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Abstract. The theorem of Mather on generic projections of smooth algebraic varieties is also
proved for the singular ones.
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1. Introduction

In [1], a self-contained proof appeared of the following transversality theorem of
Mather on generic projections (see [2]) in the setting of algebraic geometry:

THEOREM 1.1. Let X be a smooth subvariety of codimension c of the complex pro-
jective space Pn . Let T be any linear subspace of Pn of dimension t such that
T \ X � ; (so tW cÿ 1 ). For any i1 W t� 1 let Xi1 � fx 2 X j dim

��TX �x \ T � � i1 ÿ 1g (the dimension of ; is ÿ1). When Xi1 is smooth, for any
i2 W i1 de¢ne Xi1 ;i2 � fx 2 Xi1 jdim��TXi1 �x \ T � � i2 ÿ 1g and so on; for
ik W :::i2 W i1 de¢ne (when possible) Xi1 ; . . . ;ik . For T in a Zariski open set of the
Grassmannian Gr�Pt;Pn�; each Xi1 ; . . . ;ik is smooth (and so the above de¢nitions
are possible) until (increasing k) it becomes empty and its codimension uI in X
can be calculated (where I � �i1; i2: . . . ik�).

We refer to [1] for the calculation of uI and for comments and remarks about the
theorem.

This theorem was stated for smooth subvarieties of Pn but the same proof can also
be used for the smooth open set X of a singular algebraic variety Y except for the
crucial th. 3.15, (p. 409 of [1]), in which the compactness of X is needed.

Geometriae Dedicata 85: 113^117, 2001. 113
# 2001 Kluwer Academic Publishers. Printed in the Netherlands.



In this short note we want to replace the proof in [1] with a little longer proof which
also works in the case under examination. We obtain the following theorem:

THEOREM 1.2. Theorem 1.1 still holds if X is replaced with the smooth open
subvariety of a possibly singular projective variety Y.

2. Background

Let Y be a singular algebraic subvariety of the n-dimensional projective space Pn

over the complex numbers. Let X be the smooth open set of Y . First of all we outline
the proof of Mather's theorem given in [1] and we introduce some notation.

Fix an integer t with 0W tW cÿ 1. Let L be a �nÿ tÿ 1�-dimensional linear sub-
space of Pn.

Let F � fPt 2 Gr�Pt;Pn�jPt \ X � ; and Pt \ L � ;g. For any f 2 F let pf :X! L
be the linear projection centered in f and let jkpf be its k-jet (jkpf :X ! Jk�X ;L�
sends every x 2 X into the k-jet of pf in x, see [1] for the de¢nition of Jk�X ;L�).
Let I � �i1; i2 � � � ; ik� be any sequence of integers with �i1 X i2 � � � X ik X 0�.

Let g:X � F ! Jk�X ;L� be given by: g�x; f � � �jkpf �x.
The proof of Mather's theorem is divided into two steps:

(1) de¢ne in Jk�X ;L� some submanifolds SI with the property that jkpÿ1f �SI � � XI

(when XI are de¢ned), this de¢nition is not trivial and it is due to Boardman:
SI are the so-called Thom^Boardman singularities, they are smooth, locally
closed and of codimension uI ;

(2) show that there exists a Zariski open set U 2 F such that for any f 2 U,
jkpf : X ! Jk�X ;L� is transversal to SI.

The proof of step (1) runs exactly as in [1].
To prove step (2) ¢rst we remark (see [1], prop. 3.13) that for any smooth

subvariety W � Jk�X ;L� there exists a Zariski open set U 2 F such that for any
f 2 U , jkpf :X ! Jk�X ;L� is transversal to W if g is transversal to W . Second,
we give the following de¢nition: let j:X ! Jk�X ;L� be a holomorphic map and
let W � Jk�X ;L� be a smooth subvariety, then de¢ne:

d�j;W ; x� � 0 if j�x� =2W

d�j;W ; x� � dim�Jk�X ;L�� ÿ dim�TWj�x� � dj�TX �x�; if j�x� 2W , where TW and
TX are the tangent spaces and d stands for the usual differential.

Note that d�j;W ; x�X 0 and that j is transversal to W at x if and only if
d�j;W ; x� � 0 .

As in [1], th. 3.10 and 3.11, it can be shown that for W � SI � Jk�X ;L� the
following condition ��� is satis¢ed:

��� d�g;W ; �x; f ��W d�jkpf ;W ; x� for any �x; f � 2 X � F and equality holds if and
only if d�jkpf ;W ; x� � 0.
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Therefore to prove step (2) all that we need is the following:

THEOREM 2.1. With the previous notation, assume that condition ��� is satis¢ed for
some smooth subvariety W � Jk�X ;L�; then there exists a Zariski open set U 2 F
such that for any f 2 U; jkpf :X ! Jk�X ;L� is transversal to W.

The proof of this theorem (th. 3.15 in [1]) must be rewritten in our case. In Section
3 we will give this proof and so we will also prove Theorem 1.2.

3. Proof of Theorem 2.1

Let us de¢ne dg � Sup�x;f �2X�F fd�g;W ; �x; f ��g; moreover, let us de¢ne
A � f�x; f � 2 X � F jd�g;W ; �x; f �� � dgg � X � F , A is a Zariski closed set in
X � F . Note that Theorem 2.1 is true if dg � 0 (see th. 3.13 in [1]), so we can assume
dg 6� 0 and A 6� ;.

Let p2:X � F ! F be the natural projection. X � F is equipped with the induced
Zariski topology from Y � F . Let �A be the Zariski closure of A in Y � F ; let
p3 : Y � F ! F be the natural projection, p3� �A� is a Zariski closed set of F . If
p3� �A� is a proper subset of F , we can consider F 0 � Fnp3� �A� and g0 � gjX�F 0 .
The assumptions of the theorem are true for F 0 and g0 and dg0 < dg. If the corre-
sponding p3� �A� were a proper subset of F 0, we would get F 00 and g00 and so on. After
a ¢nite number of steps, we would get F 0 and g0, for which the assumptions would
be still true, with dg0 � 0, so the theorem would be proved.

Hence, we have only to prove that p3� �A� is a proper subset of F .
By contradiction, let us assume that p3� �A� � F , then F � p2�A�.
We can choose �x0; f0� 2 A and z0 � �jkg��x0;f0� 2W . As d�g;W ; �x0; f0�� is strictly

positive, by assumption we get that d�jkpf0 ;W ; x0� is strictly positive too, hence
jkpf0 is not transversal to W at x0.

W is smooth at x0 so it is a local complete intersection, then it is possible (see [1],
proof of th. 3.15) to get a smooth subvariety W 0 � Jk�X ;L� and a smooth dense
open Zariski set Z � X � F such that: W �W 0, dim�W 0� ÿ dim�W � � dg, g is
transversal to W 0 at �x; f � for any �x; f � 2 Z.

The holomorphic map gjZ:Z! Jk�X ;L� is transversal to W 0 so that
gÿ1jZ �W 0� � gÿ1�W 0� \ Z is smooth in X � F .

Let us consider

p � p2jgÿ1 �W 0 �\Z � p3jgÿ1 �W 0 �\Z : gÿ1�W 0� \ Z! F :

It is easy to see that

(1) p2�A \ Z� � F .

Hence F � p2�Z�. Moreover F � p2�gÿ1�W 0��, otherwise there would exist a
Zariski open set B � F such that B \ p2�gÿ1�W 0�� � ;, hence for any f 2 B and
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for any x 2 X , �x; f � =2 gÿ1�W 0�, i.e. g�x; f � =2W 0, i.e. g�x; f � =2W , i.e. for any f 2 B
and for any x 2 X , d�g;W ; �x; f �� � 0 and the theorem would be immediately proved
(see th. 3.13 of [1]).

It follows:

p2�gÿ1�W 0� \ Z� � p2�gÿ1�W 0�� \ p2�Z� � p2�gÿ1�W 0�� \ p2�Z� � F ;

therefore:

(2) p�gÿ1�W 0� \ Z� � F .

Now we consider the holomorphic map p: gÿ1�W 0� \ Z ! F between smooth
manifolds, as �2� holds there exists a Zariski open set D � F such that for any
f 2 D pÿ1�f � is smooth and of the expected codimension.

By �1� �p2�A \ Z�� \D 6� ;, then we can choose f1 2 �p2�A \ Z�� \D such that
pÿ1�f1� is smooth, of the expected codimension and biholomorphic to a Zariski open
set of �jkpf1�ÿ1�W 0� � X . We can also choose x1 2 X such that �jkpf1 �ÿ1�W 0� is
smooth, of the expected codimension and smooth at x1. This fact implies that
jkpf1 is transversal to W 0 at x1, (see [1], th. 1.2), i.e. d�jkpf1 ;W 0; x1� � 0.

On the other hand f1 2 p2�A \ Z�, hence it is possible to choose x1 2 X such that
�x1; f1� 2 A, i.e. d�g;W ; �x1; f1�� � dg.

Let z1 � �jkpf1 �x1 then:

d�jkpf1 ;W 0; x1� � dim�Jk�X ;L�� ÿ dim��TW 0�z1 � djkpf1�TX �x1 �

d�jkpf1 ;W ; x1� � dim�Jk�X ;L�� ÿ dim��TW �z1 � djkpf1�TX �x1 �
and

0 � d�jkpf1 ;W 0; x1�X d�jkpf1 ;W ; x1� ÿ dg:

But assumption ��� and the fact that �x1; f1� 2 A imply:

0X d�jkpf1 ;W ; x1� ÿ dg > d�g;W ; �x1; f1�� ÿ dg � dg ÿ dg � 0;

a contradiction!

4. Cones

In this brief section we want to remark that when Y is a cone, it is possible to use
Mather's theorem (1.1). For instance, let us assume that Y is a cone in Pn of vertex
V on a smooth subvariety B of Pn whose span is Ps with
dim�Y � � g � b� v� 1; dim�B� � b; dim�V � � v; n � s� v� 1.

Let T be a generic t-dimensional subspace of Pn with: T \ Y � ;, tW gÿ 1,
gX �t� 1��nÿ g�. Let Yt�1 � fy 2 Y j y is a smooth point, �TY �y � Tg.
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If Y were smooth Mather's theorem (1.1) would say that, for generic T , Yt�1 is a
smooth subvariety of Y and dim�Yt�1� � gÿ �t� 1��nÿ g�, in our case we have:

PROPOSITION. The closure of Yt�1 is a cone of dimension gÿ �t� 1��nÿ g� with
vertex V over a smooth variety.

As Y is a cone we remark that tW sÿ 1 �tW nÿ gÿ 1 � sÿ bÿ 1�, hence there
exists a linear subspace H ' Ps in Pn such that H � T and H \ V � ;. We can
assume that B � H \ Y and we can apply Theorem 1.1 to Ps, T and B as B is smooth,
T \ B � ; and T is generic in Ps with respect to B. If tW bÿ 1 and bX �t� 1��sÿ b�
(for instance when t � 0 and 2bX s) then Bt�1 � fy 2 Bj�TB�y � Tg is a smooth
subvariety of B and dim�Bt�1� � bÿ �t� 1��sÿ b�. On the other hand, �TB�y � T
if and only if �TY �y � T as �TY �y � hV ; �TB�yi i.e. �TB�y � �TY �y \H, hence
Yt�1 \H � Bt�1 and the closure in Y of Yt�1 is another cone of vertex V over
Bt�1. This cone has dimension bÿ �t� 1��sÿ b� � v� 1 � gÿ �t� 1��nÿ g� which
is exactly the expected dimension when Y is smooth.

Acknowledgements

All authors are members of Italian GNSAGA. Work supported by Murst funds.

References

1. Alzati, A. and Ottaviani, G.: The theorem of Mather on generic projections in the setting
of algebraic geometry, Manuscripta Math. 74 (1992) 391^412.

2. Mather, J. N.: Generic projections, Ann. of Math. 98 (1973), 226^245.

MATHER'S THEOREM ON GENERIC PROJECTIONS 117


