
Symplectic bundles on the plane, secantvarieties and L�uroth quartics revisited
GiorgioOttaviani

Contents

1. Introduction (3).

2. Notations and generalities on higher secant varieties (6).

3. Strassen equations and the tensors 3× n× n (8).

4. The symmetric tensors 3× n× n (10).

5. Generalities on plane curves as linear symmetric determinants (12).
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Abstract

Let X = P2 ×Pn−1 embedded with O(1, 2). We prove that its k-secant

variety σk(X) is a hypersurface for k = 3n

2
− 1, n even, n ≥ 4, while

it is expected that it fills the ambient space. The equation of σk(X)

is the symmetric analog of the Strassen equation. When n = 4 the

determinantal map takes σ5(X) to the hypersurface of Lüroth quartics,

which is the image of the Barth map studied by LePotier and Tikhomirov.

This hint allows to obtain some results on the jumping lines and the Brill-

Noether loci of symplectic bundles on P2 by using the higher secant

varieties of X.

AMS Subject Classification. 14J60, 14F05, 14H50, 14N15, 15A72

1. Introduction

A Lüroth quartic is a quartic plane curve which has an inscribed complete

pentagon. By a naive dimensional count (see Rem. 6.10), one expects that

the general quartic curve has such a inscribed pentagon. The classical theorem

of Lüroth, published in 1869, says that a Lüroth quartic has not only one,

but infinitely many inscribed pentagons. In equivalent way, Lüroth quartics

form a hypersurface in the space of quartics, so destroying the naive numerical

expectation. One century later, Barth showed [Bar] the remarkable result that

the curve of jumping lines of a rank 2 stable bundle with (c1, c2) = (0, 4) on

P2 is a Lüroth quartic. Lüroth’s theorem became again popular, and Barth

gave in [Bar] a new proof of it by using vector bundles. The equation of the

Lüroth hypersurface is a interesting SL(3)-invariant, and its degree, which is

54, turned out to be the first nontrivial Donaldson invariant of the plane.

Denote byM(2, n) the moduli space of stable 2-bundles on P2 with (c1, c2) =

(0, n). The morphism which associates to any E ∈M(2, n) its curve of jumping

lines is called the Barth map.

Le Potier and Tikhomirov finally showed [PT] that, conversely, a general

Lüroth quartic is the curve of jumping lines of a unique bundle E ∈ M(2, 4).

They generalized this fact by showing that the Barth map from M(2, n) to the

variety of plane curves of degree n is generically injective.

The second subject of this paper is the higher secant varieties. For a projec-

tive variety W ⊂ Pm of dimension n, the k-secant variety σk(W ) is the closure
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of the locus spanned by k independent points in W . The expected dimension

of σk(W ) is min{m, kn+ (k − 1)}. When dimσk(W ) < min{m, kn+ (k − 1)}

we say that W is k-defective.

A theorem due to Strassen [S] says that Y = P2 × Pn−1 × Pn−1 with its

Segre embedding is k-defective for n odd, n ≥ 3, k = 3n−1
2 . Indeed, despite of

the numerical naive expectation that σk(X) fills the ambient space, Strassen

proved that σk(X) is a hypersurface and gave an equation for it, see Rem. 3.3.

This equation is called the Strassen equation and it was later generalized in

the papers [LM] and [LW], where it was put in the setting of invariant theory.

In [CGG1] and in [AOP] it was studied the defectivity of Segre varieties, and

in [AOP] it was proposed a conjecture about which Segre varieties are indeed

defective. The equations of higher secants of Segre varieties are studied, among

others, in [LM] and [LW]. The case P2 × Pn−1 × Pn−1 for n odd is probably

the most interesting known class of defective Segre varieties, and its description

escaped the geometric techniques working in the other cases.

The starting point of this paper was the observation that Strassen equations

are (almost) identical to the equations called α3 by Barth in [Bar]. This is a

interesting link between secant varieties and vector bundles, and we tried to

explore further this connection.

A linear algebra approach to Y = P2 × Pn−1 × Pn−1 in the spirit of [Bar]

gives quickly a proof that Strassen equation define the hypersurface σk(Y ) for n

odd, n ≥ 3, k = 3n−1
2 . This is explained in section 3 (see Thm. 3.2). The main

argument is the following. Let P2 × Pn−1 × Pn−1 = P(U) × P(V ) × P(W ).

For any φ ∈ U ⊗ V ⊗W , we consider the contraction operator

Aφ : U ⊗ V ∨−→∧2 U ⊗W

If φ ∈ Y then rkAφ = 2, it follows that if φ ∈ σk(Y ) then rkAφ ≤ 2k.

So, for k = 3n−1
2 , the tensors φ ∈ σk(Y ) have a degenerate Aφ and cannot be

general. The Strassen equation is simply

detAφ = 0

A natural generalization to the symmetric case is given in section 4.
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The symmetric case corresponds to the Segre-Veronese variety X = P2 ×

Pn−1 embedded by O(1, 2). We prove that it is k-defective for n ≥ 4, n even,

k = 3n
2 − 1, see Thm. 4.1.

Note that the defective cases appear with n odd in the Segre case and with

n even in the Segre-Veronese case, adding a touch of intrigue.

Our next result is a proof of Lüroth’s theorem (Thm. 6.5) by using the

defectivity of the above Segre-Veronese X . In other words, the failure of the

numerical expectation in Lüroth theorem and in Strassen theorem are two faces

of the same phenomenon.

The vector bundles E ∈M(2, n) were studied in [Bar] as cohomology bun-

dles of Barth monads

I∨ ⊗O−→V ∨ ⊗ Ω1(2)
f

−→V ⊗O(1)

where V is a vector space of dimension n and I is a vector space of dimen-

sion n − 2. The Lüroth quartics are defined by the symmetric determinantal

morphism ∆ of f ∈ P(U ⊗ S2V ) when n = 4 (see [D] and [DK]). An easy but

crucial remark is that the linear map H0(f) is the symmetric analog of Af ,

and it is denoted by Sf . This allows to deepen the link between vector bundles

on P2 and secant varieties to X .

A plane curve of degree n which is circumscribed to a complete (n+ 1)-gon

is called a Darboux curve. It is easy to show, by using the theory of secants,

that there are only finitely many inscribed complete (n+ 1)-gon in a Darboux

curve for n ≥ 5, see the Cor. 6.9. We point out how a question of Ellingsrud,

Le Potier, Stromme and Tikhomirov about the uniqueness of these inscribed

(n+1)-gons is related to the non weak (n+1)-defectivity of the Segre-Veronese

variety P2 × Pn−1 embedded with O(1, 2) (see Thm. 6.12), by a result of

Chiantini and Ciliberto [CC2] .

The Darboux curves correspond, through the Barth map, to E ∈ M(2, n)

such that E(1) has at least one section. We will show (Thm. 8.14) that they are

defined through the determinantal morphism ∆ from σn+1(X), so generalizing

the Lüroth case.

The natural objects that come from this description are the symplectic

bundles on P2. In the section 7 we construct the moduli space Msp(r, n) of
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symplectic bundles on P2 of rank r with c2 = n and prove that it is irreducible.

This result follows the lines of [Hu] and it is certainly well known to experts,

but we do not know a reference for it.

In the section 8 we study the Barth map in the higher rank case, and we

obtain some numerical results on it and on Brill-Noether loci in Msp(r, n).

When r = 2 we get an alternative approach to the results of [Bar]. We describe

the curves of jumping lines of a general E ∈Msp(n− 2, n), see the Thm. 8.11.

This note has the purpose to serve as an introduction to the subject. So we

tried to give elementary proofs of several of the results that we use, even in the

case where they follow from more advanced results available in the literature.

An exception to this phylosophy is the Beilinson Theorem, which we believe is

a basic tool, so that it is useful to practice it from the beginning.

I thank Maria Virginia Catalisano for helpful discussions concerning the

defectivity of Segre-Veronese varieties and Pietro Pirola and Fabrizio Catanese

who provided the examples in Prop. 8.6. Catanese clarified also the proof of

Dixon Theorem 5.1. I thank the referee who improved the presentation of this

paper.

2. Notations and generalities on higher secant varieties

Let V be a complex vector space of dimension n. We denote by P(V ) the

projective space of lines in V , so that H0(P(V ),O(1)) = V ∨.

For every a ∈ R, denote by dae the smallest integer greater or equal than

a.

We recall that for a projective variety W ⊂ Pm, the k-secant variety

σk(W ) is the Zariski closure of the set
⋃

x1,...,xk∈W
< x1, . . . , xk >, where

< x1, . . . , xk > denotes the linear span of x1, . . . , xk.

A space spanned by x1, . . . , xk ∈W is called a k-secant space. The expected

dimension of σk(W ) is min{m, kn+ (k− 1)} and it always holds the inequality

dim σk(W ) ≤ min{m, kn+ (k− 1)}. When dimσk(W ) < min{m, kn+ (k− 1)}

we say that W is k-defective. W is called defective if it is k-defective for some

k.



7

We can define the abstract secant variety σk(W ) as the Zariski closure of

the incidence variety

σ
k

0 (W ) = {(p, x1, . . . , xk) ∈ P
m×Sym

k
W |p ∈< x1, . . . , xk >,dim < x1, . . . , xk >= k}

It is easy to check (see [Ru] or [Z]) that σk(W ) is the image of the projection

on the first factor of σk(W ). Since σk0 (W ) is fibered over a open subset of

SymkW with fibers isomorphic to Pk−1, it follows that σk(W ) is irreducible

of dimension kn+ (k − 1).

Proposition 2.1. If dimσk(W ) = kn+ (k − 1)− d, then the general point in

σk(W ) belongs to ∞d k-secant spaces of dimension k.

Proof – By assumption the general fibers of the projection σk(W )−→σk(W )

have dimension d.

For improvements of the above proposition see [Ru] or [Z].

Definition 2.2. [CC1] W is called k-weakly defective if the general hyperplane

which is tangent in k points is tangent along a variety of positive dimension.

The terminology is justified by a result due to Terracini, who proved that k-

defective varieties are also k-weakly defective (see[CC1]). In [CC1] are provided

counterexamples for the converse and there is a classification of k-defective

varieties in small dimension.

Definition 2.3. [CC2] The k-secant order dk(W ) is the number of irreducible

components of the general fiber of the morphism σk(W )−→σk(W ).

When dimσk(W ) = kn+(k−1), then dk(W ) is the degree of the morphism

σk(W )−→σk(W ).

dk measures how many k-secant spaces pass through a general point in

σk(W ).

The secant order dk is called µk−1 in [CC2], due on a different terminology

about higher secant varieties. We choosed to change the letter in order to avoid

any confusion.

Theorem 2.4 (Chiantini-Ciliberto, [CC2], Corollary 2.7). Let W ⊂ Pm be a

variety such that dimσk(W ) = kn+ (k− 1) < m. Then dk(W ) = 1 unless it is

k-weakly defective.
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3. Strassen equations and the tensors 3 × n× n

The aim of this section is to give a simpler proof of the defectivity of P2 ×

Pn−1 × Pn−1 [S].

Let U ,V , V ′ be vector spaces of dimension respectively 3, n, n. The variety

of the decomposable tensors in the projective space P(U ⊗V ⊗V ′) is the Segre

variety Y = P(U) × P(V ) × P(V ′).

The expected minimal p such that σp(Y ) = Pm is

p = d
3n2

2n+ 1
e

It is elementary to check that

(3.1) 2p =

{

3n− 1 if n is odd

3n if n is even ,

For any φ ∈ U ⊗ V ⊗ V ′, we consider the contraction operator

Aφ : U ⊗ V ∨−→∧2 U ⊗ V ′

If u1, u2, u3 is a basis of U and φ = u1R − u2Q + u3R (so that P , −Q, R

are the three n× n slices of φ), the matrix representing φ with respect to the

bases u1, u2, u3 for U and u2 ∧ u3, u3 ∧ u1, u1 ∧ u2 for ∧2U is







0 P Q

−P 0 R

−Q −R 0







Lemma 3.1. Let Q be invertible. Then







I 0 0

0 I −PQ−1

0 0 I













0 P Q

−P 0 R

−Q −R 0













I 0 0

0 I 0

0 −Q−1P I






=







0 0 Q

0 Z R

−Q −R 0







where Z = PQ−1R − RQ−1P = Q[Q−1P,Q−1R]. Moreover rk(Aφ) =

2n+ rk(Z) = 2n+ rk[Q−1P,Q−1R]
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Proof – Straightforward.

From the Lemma 3.1 it follows in particular

det







0 P Q

−P 0 R

−Q −R 0






= (detQ)2 det

(

PQ−1R −RQ−1P
)

and hence the formula

det







0 P Q

−P 0 R

−Q −R 0






(detQ)n−2 = det (P · adj(Q) · R−R · adj(Q) · P )

which holds for any P , Q, R.

Theorem 3.2. (i) If φ ∈ σk(P
2 × Pn−1 × Pn−1) then rkAφ ≤ 2k.

(ii) If φ is generic and n ≥ 3, then rkAφ = 3n, hence P2 ×Pn−1 ×Pn−1 is

k-defective if n is odd and k = 3n−1
2 .

Proof – If φ is decomposable, say φ = u1⊗v1⊗w1 then rkAφ = 2, indeed

Im Aφ is (u1 ∧ U) ⊗ w1.

It follows that if φ ∈ σk(Y ) then rkAφ ≤ 2k, proving (i).

Let λi, µj be generic constants. With obvious notations for basis in the

vector spaces U , V , V ′, let φ = u1 ⊗ (
∑

λivi ⊗ wi) + u2 ⊗ (
∑

vi ⊗ wi) + u3 ⊗

(
∑

µivi⊗wi+1), where we denote wn+1 = w1. Then with the matrix notations

of Lemma 3.1 we have P = diag(λi), Q = Id and

R =













µ1

. . .

µn−1

µn













Hence

Z = [P,R] =













µ1(λ1 − λ2)
. . .

µn−1(λn−1 − λn)

µn(λn − λ1)












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It follows that Z is invertible and moreover by Lemma 3.1 rkAφ = 3n, proving

(ii). The k-defectivity for n odd and k = 3n−1
2 follows, since by (3.1) sigmak(Y )

is expected to fill the ambient space but, on the other side, we have seen that

a generic φ is not in σk (since (Aφ) = 3n).

Remark 3.3 - σk(Y ) is the hypersurface with equation detAφ = 0. This is

proved in [S] lemma 4.4 by computing the tangent spaces at k suitably chosen

points in Y . By Lemma 3.1 this equation is equivalent to the Strassen one

which has the nice commuting shape

det (P · adj(Q) · R−R · adj(Q) · P ) = 0

which has to be divided by (detQ)n−2 in order to get a SL(U) × SL(V ) ×

SL(V ′)-invariant form with homogeneous weights.

Remark 3.4 - Also P2×P3×P3 ⊂ P47 is defective. In [AOP] it is proved that

the dimension of σ5(P
2 ×P3×P3) is 43 instead of 44 by showing that through

five generic points in P2 × P3 × P3 there is a rational normal curve C8. Note

that the argument in the above proof does not work in this case.

Remark 3.5 - Strassen proves in [S] prop. 4.7 that if n is even then σ 3n
2

(P2 ×

Pn−1 × Pn−1) is the ambient space by exhibiting several explicit tensors.

4. The symmetric tensors 3 × n× n

The aim of this section is to extend the results of section 3 to the symmetric

cases. The defectivity of Segre-Veronese varieties has been studied in [CGG2],

[CarCh] and [CarCa]. Tony Geramita and Enrico Carlini pointed out to me

that the defectivity of X = P2 × P3 embedded with O(1, 2) was classically

known, and it essentially appears in a paper of Emil Toeplitz [T](the father of

Otto), see [CarCh] theor. 4.3 (and also [CarCa] 6.2), where the reader can find

a modern geometrical proof. It turned out that E. Toeplitz already wrote in

1877 ([T], pag. 441) the equation of σ5(X), which is the symmetric analog to

the Strassen equation. The approach of the previous section allows to generalize

this result to X = P2 × Pn−1.
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Let U , V be vector spaces of dimension respectively 3, n.

Consider the Segre-Veronese embedding X = P(U) × P(V )−→P(U ⊗

S2V ) = Pm with the linear system O(1, 2), so that m = 3
(

n+1
2

)

− 1.

The expected minimal p such that σp(X) = Pm is

p = d
m+ 1

n+ 2
e

It is elementary to check that

(4.1) 2p =











3n− 1 if n is odd

3n− 2 if n is even , n ≥ 4

6 if n = 2

We can study this embedding in the following way. Let φ ∈ U ⊗ S2V . It

defines the contraction

Sφ : U ⊗ V ∨−→∧2 U ⊗ V

Identifying ∧2U with U∨ via an orientation of ∧3U (SL(U)-invariant), we

have

(4.2) Stφ = −Sφ

Indeed, if P , Q, R are the three n× n symmetric slices of φ, the matrix of

Sφ in the obvious coordinate system is again







0 P Q

−P 0 R

−Q −R 0







which is now skew-symmetric.

Theorem 4.1. (i) If φ ∈ σk(X) then rkSφ ≤ 2k.

(ii) If φ is generic and n ≥ 2, n is even, then rkSφ = 3n. Hence we get that

X is k-defective for n ≥ 4, n even, k = 3n
2 − 1.
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Proof – It is analogous to the proof of Thm. 3.2. If φ is decomposable

then rkSφ = 2. The variety of the decomposable tensors in the projective space

P(U ⊗ S2V ) is the Segre-Veronese variety X = P(U) × P(V ).

It follows that if φ ∈ σk(X) then rkSφ ≤ 2k, proving (i).

Let n = 2h, λi, µj be generic constants for 1 ≤ i ≤ n, 1 ≤ j ≤ h. With

obvious notations for basis in the vector spaces U , V let φ = u1 ⊗ (
∑

v2
i ) +

u2 ⊗ (
∑

λiv
2
i ) + u3 ⊗ [

∑

µi(vi + vi+h)
2]. Then rkSφ = 3n, proving (ii) thanks

to (4.1).

Remark 4.2 - It is surprising that in the Thm. 3.2 and Thm. 4.1 the odd and

even cases exchange. If n is even, n ≥ 4, the secant variety σ 3n−2

2

(X) is a

hypersurface of degree 3n
2 , with equation Pf (Sφ) = 0. This can be proved like

in [S] lemma 4.4.

If n is odd then σ 3n−1

2

(X) fills the ambient space, indeed Sφ is always

singular. Following [S] lemma 4.4, the list of tensors such that their tangent

spaces span the ambient space is the following. Let v1, . . . , vn be a basis of V ,

let ui, for 1 ≤ i ≤ n, and ũν , for 1 ≤ ν ≤ n− 2, ν odd be 3n−1
2 vectors in U

such that their coefficients are algebraically independent over Q.

Then the list of tensors is

ui ⊗ v2
i , for 1 ≤ i ≤ n

ũν ⊗ (vν + vν+1 + vν+2)
2, for 1 ≤ ν ≤ n− 2, ν odd.

5. Generalities on plane curves as linear symmetric determinants

For any f ∈ P(U ⊗ S2V ) consider the map f̃ : V ∨ → V ⊗U as a map from

V ∨ to V with coefficients in U . Fixed bases of V , V ∨, it can be represented as

a n× n matrix with coefficient linear forms on P(U∨).

Its determinant ∆(f) gives a morphism

P(U ⊗ S2V ) \ Z(∆)
∆
−→P(SnU)

where Z(∆) is the locus {f |∆(f) ≡ 0}. The elements of P(SnU) can be

regarded as degree n curves in P(U∨).
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The morphism ∆ was classically studied as discriminant locus of a linear

system of quadrics. All the coefficients of ∆ are SL(U)-invariant.

Assume now dimU = 3, hence ∆(f), for f /∈ Z(∆), is the equation of a

plane curve C of degree n. The classical Theorem of Dixon, that we review

in this section, says that the general plane curve C is in the image of ∆,

and each symmetric determinantal representation of C corresponds to a theta

characteristic θ on C such that h0(θ) = 0. In [Ca] and in [Bea1] the Theorem of

Dixon is proved as a consequence of a more general result about ACM bundles.

A general f ∈ P(U ⊗S2V ) gives a subspace P(U∨) ⊂ P(S2V ), regarding f

as an injective map. The space of quadrics P(S2V ) contains the discriminant

hypersurface

D := {g ∈ S2V | det(g) = 0}

and C is identified with the intersection P(U∨)∩D. Note that Sing(D) consists

of the symmetric matrices of rank ≤ n− 2 and it has codimension three. The

general immersion of P(U∨) does not meet Sing(D) , hence the curve C is in

general smooth by Bertini Theorem. We follow [D], as in section 1 of Chap.

4. We denote by φ : C → P(S2V ) the previous immersion, hence every x ∈ C

defines (up to scalar multiplication) a symmetric morphism φ(x) : V ∨ → V .

We consider also the map

ψ : C → (V ∨)

x 7→ kerφ(x)

and the composition

Φ: C
(ψ,ψ)
−→P(V ∨) × P(V ∨)

s2−→P(V ∨ ⊗ V ∨)

where s2 is the Segre map. Φ(x), up to constants, is represented by the matrix

product of the column vector defined by ker(φ(x)) with the row vector defined

by ker(φt(x)) and it is easily proven (cf.[D]) that, up to multiplicative constants,

Φ(x) is exactly Ad(φ(x)), the adjoint matrix of φ(x). Since φ(x) is symmetric,

Φ(x) ∈ P(S2V ∨) and its entries are polynomials of degree n− 1 in x.

If we define L := ψ∗(OP(V ∨)(1)), then Φ∗(OP(S2V ∨)(1)) = L2 and, by the

above argumentation degL2 = n(n− 1), L2 = OC(n− 1), and it follows that
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degL =

(

n

2

)

Set θ = L(−1), we get

θ2 = OC(n− 3) = KC

that is θ is a theta-characteristic.

Moreover L is generated by the n sections given by the embedding ψ, that

is we have a surjection

OP(U∨) ⊗ V−→L−→0

We could compute now the kernel of this morphism, but we do not pursue

this because we will follow in a while another road, by using the Beilinson

Theorem.

Conversely, given a theta-characteristic θ on a smooth plane curve C ⊂

P(U∨) of degree n such that h0(θ) = 0, we can construct θ as symmetric linear

determinant.

Indeed let L = θ(1), then we define V = H0(L) which has dimension n

and we get the embedding ψ : C → P(V ). By composing with the Veronese

embedding we get C in P(S2V ) with associated line bundle L2 = KC(2) =

O(n−1). Since O(n−1) is the restriction of OP(U∨)(n−1), it follows that this

last embedding is the restriction of an embedding P(U∨) ⊂ P(S2V ) given by a

linear system of plane curves of degree n−1, which associates to x the symmetric

matrix φ(x). An explicit computation (see [D], proof of theor. 4.1.3) shows

that, if F is the equation of C in P(U∨), then f := Fn−2Ad(φ) ∈ P(U ⊗S2V )

and F = ∆(f).

The general result is the following

Theorem 5.1 (Dixon). Let C be a smooth plane curve defined by a polynomial

F of degree n and θ be a theta-characteristic on C such that h0(θ) = 0. There

is a symmetric map M such that

0−→O(−2)n
M
−→O(−1)n−→θ−→0

and det M = F . Two maps M , M ′ define the same θ if and only if they lie in

the same SL(V )-orbit. In particular ∆ is dominant.
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Conversely, the cokernel of a injective symmetric map O(−2)n
M
−→O(−1)n

is a theta-characteristic θ on the curve C defined by detM = 0, such that

h0(θ) = 0.

The quickest proof of the Thm. 5.1 is probably obtained as an application

of the Beilinson Theorem .

We recall the Beilinson theorem in the form given in [AO].

Theorem 5.2 (Beilinson). Let F be a coherent sheaf on Pn and let Q be the

quotient bundle. There is a complex

. . .
d−1

−→C0 d0−→C1 d1−→ . . .

on Pn such that

(i) Ch = ⊕j+h=i ∧
j Q∨ ⊗Hi(F (−j))

(ii) the horizontal maps extracted from di

∧jQ∨ ⊗Hi(F (−j))−→∧j−1 Q∨ ⊗Hi(F (−j + 1))

are the natural multiplication maps

(iii) the cohomology is

Ker dh
Im dh−1

=

{

0 if h 6= 0

F if h = 0

Proof of Thm. 5.1 - Consider θ as a coherent sheaf on P2 extended to

zero.

The Beilinson table for θ(1)

H2(θ(−1)) H2(θ) H2(θ(1))

H1(θ(−1)) H1(θ) H1(θ(1))

H0(θ(−1)) H0(θ) H0(θ(1))

is
0 0 0

V ∨ 0 0

0 0 V

hence we get from Thm. 5.2 the resolution
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0−→V ∨ ⊗O(−2)
M
−→V ⊗O(−1)−→θ−→0

Applying the functor Hom(−,O) we get

0−→V ∨ ⊗O(1)
Mt

−→V ⊗O(2)−→Ext1(θ,O)

and by Grothendieck duality ([FGA] pag. 149-08)

Ext1(θ,O) = θ∨(3)

so that twisting by O(−3) we get the commutative diagram

0 −→ V ∨ ⊗O(−2)
M
−→ V ⊗O(−1)

p
−→ θ −→ 0





y
A





y
B





y
1

0 −→ V ∨ ⊗O(−2)
Mt

−→ V ⊗O(−1)
q

−→ θ −→ 0

where B has been found because Ext1(V (−1), V ∨(−2)) = 0. Applying the

functor Hom(−,O) (and Grothendieck duality) again we get

0 −→ V ∨ ⊗O(−2)
M
−→ V ⊗O(−1)

p
−→ θ −→ 0





yBt





yAt





y
1

0 −→ V ∨ ⊗O(−2)
Mt

−→ V ⊗O(−1)
q

−→ θ −→ 0

Hence (At − B)q = 0 and it follows At = B. Denoting M ′ = AtM we get

M ′ = M ′t , hence the map is symmetric.

A morphism between θ and θ′ lifts to a morphism between the two resolu-

tions. The converse follows again by the Grothendieck duality.

Corollary 5.3. Let f ∈ P(U⊗S2V ) such that ∆(f) is a smooth plane curve in

P(U∨). Then the fiber of ∆ containing f has dimension equal to dimSL(V ) =

n2 − 1.

Proof – By the Thm. 5.1 the fiber is a union of orbits, hence their di-

mension is ≤ n2 − 1. Since the map ∆ is dominant every fiber has dimension

≥ n2 − 1.
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Remark 5.4 - Moreover every smooth plane curve is in the image of ∆ ([Bea1],

Remark 4.4) but we will do not need this fact.

Wall studied in [W] the map ∆ in the setting of invariant theory. He

remarked, as a consequence of Dixon theorem, that the field of invariants of

SL(V ) acting on P(U ⊗S2V ) is a finite extension of the field generated by the

coefficients of ∆. In other terms, the semistable points for the action of SL(V )

on P(U ⊗ S2V ) are exactly given by the locus where ∆ is not defined. Wall

also proves that if ∆(f) is a reduced curve, then the stabilizer of f is finite. In

particular if ∆(f) is smooth then the stabilizer of f is finite. In other terms

Proposition 5.5 (Wall). There is a factorization through the GIT quotient

P(U ⊗ S2V )ss




y

π ↘ ∆

P(U ⊗ S2V )//SL(V )
g

−→ P(SnU)

where g is generically finite.

6. Lüroth quartics revisited

Definition 6.1. A complete n-gon is the union of n lines in P2 = P(U∨)

meeting in
(

n
2

)

distinct vertices.

Definition 6.2. A Lüroth quartic is a smooth quartic which has a inscribed

complete pentagon, that is it contains its ten vertices. More generally a plane

curve of degree n which has a inscribed a complete (n + 1)-gon is called a

Darboux curve.

Let us identify, again with a slight abuse of notations, the Segre Veronese

variety X ' P(U)×P(V ) embedded by O(1, 2) with its cone in U ⊗ S2V . As

we saw in section 4, the elements in U ⊗ S2V are stratified by the (border)

rank, denoting by rank one the elements of X and by rank k the elements of

σk(X) \ σk−1(X).

Note that if f ∈ X then rankSf = 2 so that if f ∈ σk(X) then rankSf ≤ 2k.

So we are exactly in the setting of Thm. 4.1.
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Proposition 6.3. (i) If f ∈ σn(X) \ σn−1(X) is general then the plane curve

given by ∆(f) = 0 consists of n lines.

(ii) If f ∈ σn+1(X)\σn(X) is general then the plane curve of degree n given

by ∆(f) = 0 is a Darboux curve (so for n = 4 is a Lüroth quartic). The divisor

given by the
(

n+1
2

)

vertices of the complete inscribed (n+ 1)-gon has the form

θ + 2H where θ is the theta characteristic defined in Thm. 5.1 and H is the

hyperplane divisor.

Proof – (i) Assume f =
∑n

i=1 ui⊗v
2
i . The vectors ui ∈ U defines lines Li

in the plane P(U∨) by the equation ui(−) = 0. Then the matrix corresponding

to f evaluated on the line Li has rank ≤ n−1 and it is degenerate. This means

that ∪iLi ⊆ {∆(f) = 0} and the other inclusion holds by degree reasons.

(ii) Assume f =
∑n+1
i=1 ui ⊗ v2

i . Then the matrix corresponding to f eval-

uated in the point of intersection Lp ∩ Lq = 0 is a symmetric matrix of rank

≤ n− 1 (because two summands vanish), hence it is degenerate and the point

belongs to the curve {∆(f) = 0}. Let D be the divisor corresponding to the

vertices of the (n + 1)-gon, so that degD =
(

n+1
2

)

. Set θ = D − 2H . Since

every vertex contains two edges we get that 2D = (n+ 1)H and it follows that

2θ = 2D − 4H = (n− 3)H = K, hence θ is a theta-characteristic. An explicit

computation (see the next example (6.1) shows that θ is the theta characteristic

defined in Thm. 5.1.

We did not prove that for a general f ∈ σn+1(X)\σn(X) the curve given by

∆(f) = 0 is smooth. This is well known. Indeed the following determinantal

representation gives a smooth curve of degree n with an inscribed complete

(n+ 1)-gon: taken general linear forms l1, . . . , ln, ln+1 = l consider

(6.1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l1 + l l l . . . l

l l2 + l l . . . l
...

...
...

l l . . . . . . ln + l

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n+1
∑

i=1

l1l2 · · · l̂i · · · ln+1 = 0

The following theorem was proved in [Bar, Lemma2] in a more general

setting. For the convenience of the reader we repeat here Barth’s proof in our

case.
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Lemma 6.4. Given a general complete (n + 1)-gon, the space of curves of

degree n passing through its
(

n+1
2

)

vertices has projective dimension n, that is

the
(

n+1
2

)

vertices impose independent conditions to curves of degree n.

Proof – Let Z be the scheme given by the
(

n+1
2

)

vertices and let L by a

general line.

We have the exact sequence

0−→H0(IZ(n− 1))−→H0(IZ(n))−→H0(IZ(n)|L)

The first space is zero dimensional because a curve of degree n− 1 through

Z vanishes on all the edges of the (n + 1)-gon. Since IZ(n)|L ' OL(n) it

follows h0(IZ(n)) ≤ n + 1. Moreover h0(IZ(n)) ≥
(

n+2
2

)

−
(

n+1
2

)

= n + 1, as

we wanted.

Theorem 6.5. (Lüroth, 1869) If a plane curve of degree 4 has a inscribed

complete pentagon, then it has ∞1 inscribed complete pentagons. Equivalently,

the (closure of the) locus of Lüroth quartics is a hypersurface in P(S4U).

Proof – By Prop. 6.3 every f ∈ σ5(X) \ σ4(X) defines a Lüroth quartic

with equation ∆(f). By Thm. 4.1 the higher secant variety σ5(X) is defective

and has dimension one less then expected. By Prop. 2.1 f belongs to ∞1

5-secant spaces. The quartics defined in this way are the image through the

determinantal morphism of the SL(V )-invariant variety σ5(X), so by Thm. 5.1

(since there are smooth Lüroth quartics) they give a irreducible hypersurface

in P(S4U).

This is the core of the argument but it does not yet conclude the proof.

In order to prove that the general (and hence any) Lüroth quartic has ∞1

inscribed pentagons, we need the following easy dimensional count.

Consider the product P(S4U)× (P(U))
5

and the incidence variety I given

by the closure of

I0 = {(f, l1, . . . , l5)| li define a complete pentagon inscribed in the smooth f}

By Lemma 6.4 the general fiber of the second projection is a linear space of

projective dimension 4, hence I is irreducible and dim I = 14. Clearly the

projection of I on P(S4U) gives the closure of the locus of Lüroth quartics.
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Our first argument showed that I contains a dense open subset of pairs given

by a Lüroth quartic and its inscribed pentagons, hence the projection of I is a

hypersurface. This concludes the proof.

Remark 6.6 - The above proof is close to Frahm one ([Fr]), see also the Remark

4.5 in [CarCh], although in these sources the approach is a bit different. We

hope it is still useful to review this subject in the modern language and to

make direct the link with the higher secant variety of X . The original proof

of Lüroth was based on the polarity with Clebsch quartics, and it has been

reviewed in [DK].

Remark 6.7 - It can happen that f /∈ σ5(X) but still ∆(f) is a Lüroth quartic.

Indeed f /∈ σ5(X) picks only one of the 36 connected components of a general

fiber of ∆.

The hypersurface of Lüroth quartics was classically studied. F. Morley (the

same of trisector theorem) proved in 1918 ([Mo]) that it has degree 54, by the

classical Aronhold construction of plane quartics from seven given points.

Theorem 6.8. Let X = P2 ×Pn−1 embedded with the linear system O(1, 2).

For n ≥ 5 the secant variety σn+1(X) has the expected dimension (n+1)2 +n.

Proof – For n = 5 it is enough to pick six generic points , compute their

tangent spaces and apply the Terracini lemma. For n ≥ 6 we can use the

standard inductive technique, which goes back to Terracini.

Let consider the divisor X ′ = P2 × Pn−2 ⊂ X . Given n + 1 Pi points on

X let specialize the first n of them on X ′.

Let Z = {P1, . . . , Pn}, Z2 = {P 2
1 , . . . , P

2
n}.

We get the exact sequence

0−→IZ∪P 2
n+1

,X(1, 1)−→IZ2∪P 2
n+1

,X(1, 2)−→IZ2,X′(1, 2)

The first space has always the expected dimension. The last space has the

expected dimension by the inductive assumption. Hence also the middle space

has the expected dimension.
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The following theorem says that the statement of the Lüroth Thm. 6.5 is

false for n ≥ 5.

Corollary 6.9. Let n ≥ 5. The generic Darboux curve of degree n has only

finitely many inscribed complete (n+ 1)-gons.

Proof – Let M sm
n ⊂ P(SnU) = Mn be the variety of smooth plane curves

of degree n, let Gn be the open (smooth) part of Symn+1P2 parametrizing

complete (n+1)-gons. LetRn be the closure of the incidence variety inMn×Gn,

namely

(6.2) Rn = R0
n R0

n = {(m, g) ∈M sm
n ×Gn| g is inscribed in m}

Let p, q be the restriction to Rn of the two projections respectively on Mn

and Gn. By Prop. 6.4 the generic fiber of q is isomorphic to Pn, hence Rn is

irreducible and dimRn = 3n+ 2. From Thm. 6.8, the examples (6.1) and the

Cor. 5.3 the image p(Rn) has dimension ≥ (n+ 1)2 +n− (n2 − 1) = 3n+ 2. It

follows that p is generically finite, as we wanted.

Remark 6.10 - The first part of the above proof still says that R4 is irreducible

of dimension 14. But in this case the Thm. 6.8 fails and R4 is contracted by p to

the Lüroth hypersurface. We remark also that a open subset of Rn comes from

determinantal curves in σn+1(X) by the construction in the examples (6.1).

It follows that

Proposition 6.11. Let n ≥ 4. ∆(σn+1(X)) is the Darboux locus, that is

the closure of the variety consisting of Darboux plane curves of degree n. Its

dimension is 13 for n = 4 and 3n+ 2 for n ≥ 5.

Denote by π1 : X → P2 the projection on the first factor. The abstract

secant variety σn+1(X) has a dominant morphism

∆ × πn+1
1 : σn+1(X) → Rn

which identifies with the SL(V )-quotient σn+1(X)//SL(V ). To prove this

claim, let consider, like in Prop. 5.5, the factorization
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σn+1(X)ss




y

π ↘ ∆×πn+1

1

σn+1(X)//SL(V )
g

−→ Rn

where g is finite. Since the inscribed (n+1)-gon determines by Prop. 6.3 the

theta divisor, from the Thm. 5.1 it follows that g is a isomorphism, so proving

the claim.

It is a natural question if the morphism p : Rn → Mn (see (6.2)) is injective,

posed by Ellinsgrud and Stromme in [ES] and settled again in [PT]. This

question is equivalent to ask how many complete (n+ 1)-gons are inscribed in

the general Darboux curve of degree n.

Now observe that the secant order dn+1(X) (see def. 2.3) can be computed

as degree of the induced morphism on quotients

Rn = σn+1(X)//SL(V )−→σn+1(X)//SL(V )

We have the factorization

Rn




y

π ↘ p

σn+1(X)//SL(V )
h

−→ M

and it follows that

deg p = dn+1(X) · deg h

deg h measures how many different theta divisors defined by inscribed (n+ 1)-

gons (like in Prop. 6.3) lie over the generic Darboux curve.

The degree of h is not known, although it is expected that it is one.

The secant order dn+1(X) measures how many (n + 1)-gons give linearly

equivalent θ divisors like in Prop. 6.3.

The following reformulation of the Thm. 2.4 in this setting looks interesting.

Theorem 6.12. Let n ≥ 5. dn+1(X) = 1 unless X = P2 × Pn−1 embedded

with the linear system O(1, 2) is (n+ 1)-weakly defective.
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Proof – By Thm. 2.4 and Thm. 6.8.

Problem 6.13. Is the Segre-Veronese variety X = P2 ×Pn−1 embedded with

the linear system O(1, 2) (n + 1)-weakly defective? The Thm. 6.8 says only

that X is not (n+ 1)-defective.

M. Toma [Tom] has shown a uniqueness result for curves such that their

inscribed (n+1)-gon is also circumscribed to a smooth conic (and n ≥ 5), they

are called Poncelet curves.

7. The moduli space of symplectic vector bundles on the plane

Let M(r, n) be the moduli space of stable bundles of rank r ≥ 2 on P2 with

(c1, c2) = (0, n). It is known that M(r, n) is not empty if and only if r ≤ n.

M(r, n) is a smooth irreducible variety of dimension 2rn− r2 + 1 ([Hu]).

Moreover for the general E ∈ M(2, 4) we have H0(E(1) = 2, while for

n ≥ 5 the Brill-Noether locus Hn = {E ∈M(2, n)|h0(E(1)) ≥ 1} ⊆ M(2, n) is

a irreducible subvariety of dimension 3n+ 2, which is proper if n ≥ 6 ([Bar]).

The bundles E ∈ Hn are called Hulsbergen bundles.

In this and in next section we will reprove the main results of [Bar] and [Hu]

in the case of symplectic bundles, by connecting them with the higher secant

varieties.

Definition 7.1. A vector bundle is called symplectic if there is a isomorphism

α : E → E∨

such that αt = −α.

In particular it follows that if E is symplectic then c1(E) = 0, r is even and

∧2E contains O as a direct summand. If moreover E is stable we have that

h0(∧2E) = C, so that the isomorphism α is unique up to scalar multiplication.

Let now E be a stable vector bundle of rank r on P2 with c1(E) = 0,

c2(E) = n. A simple computation shows that χ(E(−1)) = χ(E(−2)) = −n is

independent by r.
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Theorem 7.2. Let E be a symplectic bundle of rank r on P2 = P(U) with

c2(E) = n such that H0(E) = 0. Denote V = H1(P2, E(−1)) which is a vector

space of dimension n. Then E is the cohomology bundle of the following Barth

monad

I ⊗O
g

−→V ∨ ⊗ Ω1(2)
f

−→V ⊗O(1)

that is E = Ker f/ Im g where f ∈ U ⊗ S2V is the natural (symmetric)

multiplication map and I = H1(E(−3)) = H1(E)∨ has dimension n− r.

Conversely the cohomology bundle E(f) of such a monad where f ∈ U⊗S2V

is a symplectic bundle of rank r with c2(E) = n such that H0(E) = 0.

Proof – The Beilinson table for E(−1) is

0 0 0

I V ∨ V

0 0 0

hence by twisting by O(1) we get from Thm. 5.2 the monad in the statement.

Note that f ∈ Hom(V ∨ ⊗ Ω1(2), V ⊗O(1)) = U ⊗ V ⊗ V .

Since Serre duality is induced by cup product which is skew commutative

in odd dimension, it is well known that f = f t (for details see [Bar] Prop. 1),

hence f ∈ U ⊗ S2V . The converse is trivial.

Proposition 7.3. Two simple bundles E(f), E(f ′) as in Thm. 7.2 are isomor-

phic if and only if f , f ′ are SL(V )-equivalent.

Proof – It is easy to check that a morphism between bundles lifts to a

morphism between the corresponding Barth monads. The details are left to

the reader.

From the Barth monad of Thm. 7.2 we get the cohomology map

H0(f) : V ∨ ⊗H0(Ω1(2)) → V ⊗H0(O(1))

It is important to remark thatH0(f) is identified with Sf : U⊗V ∨ → U∨⊗V

in formula (4.2) of section 4, indeed H0(Ω1(2)) = ∧2U∨ = U . Note that

rank H0(f) = 2n+r, indeed the kernel ofH0(f) contains I which has dimension
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n− r, and it cannot be bigger, otherwise H0(E) 6= 0 contradicting the stability

of E.

We denote Msp(r, c2) ⊆ M(r, c2) the moduli space of stable symplectic

vector bundles (note that r is even). We recall that the adjoint representation

for the symplectic group Sp(Cr) is isomorphic to the symmetric power S2Cr.

Since anyE ∈Msp(r, c2) is simple, we get h0(S2E) = 0, moreover h2(S2E) =

h0(S2E(−3)) = 0.

We have c2(S
2E) = n(r + 2) and we get by Hirzebruch-Riemann-Roch

theorem

h1(S2E) = −χ(S2E) = (r + 2)n−

(

r + 1

2

)

It follows that Msp(r, n) (when nonempty) is smooth of dimension (r+2)n−
(

r+1
2

)

.

Following [Hu], denoteM0
sp(r, n) = {E ∈Msp(r, n)|E|l = Orfor some line l}.

We remark that, by semicontinuity, if E|l is trivial on a line l, then it is trivial

on the general line l. This can be seen by observing that E|l is trivial if and

only if h0(E|l(−1)) = 0, as we do after the following proposition.

Proposition 7.4.

M0
sp(r, n) = Msp(r, n)

Proof – (Hirschowitz) Let E ∈ Msp(2h, n). For a line l we have a small

deformation of E|l such that E|l is trivial. We have the exact sequence

0−→S2E(−1)−→S2E−→S2E|l−→0

which yields

H1(S2E)−→H1(S2E|l)−→0

Hence the deformation on l lifts to a deformation on P2.

Let E = E(f) like in the statement of Thm. 7.2. The exact sequence

0−→E(−2)−→E(−1)−→E(−1)|l−→0

yields
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0−→H0(E(−1)|l)−→H1(E(−2))−→H1(E(−1))

hence E|l is trivial if and only if the determinant of the morphism

H1(E(−2))−→H1(E(−1))

is nonzero, that is if and only if ∆(f) evaluated at l is nonzero.

Hence E(f) is trivial on the general line l if and only if ∆(f) is not identically

zero, that is if and only if f corresponds to a semistable point in P(U ⊗ S2V )

for the SL(U) × SL(V )-action.

Definition 7.5.

Kr,n = {f ∈ P (U ⊗ S2V )|rank H0(f) = 2n+ r}

The general element in σn+(r/2)(X) belongs to Kr (so it is nonempty).

In order to prove the irreducibility of Msp(r, n) we need the following auxil-

iary result from [BPV] Cor. 3.6 (see also [Bas] Cor. 2.6 for a elementary proof

in the spirit of [Hu]).

Proposition 7.6 (Brennan-Pinto-Vasconcelos). Let V be a vector space of

dimension n and let r be even. The subvariety

Jr,n := {(P,Q) ∈ S2V × S2V |rank [P,Q] = r}

is irreducible of codimension
(

n−r
2

)

, and moreover its reduced equations are the

pfaffians of order r + 2 of [P,Q].

Theorem 7.7. The moduli space Msp(r, n) is irreducible of dimension

(r + 2)n−

(

r + 1

2

)

Proof – We have the open subvariety K̃r,n ⊆ Kr,n defined by f ∈ Kr,n

such that the corresponding morphism

V ∨ ⊗ Ω1(2)
f

−→V ⊗O(1)
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is surjective. Any such f defines E(f) as cohomology bundle of the corre-

sponding Barth monad. It is easy to see that there is a universal bundle E over

P(U) × K̃r,n such that EP2×{f} = E(f), by constructing a universal monad

like in [Hu] prop. 1.6.1. Since stability is a open property, we have a open

subvariety K̃s
r,n ⊆ K̃r,n consisting of f such that E(f) is stable. By the univer-

sal property of moduli space we have a surjective morphism K̃s
r,n

π
−→Msp(r, n).

By Prop. 7.4 it is enough to prove that M0
sp(r, n) it is irreducible, hence it is

enough to prove that π−1(M0
sp(r, n)) = K̃s

r,n \ Z(∆) is irreducible. We will

prove that K̃r,n \ Z(∆) is irreducible. For any x ∈ P(U) define

K̃r,n,x = {f ∈ Kr,n|∆(f)(x) 6= 0}

These are open subsets in K̃r,n such that, for any x, y ∈ P(U), K̃r,n,x∩K̃r,n,y

is a non empty open subsvariety of K̃r,n and moreover

⋃

x∈P(U)

K̃r,n,x = K̃r,n \ Z(∆)

Finally we prove (thanks to the SL(U)-action) that for z = (0, 1, 0) K̃r,n,z

is irreducible. Let CK̃r,n,z be the affine cone over K̃r,n,z. In the matrix repre-

sentation of Lemma 3.1 this means that the slice called Q of Sf is invertible,

hence we have a fibration CK̃r,n,z → S(n) sending f to Q, where S(n) is the

variety of symmetric invertible matrices of order n. This fibration is GL(V )-

equivariant and all its fibers are isomorphic to Jr,n defined in Prop. 7.6 (cf.

Lemma 3.1). Hence the result follows by Prop. 7.6. Note that

dimS(n)+dimJr,n−dimGL(V ) = 3

(

n+ 1

2

)

−

(

n− r

2

)

−n2 = (r+2)n−

(

r + 1

2

)

Problem 7.8. Are the moduli spaces of orthogonal bundles on P2 irreducible?

8. The Barth map and Brill-Noether loci

We keep all the notations from the previous section.

Let remark the following result of LePotier
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Proposition 8.1 (LePotier). Assume f ∈ P(U ⊗ S2V ) is a semistable point

(see Prop. 5.5) for the SL(V )-action. If E(f) is a stable bundle, then f is a

stable point.

Proof – The proof is essentially the same as in [P2] Lemma 2, and appears

in different forms also in [Bar] and [Hu], so we omit it.

Now we consider the GIT quotient K̃s
r,n//SL(V ). Since all points not lying

in Z(∆) are SL(V )-semistable, by Prop. 7.3 and the above construction we have

a surjective morphism K̃s
r,n//SL(V )

τ
−→M0

sp(r, n) which is birational. Consider

the closure

Kr,n = {f ∈ P (U ⊗ S2V )|rank H0(f) ≤ 2n+ r} =
⋃

s≤r

Ks,n

We get the projective scheme

Mmon
sp (r, n) := Kr,n//SL(V )

(by definition of GIT-quotient only the semistable points in Kr,n are consid-

ered) where the suffixmon reads for monads, which has the following properties

(i) it is birational to the Maruyama moduli space Msp(r, n)

(ii) the morphism ∆ factors through

Kr,n \ Z(∆)




y

π ↘ ∆

Mmon
sp (r, n)

br,n

−→ P(SnU)

(iii) The following diagram commutes

K̃s
r,n//SL(V )

τ
−→ M0

sp(r, n)




y
i





y
J

Mmon
sp (r, n)

br,n

−→ P(SnU)

where i is an open embedding and J(E) is the degree n curve of jumping lines

of E supported by

{l ∈ P (U∨)|E|l 6= Or}

where l represents a line of P(U).
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Definition 8.2. The morphism br,n : Mmon
sp (r, n)−→P(SnU) which factors in

(ii) above is called the Barth map.

Its degree and the degree of its image are equal to the ones for Barth maps

as defined in [PT] in the case r = 2. Note that from property (ii) above the

Barth map can be computed by the symmetric determinantal morphism ∆.

See [P2] for the connection with Donaldson invariants.

Proposition 8.3. The Barth map is generically finite, the image of the Barth

map is irreducible and has codimension 1 + (n+1−r)(n−2−r)
2 =

(

n−r
2

)

in the

projective space of plane curves of degree n.

Proof – By Thm. 5.1 the map ∆ is dominant and Prop. 7.6 states that

Jn is irreducible of codimension
(

n−r
2

)

. The theorem follows then by (ii) above

( and the discussion at the end of the proof of Thm. 7.7).

Corollary 8.4. The Barth maps bn,n (n even) and bn−1,n (n odd) are domi-

nant.

The case r = n− 2, n even looks particularly interesting because the image

of bn−2,n is a hypersurface in Mn. For n = 4 this hypersurface is the Lüroth

hypersurface of section 6. By Thm. 4.1 we get that , with n even and k = 3n
2 −1

(8.1) Kn−2,n = σk(X)

We remark that σn+1(X) = K2,n for n = 4, 5, while for n ≥ 6 we have

dimK2,n = dimσn+1(X) + (n − 5) by Thm. 6.8 and the proof of Thm. 7.7.

Note also that σn−1(X) ⊆ Z(∆) but this inclusion is strict for n ≥ 3.

Consider the diagram

Mmon
sp (r, n)





y
i ↘ br,n

P(U ⊗ S2V )//SL(V )
g

−→ P(H0(P2,O(n)))

By Prop. 5.5 and by Thm. 5.1 it follows that g is generically finite, in

particular the fiber over a smooth C ∈M sm
n is given by the theta characteristic

{L ∈ Pic(C)|L2 = KC , h
0(L) = 0} .



30

Proposition 8.5 (Beauville, Catanese). Let be given a general smooth plane

curve C and genus g =
(

n−1
2

)

. Then the set {L ∈ Pic(C)|L2 = KC , h
0(L) = 0}

has cardinality

{

2g−1(2g + 1) if n is even or if n ≡ 3, 5 mod 8

2g−1(2g + 1) − 1 if n ≡ 1, 7 mod 8

Proof – We just sketch the proof, for details see for example [Bea2] prop.

3. Let n be even. The moduli space Tn of pairs (C, θ) where C is a smooth

plane curve of degree n and θ is a theta characteristic has exactly two irreducible

components T 0
n and T 1

n , corresponding to the parity of θ, which are both ètale

covering of the space Un ⊂ P(H0(P2,O(n))) of smooth plane curves.

By the Thm. 5.1, the generic plane curve C has a θ such that h0(θ) = 0.

It follows that the subvariety in T 0
n of pairs (C, θ) such that h0(θ) ≥ 2 has

codimension at least one in T 0
n , and the same is true for its projection on Un.

The number of sheets of T 0
n is classical, for a moden reference see [At]. For n

odd Tn has a third irreducible component corresponding to O(n−3
2 ) which has

always h0 ≥ 2 and it is even if n ≡ 1, 7 mod 8.

It is well known that, in the moduli space Mg of curves of genus g, the locus

of curves which have a even theta characteristic such that h0(θ) ≥ 2 has pure

codimension one, see [Teix] theor. 2.16. This is called the theta locus.

For g = 3 this divisor coincides with the hyperelliptic locus and so it does

not meet the locus of plane curves of degree 4.

For plane curves of degree ≥ 5 the situation changes, thanks to the following

interesting examples, that can be found in the prop. 2.28 of [Ca]. The case

n = 6 was first communicated to me by Pirola. See also the Theorem B in

[Bea1].

Proposition 8.6 (Catanese). Let n ≥ 6. The general symmetric morphism

on P2

O(−3)2 ⊕O(−2)n−6 M
−→O(−1)n−6 ⊕O2

degenerate on a plane curve C of degree n and Coker M = θ is a theta-

characteristic on C which satisfies h0(θ) = 2. For n = 5 the same conclusion
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holds by looking at

O(−3)2 ⊕O(−1)
M
−→O(−2) ⊕O2

Plane curves constructed in this way give a divisor in the space of plane curves

of degree n.

Proof – To compute the dimension of the family, subtract from the space

of symmetric morphisms, which has dimension 3 · 10 + 2(n− 6) · 6 + 3 ·
(

n−5
2

)

,

the dimension of the group

GL(2) ×GL(n− 6) × (C2 ⊗ Cn−6 ⊗ U)

and get
(

n+2
2

)

− 2. The computation for n = 5 is analogous.

These examples show that the theta locus actually meets the variety of

smooth plane curves of degree n for any n ≥ 5.

Remark 8.7 - It is well known that every smooth plane quartic has exactly 36

theta characteristic such that h0(θ) = 0 and 28 theta characteristic such that

h0(θ) = 1. Indeed, by Clifford’s theorem, on a smooth plane quartic every

theta-characteristic satisfies h0(θ) ≤ 1.

The degree of b2,n is one by [PT]. The degree of the image of b2,n are

known, see e.g. [EG].

The proper transform ∆∗(W ) of a subvariety W ⊆ Mn through the mor-

phism

∆: P(U ⊗ S2V ) \ Z(∆)−→Mn

is defined as the Zariski closure of ∆−1(W ) \ Z(∆). The degree of the proper

transform is difficult to compute, with the exception of hypersurfaces. Assume

W is a hypersurface. Since Z(∆) has bigger codimension, we get that ∆∗(W )

is a hypersurface too and

deg ∆∗(W ) = n degW

Theorem 8.8. Let E be a symplectic vector bundle on P2 and let r = n− 2,

hence the image of the Barth map is a hypersurface. Let g =
(

n−1
2

)

. Two

mutually exclusive cases are possible.
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(i) The image of the Barth map bn,n−2 is contained in the even theta locus

(ii) (degree of bn,n−2) · (degree of image of bn,n−2) = 3 · 2g−2(2g + 1)

Proof – Assume that (i) does not hold. Then the generic curve in the

image of the Barth map has 2g−1(2g+1) theta-characteristic θ such that h0(θ) =

0.

Denote a = (degree of bn,n−2), b = (degree of image of bn,n−2). The proper

transform of the image of Barth map is a hypersurface in P(U⊗S2V ) of degree

nb which contains σ 3n−2

2

(X) which has degree 3n
2 by the remark at the end of

section 4.

Consider the intersection with the proper transform of a general line. It is

given by b fibers (over smooth curves), each of them is the union of a SL(V )-

orbits, which have the same degree. Hence we have the equation

nb

3n/2
=

2g−1(2g + 1)

a

which gives the thesis.

We do not know which of the two possibilities hold, except for n = 4 where

we have the following corollary, that was proved first in [PT] for any c2. Our

approach is different.

Corollary 8.9. The Barth map b2,4 is generically injective.

Proof – We know that by the Remark 8.7 the case (i) of Thm. 8.8 cannot

occur. By [Mo] we know that the degree of the Lüroth hypersurface, which is

the image of b2,4, is 54. The result follows.

Remark 8.10 - Although we do not know the explicit expression of the Lüroth

invariant L of degree 54, we can say that its pullback ∆∗L has degree 216 and

it contains Pf(Sf ) of degree 6 as irreducible factor.

Theorem 8.11. Let E ∈ Msp(n − 2, n) be general and let C = J(E) be its

curve of jumping lines, so that C lies in the image of bn−2,n. Then there are

r1, . . . , rk lines where k = 3n
2 − 1 and linear forms hi such that the equation of

C can be written as

∆(

k
∑

i=1

rih
2
i ) = 0
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Moreover the varieties of lines r1, . . . , rt which describe C in the above equation

has dimension n
2 − 1.

Proof – By (8.1) we find the k lines and the k linear forms. We have that

dim(P(U)×P(V )) = n+1 and dimσk(X) = 3
(

n+1
2

)

− 2 by Remark 4.2. Thus

by Prop. 2.1 we conclude.

When n = 4 the Thm. 8.11 reduces to the result of [Bar] that the jumping

lines of a general E ∈Msp(2, 4) are Lüroth quartics.

The linear forms hi define a k×n matrix H . Let I be any subset of n rows

and let hI be the corresponding minor of H .

Then the equation of C can be written as

∑

I

h2
I

∏

j∈I

rj = 0

Problem 8.12. What is the geometric interpretation of the curves of degree

n lying in the image of the Barth map bn−2,n ? For n = 4 they are the Lüroth

quartics. How is θ related to the data of the equation ? For r = 3 they are

sextics with a determinantal representation arising from 9 lines.

The last case we are interested regards the bundles defined from a general

f ∈ σn+(r/2)(X).

Let E = E(f) ∈Msp(r, n) on P(U). We remark that from the Barth monad

we have

h0(E(1)) = dim ker
[

V ∨ ⊗H0(Ω1(3))
H0(f(1))
−→ V ⊗H0(O(2))

]

− 3(n− r)

It is well known that Ω1(3) is the tangent bundle, then H0(Ω1(3)) = ad U∨,

moreover H0(O(2)) = S2U∨.

Lemma 8.13. On P(U) we have the exact SL(U)-homogeneous sequence

0−→O(−2)−→S2U
q

−→ad U(1)−→U(2)−→0

Proof – It is a particular case of the Four Term Lemma (Lemma 26 in

[OR]), it can also be found by an explicit computation.
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Theorem 8.14. Let f ∈ σn+(r/2)(X) general and E = E(f) ∈ Msp(r, n) on

P(U). Then h0(E(1)) ≥ r/2.

Proof – Consider first f = u ⊗ v2 ∈ X . The n× n matrix corresponding

to the map V ∨ ⊗ Ω1(3)−→V ⊗ O(2) has only one non zero coefficient, which

is u, say at the entry (1, 1). At level of H0, the contraction by u corresponds

at the evaluation of qt of Lemma 8.13 at u. From Lemma 8.13 it follows that

codim kerH0(f(1)) = 5.

If f =
∑n+(r/2)

i=1 fi with fi ∈ X we get that

∩i kerH0(fi(1)) ⊆ kerH0(f(1))

hence

codim kerH0(f(1)) ≤
∑

i

codim kerH0(fi(1)) = 5 [n+ (r/2)]

It follows that

h0(E(1)) ≥ 8n− 5 [n+ (r/2)] − 3(n− r) = r/2

as we wanted.

Remark 8.15 - A simple variation of the Thm. 8.14 is the following. If f ∈

σn+s(X) general and E = E(f) ∈Msp(r, n) then h0(E(1)) ≥ 3r − 5s.

Remark 8.16 - The Thm. 8.14 is meaningful only when n > 5r
2 , otherwise all

E ∈Msp(r, n) satisfy the inequality h0(E(1)) ≥ r/2, because χ(E(1)) = 3r−n.

Remark 8.17 - When r = 2 the bundles constructed in the Thm. 8.14 are

exactly the Hulsbergen bundles in [Bar]. Their curve of jumping lines is a

Darboux curve by Prop. 6.11. When n = 4 the intersection computed in the

above proof is not transversal (the reader can recognize here the flavour of the

Terracini lemma), indeed in such a case the general E satisfies h0(E(1)) = 2.

It is easy to show that their section vanishes exactly on the vertices of the

inscribed (n+ 1)-gon.
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Let Msp(r, n)k := {E ∈Msp(r, n)|h0(E(1) ≥ k} be the Brill-Noether locus and

consider E ∈Msp(r, n)k. The Brill-Noether theory says that the tangent space

to Msp(r, n)k at E is the kernel of the natural morphism

H1(S2E)−→H0(E(1))∨ ⊗H1(E(1))

If h0(E(1)) = r/2, such tangent space has dimension bigger or equal than

(r + 2)n−

(

r + 1

2

)

− (r/2) [n− (5r/2)] = n [2 + (r/2)] +
3r2 − 2r

4

which is equal to

dim∆(σn+(r/2)(X)) = n [2 + (r/2)] + r

only when r = 2, otherwise it is bigger. This means that the general bundle

in Msp(r, n)(r/2) comes from σn+(r/2)(X) only if r = 2, which is the case of

Hulsbergen bundles.
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Ann. 7, 635-638 (1874)

[Hu] K. Hulek , On the classification of stable rank-r vector bundles over the

projective plane. Vector bundles and differential equations (Proc. Conf.,

Nice, 1979), pp. 113-144, Progr. Math., 7, Birkhäuser, Boston, 1980
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algébriques, Complex projective geometry (Trieste, 1989/Bergen, 1989),

213-240, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press,

Cambridge, 1992

[PT] J. Le Potier, A. Tikhomirov, Sur le morphisme de Barth, Ann. Sci.
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