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Let Mpa(c1, c2) be the moduli space of stable rank-2 vector bundles on P? with Chern
classes c1, c2. We prove the following results: (1) Let k,3,v be three integers such that
k>0,0<B <y, v22, ky—(k+1)3 > 0; then the moduli space Mps (0, kv — (k+1)32)
is singular (the case k = 2, 8 = 0 was previously proved by M. Maggesi).

(2) Let k,(3,v be three integers, with 8 and 7 odd, such that & > 0, 0 < 8 < 7,
725, ky—(k+1)3+1 > 0; then the moduli space Mps (—1, k(v/2)® — (k-+1)(3/2)%)+1/4
is singular.

In particular Mps (0,5), Mpa(—1,6) are singular.
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0. Introduction

The first examples of singular moduli spaces of stable vector bundles on a pro-
jective space were found by the authors in [1], where it is shown that the symplectic
special instanton bundles on P® with second Chern class ¢, = 3, 4 correspond to sin-
gular points of their moduli space. Later R. M. Miré-Roig [10] detected an example
in the case of rank-3 vector bundles on P3.

We denote by Meps(cq,c2) the moduli space of stable rank-2 vector bundles on
P? with Chern classes ¢, ¢o.

In spite of the vast literature concerned with rank-2 bundles on P?, there were
no examples in this case until recently, when M. Maggesi [9] has proved that pulling
back some particular instanton bundles with second Chern class co = 2 by a finite
morphism P* — P? one always obtain singular points in the corresponding moduli
spaces. More precisely for any integer d > 2 the moduli space Mps(0,2d?) is
singular; d = 2 gives Mps (0, 8).

*Both authors were supported by MURST and by GNSAGA of CNR; 1991 MSC: 14F05.
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408 V. ANCONA and G. OTTAVIANI

The above result suggests that singularities must be expected in Mpsa(cy,e2)
with only a few exceptions.

The ajm of the present paper is in fact to prove that Mps (e, cz) is singular for

a very large class of values of (¢1,cz) (including odd ¢;’s). The idea is to replace

the usual pull-back by the more general construction of “pulling back over o=,

introduced in [7] and developed in [2]. The results are the following:

(1) Let k, 3,y be three integers such that k > 0, 0 < 8 <, v > 2, ky—(k+1)3 > 0;
then the moduli space Mps (0, kv? — (k+ 1)3?) is singular. In particular taking
k=2, v=2,8=1, we obtain that Mps(0,5) is singular; in this case the
singular points we have detected lie in the closure of the open set consisting of
instanton bundles [12].

(2) Let k, 3,y be three integers, with 3 and + odd, such that k£ > 0, 0 < 8 < 7,
¥ =5, ky—(k+1)8+1 > 0; then the moduli space Mps(—1,k(v/2)? - (k+1)
(8/2)%) + 1/4) is singular. In particular Mps(—1,6) is singular (take k = 2,
v =5; 8 =3).

1. Let P® = P3(V) be the projective space of hyperplanes in V.

In particular H°(P3,O(1)) ~ V.
A special instanton bundle is a bundle E € Mps (0, k) such that h!(E(—2)) = 0

and h°(E(1)) = 2.

According to [3, Sec. 3] a special instanton bundle with ¢z = k is the cohomology
bundle of a monad

Hoo(-1)5H 20 1) K00, (1.1)

where H (resp. K) is a complex vector space of dimension k (resp. 2k — 2) and the
map B’ factors through the diagram

H* @ QY1)
o
H'QV®R®O -.— KO
B.’

In the above diagram the map e is obtained by the dual Euler sequence and B’ has
the matrix representation

/ t

vy

where {z,z’,y,y'} is a basis of V* .

Let {a,b,c,d} be a basis of V dual to {2/, —z,y, —y}. Let us write V=U U
so that (a,c) and (b,d) are coordinates in U @ 0 and 0 ® U respectively.
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It is straightforward to check that the above diagram completes to the following:
0
H* @ Q'(1)

0 — TRO— H*'QVRO ZLHK® — 0
AN

H*®0(1)
|
0

where 7' is a complex vector space of dimension 2k+ 2 and the matrix representation
of A is

a b c d
a b ¢ d
a b c d
Consider now the following diagram:
0 0

Oe s (Bt Lo RO K 9O b0

u |

00— T —HoeVe0 — K0 —0
A
HEO{L) =" HEgO(1}

0 0

From (1.1) it follows that H C H°(K(1)) =: H'.
H' corresponds to the linear syzygies of A and the natural composition

H @0(-1)-5K-5TR0

has the matrix representation

—c —d
—c
—d
—c —d
a b
a
b
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According to [3, Sec. 3.4] the map M of the monad (1.1) factors through the
diagram

4 H*@ ANV @ O(-1)
‘ R IM" N el
Heo(-1) <  Heo(-1) X mgal),
N U luccx F
K

where ¢’ is the natural map, « is represented by the Hankel matrix

[o%)) 16 5 N ¢ 7 |
aq Gz ... Qg2

Qp1 Q... (8533
and R has the matrix form
Az (zAy —2' Ay) yAy

/

Az (zAYy —2'Ay) yAy

Hence the composition
H®O(-1) vewa oo 4, g g o)
gives a symplectic monad. The Proposition 3.5 of [3] translates easily to the follow-

ing statement.

Proposition 1.1. Let E be q special instanton bundle belonging to Mps vy
(0,k). One can choose a splitting V. = U @ U and homogeneous coordinates (a,b)
onU@0, (¢,d) on 0D U such that E is the cohomology bundle of the monad

C* @ Opa (1) 5 UF @ Ops 2 CF @ Ops(1), (1.2)
where A (resp. B) is a k x (2k + 2) (resp. (2k + 2) x k) matriz given by
a b c d
a b c d
A= . — (1.3)
a b c d
=t —d
—c
p i Qp e Okt
—c —d X1 D wns [07'NE)
B= % . %
0 b : (1.4)
a . Cp—1 Qg ... Qo
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and ay, ..., qg, are constant coefficients subject to the condition
&p ] — e
g 23] Q2 e Qf+1
Ji=det | . . : #0. (1.5)
Q. Qg cee Q2

Conversely every cohomology bundle of a monad (1.2) satisfying the above conditions
is a special instanton bundle E € Mps(0,k).

Let us recall the following classical:
Lemma 1.2. The complezx polynomial J defined in (1.5) is irreducible.

The condition

(8] 1 i W K
g Qo ve i1

rk| . . ) <1
Q. Oyl (03,3

defines a rational normal curve C' in the projective space P?* hence the condition

(a7} (05} — [N
(0%} (03} -~ Q41

k| . . . <p
Q. P Qo

defines the locus spanned by the (p — 1)-dimensional linear subspaces which are
p-secants to C. It follows that J = 0 defines the locus spanned by the (k — 1)-
dimensional linear subspaces which are k-secants to C', which is well known to be
irreducible.

From now on, let us fix homogeneous coordinates (a, b,¢,d) on P(V) = P(UaU)
as above. There is a natural action of SL(2) 2 SL(U) on the matrices A and B
through the transformations

(6)=9(2)(8) »o(3) weszen

It follows that SL(2) = SL(U) acts on the monad (1.2), hence on its cohomology
E. More precisely, for g = (5_; g}) let

g, = (mI(k+1) yI(k-‘r—l) )
7 2l(kv1) Wik

It is easy to check that g*A = AQ,, ¢*B = Q;lB , which implies that the monads
(A, B) and (g* A, g* B) are equivalent. Moreover, the monad (1.2) is SL(U)-invariant
(SL(U) acts trivially on C* and diagonally on U*+1).
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We recall that the minimal resolution of a vector bundle ¥ on the projective
space is by definition the sheafification of the minimal resolution of the module
@iGzHO{@E(t)).

Lemma 1.3. The bundle E defined by the monad (1.2) admits the following
SL(U)-invariant minimal resolution:

0= SF1U @ Ops(—k — 2) — (S*U)? @ Ops(—k — 1)

— [SHLU @ Ope (k)] & [C? @ Ops(—1)] » E 0 . (1:6)

Proof. We prove first that the minimal resolution of I has the form

0= We® Opa(—k — 2) - Wi ® O[Em(*k — 1)
— [Wo ® Opa(—k)] @ [C* @ Ops(—1)] = E = 0, (1.7)

where dim Wy = k + 2, dim W7 = 2k + 2, dim Wy = k.
We denote by S the graded module Cla, b, ¢, d]. It is sufficient to check that the
following sequence of free S-modules is exact

0= Wa®S(—k—2)-13W, ® S(—k—1)
s [Wo ® S(—k)] @ [CF2 @ S(-1)]-SU @ SSCr @ 5(1),  (18)

where A has been defined in (1.3) and f3, v,  are described below. (3 is defined by

the blocks (g; gz) where B;’s are (k + 1) x (k + 2) blocks whose nonzero entries
are

(B1)ij i=—cfor1<i=j<k+1, —dfor1<i=j—-1<k+1
(Ba)ij = (—1)at I T for 1 < j<i<k+1
(Bs)iji=aforl<i=j<k+1, bforl<i=j—-1<k+1

(

By)ij i= (—1)HpF i3 1@~ for 1 <i<j—-1<k+1

v is defined by the blocks (g; gj) where Cy’s are (k + 2) x (k + 1) blocks whose

nonzero entries are
Ch)ii = (—1)Hpk 3t 1@ for 1 <i<j<k+1
7
(Co)is 1= (1) Hat T2 1 fr 1 < j i~ 1< k41
(C3)iji=cfor1<i<j<k+l,aforl<i-1<j<k+1

(Colij = —dfor 1<i<j<k+1, —bfor1<i—-1<j<k+1
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d is defined by the blocks (g;) where D;’s are (k + 1) x k blocks whose nonzero
entries are

\q
)

(D1)ij:=dfor1<i=j <k, bforl<i—-1=j<k

(Da)ij:==cfor1<i=j<k,afor1<i—1=j<k

It is easy to check that the above sequence is a complex. In order to prove the
exactness one checks that the ranks of the matrices A, B, 7, 0 are constant on every
point of P? and precisely their values are

thkA=k rhkB=k+2 rhy=k+2 rkd=k

In fact it is easy to extract suitable minors of the right order from the above matrices
whose values are equal to some powers of the indeterminates. Now the exactness
follows by the criterion of Buchsbaum and Eisenbud [4, Theorem 20.9]. In this
special case a direct argument can be supplied. In fact the exactness of the sheafi-
fied sequence of (1.8) follows because at each step of the sequence the Image is
a sub-bundle of the Kernel of the same rank. Then the sheafified ker 3 satisfies
H'(ker8(t)) =0 Vtc Z.

The minimal resolution is clearly SL(U)-invariant; hence the vector spaces Ws,
W1 and Wy are representations of SL(U)(e.g. W3 is the subspace of degree k + 2
elements in Tor} (P, 4 HO(K(t)), C), where SL(U) acts, see [5]); (1.6) follows by
computing the cohomology groups of suitable twists of E as SL(U)-representations
from (1.7) and comparing them with the analogous results obtained from (1.2). O

From (1.6) we find

Lemma 1.4. H°E(t) = C*@ S (U @U) for 1 < ¢t < k—1 as SL(U)-
representations; moreover, for t > k HPE(t) is a direct sum of symmetric powers
S™U) with0 <m < t+1.

Our next aim is the computation of H! End E(-2) for a bundle E defined
by the monad (1.2.) Following [8, Sec. 4] H! End E(—2) is the kernel of a linear
homomorphism

§:AN2H — A2H*

where H = H'E(—1) is a k-dimensional complex vector space. In our case H =
CF as SL(U)-representation (from (1.2)), and § is a morphism of representations;
moreover, I = I(ag,...,az;) = det § is a polynomial in the coefficients Qg .. .09k

appearing in the matrix (1.4). Hence

Lemma 1.5. H' End E(-2) = C" as SL(U)-representation, 0 < r < (A,
Moreover, H' End E(—2) = 0 if and only if I, ..., a0r) # 0.
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Remark 1.6. Both the cases H'End E(—2) = 0 and H'End E(-2) # 0 really

occur. Let J = J(ag,...,a2;) be the polynomial (1.5); the first case corresponds
to bOlU.thJ"l‘a of I(ag,.-.,a2) # 0, J(ao,...,az) # 0; the second to solutions of
Iay, .. azk) — 1 J(ag,...,agk) = 0, which exist because the polynomial .J is

irreduc1ble by the lemma. In fact if J = 0 when I = 0 then it follows from the
NullstellenSatz that I divides a power of J. Since J is irreducible it follows that T
is equal (up to a constant) to a power of J, which is impossible for degree reasons.
Indeed the formula in Remark 2 at page 90 of [8] gives deg I = k(k — 1) while
deg J =k + 1.

2. Let 0 < 8 < v be two integers; let f1,..., f4 be homogeneous polynomials in
the variables a, b, ¢, d without common zeroes of degree vy — 3, v — 3, v+ 8, v+ 0
respectively. Let us take into account the diagram:

CHh0 = €%\

i ]

P3 p3

where w is defined by fi,..., fa.

According to [2, 7], from any bundle E defined by the monad (1.2) we construct a
rank-2 bundle Ej -, such that n*Es , = w*n*E. The bundle Ej ., is the cohomology
of the monad

CF @ Ops (—7y) 22 y*+1 Baay CF @ Ops (), (2.1)

where U = Ops(—F) ® Ops(3), and Ap , Bp - are obtained from the matrices A,
B in (1.2) replacing a,b,c,d by fi, f2, f3, fa respectively.
In particular the Chern classes of Eg ., are ¢; = 0,c2 = ky* — (k+ 1)32.
Of course Ep ., depends on fi,..., f1 but for simplicity we omit this fact in the
notations.

The cohomology groups of Eg ., (t) can be computed by [2, Sec. 2] in particular,
Theorem 2.6 of [2] can be rephrased as follows (SL(U) acting on P? here plays the
same role of SL(W) acting on P®° there).

Theorem 2.1. Let H'E(t) = T*(U) where T* is a representation of SL(U).
Then

W Egy(t) =) Z( 1)’h° /J\ (U*(—7)) @ T"(U) @ Ops(t — hv)

heZ j=0

In practice the groups hiEg.(t) can be computed as follows. Let s, the
dimension of the the degree p summand of the artinian algebra S = Cla,b,c,d|/
(f1s f2, fs, fa); for h € Z we write

THU)(hy) = @Opa fs.h) (2.2)
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Let
bo(E) = t{(s, ) : psn = q} . (2.3)
Then Y
- WBy(t)= 3 spby(E). (2.4)
Moreover, 7
5p=3 (~1)7h° [/\ U2 ® Ops (p - m} . (2.5)
3=0

The formulae (2.4), (2.5) are easy adaptations of Theorem 2.1.

The above formulae still hold if we replace Eg (resp E) by End Ep., (resp
End E). More precisely let H* End E(t) = RYU) where R! is a representation of
SL(U). Then

' End Bp o (t) = ) > (=1)in° [/\ (U*(—7)) ® R*U) @ Ops(t — m)J ;

heZ j=0

Proposition 2.2. Let E be defined by the monad (1.2). Then Eg ., is stable if
and only if ky — (k+ 1) > 0.

Proof. We need to show that h°Ej ., = 0 iff ky — (k+1)3 > 0. We compute
h°Ep ., substituting ¢+ = 0 in the formula (2.4). Since h°E(h) = 0 for h < 0 and
sp = 0 for p < 0, a contribution to the right-hand side of (2.4) can occur only
for ¢ < 0. By Lemma 1.4 the integers Ms,n appearing in (2.3) are strictly positive
for 1 < h < k-1, while for h = k we have T*(U)(2y) = S (ky) ® [CF @
SE=HU) (ky)] = @D, Ops (1s,1) with inf{ps} = by — (k + 1)8; for h > k we have
ky—(k+1)B<hy—(h+1)8< infg{ps n}; the conclusion follows.

Let us denote by SZ(k) the family of special instanton bundles defined by the
monad (1.2) as in Proposition 1.1 for a fixed system of coordinates.

It is clearly a flat family of vector bundles on IP?, parametrized by the scheme
8=C%H\{7-40}. L

Main Theorem I. Let 0 < 3 < ~ be two integers (y > 2), such that ky —
(k+1)8 > 0. Let E be a special instanton bundle belonging to SZ(k) such that
h' End E(—2) # 0 (such E ezists by Remark 1.4). The moduli space Mps (0, kv —
(k+1)3?) is singular at the point corresponding to the bundle Eg. .

Proof. By Proposition 2.2 we can define a natural map

SZ(k) = Mps(0,ky? — (k +1)82)
[F] — [Fﬁn]

which is clearly algebraic.
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Let E be as in the statement. In any neighborhood of its class [E] € SZ(k) there is
a [F] with h' End F(—2) = 0. Moreover we can suppose that V¢ € Z H! End F(t)
is a direct summand of H' End E(t) as a SL(U)-module; this can be checked as
follows. The minimal resolutions of E and F contain the same SL(U)-modules by
(1.6). It follows easily that

HY(E(t)) ~ H'(F(t)) Vi=0,...3, Vt&Z (as SL(U)-modules) (2.6)

By tensoring the resolution of E (resp. F') with the bundle £ (resp. F) itself, we
get the two sequences

0— S 'U @ E(~k-2) — (S*U)*® BE(-k—1)

- [S*U ® E(—k) @ [C*® E(-1)] =+ End E = 0 (2.73
0= SFlURF(—k—2) = (S*UP @ F(—k - 1)

5 [S*'U @ F(—k)| @ [C* ® F(-1)] = End F — 0. (2.8)

By (2.6), (2.7) and (2.8) it follows that H' End E(t) and H' End F(t) can
be computed from sequences containing exactly the same SL(U)-modules, then a
semicontinuity argument shows that V¢ € Z H' End F(t) is a direct summand of
H' End E(t) as a SL(U)-module. Hence if we write the formulae (2.4)

h' End Egy= Y spbg(End E), ' End Fa, = S spbe(End F)
pq=0 p+g=0

we see that by(End E) > by(End F) for g # 2, while h' End E(-2) # 0 forces
by, (End E) to be strictly greater than bay(End F)). As a consequence

h! End Eg~ > h' End Fjs
which clearly implies that [Eg | is a singular point of Mps(0,ky* — (k + 1)p%). O
Taking k = 2,y = 2,3 = 1 we obtain:
Corollary. Mp:(0,5) is singular.

In this particular case the singular points we have detected lie in the closure
of the open set consisting of instanton bundles (see [12]). In fact (e.g. by [12]) the
bundle E1 > just obtained for £ = 2 has spectrum (-1,-1,0,1,1). By Theorem 2.14
in [12] E1  lies in the closure of instanton bundles. Moreover by [12] it follows that
no component of M(0,5) containing the special instanton bundles can meet any
other component in a point corresponding to the spectrum (-1,-1,0,1,1) and
we have such a point which is singular, it follows that any component of M (0,5)
containing the special instanton bundles is singular. It would be interesting to know
whether the same property is true in the general case.

Let us remark that taking k = 2,3 = 0 we recover the result of [9].




ON SINGULARITIES OF M pa(c1,cz) 417

The above result applies to a large set of values of ¢5. As a sample one checks
on a computer that in the range 5 < ¢o < 2000 there are no more than 300 gaps.

3. In this' section we deal with singularities of the moduli spaces Mps(—1,¢cp). Let
0 < B < 7 be two odd integers; let f1,..., f4 be homogeneous polynomials in the
variables a,b, c,d without common zeroes of degree (v — 3)/2, (v — 3)/2, (v +
B3)/2, {7+ )/2 respectively. We can construct the monad

C* ® Ops (— (v + 1)/2) 281223 Wht1 Borzasz CF @ Opa ((y — 1)/2) (3.1)

where W = Ops(—(8+1)/2)® Ops((8—1)/2), and Apjay2, Baja,yy2 are obtained
from the matrices A, B in (1.2) replacing a, b, ¢, d by f1, f2, fa, f1 respectively.
The cohomology of the monad (3.1) is a rank-2 bundle Ej/5 ., /2 whose Chern classes
are ¢; = —1,c2 = k(v/2)> — (k+1)(8/2)® + 1/4.

Let Eg . be defined as in Sec. 2 by the monad (2.1), via the homogeneous
polynomials fy(a?,b%,c?,d?),..., fa(a®,b2,¢?,d?). Then fort € Z,

W*Eg/g,v/g(t) = Eﬁ:'}”(2t = 1) 5 (32)

where 7 : P> — P2 is the finite morphism defined by mlagbie,d) = (o 052, d°).
Moreover

7*End Eps . /5(t) = End B, (2t) (3.3)

In order to compute the cohomology groups of of End Ej /2,v/2(t) let us consider
a more general setting. Let us denote by w : C*\0 — C*\0 the mapping defined by
f1,---, fa, and by n : C*\0 — P3 the projection. Let E,G be bundles on P3 such that
E is endowed with a SL(U)-action, and n*7*G = w*n*E. Let H'E(h) = T"U),
where T" is a representation of SL(U); let V = Ops(—0/2) @ Ops(B/2). Vis a
Q-bundle, one easily checks that T"(V)(hv/2) = @, Ops(vs 1) with 2v, , € Z. As
in Sec. 2 we define s, as the dimension of the degree p summand of the artinian
algebra S = Cla, b,¢,d]/(f1, f2, fa, f1); for 2q € Z let

aq(E) = #{(s,h) : vsp = q}

Then

Theorem 3.1. Let us suppose that aq(E) =0 for q ¢ Z. Then
WG(t) = Y spaqn(E) (3.4)

ptg=t

Proof. Let F' = n*G. Then by the classical projection formula
h'F(2t) = K'G(t)op + h*G(t — 1)oa + R'G(t — 2)oy,

RF(2t — 1) = h'G(t — 1)o1 + KG(t — 2)o3, (3.5)
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where o; is the degree i summand of the artinian algebra Cla,b,c, d]/(a? b, d )
On the other hand by (2.2), (2.3) and (2.4)

WE(l) = Y mpbm(E), (3.6)

p+m=l

where
bm(E) = H{(S1 h) ‘s h = m}=

and 7, is the degree p summand of the artinian algebra C[a,b,c,d]/(flz,ff, fgg,
f42). By construction pisn = 2w 1, hence

bam(E) = am(E), (m € Z) (3.7)
and the assumption implies
bzm,,l(E) =1, (m S Z) . (38)

We can view Egs. (3.5) as a linear system whose unknown are h'G(t). Since the
solutions of the system are clearly unique, in order to verify (3.4) it is enough to
check that the right-hand sides of (3.4) for ¢ € Z are solutions of (3.5). O

This follows easily from (3.6), (3.7) (3.8) and the identities

Top = 8p00 + Sp—102 + 8p—204,
Tep 1 = Sp—101 + 5p—203

Let us check for example the first equation of (3.5):

Z s5paq(E)oo + Z spaq(E)o2 + Z 5p0q(E)oy

p+gq=t ptg=t—1 pgq=t—2

= Z Spaq(E)o'0+ Z Sp—laq(E)aer Z sp-1aq(E)os

ptq=t p+g=t ptg=t

= 3 bag(E)(sp00 + sp-102 + 8p—204)
prgq=t

= Z bag (E)T'Zp

ptg=t

ST rophag(B) = RIF(2t) .

2p+2q=2t

I

As a consequence we get
Corollary 3.2. h' End Egja/2(t) = 2 piq=t spaq(End E).

Proof. a,(End E) = 0 for g ¢ Z follows tensoring by E the sequence (1.6). [
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Main Theorem II. Let 0 < 3 < v be two odd integers (y > 5), such that

ky—(k+1)3+1> 0. Let E be a special instanton bundle belonging to ST (k) such
that h' End E(—2) # 0. The moduli space Mps(—1,k(v/2)% — (k+1)(8/2)%)+1/4)
18 sz'ngwlm"d at the point corresponding to the bundle Eg /2, /2-

The proof is similar to the proof of the main theorem I. The condition kv —

(k+1)B8+1 > 0 ensures by (3.2) the stability of Eg/2,/2, while the condition y > 5
implies s, # 0 in Lemma 3.2.

Taking k=2, v =5, 3 = 3 we obtain:

Corollary. Mgpa(—1,6) is singular.
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