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The Tangent Space at a Special Symplectic
Instanton Bundle on Py,

Giorgio Ottaviani and Giinther Trautmann

Introduction

Mathematical instanton bundles on P; have their analogues in rank-2n instanton
bundles on odd dimensional projective spaces Py, ;. The families of special instanton
bundles on these spaces, which generalize the special 'tHooft bundles on P3;, were
constructed and described in [OS] and [ST]. More general instanton bundles have
recently been constructed in [AO2]. Let MIzn41(k) denote the moduli space of all
instanton bundles on P;,;; with second Chern class ¢; = k. In order to obtain a first
impression of this space it is important to know its tangent dimension A'End(€)
at a stable bundle £ and the dimension h?End(£) of the space of obstructions to
smoothness.

In this paper we prove that for a special symplectic bundle £ € M I5,41(k)
R End(€) = (k — 2)° (2" . 1).

Such bundles are stable by [AO1]. So for n > 2 the situation is quite different
to that of P3, where this number becomes zero, which was shown in [HN]. Since
HEnd(€) = 0 for i > 3, our result and the Hirzebruch-Riemann-Roch formula, see
Remark 2.4,

2n—1

h'End(€) — h2End(€) = —k’( )

) + k(8n?) + 1 — 4n?

give

R'End(€) = 4(3n — 1)k + (2n — 5)(2n — 1).
Therefore the dimension of MI;,11(k) grows linearly in k, whereas the difference
h'End(€) — h2End(E) becomes negative for n > 2 and grows quadratically in k.
A more important consequence, however, is that in general we have to expect that
M ,,,,(k) is singular at special symplectic bundles: The spaces MI5(3) and MI5(4)
are singular at those points, which follows from theorem 4.1 and [AO2].
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In order to derive our result we fix a 2-dimensional vector space U and consider the
natural action of SL(2) on Py, 41 = B(U®S™U) as in [ST]. The special instanton bun-
dles are related to the SL(2)-homomorphisms B, see 1.4, and are SL(2)-invariant.
We prove that there is an isomorphism of S L(2)-representations

H*(End £) = S*3(U) ® S*3(U) ® S(U ® S*~?U).

Acknowledgement This work was supported by the Deutsche Forschungs-
gemeinschaft. The first author wishes to thank the Fachbereich Mathematik of
the University of Kaiserslautern, where this work was begun, for its hospitality.

Notation

e Throughout the paper K denotes an algebraically closed ground field of char-
acteristic 0.

e U denotes a 2-dimensional K-vector space, S, = S™U its nth symmetric
power and V, =U ® S,.

o Thereis the natural exact squence of GL(U)-equivariant maps for any k, n > 1

0 — A’U ® Sk ®S—1'€)Sk®5n_“’5k+n—"0

where p is the multiplication map and § is defined by (sA¢) @ f® g —
sf @ tg — tf ® sg. This sequence splits and leads to the Clebsch-Gordan
decomposition of Sk ® S, by induction. When we tensorize the sequence with
U we obtain the exact sequence

05 AU ® St ®Vaor D Sk @ Vo & Vigw — 0.

o P = Py,41 = PV, is the projective space of one dimensional subspaces of V;,.
e The terms vector bundle and locally free sheaf are used synonymously.

o O(d) denotes the invertible sheaf of degree d on P, () the locally free sheaf of
differential p—forms on P, such that 07(p) = APQV where @ = T(—1) is the
canonical quotient bundle on P.

e We use the abbreviations F(d) = F ®c O(d) for any sheaf F of O-modules on
P, H'F = H(F) = H(p,F), k'F = dim H'F. If E is a finite dimensional
K—vector space, E® O denotes the sheaf of sections of the trivial bundle Px F,
and EQ F = (E® O) ®o F. We also write mF = K™ @ F.

o We use the Euler sequence 0 — 02'(1) = V,Yy ® O — O(1) — 0 and the derived
sequences in its Koszul complex 0 — QP(p) — APV, ® O — Q*~1(p) — 0
without extra mentioning.

o Ezt'(F,G) = Extiy (P, F,G) for any two O-modules F and G.
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1 Instanton bundles

1.1 An instanton bundle on P = Py, ; with instanton number & or a k-instanton
is an algebraic vector bundle £ on P satisfying:

(i) € has rank 2n and Chern polynomial ¢(€) = (1 — A?)~* =1+ kh% + ...

(ii) € has natural cohomology in the range —2n — 1 < d < 0, that is for any d in
that range A'€(d) # 0 for at most one 1.

A k-instanton bundle £ is called symplectic if there is an isomorphism & 5 &Y
satisfying ¢¥ = —¢p. In this case the spaces A and B below are Serre-duals of each
other, since H**(£(—2n — 1))V & HEY(-1) & H'E(-1).

Remark: In the original definition in [OS] the additional conditions

(ili) & is simple, that is Hom(&,€) = K,

(iv) the restriction of £ to a general line is trivial

are imposed. It was shown in [AO1] that (iii) is already a consequence of (i) and
(ii). Condition (iv) seems to be independent but we do not need it in this paper.
By [ST] special instantons satisfy (iv).

1.2 Let now A, B, C be vector spaces of dimensions k, k,2n(k — 1) respectively. A
pair of linear maps

A5 B®AYVY, BRVy-C

corresponds to a pair of sheaf homomorphisms
ARO(-1) -5 BeO(1), Be(1)SCeo.

Here @ is the composition of the induced homomorphisms AQ O(—1) — BRA*V,/®
O(-1) -» B ® Q(1) and b is the composition of the induced homomorphismus
BRO(1) - BRV,Y® O — C ® 0. Conversely, a and b are determined by & and
b respectively as H%(@(1)) and H(8")Y. Moreover, the sequence

ARO(-1) % BRA(1) -5 C0 (1)
is a complex if and only if the induced sequence
A— BRAV) —CQRV,)/

is a complex. We say that (1) is a monad if it is a complex and if in addition & is
a subbundle and b is surjective.

Proposition 1.3 The cohomology sheaf € = Kerb/Ima of a monad (1) is a k-
instanton and conversely any k—instanton is the cohomology of a monad (1). More-
over, the spaces A,B,C of such ¢ monad can be identified with H*E(—2n — 1),
H'E(—1), H'E respectively.
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Sketch of a proof: if a monad (1) is given it is easy to derive the properties of the
definition. Conversely using Beilinson’s spectral sequence, Riemann-Roch and in
particular (ii), one obtains a monad with the identification of the vector spaces as
in [OS]. The map b is then nothing but the natural map H'€(—1) ® V¥ — H'E
and the map a is given as the composition of the cup product

H™E(—2n — 1) ® A%V, —» H™E @ Q*1(-1)
and the natural isomorphisms
H™EQ M 1(=1) X H e O 2(—1) = ... = H'E(-1)

arising from the Koszul sequences and condition (ii), see [V] in case of P.

1.4 Existence and special instanton bundles: Using the special structure
V., = U ® S™U and the Clebsch-Gordan type exact sequence

0 — AU ® Si2 ® Vaiy =5 Skc1 ® Vi =5 Vignos — 0,

see notation, we define the special homomorphism
Sy @0 (1) 5 AWV RSy, eV, 80

by b = Y. We denote N' = Ker (). It was shown in [ST] that b is surjective and
that
H°N(1) C Sy, ® H°Q'(2)

can be identified with a canonical injective GL(U)-homomorphism
S;/n+k—l ® AZUV _K' S;:/—l ® sz;nvy

dual to the map
Sk—1 ® A’V,, — Synik-1 ® AU

which is defined by fQ (s® g) A (t® h) — (fgh) ® (s A L).

In order to construct instanton bundles we have to find k-dimensional subspaces
A C Syyr1 ®A’UY C 57, @ A?V)

such that the induced homomorphism & is a subbundle. By [ST], Lemma 3.7.1,
this is the case exactly when PA C P(S},,;_,) does not meet the secant variety
Sec,(Canyr-1) of (n — 1)-dimensional secant planes of the canonical rational curve
Conth—i Of PSy, 111, giVen by u u?"t*=1_ By dimension reasons such subspaces
exist, [ST], 3.7, and hence instanton bundles exist.

A k-instanton bundle € is called special if the map b of its monad is isomorphic

to the GL(U)-homomorphism BV, that is if there are isomorphisms ¢ and % and
g € GL(V,) with the commutative diagram
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He-1)evy —b. H'€
p®g¥I N Y

S;c,—l ® an __@_V. AzUV ® Sl\c/—z ® VV_1.

Whereas in [ST] the family of all special k-instanton bundles was described, exam-
ples of different types of general instanton bundles were found in [AO2].

Remark 1.5 If £ is special and symplectic then, in addition to the special GL(U)-
homomorphism b = Y of its monad, the map a is given by an element a € Sy, 51
as @ = ko & where Si_; > Sy 18 defined by &(f)(g) = o(fg) and
Syntk-1— Sp_, ® A?V,Y is as above, [ST], 4.3 and 5.8. In particular a is a GL(U)-
homomorphism, too, and can be represented by a persymmetric matrix.

Remark 1.6 It is shown in [AO1] that special symplectic instanton bundles are
stable in the sense of Mumford-Takemoto.

2  Representing Ext2(£,€)

Proposition 2.1 Let £ be a symplectic k—instanton and let N be the kernel of the
monad (1). Then Ext*(€,€) = H}(N @ N).

Proof: The monad (1) gives rise to the exact sequences

0—N—BeO(1) 2080 —0 @)

and
0 —ARO(-1) - N — & —0. 3)

After tensoring we have the exact sequences
0— ARN(-1) NN — EQN — 0 (4)

and
0— AQE(-1) —mNE—ERE— . (5)

Since £ = £V we obtain Ext*(€,£) & H*(E ® £). Sequence (2) implies h2N(—1) =
RPN (—1) = 0 and from this and (3) also A2(—1) = h3E(—1) = 0. Now sequences
(4) and (5) yield isomorphisms H*(£ ® £) & H}(N @ £) = H} (N @ N). o
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2.2 In order to represent H%(N ® N') we note that the sequence (2) is part of the
exact diagram

0 0
l ! )
0 — N — Bl -5 Ce0 — 0
] ! I
0 — H®O — BRVVRO -4 C0 — 0 (6)
! l
B®O(l) = BeO(l)
! !
0 0

where H is the kernel of the operator b, which is surjective because b is surjective.
The left-hand column of (6) gives us after tensoring by Q'(1)

B® HQ'(2) = H'(N ® Q'(1)) and XN ® QX(1)) = 0. (1)

Since b is the Beilinson representation of A/, we have the commutative diagram

H'N(-1)®@ H°O(1) =% H'N
I I (8)
BVVY 2

Moreover, § in (7) coincides also with cup:

)
B HQ'(2) R H'N (1) 9
In /'cup ©)
H'N(-1) ® H*Q'(2)

Tensoring the top row of (6) with A and using (7) we obtain the following diagram
with exact row:

0— HIN®N)—> BRHN®() —» C®HWN) — HNQN)—0
I I

B®B®AVY X CeC.

(10)
It follows that
HYN @ N) = Coker(®) = Ker(®")". (11)

Lemma 2.3 The induced operator ® is the composition B ® B ® A?V,’ “% B
BVy®Vy 385 © ® C, where o denotes the canonical desymmetrization.

Proof: The computation of ® is achieved by the diagram
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tdpeB ® 0

B® B® AWV, BeBRV/®V)
e I =
d ® HO(u(1 .
B® H'N(-1) ® H'Q'(2) id ® (1)) B® HIN(-1)® V¥ ® H°O(1)
tdp @ cup II idB@V,}‘ ® cup
o
B® H'(N ® 0'(1)) idp @ H (idv ® ) BRVY®HWN
. 111
H'\(idy ® b) ~
b® idgyy
C®H'N v BRVy®C
%
cecC

In this diagram ¢ denotes the canonical inclusion Q'(1) — V¥ ® O, and up to
A%V = H°Q'(2) and V,Y = H°O(1) the map o can be identified with H°(4(1)).
Therefore, the square I is commutative. Square IIis a canonically induced diagram of
cup-operations and commutative using B =& H' N (—1). The triangle III is induced
by the commutative triangle

BN ®O(1) “BBRVVON
lb®id  /ieid
CRN

and hence commutative, and the commutativity of IV results just from the identifi-
cation H'A = C. Now by definition the composition of the left—-hand column is ®
and the composition of the right-hand column is idp ® idyy ® b since b is defined

by (8).
It follows that ® = (b® idg) o (idp ® idyy ® b) o (idpes ® o) = (b® b) 0 (id ® o).

Remark 2.4 If £ is a k-instanton bundle it is easily checked that h‘€(d) =
REV(d) = 0 for i > 2 and d > —1. Using &Y ® N again it follows that
Exti(£,€) = HI(EVQ®E) = H(EY®N) =0 for i > 3. This and the Riemann-Roch
formula, which can also ad hoc be derived from the monad representation, give

RI(EVRE)-R(EVR®E)= -k (2"2— 1) + 8kn? —4n? + 1.

3 Determination of Ext2(€,£)

We are now able to determine Ezt?(€,€) as a GL(2)-representation space in case
of a special instanton bundle. In that case b is the dual of the operator 8 : A2U ®
Sk—2 ® Vi1 — Sk—1 ® V,,, see notation or 1.4. Then @V is the composition of S Q@ 8
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and the multiplication map V, ® V, — A?V,. In order to simplify we choose a fixed
basis s,¢ € U and the isomorphism A?U & k given by s At. Then

Sp2Q@5:2@ V1 ® Vo LK Sk-1® Sk-1 @ A*V,,
is explicitly given by
V(IR B®VvRV) = sg®s¢ @ (tv Atv') — sg @ tg' ® (tv A sv')
— t9®s¢’' @ (svAtv)+tg@tg ® (svAsv).
In order to determine the kernel of " we consider. the GL(U)-homomorphism

Sk-3®Sk-3Q Vo2 ® Vo 4 Sk-2® Sk—2® Vo1 @ Vo
defined similarly by

fRFfQuY) = sfRsf/Qtultu' —sfRtf @ sutu
- fRsf/Qtuesu +1ftf @ su® su'.

Up to the order of factors the map € is the tensor product #' ® ' where §' :
Sk-3 ® Va_g = Sk—2 ® V1 is defined as 8. Hence, € is injective. Finally, we define
€ as the composition

Sh-a®Sk3® SV 3 2 S 30 Si3® Vaca ® Vag 5 Sk2 ® Sk_z ® Vo1 ® Viuuy

where ¢ is the canonical desymmetrization. Then also € is injective.
Proposition 3.1 (Sk_3 ® Si-3 ® S?*V,_3,¢) is the kernel of ®V.

Proof: A straightforward computation shows that Im(e) C Ker(®V). In order to
show equality we reduce Ker(®") modulo Im(e) using canonical bases of the vector
spaces. A more elegant proof using Clebsch-Gordan decompositions seems much
harder to achieve. Let us denote the bases as follows:

basis of Sk_3: e, = s¥~3-%¢ 0<a<k-3
basis of Sy_z: f, = sF-2-¢te 0<a<k-2
basis of Sj_;: g = sF 17 0<a<k-1

basisof V—3: u,=s@®s" 2 #t¢ 0<pu<n-2
U, =tQ "I Hk
basisof V-1 : z,=s@s" 17#t¢ 0<pu<n-1
T, =1Q@ s 1 Kk
basis of V, : Yu =8 Q s"HH 0<u<n
Pu =1 @ s"7HEH,
For the basis fa®f®@z, BTy, fu®f3®Z,®Fy, fa®f®T,BT,, fo® [3OZ,QZ, We
use the index tuplets (o, 8, i,v), (o, B,4,7), (o, B,8,v), (o,B,}, V) respectively.
The set of these indices will be ordered lexicographically with the additional

assumption that always u < 7. Then, for example, (e, 8, 4,7) < (o, B, ), 6).
Accordingly, the coefficients of an element { € Sk_2 ® Sk—2 ® Va1 ® V,_y will be
denoted by c(a, 8, g1, v), c(a, B, 1, 7), (e, B, i, v), c(e, B, i, 7).

By the formula for " we obtain the
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Lemma 3.2 Let £ € Sx—2® Sk—2® V1 @ Vos.
(1) The coefficient of ®V(€) at the basis element g, ® g5 @ Yu AYy in Sk—1 ® Sp—1 ®

A%V, is

c(a,Bop—1,v=1)—c(o, Bv = L,p—1)
—c(a,—1,p—1,0) + c(a, = 1,v =1, 4)
—c(a=1,8,p,v=1)+c(la—1,8,p,u)
te(a—1,8—1,pu,7) —c(a—1,8—1,7,5).
Here we agree that each of these coefficients is 0 if one of a,a — 1,8, —1 ¢
[0,k —2] or if one of p,p— 1,v,vy —1 & [0,n —1].

(1t) Analogous statements hold for the coefficient of ®V(£) at go ® gp ® yu A yy for
p < v (without bars) and at g, ® gs ® Ju A §, for p < v (with two bars).
Lemma 3.3 Let the notation be as above. If ®V(£) = 0 then:
(1) If c(e, B, p,v) is the first non—zero coefficient of £ (in the lexicographical order),
then0 < p < w.
(%) If c(e, B, p, 7) is the first non—zero coefficient of £, then u # 0, v # 0.
(iit) c(a, B, fi,v) is never a first non-zero coefficient of &.
(iv) If c(a, B, i, 7) is the first non—zero coefficient of £, then 0 < p < v.
Proof: (i) Let ¢(a, 3, i, v) be the first coefficient of . Then, by Lemma 3.2 the
coefficient of 0 = ®V(¢) at gu ® 95 ® Yut1 A Yp41 18
0 = C(a,ﬂ,[l,l/) - c(a,ﬂ,u,,u) _C(avﬂ_ Lp,v+ 1) +C(C¥,ﬂ—- Lyvp+ 1)
- C(a" 1’ﬂ7/‘+ 17”) +C(a_ 1’13,’/+ lall’) T

Since c(a, B, ¢, v) is the first coefficient, only the first two in this formula could be
non—zero because the others have smaller index in the lexicographical order. Hence

C(ayﬂ,/‘; V) = C(avﬂ) v, /”)

If 4 > v then ¢(a, B,v, ) would be earlier and non-zero. Hence, 4 < v. Assume
now that p = 0. The coefficient of ®Y(£) of g ® gp+1 ® Yo A Yoy is
0 = (e, B+1,-1,v) —c(a,f +1,v,-1)
- e, B,-1,v+1)+c(a, B,v,0) F ...
In this sum all but ¢(«,B,v,0) are automatically zero because (o — 1,4,...) <
(e, ,0,v) and —1 occurs. Hence, ¢(a, $,0,v) = ¢(a, B,v,0) = 0, contradiction.

The statements (ii), (iii), (iv) are proved analogously. o

Now we continue the proof of Proposition 3.1. We reduce an element ¢ € Ker(®V)
to 0 mod I'm(e€) using Lemma 3.3.



106

a)

b)
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Assume that the first non-zero coefficient of ¢ is
c(e, B, p,v).
Then by Lemma 3.3 0 < g < v. Then the element

6, = 6— c(":ﬂ#‘a V)C(Ca ® €g ® Uy—1 " uu—l)

belongs to Ker(®"). We have

e(ea ®eg @ upyq - Up—q)

=fa®fﬁ®(zu®xv+zv®xp)

_fot ® fﬂ+1 ® (zu—] ® z, + Ty-1 ® zl‘)

_fa+1 ® fﬂ ® (xu ®zy_1+ T, ® zu-l)

+for+1 ® fﬂ+1 ® (my—l ® Ty 1+2,1Q xu-l)

and therefore ¢’ is a sum of monomials of index > (e, 8, i, v). Hence, we can
assume that £ mod I'm(e) has no coefficient with index (e, 8, g, v).

By Lemma 3.3 we can assume that the first non-zero coefficient of ¢ has index
(o, By, 7) or (a0, B, s, 7). In the first case we know by Lemma 3.3 that 0 < u, v.
When we consider again

61 = 6 - C(aa ﬂal‘a l_’)e(ea ® €g ® Uy-1 " 'av—l)

we have ®V(¢') = 0 and ¢’ is a sum of monomials of index > («, 3, 4, 7). Hence,
we may assume that £ mod Im(€) has ¢(«, 3, i, 7) as first non—zero coefficient.
Again by Lemma 3.3 0 < p,v and

€l = f - C(a,ﬂal—% 17)6(6(1 ® €g ® au—l : au—-l)

is a sum of monomials of index > (a, 8, i, 7).
This finally shows that £ = 0mod Im(e).

This completes the proof of Proposition 3.1.

4

Conclusions

By Proposition 2.1, Proposition 3.1, (11) and Lemma 2.3 we have determined the
space Ext?(€,£). Together with Remark 2.4 we obtain

Theorem 4.1 For any special symplectic k—instanton bundle £ on Papy4q

(1) Et}(€,€) = SY_3 ® SY_s ® SV,

(2) dim Ezt*(€,€) = (k - 2)2(2»;1)

(8) dim Ext'(€,€) = 4k(3n — 1) + (2n — 5)(2n — 1).
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Let MIzn41(k) denote the open part of the Maruyama scheme of semi-stable co-
herent sheaves on P2n4; with Chern polynomial (1 — h’)_’c consisting of instanton
bundles. By [AO1] any special symplectic instanton bundle £ is stable. Therefore,
Exzt'(€,€) can be identified with the tangent space of MIz,41(k) at €. In [AO2)
deformations &£’ of special symplectic instanton bundles in MI,,,,(k) have been
found for n = 2 and k = 3,4 which satisfy Ezt%(€’,€') = 0. This shows that in
these cases there are components M1, (k) of MI;,41(k) of the expected dimen-
sion 4(3n — 1)k + (2n — 5)(2n — 1) containing the set of special instanton bundles.
In particular, see [AQ2]:

for k = 3,4 the moduli space M I5(k) is singular at least in special symplectic bundles.
However, in case 2n + 1 = 3 we obtain the vanishing result of [HN]:

any special k—instanton bundle £ on P; satisfies Ext?(€,€) = 0 and is a smooth
point of M I5(k),

since any rank-2 instanton bundle is symplectic.
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