinary matrix MA � �mi1i0� of size �k1 � 1� � �k0 � 1� whose entries are
multilinear forms

mi1i0 �
X
�i2;...; ip�

ai0;...; ip x
�0�
i2

n � � � n x
�p�
ip
: �1:1�

3) A sheaf morphism fA on the product X � Pk2 � � � � � Pkp :

Ok0�1
X !fA OX �1; . . . ; 1�k1�1: �1:2�

Theorem 3.1 of chapter 14 of [GKZ] easily translates into:

Theorem. The following properties are equivalent:

i) Det A0 0;

ii) the matrix MA has constant rank k1 � 1 on X � Pk2 � � � � � Pkp ;

iii) the morphism fA is surjective so that S �A � ker fA is a vector bundle of rank

k0 ÿ k1.

The above remarks set up a basic link between non-degenerate multidimensional
matrices of boundary format and vector bundles on a product of projective spaces. In
the particular case p � 2 the (dual) vector bundle SA lives on the projective space Pn,
n � k2, and is a Steiner bundle as de®ned by Dolgachev and Kapranov in [DK]. We
can keep for SA the name Steiner also in the case pX 3.

The action of SL�V0� � � � � � SL�Vp� on V0 n � � � nVp translates to an action
on the corresponding bundle in two steps: ®rst the action of SL�V0� � SL�V1� leaves
the bundle in the same isomorphism class; then SL�V2� � � � � � SL�Vp� acts on the
classes, i.e. on the moduli space of Steiner bundles. It follows that the invariants of
matrices for the action of SL�V0� � � � � � SL�Vp� coincide with the invariants of the
action of SL�V2� � � � � � SL�Vp� on the moduli space of the corresponding bundles.
Moreover the stable points of both actions correspond to each other.
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The aim of this paper is to investigate the properties and the invariants of both
the above actions. When we look at the vector bundles, we restrict ourselves to the
case p � 2, that is Steiner bundles on projective spaces. This is probably the ®rst case
where Simpson's question ([Simp], p. 11) about the natural SL�n� 1�-action on the
moduli spaces of bundles on Pn has been investigated.

Section 2 is devoted to the study of multidimensional matrices. We denote by the
same letter matrices in V0 n � � � nVp and their projections in P�V0 n � � � nVp�. In
Theorem 2.4 we prove that a matrix A A P�V0 n � � � nVp� of boundary format with
Det A0 0 is not stable for the action of SL�V0� � � � � � SL�Vp� if and only if there is
a coordinate system such that ai0...ip � 0 for i0 >

Pp
t�1 it. A matrix satisfying this

condition is called triangulable. The other main results of this section are Theorems
2.5 and 2.6 which describe the behaviour of the stabilizer subgroup Stab�A�. In
Remark 5.14 we introduce a discrete SL�V0� � SL�V1� � SL�V2�-invariant of non-
degenerate matrices in P�V0 nV1 nV2� and we show that it can assume only the
values 0; . . . ; k0 � 2;y.

The second part of the paper, consisting of Sections 3 to 6, can be read
independently of Section 2, except that we will use Theorem 2.4 in two crucial points
(Theorem 5.9 and Section 6). In this part we study the Steiner bundles on Pn �
P�V�. As we mentioned above, they are rank-n vector bundles S whose dual S �

appears in an exact sequence

0! S � !W nO!fA I nO�1� ! 0 �1:3�
where W and I are complex vector spaces of dimension n� k and k, respectively. The
map fA corresponds to A A W �nV n I (which is of boundary format) and fA is
surjective if and only if Det A0 0. We denote by Sn;k the family of Steiner bundles
described by a sequence as (1.3). Sn;1 contains only the quotient bundle. Important
examples of Steiner bundles are the Schwarzenberger bundles, whose construction
goes back to the pioneering work of Schwarzenberger [Schw]. Other examples are the
logarithmic bundles W�logH� of meromorphic forms on Pn having at most loga-
rithmic poles on a ®nite union H of hyperplanes with normal crossing; Dolgachev
and Kapranov showed in [DK] that they are Steiner. The Schwarzenberger bundles
are a special case of logarithmic bundles, when all the hyperplanes osculate the same
rational normal curve. Dolgachev and Kapranov proved a Torelli type theorem,
namely that the logarithmic bundles are uniquely determined up to isomorphism by
the above union of hyperplanes, with a weak additional assumption. This assumption
was recently removed by ValleÁs [V2], who shares with us the idea of looking at the
scheme W�S� � fH A Pn4 j h0�S �H�0 0gHPn4 of unstable hyperplanes of a Steiner
bundle S. ValleÁs proves that any S A Sn;k with at least n� k � 2 unstable hyper-
planes with normal crossing is a Schwarzenberger bundle and W�S� is a rational
normal curve. We strengthen this result by showing the following: for any S A Sn;k

any subset of closed points in W�S� has always normal crossing (see Theorem 3.10).
Moreover S A Sn;k is logarithmic if and only if W�S� contains at least n� k � 1
closed points (Corollaries 5.11 and 5.10). In particular if W�S� contains exactly n�
k � 1 closed points then S FW�log W�S��. The Torelli Theorem follows.
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It turns out that the length of W�S� de®nes an interesting ®ltration into irreducible
subschemes of Sn;k which gives also the discrete invariant of multidimensional
matrices of boundary format mentioned above. This ®ltration is well behaved with
respect to the PGL�n� 1�-action on Pn and also with respect to the classical notion
of association reviewed in [DK]. Eisenbud and Popescu realized in [EP] that the
association is exactly what nowadays is called Gale transform. For Steiner bundles
corresponding to A A W �nV n I this operation amounts to exchanging the role of
V with I, so that it corresponds to the transposition operator on multidimensional
matrices.

The Gale transform for Steiner bundles can be decribed by the natural isomorphism

Sn;k=SL�n� 1� !Skÿ1;n�1=SL�k�:

Both quotients in the previous formula are isomorphic to the GIT-quotient

P�W �nV n I�=SL�W� � SL�V� � SL�I�

which is a basic object in linear algebra.
As an application of the tools developed in the ®rst section we show that all the

points of Sn;k are semistable for the action of SL�n� 1� and we compute the stable
points. Moreover we characterize the Steiner bundles S A Sn;k whose symmetry
group (i.e. the group of linear projective transformations preserving S) contains
SL�2� or contains C�.

Finally we mention that W�S� has a geometrical construction by means of the
Segre variety. From this construction W�S� can be easily computed by means of
current software systems.

We thank J. ValleÁs for the useful discussions we had on the subject of this paper.

2 Multidimensional matrices of boundary format and geometric invariant theory

It is well known that all one dimensional subgroups of the complex Lie group SL�2�
either are conjugated to the maximal torus consisting of diagonal matrices (which is

isomorphic to C�) or are conjugated to the subgroup CF
1 b

0 1

� ����� b A C
� �

.

De®nition 2.1. A �p� 1�-dimensional matrix of boundary format A A V0 n � � � nVp

is called triangulable if one of the following equivalent conditions holds:

i) there exist bases in Vj such that ai0;...; ip � 0 for i0 >
Pp

t�1 it;

ii) there exist a vector space U of dimension 2, a subgroup C�H SL�U� and iso-
morphisms Vj FS kj U such that if V0 n � � � nVp �0

n AZ Wn is the decomposi-
tion into a direct sum of eigenspaces of the induced representation then we have
A A 0

nX0 Wn.
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Proof of the equivalence between i) and ii). Let x; y be a basis of U such that t A C�

acts on x and y as tx and tÿ1y. Set e
� j�
k :� xk ykjÿk

kj

k

� �
A S kj U for j > 0 and e

�0�
k :�

xk0ÿk yk
k0

k

� �
A S k0 U so that e

�0�
i0

n � � � n e
�p�
ip

is a basis of S k0 U n � � � nS kp U which

diagonalizes the action of C�. The weight of e
�0�
i0

n � � � n e
�p�
ip

is 2�Pp
t�1 it ÿ i0�, hence

ii) implies i). The converse is trivial.

The following de®nition agrees with the one in [WZ], p. 639.

De®nition 2.2. A �p� 1�-dimensional matrix of boundary format A A V0 n � � � nVp

is called diagonalizable if one of the following equivalent conditions holds:

i) there exist bases in Vj such that ai0;...; ip � 0 for i0 0
Pp

t�1 it;

ii) there exist a vector space U of dimension 2, a subgroup C�H SL�U� and iso-
morphisms Vj FS kj U such that A is a ®xed point of the induced action of C�.

The following de®nition agrees with the one in [WZ], p. 639.

De®nition 2.3. A �p� 1�-dimensional matrix of boundary format A A V0 n � � � nVp

is an identity if one of the following equivalent conditions holds:

i) there exist bases in Vj such that

ai0;...; ip �
0 for i0 0

Pp
t�1 it

1 for i0 �
Pp

t�1 it;

�
ii) there exist a vector space U of dimension 2 and isomorphisms Vj FS kj U such

that A belongs to the unique one-dimensional SL�U�-invariant subspace of S k0 U

nS k1 U n � � � nS kp U .

The equivalence between i) and ii) follows easily from the following remark: the
matrix A satis®es the condition ii) if and only if it corresponds to the natural multi-
plication map S k1 U n � � � nS kp U ! S k0 U (after a suitable isomorphism U FU �

has been ®xed).
From now on, we consider the natural action of SL�V0� � � � � � SL�Vp� on

P�V0 n � � � nVp�. We may suppose pX 2. The de®nitions of triangulable, diago-
nalizable and identity apply to elements of P�V0 n � � � nVp� as well. In particular
all identity matrices ®ll a distinguished orbit in P�V0 n � � � nVp�. The hyper-
determinant of elements of V0 n � � � nVp was introduced by Gelfand, Kapranov
and Zelevinsky in [GKZ]. They proved that the dual variety of the Segre product
P�V0� � � � � � P�Vp� is a hypersurface if and only if kj W

P
i0j ki for j � 0; . . . ; p

(which is obviously true for a matrix of boundary format). When the dual variety is a
hypersurface, its equation is called the hyperdeterminant of format �k0 � 1� � � � � �
�kp � 1� and denoted by Det. The hyperdeterminant is a homogeneous polynomial
function over V0 n � � � nVp so that the condition Det A0 0 is meaningful for
A A P�V0 n � � � nVp�. The function Det is SL�V0� � � � � � SL�Vp�-invariant, in
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particular if Det A0 0 then A is semistable for the action of SL�V0� � � � � � SL�Vp�.
We denote by Stab�A�H SL�V0� � � � � � SL�Vp� the stabilizer subgroup of A and by
Stab�A�0 its connected component containing the identity. The main results of this
section are the following.

Theorem 2.4. Let A A P�V0 n � � � nVp� of boundary format such that Det A0 0.
Then

A is triangulable , A is not stable for the action of SL�V0� � � � � � SL�Vp�:

Theorem 2.5. Let A A P�V0 n � � � nVp� be of boundary format such that Det A0 0.
Then

A is diagonalizable , Stab�A� contains a subgroup isomorphic to C�:

We state the following theorem only in the case p � 2, although we believe that it
is true for all pX 2. We point out that in particular dim Stab�A�W 3 which is a
bound independent of k0, k1, k2.

Theorem 2.6. Let A A P�V0 nV1 nV2� of boundary format such that Det A0 0.
Then there exists a 2-dimensional vector space U such that SL�U� acts over Vi FS ki U

and according to this action on V0 nV1 nV2 we have Stab�A�0 H SL�U�. Moreover

the following cases are possible:

Stab�A�0 F
0 (trivial subgroup)

C
C�

SL�2� (this case occurs if and only if A is an identity).

8>>><>>>:
Remark. When A is an identity then Stab�A�F SL�2�.

Let Xj be the ®nite set f0; . . . ; jg. We set B :� Xk1
� � � � � Xkp

. A slice (in the q-
direction) is the subset f�a1; . . . ; ap� A B : aq � kg for some k A Xq. Two slices in the
same direction are called parallel. An admissible path is a ®nite sequence of elements
�a1; . . . ; ap� A B starting from �0; . . . ; 0�, ending with �k1; . . . ; kp�, such that at each
step exactly one ai increases by 1 and all other remain unchanged. Note that each
admissible path consists exactly of k0 � 1 elements.

Tom Thumb's Lemma 2.7. Put a mark (or a piece of bread ) on every element of every

admissible path. Then two parallel slices contain the same number of marks.

Proof. Any admissible path P corresponds to a sequence of k0 integers between 1 and
p such that the integer i occurs exactly ki times. We call this sequence the code of
the path P. More precisely the j-th element of the code is the integer i such that ai
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increases by 1 from the j-th element of the path to the � j � 1�-th element. The
occurrences of the integer i in the code divide all other integers di¨erent from i
appearing in the code into ki � 1 strings (possibly empty); each string encodes the
part of the path contained in one of the ki � 1 parallel slices. The symmetric group
Ski�1 acts on the set A of all the admissible paths by permuting the strings. Let Pi

j the
number of elements (marks) of the path P A A on the slice ai � j. In particular for all
s A Ski�1 we have X

P AA

Pi
j �

X
P AA

�s � P� ij �
X
P AA

Pi
sÿ1� j�;

which proves our lemma.

We will often use the following well-known lemma.

Lemma 2.8. If Ok
X !

f
F is a morphism of vector bundles on a variety X with k W

rank F � f and cj�F�0 0 for some j X f ÿ k � 1, then the degeneracy locus Dk�f� �
fx A X j rank�fx�W k ÿ 1g is nonempty of codimensionW f ÿ k � 1.

Proof. Suppose that Dk�f� �q. Then consider the projection X � Pkÿ1 !p X and let
H be the pullback of the hyperplane divisor according to the second projection. The
natural composition

O! p�Ok nH ! p�F nH

gives a section of p�F nH without zeroes, hence p�F nH has a trivial line sub-
bundle. It follows

0 � cf �p�F nH� � p�cf �F � � � � � � p�cfÿk�1�F� �H kÿ1;

which is a contradiction because 1; . . . ;H kÿ1 are independent modulo p�H ��X ;C�.
We get Dk�f�0q and the result follows from the Theorem 14.4 (b) of [Fu].

A square matrix with a zero left-lower submatrix with the NE-corner on the diag-
onal has zero determinant. The following lemma generalizes this remark to multi-
dimensional matrices of boundary format.

Lemma 2.9. Let A A V0 n � � � nVp. Suppose that in a suitable coordinate system

there is �b1; . . . ; bp� A B such that ai0...ip � 0 for ik W bk �k X 1� and i0 X b0 :�Pp
t�1 bt.

Then Det A � 0.

Proof. The submatrix of A given by elements ai0...ip satisfying ik W bk (k X 1) gives on
X � Pb2 � � � � � Pbp the sheaf morphism

O
b1�1
X ! OX �1; . . . ; 1�b0
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whose rank by Lemma 2.8 drops on a subvariety of codimensionW b0 ÿ b1 �Pp
t�2 bt � dim Pb2 � � � � � Pbp ; hence there are nonzero vectors vi A V �i for 1W iW p

such that A�v1 n � � � n vp� � 0 and then Det A � 0 by Theorem 3.1 of Chapter 14 of
[GKZ].

Lemma 2.10. Let pX 2 and ai
j be integers with 0W iW p, 0W j W ki satisfying

the inequalities a0
j X a0

j�1 for 0W j W k0 ÿ 1, ai
j W ai

j�1 for i > 0, 0W j W ki ÿ 1 and

the linear equations

Xki

j�0

ai
j � 0 for 0W i W p

a0
T p

t�1 bi
� a1

b1
� � � � � a

p
bp
� 0 for all �b1; . . . ; bp� A B:

Then there is N A Q such that

a0
i � N�k0 ÿ 2i�; a

j
i � N�ÿkj � 2i� j > 0:

Moreover N A Z if at least one kj is not even, and 2N A Z if all the kj are even.

Proof. If 1W sW p and bs X 1 we have the two equations

a0
Tp

t�1 bt
� a1

b1
� � � � � as

bs
� � � � � a

p
bp
� 0;

a0
T p

t�1 btÿ1 � a1
b1
� � � � � as

bsÿ1 � � � � � a
p
bp
� 0:

Subtracting we obtain

a0
T p

t�1 bt
ÿ a0

T p

t�1 btÿ1 � ÿ�as
bs
ÿ as

bsÿ1�;

so that the right-hand side does not depend on s.
Moreover for pX 2 from the equations

a0
T p

t�1 bt
� a1

b1
� � � � � a

q
bq�1 � � � � � as

bsÿ1 � � � � � a
p
bp
� 0;

a0
T p

t�1 btÿ1 � a1
b1
� � � � � a

q
bq
� � � � � as

bs
� � � � � a

p
bp
� 0

we get

a
q
bq�1 ÿ a

q
bq
� as

bs
ÿ as

bsÿ1;

which implies that the right-hand side does not depend on bs either. Let as
bs
ÿ as

bsÿ1 �
2N A Z. Then as

t � as
0 � 2Nt for t > 0, s > 0. By the assumption

Pks

t�0 as
t � 0 we get

�ks � 1�as
0 � 2N

Xks

t�1

t � 0;
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that is

as
0 � ÿksN:

The formulas for as
i and a0

i follow immediately. If some ks is odd we have 2N A Z
and ksN A Z so that N A Z.

Proof of Theorem 2.4. If A is triangulable it is not stable. Conversely suppose A not
stable and denote by A again a representative of A in V0 n � � �nVp. By the Hilbert±
Mumford criterion there exists a 1-parameter subgroup l : C� ! SL�V0� � � � � �
SL�Vp� such that limt!0 l�t�A exists. Let

as
0 W � � � W as

ks
; 0W sW p

be the weights of the 1-parameter subgroup of SL�Vs� induced by l; with respect to a
basis consisting of eigenvectors the coordinate ai0...ip describes the eigenspace of l
whose weight is a0

i0
� a1

i1
� � � � � a

p
ip

. Recall that

Xki

j�0

ai
s � 0; 0W sW p:

We note that for all �b1; . . . ; bk� A B we have

a0
Tp

t�1 bt
� a1

b1
� � � � � a

p
bp
X 0; �2:1�

otherwise the coe½cient ai0...ip is zero for ik W bk, 1W k W p and i0 X
Pp

t�1 bt and
Lemma 2.9 implies Det A � 0. The sum on all �b1; . . . ; bk� A B for any admissible
path of the left-hand side of (2.1) is nonnegative. The contribution of at's in this sum
is zero by Lemma 2.7. Also the contribution of a0's is zero because it is zero on any
admissible path. It follows that

a0
Tp

t�1 bt
� a1

b1
� � � � � a

p
bp
� 0 for all �b1; . . . ; bk� A B;

and by Lemma 2.10 we get explicit expressions for the weights which imply that A is
triangulable.

Proof of Theorem 2.5. Again we denote by A any representative of A in V0 n � � � n
Vp. If A is diagonal in a suitable basis e

�0�
i0

n � � � n e
�p�
ip

, we construct a 1-parameter
subgroup l : C� ! SL�V0� � � � � � SL�Vp� by the equation l�t�e�0�i0

n � � � n e
�p�
ip

:�
t i0ÿT p

t�1it e
�0�
i0

n � � � n e
�p�
ip

, so that C�H Stab�A�. Conversely let C�H Stab�A�. By
Theorem 2.4, A is triangulable and by Lemma 2.9 all diagonal elements ai0...ip

with i0 �
Pp

t�1 it are nonzero. We can arrange the action on the representative in
order that the diagonal corresponds to the zero eigenspace. Then the assumption
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C�H Stab�A� and the explicit expressions of the weights as in the proof of Theorem
2.4 show that A is diagonal.

We will prove Theorem 2.6 by geometric arguments at the end of Section 6.

3 Preliminaries about Steiner bundles

De®nition 3.1. A Steiner bundle over Pn � P�V� is a vector bundle S whose dual S �

appears in an exact sequence

0! S � !W nO!fA I nO�1� ! 0 �3:1�

where W and I are complex vector spaces of dimension n� k and k respectively.

A Steiner bundle is stable ([BS], Theorem 2.7 or [AO], Theorem 2.8) and is
invariant by small deformations ([DK], Corollary 3.3). Hence the moduli space Sn;k

of Steiner bundles de®ned by (3.1) is isomorphic to an open subset of the Maruyama
moduli scheme of stable bundles. On the other hand Sn;k is also isomorphic to the
GIT-quotient of a suitable open subset of P�Hom�W ; I nV�� for the action of
SL�W� � SL�I� (see Section 6). It is interesting to remark that these two approaches
give two di¨erent compacti®cations of Sn;k, but we do not pursue this direction in
this paper. For other results about P�Hom�W ; I nV��, see [EH] and [C].

De®nition 3.2. Let S A Sn;k be a Steiner bundle. A hyperplane H A P�V �� is an
unstable hyperplane of S if h0�S �jH�0 0. The set W�S� of the unstable hyperplanes is

the degeneracy locus over P�V �� of the natural map H 1�S ��ÿ1��nO! H 1�S ��n
O�1�, hence it has a natural structure of scheme. W�S� is called the scheme of the
unstable hyperplanes of S. Note that since h0�S �jH�W 1 ([V2]) the rank of the previous
map drops at most by one.

3.3. Let us describe more explicitly the map H 1�S ��ÿ1��nO! H 1�S ��nO�1�.
From (3.1) it follows that H 1�S ��ÿ1��F I and H 1�S ��F �V n I�=W . The projec-

tion V n I !B �V n I�=W can be interpreted as a map V nH 1�S ��ÿ1�� ! H 1�S ��
which induces on P�V �� the required morphism H 1�S ��ÿ1��nO! H 1�S ��nO�1�.

For a generic S, W�S� �q. Examples show that W�S� can have a nonreduced
structure.

We recall that if D is a divisor with normal crossing then W�log D� is the bundle
of meromorphic forms having at most logarithmic poles over D. If H is the union of
m hyperplanes Hi with normal crossing, it is shown in [DK] that for mW n� 1,
W�logH� splits while for mX n� 2 we have S � W�logH� A Sn;k where k � mÿ
nÿ 1.

The following is a simple consequence of [BS], Theorem 2.5.
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Proposition 3.4. Let S A Sn;k, then

h0�S ��t�� � 0, tW k ÿ 1:

Proof. S ��t�F5nÿ1
S�ÿk � t�. The 5nÿ1

-power of the sequence dual to (3.1) is

0! S nÿ1I �nO�ÿn� 1ÿ k � t� ! S nÿ2I �nW �nO�ÿn� 2ÿ k � t� ! � � �
� � � !5nÿ1

W �nO�ÿk � t� !5nÿ1
S�ÿk � t� ! 0;

and from this sequence the result follows.

Let us ®x a basis in each of the vector spaces W and I. Then the morphism fA

in (3.1) can be represented by a k � �n� k� matrix A (it was called MA in the
introduction, see (1.1)) with entries in V. In order to simplify the notations we will
use the same letter A to denote also its class in P�Hom�W ; I nV��. A has rank k at
every point of P�V�. Two such matrices represent isomorphic bundles if and only if
they lie in the same orbit of the action of GL�W� �GL�I�.

3.5. In particular H 0�S ��t�� identi®es with the space of �n� k� � 1-column vectors v

with entries in S tV such that

Av � 0: �3:2�

Moreover H A W�S� (as closed point) if and only if there are nonzero vectors w1 of
size �n� k� � 1 and i1 of size k � 1 both with constant coe½cients such that

Aw1 � i1H: �3:3�

This means that w1 is in the kernel of the map W FH 0�W nOH� ! H 0�I nOH�1��:

3.6. According to the theorem stated in the introduction A A Hom�W ;V n I� has
nonzero hyperdeterminant if and only if it corresponds to a vector bundle. The locus
in P�Hom�W ;V n I�� where the hyperdeterminant vanishes is an irreducible hyper-

surface of degree k � n� k

k

� �
([GKZ], Chapter 14, Corollary 2.6). It is interesting to

remark that Proposition 3.4 can be proved also as a consequence of [GKZ], Chapter
14, Theorem 3.3.

3.7. The above description has a geometrical counterpart. Here P�V� is the projective
space of lines in V, dual to the usual projective space P of hyperplanes in V. Consider
in P�V n I� the variety Xr corresponding to elements of V n I of rankW r. In par-
ticular X1 is the Segre variety P�V� � P�I�. Let m � min�n; k ÿ 1� so that Xm is the
variety of non maximum rank elements. Then A A Hom�W ;V n I� de®nes a vector
bundle if and only if it induces an embedding P�W�HP�V n I� such that at every
smooth point of Xm VP�W�, P�W� and Xm meet transversally. This follows from
[GKZ], Chapter 14, Propostion 3.14 and Chapter 1, Proposition 4.11.
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3.8. W�S� has the following geometrical description. Let pV be the projection of the
Segre variety P�V� � P�I� on the P�V�. Then

W�S�red � pV �P�W�V �P�V� � P�I���red

(according to the natural isomorphism P�V� � P�V ��). In fact i1H in formula (3.3)
is a decomposable tensor in V n I .

3.9. About the scheme structure we remark that W�S� is the degeneration locus of the

morphism I nOP�V �� ! V n I

W
nOP�V ���1�. The following construction is standard.

The projective bundle P � P�I �nOP�V ��� !p P�V �� is isomorphic to the Segre
variety T � P�V �� � P�I �� � P�V� � P�I� and OP�1�FOT�0; 1�. The morphism

C! V n I

W
nV �n I �

de®nes a section of OT�1; 1�n V n I

W
with zero locus Z � T VP�W�. Now assume

that dim W�S� � 0, hence dim T � 0. By applying p� to the exact sequence

OT n
V n I

W

� ��
! OT�1; 1� ! OZ ! 0

we get that the structure sheaf of W�S� is contained in p�OZ. We do not know if the
equality always holds. In particular if Z is reduced also W�S� is reduced. We will
show in Proposition 6.5 that a multiple point occurs in Z i¨ it occurs in W�S�.

Theorem 3.10. Let S A Sn;k be a Steiner bundle. Then any set of distinct unstable
hyperplanes of S has normal crossing.

Proof. We ®x a coordinate system x0; . . . ; xn on Pn and a basis e1; . . . ; en�k of W.
Let A be a matrix representing S. If the assertion is not true, we may suppose that
W�S� contains the hyperplanes x0 � 0; . . . ; xj � 0,

P j
i�0 xi � 0 for some j such

that 1W j W nÿ 1. By (3.3) there are c0 A W , b0 A I such that Ac0 � b0x0. We may
suppose that the ®rst coordinate of c0 is nonzero, hence A � �c0; e2; . . . ; en�k� �
�b0x0; . . .� � A 0.

The matrix A 0 still represents S, hence by (3.3) there are c1 A W , b1 A I such that
A 0c1 � b1x1. At least one coordinate of c1 after the ®rst is nonzero, say the second. It
follows that A 0 � �e1; c1; e3; . . . ; en�k� � �b0x0; b

1x1; . . .� � A 00 and again A 00 represents
S. Proceeding in this way we get in the end that

�b0x0; . . . ; b jxj; . . .�
is a matrix representing S, which we denote again by A.
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By (3.3) there are c��c1; . . . ; cn�k� t A W , b A I such that A � c � �b0x0; . . . b jxj; . . .� �
c � b

P j
i�0 xi.

Now we distinguish two cases. If ci � 0 for i X j � 2 we get b � c1b0 � c2b1

� � � � � cj�1b j, that is the submatrix of A given by the ®rst j � 1 columns has
generically rank one. If we take the k � �n� k ÿ j� matrix which has b j as ®rst
column and the last n� k ÿ j ÿ 1 columns of A in the remaining places, we obtain a
morphism

Ok ! OlO�1�n�kÿjÿ1;

which by Lemma 2.8 has rankW k ÿ 1 on a nonempty subscheme Z of Pn. It follows
that also A has rankW k ÿ 1 on Z, contradicting the assumption that S is a bundle.
So this case cannot occur.

In the second case there exists a nonzero ci for some iX j � 2, we may suppose
cj�2 0 0. Then the matrix

A 0 � A � �e1; . . . ; e j�1; c; e j�3; . . . ; en�k� � b0x0; . . . b jxj; b
Xj

i�0

xi . . .

" #

represents S.
The last n� k ÿ j ÿ 2 columns of A 0 de®ne a sheaf morphism Ok ! O�1�n�kÿjÿ2

on the subspace Pnÿjÿ1 � fx0 � � � � � xj � 0g and again by Lemma 2.8 we ®nd a
point where the rank of A is Wk ÿ 1. So neither case can occur.

Proposition 3.11. Let S A Sn;k and let x1; . . . ; xs A W�S�, sW n� k. There exists

a matrix representing S whose ®rst s columns are �b1x1; . . . ; bsxs�, where the bi are

vectors with constant coe½cients of size k � 1. Moreover any p columns among
b1; . . . ; bs with pW k are independent. Conversely if the ®rst s columns of a matrix

representing S have the form �b1x1; . . . ; bsxs� then x1; . . . ; xs A W�S�.

Proof. The last assertion is obvious. The proof of the existence of a matrix A repre-
senting S having the required form is analogous to that of Theorem 3.10. Then it is
su½cient to prove that b1; . . . ; bp are independent. Suppose

Pp
i�1 bili � 0. Let x �Qp

i�1 xi. Let c be the �n� k� � 1 vector (whith coe½cients in S pÿ1V ) whose i-th entry
is lix=xi for i � 1; . . . ; p and zero otherwise. It follows that A � c � x

Pp
i�1 bili � 0

and by (3.2) we get a nonzero section of S��pÿ 1�, which contradicts Proposition
3.4.

3.12 Elementary transformations. Consider H � fx � 0g A W�S�. The map OH ! S �jH
induces a surjective map S ! OH and an exact sequence

0! S 0 ! S ! OH ! 0 �3:4�

(see also [V2], Theorem 2.1); it is easy to check (e.g. by Beilinson's theorem) that
S 0 A Sn;kÿ1. According to [M] we say that S 0 has been obtained from S by an
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elementary transformation. By Proposition 3.11 there exists a matrix A representing
S of the following form

A �

x � � � � �
0

..

.
A 0

0

26664
37775 �3:5�

where A 0 is a matrix representing S 0. Since h0�S �jH�W 1, S 0 is uniquely determined by
S and H.

Theorem 3.13. With the above notations we have the inclusion of schemes W�S�H
W�S 0�UH. In particular we have:

i) length W�S 0�X length W�S� ÿ 1;

ii) if dim W�S 0� � 0 then multH W�S 0�XmultH W�S� ÿ 1, so that if H is a multiple

point of W�S�, then H A W�S 0�;
iii) if dim W�S 0� � 0 then for any hyperplane K 0H,

multK W�S 0�XmultK W�S�.

Proof. The sequence dual to (3.4)

0! S � ! S 0� ! OH�1� ! 0

gives the commutative diagram on P�V ��:

0 ��! O ��! H 1�S ��ÿ1��nO ��! H 1�S 0��ÿ1��nO ��! 0???y ???y ???y
0 ��! H 0�OH�1��nO�1� ��! H 1�S ��nO�1� ��! H 1�S 0��nO�1� ��! 0

It follows that the matrix B 0 of the map

H 1�S 0��ÿ1��nO! H 1�S 0��nO�1�
can be seen as a submatrix of the matrix B of the map

H 1�S ��ÿ1��nO! H 1�S ��nO�1�:
In a suitable system of coordinates:

B �

y1 �
..
. �

yn �
0 B 0

266664
377775 �3:6�
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where �y1; . . . ; yn� is the ideal of H (in the dual space). It follows that

I�W�S 0�� � �y1; . . . ; yn�H I�W�S��;

which concludes the proof.

4 The Schwarzenberger bundles

Let U be a complex vector space of dimension 2. The natural multiplication
map S kÿ1U �nS nU � ! S n�kÿ1U � induces the SL�U�-equivariant injective map
S n�kÿ1U ! S kÿ1U nS nU and de®nes a Steiner bundle on P�S nU�FPn as the dual
of the kernel of the surjective morphism

OP�S nU�nS n�kÿ1U ! OP�S nU��1�nS kÿ1U :

It is called a Schwarzenberger bundle (see [ST], [Schw]). Let us remark that in the
correspondence between Steiner bundles and multidimensional matrices mentioned in
the introduction, the Schwarzenberger bundles correspond exactly to the identity
matrices (see De®nition 2.3).

By interchanging the role of S kÿ1U and S nU we obtain also a Schwarzenberger
bundle on P�S kÿ1U�FPkÿ1 as the dual of the kernel of the surjective morphism

OP�S kÿ1U�nS n�kÿ1U ! OP�S kÿ1U��1�nS nU :

Both the above bundles are SL�U�-invariant. We sketch the original Schwarzen-
berger construction for the ®rst one. The diagonal map u 7! un and the isomorphism
P�S nU�FPn detect a rational normal curve P�U� � Cn HPn. In the same way
a second rational normal curve P�U� � Cn�kÿ1 arises in P�S n�kÿ1U�. We de®ne a
morphism

P�S nU� � S nP�U� ! Gr�Pnÿ1;P�S n�kÿ1U��
n points in P�U� 7! Span of n points in Cn�kÿ1:

The pullback of the dual of the universal bundle on the Grassmannian is a
Schwarzenberger bundle.

It is easy to check that if S is a Schwarzenberger bundle then W�S� � C �n H
P�S nU �� (the dual rational normal curve). See e.g. [ST], [V1].

This can be explicitly seen from the matrix form given by [Schw], Proposition 2

MA �
x0 . . . xn

. .
. . .

.

x0 . . . xn

264
375: �4:1�

Unstable hyperplanes for Steiner bundles and multidimensional matrices 179



Let t1; . . . ; tn�k be any distinct complex numbers. Let w be the �n� k� � �n� k�
Vandermonde matrix whose �i; j� entry is t

�iÿ1�
j ; the �i; j�-entry of the product MAw is

t
�iÿ1�
j � �Pn

k�0 xktk
j �; hence fPn

k�0 xktk � 0g A W�S� for all t A C by Proposition 3.11.
On the other hand W�S� is SL�U�-invariant; if it were strictly bigger than C �n then
it would contain the hyperplane H � fx0 � x1 � 0g, which lies in the next SL�U�-
orbit; now equation (3.3) implies immediately that w1 � i1 � 0.

In Theorem 5.13 we will need the following result.

Lemma 4.1. Let S be a Schwarzenberger bundle and let �x0; . . . ; xn� be coordinates

in P�V� such that S is represented (with respect to suitable basis of I and W ) by the
matrix MA in �4:1�. Let �y0; . . . ; yn� be dual coordinates in P�V ��. Then the morphism

H 1�S ��ÿ1��nO! H 1�S ��nO�1� (with respect to the obvious basis) is represented

by the matrix

B �

y1 ÿy0

y1 ÿy0

. .
. . .

.

y1 ÿy0

y2 0 ÿy0

. .
. . .

. . .
.

y2 0 ÿy0

y2 ÿy1

y3 0 0 ÿy0

. .
. . .

. . .
. . .

.

2666666666666666666664

3777777777777777777775

:

Proof. By (3.3) it is enough to check that the composition

W !A V n I !B �V n I�=W

is zero, which is straightforward.

Theorem 4.2 ([Schw], Theorem 1, see also [DK], Proposition 6.6). The moduli space of
Schwarzenberger bundles is PGL�n� 1�=SL�2�, which is the open subscheme of the

Hilbert scheme parametrizing rational normal curves.

In particular W�S� uniquely determines S in the class of Schwarzenberger bundles.

5 A ®ltration of Sn;k and the Gale transform of Steiner bundles

De®nition 5.1.

S i
n;k :� fS A Sn;k j length W�S�X ig:
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In particular

Sn;k �S0
n;k IS1

n;k I � � � :

We will see (Corollary 5.5) that Sy
n;k corresponds to Schwarzenberger bundles.

Each S i
n;k is invariant for the action of SL�V� on Sn;k. We will see in Section 6

that all the points of Sn;k are semistable (in the sense of Mumford's GIT) for the
action of SL�V�.

Let S be the open subset of P�Hom�W ;V n I�� representing Steiner bundles. The
quotient Sn;k=SL�V� is isomorphic to S=SL�W� � SL�I� � SL�V�.

By interchanging the role of V and I, also Skÿ1;n�1=SL�I� turns out to be iso-
morphic to S=SL�W� � SL�I� � SL�V�, so that we obtain an isomorphism

Sn;k=SL�n� 1�FSkÿ1;n�1=SL�k�:

For any E A Sn;k=SL�n� 1� we will call the Gale transform of E the corresponding
class in Skÿ1;n�1=SL�k� and we denote it by E G. In [DK] the above construction is
called association. Here we follow [EP]. Our Gale transform is a generalization of
the one in [EP]. In fact in the case i � n� k � 1 Eisenbud and Popescu in [EP] review
the classical association between PGL�n� 1�-classes of n� k � 1 points of Pn in
general position and PGL�k�-classes of n� k � 1 points of Pkÿ1 in general position
and call it Gale transform. If we take the union H of n� k � 1 hyperplanes with
normal crossing in Pn (as points in the dual projective space) the Gale transform
(as points in the dual projective space) HG consists of a PGL�k�-class of n� k � 1
hyperplanes with normal crossing in Pkÿ1. As remarked in [DK], �W�logH��G F
�W�logHG��. That is, the Gale transform in our sense reduces to that in [EP] when
the Steiner bundles are logarithmic. It is also clear that the PGL-class of Schwar-
zenberger bundles over P�V� corresponds under the Gale transform to the PGL-class
of Schwarzenberger bundles over P�I�.

We point out that one can de®ne the Gale transform of a PGL-class of Steiner
bundles but it is not possible to de®ne the Gale transform of a single Steiner bundle.
This was implicit (but not properly written) in [DK]. Nevertheless by a slight abuse
we will also speak about the Gale transform of a Steiner bundle S, which will be any
Steiner bundle in the class of the Gale transform of S mod SL�n� 1�.

The following elegant theorem due to Dolgachev and Kapranov is a ®rst beautiful
application of the Gale transform.

Theorem 5.2 ([DK], Theorem 6.8). Any S A Sn;2 is a Schwarzenberger bundle.

Proof.

Sn;2=SL�n� 1�FS1;n�1=SL�2�;

and it is obvious that a Steiner bundle on the line P1 is Schwarzenberger.
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Theorem 5.3. Two Steiner bundles having in common n� k � 1 distinct unstable

hyperplanes are isomorphic.

Proof. We prove that if S is a Steiner bundle such that the hyperplanes fxi � 0g for
i � 1; . . . ; n� k � 1 belong to W�S�, then S is uniquely determined. By Proposition
3.11 there exist column vectors ai A Ck such that S is represented by the matrix
�a1x1; . . . ; an�kxn�k�. Moreover by (3.3) there are b A Cn�k and c A Ck such that

�a1x1; . . . ; an�kxn�k�b � cxn�k�1:

We claim that all the components of b are nonzero. The last formula can be written

�a1b1; . . . ; an�kbn�k;ÿc� � �x1; . . . ; xn�k�1� t � 0

where in the right matrix we identify xi with the �n� 1� � 1 vector given by the
coordinates of the corresponding hyperplane. We may suppose that there exists s

with 1W sW n� k ÿ 1 such that bi � 0 for 1W i W s and bi 0 0 for s� 1W iW
n� k. If sX k, it follows that n� 1 hyperplanes among the xi have a nonzero syzygy,
which contradicts Proposition 3.11. Hence sW k ÿ 1 and we have

�as�1bs�1; . . . ; an�kbn�k;ÿc� � �xs�1; . . . ; xn�k�1� t � 0:

The rank of the right matrix is n� 1, hence the rank of the left matrix is Wk ÿ s, in
particular the ®rst k ÿ s� 1 columns are dependent and this contradicts Proposition
3.11. This proves the claim.

In particular �a1; . . . ; an�k;ÿc� � B � 0 where

B � Diag�b1; . . . ; bn�k; 1� � �x1; . . . ; xn�k�1� t

is a �n� k � 1� � �n� 1� matrix with constant entries of rank �n� 1�. Therefore the
matrix �a1; . . . an�k;ÿc� is uniquely determined up to the (left) GL�k�-action, which
implies that S is uniquely determined up to isomorphism.

Corollary 5.4. A Steiner bundle is logarithmic if and only if it admits at least

�n� k � 1� unstable hyperplanes.

Proof. In fact HHW�W�logH�� by formula (3.5) of [DK] and Proposition 3.11.

Corollary 5.5 ([V2], Theorem 3.1]). A Steiner bundle is Schwarzenberger if and only if

it admits at least �n� k � 2� unstable hyperplanes. In particular Sy
n;k coincides with the

moduli space of Schwarzenberger bundles.

Proof. Let S be a Steiner bundle, and H A W�S�. Let us consider the elementary
transformation (3.12)

0! S 0 ! S ! OH ! 0
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where S 0 A Sn;kÿ1; by Theorem 3.13, S 0 has n� k � 1 unstable hyperplanes. Pick-
ing H 0 A W�S 0� and repeating the above procedure after �k ÿ 2� steps we reach a
S�kÿ2� A Sn;2; by Theorem 5.2, S�kÿ2� is a Schwarzenberger bundle. In particular the
remaining n� 4 unstable hyperplanes lie on a rational normal curve. It is then clear
that any subset of n� 4 hyperplanes in W�S� lies on a rational normal curve. Since
there is a unique rational normal curve through n� 3 points in general position, it
follows that W�S� is contained in a rational normal curve, so that S is a Schwar-
zenberger bundle by Theorem 5.3.

Theorem 5.6. Let nX 2, k X 3.

i) S i
n;k for 0W i W n� k � 1 is an irreducible unirational closed subvariety of Sn;k of

dimension �k ÿ 1��nÿ 1��k � n� 1� ÿ i��nÿ 1��k ÿ 2� ÿ 1�.
ii) Sn�k�1

n;k contains as an open dense subset the variety of Steiner logarithmic bundles

which coincides with the open subvariety of Symn�k�1 P n4 consisting of hyper-

planes in Pn with normal crossing.

Proof. (ii) follows from Theorem 5.3.
The irreducibility in (i) follows from the geometric construction 3.8. The numerical

computation in (i) is performed (for i W n� k) by adding i�n� k ÿ 1� (moduli of i

points in P�V�nP�I�) to n�k ÿ 1��n� k ÿ i� (dimension of Grassmannian of linear
Pn�kÿ1 in P�V n I� containing the span of the above i points) and subtracting k2 ÿ 1
(dim SL�I�).

Remark 5.7. In the case �n; k� � �2; 3� the generic Steiner bundle is logarithmic (this
was remarked in [DK], 3.18). In fact the generic P4 linearly embedded in P8 meets
the Segre variety P2 � P2 in deg P2 � P2 � 6 � n� k � 1 points.

Remark. The dimension of S i
n;k=SL�n� 1� is equal to �n� k � 1ÿ i���k ÿ 2��nÿ 1�

ÿ 1� � n�k ÿ 1� for k X 3, nX 2, 0W iW n� k � 1 and it is 0 for i X n� k � 2.

5.8. Corollary 5.5 implies the following property of the Segre variety: if a generic
linear P�W� meets P�V� � P�I� in n� k � 2 points, then P�W� meets it in in®nitely
many points.

Theorem 5.9. Consider a nontrivial (linear) action of SL�2� � SL�U� over Pn. If a
Steiner bundle is SL�2�-invariant then it is a Schwarzenberger bundle and SL�U� acts

over Pn � P�S nU�. Hence Sy
n;k is the subset of the ®xed points of the action of SL�2�

on Sn;k.

Proof. By Theorem 2.4 there exists a coordinate system such that all the entries
(except the ®rst) of the ®rst column of the matrix representing the Steiner bundle
S are zero. By Proposition 3.11, W�S� is nonempty. By the assumption W�S� is
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SL�2�-invariant and closed; it follows that W�S� is a union of rational curves and
of simple points. If W�S� is in®nite we can apply Corollary 5.5. If W�S� is ®nite
we argue by induction on k. We pick up H A W�S� and we consider the elementary
transformation 0! S 0 ! S ! OH ! 0. We get for all g A SL�U� the diagram

S ���!f OH???yi

g�S ���!g �f
OH :

Since h0�S �jH�W 1 we get that f and g�f � i coincide up to a scalar multiple. We
obtain a commutative diagram

0 ���! S 0 ���! S ���! OH ���! 0???y ???yF

???yF

0 ���! g�S 0 ���! g�S ���! OH ���! 0:

It follows that S 0F g�S 0, hence SL�U�H Sym�S 0� and by the inductive assumption
S 0 is Schwarzenberger and SL�U� acts over Pn � P�S nU�. Hence W�S� is in®nite
and we apply again Corollary 5.5.

Corollary 5.10. If H is the union of n� k � 1 hyperplanes with normal crossing then

W�W�logH�� �
H when H does not osculate a rational normal curve,

Cn when H osculates the rational normal curve Cn,

(this case occurs iff W�logH� is Schwarzenberger).

8<:
Proof. HHW�logH� by Proposition 3.11. The result follows by Theorem 5.3 and
Corollary 5.5.

Corollary 5.11. Let S A Sn;k be a Steiner bundle. If W�S� contains at least n� k � 1
hyperplanes then for every subset HHW�S� consisting of n� k � 1 hyperplanes

S FW�logH�, in particular S is logarithmic.

Corollary 5.12 (Torelli theorem, see [DK] for k X n� 2 or [V2] in general). Let H
and H 0 be two ®nite unions of n� k � 1 hyperplanes with normal crossing in P�V�
with k X 3 not osculating any rational normal curve. Then

H �H 0 , W�logH�FW�logH 0�:
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Theorem 5.13. Let S A Sn;k be a Steiner bundle. If length W�S�X n� k � 2 then

length W�S� �y and S is Schwarzenberger.

Proof. We proceed by induction on k. If k � 2 the result follows from Theorem 5.2,
so we can suppose k X 3. Let us pick any H A W�S� and perform the elementary
transformation (3.4). Then S 0 A Sn;kÿ1 and by Theorem 3.13 i), length W�S 0�X
n� k � 1, so that by induction S 0 is Schwarzenberger, in particular W�S 0� is a
rational normal curve Cn.

It follows that S is represented by the matrix

MA �

x0 f1 f2 . . . fn�kÿ1

x0 x1 . . . xn

. .
. . .

. . .
.

x0 x1 . . . xn

266664
377775

where fi � ÿ
Pn

j�1 ci
j xj. It is easy to check by Lemma 4.1 (and the proof of Theorem

3.13) that the morphism H 1�S ��ÿ1��nO! H 1�S ��nO�1� is represented by the
matrix

B �

y1 c1
1 y0 c2

1 y0 . . . ckÿ2
1 y0

Pn
h�0 ck�hÿ1

1 yh

y2 c1
2 y0 c2

2 y0 . . . ckÿ2
2 y0

Pn
h�0 ck�hÿ1

2 yh

..

. ..
. ..

. ..
. ..

.

yn c1
n y0 c2

n y0 . . . ckÿ2
n y0

Pn
h�0 ck�hÿ1

n yh

y1 ÿy0

. .
. . .

.

y1 ÿy0

y2 0 ÿy0

. .
. . .

. . .
.

y2 0 ÿy0

y2 ÿy1

y3 0 0 ÿy0

. .
. . .

. . .
. . .

.

266666666666666666666666666664

377777777777777777777777777775

:

By Theorem 3.13 we have that

length�W�S�VCn�X n� k � 1: �5:1�

The points of Cn are parametrized by yi � ti and W�S�VCn is given by the k � k

minors of B where we substitute yi � ti. It is su½cient to look at the ®rst n� k ÿ 2
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rows because the others are linear combination of these. The ®rst two rows and the
last k ÿ 2 give the submatrix

t c1
1 c2

1 . . . ckÿ2
1

Pn
h�0 ck�hÿ1

1 th

t2 c1
2 c2

2 . . . ckÿ2
2

Pn
h�0 ck�hÿ1

2 th

t ÿ1

t ÿ1

. .
. . .

.

t ÿ1

2666666664

3777777775
whose determinant is given up to sign by

tn�kcn�kÿ1
1 � tn�kÿ1�cn�kÿ2

1 ÿ cn�kÿ1
2 � � � � � � t2�c1

1 ÿ c2
2� ÿ tc1

2 ; �5:2�

by (5.1) all the coe½cients of this polynomial are zero. When n � 2 this is enough
to conclude that MA represents a Schwarzenberger bundle because the matrix MA

reduces to (4.1) after a Gaussian elimination on the rows. If nX 3 we have to look
also at other minors. For example the minor given by the ®rst, third and the last
k ÿ 2 rows is

t c1
1 c2

1 . . . ckÿ2
1

Pn
h�0 ck�hÿ1

1 th

t3 c1
3 c2

3 . . . ckÿ2
3

Pn
h�0 ck�hÿ1

3 th

t ÿ1

t ÿ1

. .
. . .

.

t ÿ1

2666666664

3777777775
whose determinant is equal up to sign to

tn�k�1cn�kÿ1
1 � tn�kcn�kÿ2

1 � tn�kÿ1�cn�kÿ3
1 ÿ cn�kÿ1

3 � � � � � � t3�c1
1 ÿ c3

3� ÿ t2c2
3 ÿ tc1

3 :

By (5.2) the leading term cn�kÿ1
1 vanishes and the degree drops so that by (5.1) also

the coe½cients of this last polynomial vanish. The reader can convince himself that
the same argument of the case n � 2 works also in this case.

We remark that the above proof does not use the Corollary 5.5 and gives a second
proof of this corollary.

Remark. There are examples of Steiner bundles S A Sn;k such that length W�S� �
n� k � 1 and W�S�, as a set, consists of only one point.

Vincenzo Ancona and Giorgio Ottaviani186



Remark 5.14. The above theorem shows that the only possible values for length W�S�
are 0; 1; . . . ; n� k � 1;y. With the notation of Section 2, every multidimensional
matrix A A V0 nV1 nV2 of boundary format such that Det A0 0 has a GL�V0��
GL�V1� �GL�V2�-invariant

w�A� :� length W�ker fA��

which can assume only the values 0; 1; . . . ; dim V0 � 1;y.

6 Moduli spaces of Steiner bundles and geometric invariant theory

Let SHP�Hom�W ;V n I�� be the open subset consisting of all f : W ! V � I such
that for every nonzero v� A V � the composite v� � f : W ! I has maximum rank. By
(3.6), S is the complement of a hypersurface, and it is invariant for the natural action
of SL�W� � SL�I�. By interchanging the roles of all V and I (or, in the language of
the previous section, by performing the Gale transform) it is easy to check that S
coincides with the open subset of all f : W ! V � I such that for every nonzero
i� A I � the composite i� � f : W ! V has maximum rank.

Lemma 6.1. Every point of S is stable for the action of SL�W� � SL�I�.

Proof. Suppose that A A S is not stable. Then by the Hilbert±Mumford crite-
rion there exists a one-parameter subgroup l�t� : C� ! SL�W� � SL�I� such that
limt!0 l�t�A exists. We may suppose that the two projections of l�t� on the factors
act diagonally with weights b1 W b2 W � � � W bk and g1 W g2 W � � � W gn�k such thatP

i bi �
P

j gj � 0.
We claim that there exists p such that 1W pW k and bp � gk�1ÿp < 0. Otherwise

we get 0W
Pk

i�1�bi � gk�1ÿi� �
Pk

i�1 bi �
Pk

j�1 gj �
Pk

j�1 gj W kgk, hence 0W gk. If

gn�k > 0 we have 0W
Pk

j�1 gj <
Pn�k

j�1 gj � 0 which is a contradiction. If gn�k � 0
then gj � 0 for all j and the claim is obvious. It follows that bi � gj < 0 for iW p and
j W k � 1ÿ p. Hence the ®rst p� �k � 1ÿ p� block of the matrix corresponding to A

is zero. The ®rst p rows of A have nonzero elements only in the last n� pÿ 1 col-
umns and de®ne a morphism Op!O�1�n�pÿ1 that by Lemma 2.8 drops rank on a
nonempty set contradicting the fact that A has maximum rank at every point.

Theorem 6.2. Every point of S is semistable for the action of SL�W��
SL�V� � SL�I�.

Proof. By (3.6), S is the complement of a SL�W� � SL�V� � SL�I�-invariant
hypersurface ([GKZ], Chapter 14, Proposition 1.4).

Corollary 6.3. Every point of Sn;k is semistable for the action of SL�V� (with respect to

the natural polarization of Sn;k as GIT-quotient).
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Proof. We look at the hyperdeterminant as a polynomial in the coordinate ring of
the GIT quotient P�Hom�W ;V n I��=SL�W� � SL�I�ISn;k which is invariant by
the action of SL�V�.

Theorem 6.4. An element A A Sn;k is not stable for the action of SL�n� 1� � SL�V� if

and only if there is a coordinate system such that the ordinary matrix MA (with entries

in V ) associated to A (see (1.1)) has the triangular form MA �
Pn

j�0 Amxm, where the

�i; j�-entry am
ij of Am is zero for j < i �m.

Proof. It is a reformulation of Theorem 2.4 in the case p � 2.

Proposition 6.5. Let S be a Steiner bundle. The following properties are equivalent:

i) there is a hyperplane H which is a multiple point for W�S�, or S is a Schwarzen-

berger bundle;

ii) there is a coordinate system such that H � fx0 � 0g and the matrix MA �Pn
j�0 Amxm satis®es a0

ij � 0 for j < i, j � 1; 2 and am
ij � 0 for mX 1, j W i, j � 1; 2.

Proof. By (3.7), (3.8) and (3.9) (with the same notation) if the condition i) occurs then
S is Schwarzenberger or Z has a multiple point. In both cases there is some point
of P�V� � P�I� whose tangent space intersects P�W� in a subspace of positive
dimension. The tangent space at a point �v0 n i0� A P�V� � P�I� is the span of the
two linear subspaces P�V nhi0i� and P�hv0in I�, so that any point of the tangent
space has the form �v1 n i0 � v0 n i1�. If the point �v1 n i0 � v0 n i1� with v0 0 v1,
i0 0 i1 belongs to P�W� it is easy to check that the matrix of S satis®es ii). Conversely
if the matrix of S satis®es ii) then according to (3.5) we can perform twice the ele-
mentary transformation at the hyperplane H corresponding to v0. Let y0; . . . ; yn be
coordinates in P�V �� such that the ideal of fHg is de®ned by y1; . . . ; yn. The matrix
B in (3.6) has the form

B �

y1 g1�y0; . . . ; yn� �
..
. ..

. �
yn gn�y0; . . . ; yn� �
0 y1 �
..
. ..

. �
0 yn �
0 0 B 0

2666666666664

3777777777775
where gi are linear forms. It is straightforward to check that the maximal minors of
the restriction of B to the line parametrized by y0 � 1, yi � tgi�1; 0; . . . ; 0� for i �
1; . . . ; n have a multiple root for t � 0, hence either H is a multiple point of W�S� or
W�S� is a curve and S is Schwarzenberger by Corollary 5.5.
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Corollary 6.6. With the notation of (3.4) if H is a multiple point of W�S� then

H AW�S 0�.
Proof. By Theorem 6.5 the matrix A representing S has the form (3.5) where A 0 has
the same form.

Corollary 6.7. If S A Sn;k is not stable for the action of SL�V� then S A S2
n;k.

Proof. This follows from Theorem 6.4 and Proposition 6.5.

Remark. We conjecture that if S A Sn;k (k X 3; �n; k�0 �2; 3�) is not stable for the
action of SL�V� then S A S3

n;k and moreover S is Schwarzenberger or W�S� has a
point of multiplicity at least 3. We can prove that S is Schwarzenberger or, in the
notation of (3.8), Z � P�W�V �P�V� � P�I�� has a point of multiplicity at least 3.

Theorem 6.8. Let S A Sn;k be a Steiner bundle. The following two conditions are

equivalent:

i) Sym�S�IC�;

ii) there is a coordinate system such that the matrix of S has the diagonal form

a0;1x0 . . . an;1xn

. .
. . .

.

a0;kx0 . . . an;kxn

264
375:

Proof. This is a reformulation of Theorem 2.5 in the case p � 2.

Corollary 6.9. Let S A Sn;k be a Steiner bundle such that Sym�S�IC�. Then the C�-
action on Pn has exactly n� 1 ®xed points whose weights are proportional to

ÿn;ÿn� 2; . . . ; nÿ 2; n.

Proof. The statement follows from De®nition 2.2.

Corollary 6.10. Let S A Sn;k be a Steiner bundle such that Sym�S�IC�. Then either

W�S� is a rational normal curve and S is a Schwarzenberger bundle, or W�S� has only

two closed points, namely the two ®xed points of the dual C�-action on Pn4 having

minimum and maximum weights.

Proof. If S is not Schwarzenberger, W�S� is ®nite (by Corollary 5.5); since it is
Sym�S�-invariant, it must be contained in the n� 1 ®xed points of the C�-action on
Pn4. It is now easy to check, with the notations of (3.3), that the equation

a0;1x0 . . . an;1xn

. .
. . .

.

a0;kx0 . . . an;kxn

264
375 � w1 � i1 � xj

has nonzero solutions only for j � 0; n.
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Proposition 6.11. A logarithmic bundle in Sn;k which is not stable for the action of

SL�n� 1� is Schwarzenberger.

Proof. The proof is by induction on k. For k � 2 the result is true by Theorem 5.2. By
Theorem 6.4 there exists a triangular matrix corresponding to S. Then H � fx0 � 0g
is an unstable hyperplane of S. By (3.12) there is an elementary transformation

0! S 0 ! S ! OH ! 0

where also S 0 is logarithmic (by Theorem 3.13 and Corollary 5.10). Moreover the
matrix representing S 0 is again triangular by (3.5). S 0 is not stable by Theorem 6.4.
By induction S 0 is Schwarzenberger and W�S 0� � Cn is a rational normal curve. For
every K A W�S�, K 0H, we have K A W�S 0� � Cn by Theorem 3.13. The crucial
point is that in this case also H A W�S 0� � Cn; this can be checked by looking at the
matrix of S 0. Hence every closed point of W�S� lies in Cn and by Theorem 5.3, S is
isomorphic to the Schwarzenberger bundle determined by Cn.

Lemma 6.12. Let U be a 2-dimensional vector space, and Cn FP�U� ! P�S nU� be

the SL�U�-equivariant embedding (whose image is a rational normal curve). Let

C�H SL�U� act on P�S nU�. We label the n� 1 ®xed points Pi; i � ÿn� 2 j; j �
0; . . . ; n of the C�-action with an index proportional to their weights. Then Pÿn, Pn lie

on Cn and Pÿn�2j � T jPÿn VT nÿjPn, where T j denotes the j-dimensional osculating

space to Cn.

Proof. We choose a coordinate system which diagonalizes the C�-action. Then the
result follows by a straightforward computation.

Lemma 6.13. Let S A Sn;k be a Steiner bundle. Let Sym�S�0 be the connected com-

ponent containing the identity of Sym�S�. If there are two di¨erent one-parameter

subgroups l1; l2 : C� ! Sym�S� then S is Schwarzenberger.

Proof. The proof is by induction on k. If k � 2 the theorem is true by Theorem 5.2.
By applying Theorem 6.8 to l1 we may suppose that the matrix representing S is
diagonal, and that H � fx0 � 0g is the ®xed point with minimum weight of the dual
action l�1 on Pn4. By (3.12) there is an elementary transformation

0! S 0 ! S ! OH ! 0

where the matrix of S 0 is also diagonal ((3.5)), so that l1 is a one-parameter subgroup
of Sym�S 0�. Let us suppose by contradiction that S is not Schwarzenberger; by
Corollary 6.10 we ®nd that H is also the ®xed point with minimum weight of the dual
l�2 (replacing l2 with lÿ1

2 if necessary). Hence by the same argument also l2 is a one-
parameter subgroup of Sym�S 0�, so that S 0 is Schwarzenberger by the inductive
assumption. It follows that l1 and l2 are contained in the same SL�2� � Sym�S 0� and
have the same two ®xed points with minimum and maximum weight. By Lemma
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6.12, l1 and l2 have the same ®xed points and have also the same image in
SL�n� 1�. This is a contradiction.

Proof of Theorem 2.6. In view of Theorem 5.9, Theorem 2.6 is equivalent to the
following (the equivalence will be clear from the proof ).

Theorem 6.14. Let S A Sn;k be a Steiner bundle. Let Sym�S�0 be the connected com-

ponent containing the identity of Sym�S�. Then there is a 2-dimensional vector space U
such that SL�U� acts over Pn � P�S nU� and according to this action Sym�S�0 H
SL�U�. Moreover

Sym�S�0 F
0

C
C�

SL�2� (this case occurs if and only if S is Schwarzenberger�:

8>><>>:
We prove this theorem. The proof is by induction on k. If k � 2 the theorem is true

by Theorem 5.2. We may suppose that G � Sym�S�0 has dimensionX 1. By Theo-
rem 2.4 the matrix A representing S is triangulable. By the Proposition 3.11, W�S� is
not empty and we pick up H A W�S�. By Corollary 5.5 we may suppose that W�S� is
®nite, hence H is G-invariant. We repeat the argument of the proof of Theorem 5.9.
We get for all g A G the diagram

S ���!f OH???yi

g�S ���!g �f
OH :

Since h0�S �jH�W 1 we obtain that f and g�f � i coincide up to a scalar multiple. We
get a commutative diagram

0 ���! S 0 ���! S ���! OH ���! 0???y ???yF

???yF

0 ���! g�S 0 ���! g�S ���! OH ���! 0:

It follows that S 0F g�S 0, hence G H Sym�S 0� and by the inductive assumption
G H SL�U� and SL�U� acts over Pn � P�S nU�. We remark that the above con-
sidered elementary transformation gives the decompositions W �W 0lC, I � I 0lC
such that the inclusion Hom�W 0;V n I 0�HHom�W ;V n I� identi®es with the
SL�U�-invariant inclusion S n�kÿ2U nS nU nS kÿ2U HS n�kÿ1U nS nU nS kÿ1U

according to the natural actions. In fact no other morphism of SL�U� in SL�W��
SL�S nU� � SL�I� can give S n�kÿ2U nS nU nS kÿ2U as an invariant summand of
W nS nU n I . Now consider the Levi decomposition G � R �M where R is the
radical and M is maximal semisimple. If S is not Schwarzenbeger we have M � 0
and G is solvable. By the Lie theorem G is contained (after a convenient basis has
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been ®xed) in the subgroup T �
a b

0
1

a

" #����� a A C�; b A C

( )
. If there is a subgroup

C� properly contained in T then there is a conjugate of C� di¨erent from itself
and this is a contradiction by Lemma 6.13. If there is no subgroup C� contained in T

then G is isomorphic to CF
1 b

0 1

� ����� b A C
� �

.
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