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In this work we review some papers by Corrado Segre published during the eighties of the XIX
century, when he was just above twentyl. We believe that doing so may be interesting from the
historical point of view as well as helpful to recognizing a link between metheds of research used in
those years (scarcely present in contemporary literature) and a number of results rediscovered (often
without knowing it) in the current century. We thus try to reconstruct the origin of the path that has

led to the modern theory of vector bundles on an algebraic curve.
§1. Corrado Segre’s programme

To appreciate the innovative character of the ideas put forward by the very young Segre, it is
‘convenient to recall that in those years it was harshly debated upon the usefulness of studying
Hyperspace Geometry. Some authors mantained that addressing the geometry of the hyperspaces was
an unfruitful intellectual game not certainly helpful to understand the “real” geometry in two or three
dimensions, On the other side, Veronese and Bertini at first, and then C.Segre were perfectly aware
that not only the study of the geometry of hyperspaces would shed new light on the geometry of curves
and surfaces of ordinary space, but also that these latter could be viewed - and this is certainly
innovative - as points (defined by a number of parameters) belonging to new algebraic varieties that

could not be placed in ordinary space.

The first and probably most inspiring result in this trend of ideas is due to Veronese([V]
p-208):

Every rational curve of degree n is a projection of a unigue curve Cn of the n-dimensional

space P" whose (affine) coordinate functions, in terms of @ parameter 1, are simply;

. xi:t:
Ca: i=1,2,...,n

Thus, for example, if we consider the rational cubics in the plane, we see that each of so many
different patterns is but a different “shadow” of the twisted? cubic in P3, Having in mind Plato’s

myth of the cavern, we could think of the plane or the three-space as the wall of the cavern on which

1C.Segre was born in 1863

24twisted” means “not contained in a hyperplane”.
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the shadows are cast of objects “living” in hyperspaces,
This result can easily be extended by Veronese:
Every rational curve C of degree n, twisted in P, is a projection of the curve CpCP™.

In particular it is r<n. Veronese called C, the normal model of C. The fact that every
projective variety XC P7 of degree d admits a normal model {now called linearly normal), that is the
fact that X is a projection of a well-defined variety YCPN of degree d not obtainable as a projection of
a variety of the same degree placed in a higher dimensional space, was altogether clear to Segre, as it
was clear the importance of calculating this maximum dimension N. This fact leads to the problem of

calculating the dimension of HO(X,O(l)), i.e. to the Riemann-Roch problem.

Once he has determined the number N, Segre sets himself the task of finding all the normal
models of the varieties of a given type up to projective transformations of the space P", After this
second step has been carried out, he can conclude that every given variety is the shadow of some of
these normal models. The properties of the variety can be inferred by the geomelry of the normal
model and the way it is projected into P'.

§2. Rational ruled surfaces

Segre tries out at once (1884) his difficult programme in the case of the rational ruled surfaces,

where he obtains a complete result [S1]:

Every rational ruled surface, not a cone, of degree n, twisted in P2 (or P hes, as its normal

model, one of the surfaces FmCPn+1, m=1,2,..,{B], where Fy, is defined by the equations:
2

The surfaces Fry, now called Hirzebruch surfaces, can be projectively characterized as the
surfaces made of the lines joining two corresponding curves Cp, and Cp.pn, placed in two spaces P® and

P™™, which in turn are skewly embedded in P"12,

We now wish to sketch the proof that Segre gives of the above result, which also contains a
proof, for the rank two case, of the celebrated theorem - now known as Grothendieck’s theorem® [Gr) -

according to which every algebraic vector bundle over P! splits as a direct sum of line bundles.

Let SCP' be a rational ruled surface of degree n. Then its hyperplane section C==SNH will be

3this theorem has a long history (see e.g.[OSS]).In an algebraic form it had also been proved
by Dedekind and Weber [DW],
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a rational curve of degree n, twisted in H, Otherwise one could find a hyperplane H' containing C and
a point peS\C, in which case B/ would contain the fiber r through p (since it would contain p and
x=Cnr). H'NS would then have degree at least n+1, and thus H'SS, a contradiction. From
Yeronese’s theorem it then follows n>r-1. The opposite ineguality, i.e. the fact that every rational
ruled surface in P7 of degree n (r<n+1) can always be obtained as a projection of a similar ruled
surface in P"+1, is thought by Segre to be evident. In our opinion the assertion should have been given
some justification. In fact Bertini in his comprehensive book about Hyperspace Geometry[Ber] gives of
this assertion a rather complicated proof (which is actually a proof by Segre himself relative to the case
of ruled surfaces on an elliptic curve adapted to the rational case, see Appendix ).

In any event, Segre reduces himself to classifying the rational ruled surfaces S, not cones, of

n+1( that otherwise would be cones over a Cp). Now, if C is an irreducible unisecant

degree n in P
curve of degree m<n, then C is normal, i.e. it generates a P™. Indeed, if it were in a space P with
pu<m “siccome tutle le generatrici dovrebbero tagliare guella curvae, si potrebbe per lo spazio slesso e
per a—pu punti della superficie posti fuori di esso e su generalrici diverse far passare un iperpiano i
quale conterrebbe le n—p generairici passanilt per quei punii ed inolire la curva di ordine m e quindi
taglierebbe la superficie in una curve composta di ordine atm—pu>n il che non puo essere se

quelliperpiano non conliene {utla la superficie”®,

Once this has been established, Segre considers the unisecant curve Cr of least possible degree
m contained in S. Since there always exists a hyperplane containing ['—]—'2*—_—1-] generatrices and S is not a
cone, such hyperplane will also cut S along a unisecant curve of degree 511——{%‘—%. It follows mSl%]-
He then considers a hyperplane H passing through m distinct generatrices of § and n—2m-+1 other
points located on generatrices different from the previous ones. It is easy to see that, being mg{%], such
a hyperplane actually exists and moreover does not confain generafrices other than the m already
given. Otherwise H would cut the curve Cp, in at least m+41 points and would thus contain the whole
Cm. But then, H would also contain the generatrices through the additional n—2m+1 points. It
follows that H would contain Cpy and m+(n—2m+1)=n—m+1 generatrices and hence would

intersect S in & curve of degree n+1, contrary to S being twisted in prtt

. Thus H cuts S along the m
generatrices as well as along a further krreducible curve Gy of degree n—m. From this one can easily

conclude that CpMNCh.;m=90, hence § is projectively equivalen! o a Fy,

4 [S1] p.267, “since all the generatrices should cul that curve, we could have a hyperplane
conlaining thai same space end n—p points of the surface placed outside #, end on different
generalrices. Such hyperplane would conlain the n—pu generalrices passing through those poinis and,
moreover, the curve of degree m; hence il would cut the surface along a reducible curve of degree

n+m—pu>n, which is impossible because the hyperplanes does nol contain the whole surface™
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The fact that the asbove theorem is equivalent to the splitting theorem of vector bundles is
immediately clear if we set up a *dictionary”™ that allows us to translate the language of projective

geometry into that of vector bundles.
83, A useful dictionary

A ruled variety SCP"™ with fibers P® of genus g will be thought of as being defined by a
morphism from a curve X of genus g into the grassmannian of the subspaces of PP of dimension s:
$:X — Gr(P5,P7)
such that ¢ is birational onto its image and SﬂU Sx where Sy =¢(x) is a vector subspace of P" of

dimension s which we shall call the fiber over x (c:)(r,eéith classic terminology, the generalriz over x).

We can canonically associate to S a holomorphic (algebraic) bundle over X of rank s-+1, given
by the preimage under ¢, of the tautological bundle on the grassmannian. More specifically, such
bundle, denoted by Eg, is given as a point sef by

Eg={(x.y)ly€Ex} cXxC"+?

where, after a choice of coordinates, we have set Pn:P(Cn-H) e Sy=P(E;), E; being a vector

n+1

subspace of C of dimension s+1.

Moreover, a hyperplane P"1=P(H) of P" defines (noncanonically) a holomorphic section of

E$ and (canonically) an element of P(T(X,ES)). Indeed, fixing a basis in Cn+1/H which is of

dimension one, determines the projeclion p:C"'i'1 ¢t

EZ defined by

/H2z=C and hence the global section s,:X —~

s (x)(y)=p(y) x€X,yeRxcC"

that is zero at all points x€X such that ExCH.It is also immediately seen that such sections generate
the fibers at all points. Of course, if we change the basis of Cn'H‘/H, the section will be multiplied by
a non-zero constant, and we will have a natural inclusion

P™ - P(I(X,E2)) (1)
Tt is now easy to verify that if S is a projection of S’ from a point outside §', then E¢ will be
isomorphic to E g’ and moreover if E* is a bundle generated by its sections, i.e. if there is a morphism

of bundles
XxC"t L gf

which is surjective on each fiber, then U P(Ex)CP(Cn+1) defines a ruled variety §
xeX

whose associated bundle is E. Thus § is linearly normal if and only if tha map (1) is an isomorphism
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and, moreover, denoted by N the dimension of the space where the normal model “lives”, N=dim
HO(X,E§)~1. We note also that the sections s,; allow to compute the Chern classes of ES; indeed the
locus of points where s+1 generic sections of E§ become dependent dually corresponds to the set of
fibers Sy that meet the space Pn‘s'l, intersection of the s+1 hyperplanes corresponding to these
sections, and thus

deg S== deg EJ (2)
Ruled subvarieties of § will then correspond to fiber subbundles of Eg {and viceversa) whose degrees
will still verify (2) and, in particular, unisecant curves will correspond to line subbundles of E, generic
hyperplane sections - not containing whole fibers - will correspond to subbundles of E with trivial

PPKY a5 basis will

quotient, and finally, cones in P" having a PK as vertex and a ruled variety S in
correspond to bundles of the form 1k+1®ES (denoting by 1=XxC the trivial bundle). Two ruled

subvarieties S; and S; added in C" fiver by fiber will give rise to a map

which will be injective (as a map between sheaves) if the fibers §; and S2x do not meet generically,

whereas it will be an isomorphism if Slx and S?x generate Sy for every x and 5;NS,=8.

In particular, if S is a ruled surface, C; and C, distinet unisecant of § and T,,L, the
associated line bundles, then
0+ Li®Ly+Eg—~T—0
where we have denoted by T a torsion sheaf with support in C;NC,. We thus find, upon computing

the Chern classes, the simple intersection formula {already known to Segre):
deg Cy;NC,=(deg C,+deg C,}—deg § (4)

We finally observe that if we project SCP" in S'cP™! from a point pESxO, the projection Ey
in E’y will be an isomorphism for x#x, having in xg cokerne! of dimension one. We thus obtain the

exact sequence {of sheaves):

O-oEs—aEs'—a»Oxoﬂﬁ (5)
where 0"0 is the skyscraper sheaf in x5 with fiber €. Moreover, if we perform a projection with center
a fiber Sy, of § we obtain

B ~Fs(xo)
The transformation (5) is called by many authors (e.g.. [M},[MN],[T]) an elementary {ransformation.
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§4. Bundles on £ of higher rank

In a paper of 1885-86{S2}, Segre considers the case of bundles of P! of rank i+41, with special
attention to the case i=2. He obtains the Riemann-Roch formula, which can be stated by saying that
if £ is generated by its global sections and has degree n and rank i+1, then

KO (PLE)-1=n+i
Using the same methods and arguments given for the i=1 case, he studies, when i=2, the rational
ruled surfaces and the unisecant curves of minimal degree contained in the surface S being able to
prove that there always three curves of degrees my,mp,my generating the plane Sx for every x. From
this we deduce that
E=L;®L, &L,

The case of arbitrary rank, which was to be addressed in the dissertation of his disciple
A.Bellatalla[Bel], is summarized thus: “i regionamenti qui fatti pel caso i=2 si estenderanno
facilmente ad i qualungue e Panalogia permetiera di prevederne senz’aliro i risullati, sicche non ne

fard pit oggetfo di un nuovo lavora™>,

£§5. Rank two bundles on an elliptic curve

The methods used in the rational case still apply, with little change, to the elliptic case,
essentially because if XCP"is an elliptic curve, then X is non-special. It is easy to see that if SCF’N isa
twisted elliptic ruled surface of degree n, then its hyperplane section C will also be twisted in PN'1 and
thus, being non-special it will result n—1>N~1, On the other hand, if S is not a cone, it cannot be
n=N; otherwise a generic hyperplane H of pN containing & generatrix would cut § along a further
unisecant elliptic curve C,_y of degree n—1, which would generate a space L of dimension at most
n—2. Now the linear system of hyperplanes through L would cut S along the fixed C_; and a variable
line so that § would turn out to be a rational ruled surface, against the assumption. It is thus N<n—1.
Also, Segre succeeds in constructing explicitly (see Appendix I) starting with S in pN (if N<n-—1)
another elliptic ruled surface S'CP™?! of degree n projecting itself onto S.

Having solved in this way the Riemann-Roch problem, Segre begins to classify the elliptic
ruled surfaces of degree n in P™ 1 not cones, investigating first the possible degrees of the unisecants,
and then, from these possible numerical invariants, obtaining explicit examples of elliptic ruled surfaces

with the given numerical invariants.

5 [S2} p.96, “The argument given for the case i=2 will easily exiend 1o the case of arbitrary i,

where, by analogy, we can anticipate the resulls. Hence [ shall not address this case in fulure works™.
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it is worth noting that this analysis leads to a new aspect (not present in the rational case): the
existence of indecomposable tuled surfaces, that is, such that every two distinct unisecant curves have
nonempty intersection. In ether words, we believe for the first time, indecomposable bundles of rank
two make their appearance. In order to construct the easiest (but easily extendible) such example let us
consider a smooth plane cubic I' on which we set an inflection point O, zero elerment of ' thought of as
an algebraic group. Let A€T,A#0 be a point and 7,:I' = I the franslation taking a point P to the
point P@A (where @ denotes addition in I'). Embedding two copies of T' in P in such a way as to
make them skew, we can construct a ruled surface SACF‘5 by joining with a line the images in Poof
every pair of points P and r{P). It is easy to see that the bundle ESA associated to such surface splits,
and in addition

Es, =0(-30}00(~34A)

Moreover the surface SA contains only two cubic unisecants and 0o? quartic unisecants forming an
algebraic system of degree 2. In other words two generic curves of the system meet transversaily at two
points. Projecting now in P? the surface S, from a point Py chosen on the generatrix through O,
outside the two planes, we obtain a surface Si:,‘Cl:’4 of degree 5 containing an algebraic system of co*
unisecants of minimal degree 3 obtained by projecting the quartics of 5, passing through Po. The
surface Sf._\does not contain conics, since otherwise these would be projections of either a conic of Sy
{there is no such a conic) or a cubic of S, passing through P (there is no such a cubic by the choice
of Pg). The surface Si\, being smooth and normal, is thus indecornposable since otherwise if C; and C,
were unisecants of degree n, and n, in S84, with C;NC,=#, then by (4) py+1,=>5 and hence n, <2 or

H2$2.

It is also easy to see that once the points O,Pg and the embeddings of the two planes in P> are
fixed, the surfaces S'A, obtained by different values of A, are not projectively equivalent in P*. On the
other hand, we can choose coordinates in order that we can set arbitrarily on a given surface the points
O,P, and the two planes. In other words there is, in P4, a family Sh (AET\{0}) of indecomposable
ruled surfaces of degree 5. For A=0O the above construction “degenerates” in a decomposable surface
generated by a plane cubic and a double line. However, making a different choice for the zero element
of T, we obtain that the indecomposable surfaces are parametrized by the points of T', and any other
surface is projectively equivalent to one of those. Therefore, counting the moduli, we see that all

corresponding bundles can be obtained from a fixed one by tensoring by a line bundle of degree zero.

Translating this into modern language the indecomposable bundle EZ::E is given by the

Sh
sequence

0 - O(—30)80(—3A) - E; - 050
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from which we derive, with easy calculations, the exiension
0—=+0-2Er(-—-20) - O0(3A-20)-0
Hence we see that the indecomposable bundles of rank 2 and degree 1 can all be obtained as extensions
of the type
0+0-2?20P)-0

for some P& C. It is now easy to find out {see {Ha] p.377) that the above bundles can all be gotten from
the particular extension with P=0 by tensoring by a suitable line bundle. This is in accordance with

the corollary on p.434 of [A], where the case of rank>2 is also treated.
§6. The ruled surfaces of arbitrary genus

The Riemann-Roch problem for the vector bundles of arbitrary rank on a curve of genus p is
conclusively solved by Segre in [S5] (1887) following a different route, In the course of a letter exchange
with Schubert, Segre comes to know of a interesting counting formula which combined with a formula
of Zeuthen {now known as Hurwitz's theorem) allows to compute the genus of a multisecant curve =,
drawn on a variety SCP" - ruled in linear spaces of dimension s parametrized by a curve of genus p -
in terms of its degree and the projective characters of S. From that formula Segre can ingeniously
deduce (see Appendix IT) the dimension of the projective space where the normal model of S “lives”,
which could be written

WO(ES)2n—(s+1)(g—1) (6)
where he distinguishes the cases (special and non-special) when relation (6) is an inequality or an
inequality (hl(E§)¢€}, hl(E;)zl)). Subsequently, the same genus formula, together with
“Castelnuovo’s lemma”, will lead Segre to a new proof, projective and hyperspatial as well, of the

Riemann-Roch theorem for the curves.

After he has determined the dimension of the space where the normal model of a ruled surface
of genus p “lives”, Segre approaches the study of normal models in a research published in two papers
of the Mathematische Annalen ([S4),[S6]) in the years 1887 and 1889. The study and the results are
very deep, although the proofs - as Segre himself warns - may sometimes lack rigour. Only in recent
times the assumptions have been precisely stated and the assertions carefully proved. The principal aim
of the above mentioned research is that of determining, for a ruled surface SCPN, of degree n and
genus p (N==n—2p+1) the family €y, of its unisecant curves of a fixed degree m. Segre realizes that
only under suitable assumptions of genericity is possible to describe the families €y, hence he supposes
these assumptions to be true, without stating them in precise form. Thus, set dypy=2m—n—p+1, he

can make the following statements:
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the indez of the family Cpy, t.e. the number of curves of Cy (9

passing through dm>0 generic poinis of 5, 1s 9P
in particularn:

if dn=0, then Cp is made of 9P wnisecants of the minimum degree m———g—_—dl)- (10)

If the surface is not sufficiently general, the dimensions dpy, can (in particular instances)
increase. The method used by Segre to construct normal ruled surfaces in PN and to study their
families of unisecants G, consists, as in the example of the elliptic quintic ruled surface of P4, of

starting with decomposable ruled surfaces (easy to work with) embedded in a space PN"i'x

, and then
projecting them in PN from x of their points. An accurate but simple analysis allows to compare the
unisecants of the ruled surface of PN+X with those of its projection. If the points from which one
projects are generic, one can describe the families €y, since in the case of decomposable ruled surfaces

the computation of the dimensions dm, reduces, essentially, to the Riemann-Roch theorem on the base

curve X. (A modern account of this method is given in [Gh]).

The computation of the index 9P is based, instead, on a counting forrula of Castelnuovo ([C]) whose
correctness Segre himself doubted: “La démonstration ingénieuse, que ce geomélre y donne de celle
importanie formule, pourrail laisser sur sa validite ebsolue des doules, qui se réflechiraient sur le n’
présent el plus loin sur les a"" 20 et 21 de ces Recherches; cependani les confirmations qu'on irove de

ces résulials me portent & penser qu'ils sont absolument vrais”S,

It is surprising that these results have remained unknown for nearly a hundred years until -
starting in 1950 - various authors, such as Gunning, Nagata, Maruyama, Atiyah and others, have
rediscovered, without being aware of, Segre’s results (or, rather, some of them, not even the decpest
ones). Thus, for example, (7) implies that, on a ruled surface S of genus p, the minimal self-intersection
of one of its unisecants Cy is never greater than p:

C3<p
as it is easily seen by noting that the self-intersection of a unisecant curve C of degree m on the surface
S of degree n is given by
C%*=2m—n.

€ [S6], foolnote n.16, “The ingenious proof thal this geomeleriCastelnuovo] has given of such
important formula, can leave some doubls about its validity. These will be reflected on the resulls of the
present section and of §§ 20-21 of this paper. However, the confirmations that one has found of these

results lead me to think that they are absclutely true”,
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This is the form in which Nagata[N] gives this theorem without quoting Segre’s paper. In the language
of vector bundles, an equivalent formulation of the above fact can be given by saying that if E is a
bundle of rank 2 and degree n on a curve X of genus p and Ly is the line subbundle of E of maximal

degree, then

5
This fact is an immediate consequence of (7) if E is generated by its global sections, case to which we

deg LoZ[

can however reduce ourselves by tensoring by a suitable line bundle, It is in this form that we find
Segre’s results in Gunning[Gu] and others, among whom Stuhler[St], Lange-Narasimhan[LN],
Lange[l.1], at the end of the seventies. A study of the family of unisecants Cpy, together with a critical
revision of Segre’s resulis and a clarification of the assumptions of generality that he makes, can be
found in Ghione[Gh], where the number 2? is also computed (see also [GhLa]) without using
Castelnuovo’s counting formula. This number has also been computed by Hirschowitz[Hi} in 1984 and

by Lange[L2] in 1985. We also wish to note that the general ruled surfaces, in the sense of Segre, give

n"P+1]
2 ]

rise to vector bundles having the property that the subbundle of maximal degree has degree |

therefore being particular instances of stable bundles in the sense of Mumford.

A bundle E for which the inequality
deg L<
holds for every line subbundle LCE is called strongly stable {Hi],{T). The fact that the generic bundle is

deg E—p+1
2

strongly stable and an extended version to the case of arbitrary rank have been profitably used by some
authors,

We remark also that the family of unisecants Cp, of the surface S corresponds, using our
dictionary, to (Grothendieck) scheme of the quotients of E§ of rank 1 and degree m. Of these schemes

Segre had in a sense given the dimension dg, and - for dgy =0 - the number of points.

To conclude we would like to observe that Segre’s interest for the theory of ruled varieties was
also motivated by the study of algebraic curves from a projective point of view. Indeed, a linear series
g'{ on a curve XCP" defines a rational ruled variety, made of the linear spaces generated by the
divisors of the series, containing X as k-secant. Conversely, the existence of such variety S guarantees
the existence of the g'{ on X. Starting from this observation E.Mezzetti and G.Sacchiero ([MS]) could
study, in recent times, those components of the Hilbert scheme of the curves of P" arising from the

consideration of the k-gonal curves.

In view of the previous considerations we would like to reflect on how the irregular flow of the
mathematical (and cultural) fashions, with its whirlpools, can bury, for decades, entire theories,
outstanding results and methods, to see them come up again out of necessity but without apparent link

with their origin.
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Appendix I: Riemaann-Roch for rational and elliptic ruled surfaces

In this appendix we want to give the proof of Riemann-Roch theorem for an elliptic ruled
surface following Segre. Really the construction is relative to the rational case such as Bertini({Ber]
pag.356) proposes it, but it is essentially the same(with minor changes) as the proof of Segre in the
elliptic case[S3}.

We need the following lemma: Let CnCP" be the Veronese curve, sel a poini OgCy and let T
be the cone over Cp with vertex O. If Py, P,y are independent poinis of T', there erisls a rational
normal curve confained in T which contains them. Indeed, let H be the hyperplane generated by
Py,..,Pn and set C:=TNH. We embed the ambient space in P in such a way that H is contained in
a hyperplane "' of P ot containing O but containing the normal model C! of C. C is the
projection of ¢! from a point O'eH’. Let I be the cone over C! with vertex O. T projects itself from
O' onto T and the points Py,.., P, are the projections of the independent peoints Pl',...Pn+1’ of I
which generate the hyperplane "' of P"T1. The projection of the rational curve H'ND' of degree n is

the curve that we locked for.

Now, let S be a rational ruled surface of degree n generating a space "k we want to
explicitly construct a new rational ruled surface of degree n generating a space "+ and projecting
itself onto S. For the convenience of the reader we join a picture (fig. 1) in which the indexes denote
the sequence of the various steps.

1. In the space HO=Pn+1'RJS we choose a generic hyperplane leP"'k
such that C;:=H,NS is an irreducible, rational curve of degree n.

2. We can obtain C; projecting a rational normal curve V,CP"=:H, from a space
02:.-.Pk'1. Let KQ:P""}':l be the space generated by Hy and O,, and let T’y be the projecting
cone.

3. An hyperplane H3=P”“1 such that O,€H3CH,; cuts V, in the independent points
Py.Por.,Pn -

4, H; projects itself onto the hyperplane Hy=P"%! of H, which cuts C,
in the points P} ,P4,..,Ph obtained by projecting Py,Py,...Pp.

5. Let now Hs:P“'k be an hyperplane of Hy containing Hg, it will meet the surface
in the curve Cg which have in common with C; the points P’1 ,P’z B

6. Let TgCK, be the cone over Cg with vertex Op this cone of degree n
generates a space H6:P" and contains the n independent points Py,..,P,. We choose on Ty
another generic point P, ;. By the previous lemma, there exists a rational curve Vg of degree n

containing Py,...,Prq, which projects itself from O, onto Cg.
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Let A be a point on V, and A! ils projection on C;. Let B’ be the
corresponding point on Cg by means of the generatrix of S through A, and B be the point

_:Pn-H

which projects itself on B! from 0,. Joining A and B with a line in K, we get a rational

ruled surface of degree n which generates K, and projects itself onto S.

The construction works with minor changes in the case of genus 1{[S3] n.4}.

Ho= pnti-s

Kz= pn!

Fig. 1
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Appendix It Riemann-Roch for ruled varieties

The proof of Segre of the Riemann-Roch theorem for ruled varieties in projective spaces over a
curve X of genus p is based on a counting formula that Schubert communicated to him in a letter. A

modern proof with an analysis of the assumptions under which the result holds is in [GS].

Thus, let SCPN be a variety of degree n ruled in projective spaces of dimension s on & curve X
of genus p. Let yCS be a curve of degree m k-secant(k >s+1), i.e. such that the morphism
mlyry—X
is a k-fold covering of the base X. Now the genus of the curve v can be computed in terms of these
numerical invariants and of a further invariant z which measures essentially the number of divisors of
degree s+1 contained in yx=7NS8y and which do not generate the fiber Sx. Thus, under suitable and
natural assumptions, the genus g of v is given by:
gz;{;—;—ﬁ)[(s+1)(mws>—knl+kp»ﬁ
s-1
We suppose now that there exists on S a curve 7 (s+1)-secant such that for every x€X the s+1
points belonging to ¥NSx=P® are independent. In this case z==0 and the above formula gives for the
genus of v the value:
g=m+(s+1)}{p—1)+1-n

It is easy to check that S is normal if and only if ¥ is normal, that is

x(7:04{1))=x(5,05(1))=x(X,E3).

If we apply the Riemann-Roch theorem to the curve y we get:

x(8,0g(1))=m—g+1
and substituting the value of g:
x(8.05(1)=n—(s-+1)(p~1).

Then the key point is to construct the curve v with the required property. Segre’s technique consists in

cutting S with a suitable cone TcPN. We make this construction in the following steps(see fig. 2):

1. We choose in PN a space 01:PN'5'2 and a rational normal curve C; of degree
s+1 in such a way that 0,NS=0, C, is contained in a space H1:Ps+1CPN and H;NO;=4.
Let T' be the cone over C; with vertex O;. We have dim [=N-—s.

2. Let Sx=P® (x€X) be any generatrix of the ruled variety S and consider a
space H2=Ps+1 which contains Sx but does not meet the vertex O, of the cone. Such a space
exists because 0, NSx=4 and then O, and Sy generate an hyperplane of PN, H, cuts the cone
T in a rational normal curve C, of degree s+ 1. As Sy is an hyperplane of Hy, it cuts C, in the
s+1 independent pointst,Pf( JPH . 1t follows that TNSy consists of s+1 independent points for

every x and then y:=I'NS is the curve that we looked for,
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Fig. 2
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