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We give an explicit description of the Kodaira-Spencer deformation
theory for symplectic instanton bundles. The ’t Hooft bundles over
P*(C) can be constructed from (k + 1) disjoint lines. We introduce
the 't Hooft bundles £ over P***{{) and we study some of their
properties, relating them to Yang-Mills Sp(n)-connections over I ().
In particular we prove that generically h°{E(1)) =nforez(BE) =k > 3.

’t Hooft bundles are invariant by small deformations for n > 2,
k> 9.

Introduction

A (mathematical) instanton bundle over ]PZRH(C) with ¢2 = k is a

stable bundle of rank 2n satisfying the following condition:

E is the cohomology bundle of a monad

o R (M}
L®O(-1) 2o Mo 0 2+ Noo(1)

where L, M, N are complex vector spaces respectively of dimension
k,2n+ 2k, k. '

This means that B* is injective (as bundle map), A is surjective,
Ao Bt =0 and E ~ ker A/ImB?.

The main interest about instanton bundles comes from the following
construction, due to Atiyah, Drinfeld, Hitchin and Manin ([ADHM]) in
the case » = 1 and to Salamon in the case n > 2 ([Sal], see also [Ni]).

Let us regard P?"+!(C) as the twistor space of P*(H) and let

P ti(C)y L. PYH)
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be the twistor fibration. The fibers of 7 are embedded lines P*(C} and
are called real lines.

Let E be a 2n-bundle over P*(IL).

Let A be a Sp(n)-connection over £’ which is an absolute minimum of
the Yang-Mills functional
vM(4) = [ IFAl?
P (H)
where F4 is the curvature of A.

Then #* A induces an holomorphic structure over 7+£’ (some details
for n > 2 are given in section 4) and gauge equivalent connections
induce the same holomorphic structure.

The main result of [ADHM] is the following: if n =1 7"E’' = E is
a symplectic instanton bundle with the additional condition to have a
fixed trivialization on the real lines.

Conversely Salamon proves that if E is a symplectic instanton bun-
dte over P*"*1(C) which has a trivialization on the real lines then B
is induced by a unique (up to gauge) Sp(n)-connection over £’ which
gives an absolute minimum of the Yang-Mills functional. ,

In the first section of the paper we study the deformation of the in-
stanton bundles in terms of the monad (M). This topic can be regarded
as a coordinate-free version of the description given in [AABOP]. We
outline also an extension of the algorithms of [AABOP] to the sym-
plectic case.

In the section 2 we remark that the postulated dimensions for the
moduli spaces of instanton (according to the Kodaira-Spencer theory)
coincide with those obtained by using elementary rank considerations
on the Kronecker modules {see [Tyu] §1 for n =1).

In the section 3, which is the main part of this paper, we mtroduce

the (generalized) "t Hooft bundles, -7 T L

For n = 1 the ’t Hooft bunidles were con31dered in [H N] they come

through the Serre correspondance from the union of k-1 disjoint lines.
For n =.2 some cases are treated in [M-51. T e
t is surprising that ’t-Hooft. bundles are mvanant by sma,]l defor*

““natins for-n > 27k-2-0 ,(thls—l_s =not-true for n = 1) so that they -
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solve completely the problem to find the dimension of one irreducible
component of the moduli space of symplectic instanton bundies.

We prove that for a generic 't Hooft bundle we have h°(E(1)) = »
for k> 3. '

At the end of the section 3 we compare this approach with some
recent results about special instanton bundles.

In section 4 we give an explicit description of the Atiyah-Ward
correspondance for n > 2, according to Salamon, in order to have an
explicit description of the real 't Hooft bundles. We sketch some results
whose proofs will appear in [AQ3).

In the appendix we list two Macaulay scripts.

I have begun to work about instanton bundles in collaboration with
V. Ancora, who has to be considered a coauthor of all the original
aspects of this exposition.

The author benefited also of many insights during talks with A. Ti-
khomirov and G. Trautmann.

I wish to thank the Seminario Matematico e Fisico di Milano for
the opportunity to talk about this subject in Milano.

It 1s a pleasure to thank warmly the colieagues of the Depart-
ment of Mathematics of Milano A. Alzati, M. Bertolini, A. Lanteri,
M. Palleschi, C. Tibiletti and C. Turrini for a lot of fruitful discussions
through the last years and moreover for their help, encouragement and
Iriendship just from the beginning of my mathematical activity.

1. Deformations of instanton bundles

Instanton bundles have been defined in the introduction as stable co-
homology bundles of the monad (M).

It seems likely that the stability condition is contained in (M), this
is true on P° and F* ([AQ2]). Instanton bundles with ¢; = k define a
moduli space M Ipant1(k) which is an open subset of the corresponding
Maruyama scheme.

The symplectic instanton bundles with ¢; = & carry a natural struc-
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ture of closed subscheme of M Ipent1(k) that we denote by
M ISpensi(k).
Let E be an instanton bundle with ¢z = k over P**+1(C).
LemMa 1.1 -
L~ H™E(-2n-1))
M~ HYE @ Q') ~ H™(EY @ 9)Y
N~ HYE(~1)

Proof — Straightforward from {(M).
The dual bundle EV is induced by the dual monad

MWeoo(-1) 2. MVeo 2. Ve o(+1)

If E is symplectic then the symplectic isomorphism £ — EY is in-
duced by a morphism of monads and we have N Vol M~MY. In
fact, according to the Serre duality

NY ~ HY(E(-D)Y =~ HYEV(-1))Y ~ H*(E(-2n— 1))~ L

Moreover, there is a symplectic isomorphism J : M — MY such that
Bt = JA! and FE is induced by the monad

N o(-1) P4 MVeo A NeO() (1.0)

where

Ac (M ® N @ O(1)) = Hom (MY ® O, N @ O(1)) =

~ Hom (NY @ O(-1),M @ O)
We have 2 natural map
Ra:H(M @ N @ 0®1) — AN ®0(2)
Alvs AIJAT + ATAY

which is intrinsecally given by composing A’ € Hom (NVRO(-1), M ®
() with AJ and projecting over the summand 12\N of N N.
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ProrosiTiON 1.2 —

N AN @ F(O(2)

a = Coleer (A 4)
Im(AA)

H*(S5%E)

Let K be the kernel bundle occurring in the sequences
0 - ->I(—>MV®O AL NQO1) — 0 (1.1)
0> NQO-1)— K — E—90 (1.2)
From (1.2) we get
0— }‘LNV @ O(-2) — NY® K(-1) — S*K — §5?E — 0
Since HY(K(—1)) =0 for i > 2 it follows
H*(§%K) ~ H*S?E)
From (1.1} it follows
06— 2K —» PMRO — M QN @ O(1) — AN © O(2) — 0

The last nonzero morphism computed at the level of global sections is

2
A A. Hence the result follows.

REMARK 1.3 — The space ker(jzx A} contains the subspace
End (N) &Sp (M) according to the inclusion

End (V) ® Sp (M) — Hom (MY ® O, N @ O(1))
(o, 7) — aA + Ay
In fact
AA(GA + Av) = (A + Ay)TAT + AT(Aab +1PA4%) =

= A(vJ + JHA =0
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ProprosITION 1.4 -

HY(S?E) = ker(K A) /End (N) @ Sp (M)

Proof — As in the proof of Prop.1.2 we get from the same se-
quences:

0 — End (N) — HYS?K) — HY(S?E) — 0

0 —» §?M — ker(A A) — H(52K) — 0
Since $2M ~ Sp (M) through the map
P PJ

the result follows

REMARK 1.0 — ker(jz\ A) is the tangent space in A to the subva-
riety Q C HO(M @ N ® O(1)) defined by @ = {4’ | A'JA" = 0}.

The moduli space MISpens:(k) can be defined as in [0S5] as the
GL(N) x Sp(M) quotient of an open subspace of Q.

The action of End {N)& Sp (M) over ker(f\ A) given by (a7, 4") —
A’ + aA+ Ay is the derivative in (id, A) of the GL{N) x Sp (M) action
over Q. Thus the prop. 1.4 identifies H'(5?E) as the tangent space at
MISgzns1(k) in E, according to Kodaira-Spencer theory.

The propositions 1.2 and 1.4 can be carried out in the same way
for any instanton bundle, not necessarily symplectic.

We get the following propositions 1.6 and 1.7, that can be regarded
as a coordinate-free version of the theorems 2.1.2 and 2.1.6 of [AABOP].

Let A' @ B be the map

HYN @ MY @ O(1)) ® EY(M ® LV @ 0(1)) — H(N 8 1Y ® 0(2)),

(X,Y) — XB' + AY?,
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We have also a morﬁhism
v :End (L)@ End (N) @ End (M)
— HY (N MV O(1))® HY(M @ LY @ 0(1)),
(@.8,7) = (BA— AY',aB + Br)

with one-dimensional kernel.
It is straightforward to check that Im(y) C ker(A' @ B).

ProrosTioNn 1.6 —

H?*(End E) ~ Coker (At ® B)

Provrositiony 1.7 -
Hl(End E) ~ ker(Ai & B)/’y(End LOEndN @ FEndM).

The geometrical interpretation of remark 1.5 holds also in this case.

Deformations of bundles with structural group G

Let ¥ be a vector bundle of rank r with structural group G C GL(r).
Let Ad : G — GL(g) be the adjoint representation and let AdF be
the corresponding adjoint bundle. )

By Kodaira-Spencer theory among the small deformations of E
preserving the structural group there is a versal deformation. Let X
be its base space; then the germ of X at [E] is the zero locus of the
Kuranishi map’

g : H{AdE) — H*(AdE)

In particular H'(Ad E) identifies with the Zariski tangent space to X
at [B], and X is smooth at E if and only if &g = 0.

When E is stable the germ of the deformation space can be identi-
fied with the germ of the corresponding Maruyama scheme.

In particular if G = Sp(r) then E is called a symplectic bundle
and we have Ad E = §?E.

In equivalent way, a symplectic bundle F can be defined as a bundle
E with an isomorphism ¢ : B — EV such that ¢ = —¢".
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The Kuranishi map

It follows by Artin deformation theory that the Kuranishi map of in-
stanton bundles lifts through the diagram

ker(A' ® B) —2— H(LV @ N ® O(2))

HYEnd FE)

H?*(End E)

where 3(X,Y) = XY°¢.
In the symplectic case, the symplectic Kuranishi map lifts through
the diagram

ker(A A) HYAN ® 02))

HY(S*E) H?(S?E)
where ®(X) = X JX®.

The computations of h*($2E), h%(S?E) according to the prop. 1.6
and 1.7 can be easily implemented. We join a short Macaulay script in
the appendix. :

The interested reader can adapt the other scripts described in [An]
(e.g. for the computation of the Kuranishi map) to the symplectic case.

Some of these scripts are available upon request to the author.

2. Elementary estimates for the dimension of the moduli
spaces

The following proposition is a straightforward computation, by using
(1.1} and (1.2)

ProprosiTioN 2.1 — Let E be an instanion bundle with co = k
over P11,
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(i) B(End E) - h3(Bnd E) = &> (%) }k(snz) 41— 4n?,
(i) RY{End E(-1)) — A*(End E{~1)) = —k%(2n — 2) + 4nk.

If F s symplectic:

2 _ 2
fiii) B (S?E) — K(S?F) = - = (2”2 1) bk (____mn +25”+1) n

(—2n* — n),

(iv) hl(SQ;Ij_S RASPE(-1)) = —k*(n — 1) + k(3n + 1).

Let us oi%sefrve that for n = 1 1) and iii) collapse to the well known
8k — 3. S |

(1) and (ii1) give a lower bound for the dimension of the moduii
spaces. (ii) and (iv) give similar bounds for the subscheme of the
moduli space consisting of bundles which restrict to a fixed bundle on
a fixed hyperplane.

For m» > 2 the expressions from (i) to (iv) become negative for
k > 0. This simple remark already shows that the moduli are ob-
structed for n > 2.

We recall that instanton bundles can be defined by a second monad
(see [0S]), which is dual to (M) in the sense of Beilinson theorem (see
[AO1]), precisely

LeO(-1) 2. Noail) 2~ Pg0 (2.1)

where P ~ H'(E) so that dim P = 2n{k — 1). The role of the two
morphisms m, n is not symmetric as in the first monad (M).

In particular m itself determines the buadle in the following way.
Let P27 = P(V).

We have

meIlVONQAV C Hom(La VY, N®V) (2.2)
(see [Tyu] §1) and m satisfies the following condition

corankm > 2n(k — 1). (2.3)
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Conversely every m in (2.2) which satisfies (2.3) fits in a monad (2.1)
and determines the instanton bundle (with a slight abuse of notation).

m is a Kronecker module in the language of [0S]. Two instanton
bundles defined by the Kronecker modules m, m' are isomorphic if
and only if there exists (P, Q) € GL{I) x GL(H)/C* such that m' =
Pim@Q.

THEOREM 2.2 - {[0S]) An instanton bundle E defined by the
Kronecker module m is symplectic if and only if the following two equiv-
alent conditions hold:

2
(i) IV~ N and me A(L® V)
(ii) IV ~ N andeSZLQ‘sz\V

The equivalence between (i) and (ii) follows from the canonical decom-
position
2 2 2
MLRV)=(AL®S*V)® (S’ LAV)

CorOLLARY 2.3 — ([OS]) Two symplectic instanton bundles de-
fined by the Kronecker modules m, m' are isomorphic if and only if
there exisi P € GL(H) such that

m = P'mpP

The action of GL{H) x GL(H)/C* (respectively of GL(H) in the
symplectic case) is free (up to finite subgroups) so that the moduli
spaces of instantons can be studied by intersecting

(i) the variety of corank 2n(k — 1) matrices in Hom (L@ VY, N@V)
with LY ® N ® AV
(i) in the symplectic case the variety of corank 2n{k — 1) matrices in

Rz ov)with S2LeAV.

Looking at the dimensions, we get the following simple but inter-
esting computations:
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dim MIpsn (k) > dim IV @ N @ AV +
—codim {matrices of corank 2n{k — 1)}+
~ dim GL(H) x GL(H)/C" =
= () K2 — (2n(k — 1)) - (2* - 1) =
= k2 (2”{1) + k(8n?) + 1 — 4n?
which is exactly (i) of prop. 2.1.
dim MISpenta (k) > dim 520 @ 12& V+

—codim {skew-symmetric matrices of corank 2n(k — 1)}

— dim GL(H) =

- () () ()

k2 fon—1 1002 + 5n + 1 ,
_“?ﬁ( , )+k(——-im— + (=207 —n)

Il

which is exactly (iii) of prop. 2.1.

3. The 't Hooft bundles

Instanton bundles from % + 1 skew lines in P°

Let us begin with an explicit description of the monads for instanton
bundles E over P* such that E(1) has a section vanishing on & + 1
disjoint lines.

By using the well known Serre correspondence ({0SS]) it is possible
to construct F from the variety Z given by the union of the (k + 1)
disjoint lines and from an element of

P(Ext 'Yz @ det(N, ps), 0)) = P(C)
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I
Let J = OI 0 ) be the standard skewsymmetric form. Let
A: O — O(1)%*+? defined by
a1 o e bl alb
oh e 3.1)
ap oLa b aib
with e; € C generic and ay,...,ak,b1, ..., bk, a, b generic linear forms.

ProrositioN 3.1 - Let A asin (3.1). Then
i) AJA =0,
ii) Tk A =k for every point in P2,

Proof - 1) is straightforward.
ii) is easy and will be proved in a more general setting in the
prop.-def. 3.3.

ProrosITiON 3.2 — (description of 't Hooft bundles over P?)

Let A as in (8.1). Then A defines an instanton bundle E such
that E(1) has a section vanishing on the (k + 1) lines {a = b = 0}
and {a; = b; = 0} for i = 1,...,k, so that E is a ’t Hooft bundle.
Conversely the generic 't Hooft bundle can be described by a monad
with A as in (3.1).

Proof — A defines an instanton E from the prop.3.1. The matrix

satisfies
AtoC =0
so that it defines & + 1 sections of the kernel bundle (twisted by O(1)),
that is one section of E(1).
This section vanishes where the rank of C is not maximum, and
this proves the first statement.
The second statement follows from the Serre correspondence.
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REMARK — If the union Z of the (£ + 1) lines is contained ir a
quadric g we get a special ’t Hooft bundle £ with A%(E(1)) = 2.

A second independent section of (1) can be found in the following
way: there exist linear forms s;,4; ¢ = 1,...,k + 1 such that

g = sia; + tibz{ = 8k+.1f1 + b
Then stack the following row to G
(0r, 81,282, ., LSk, =~ Sk41, @181, . -, CkbE, —trs1)
and we still have for the new C’:-
Ao =0

’t Hooft bundles over P2"t+1

Denote by 2z, w; {¢,7 = 1,...,&) 2k generic linear forms over P2*t1_ Tet
&.,mj {(#,7 =1,...,n) be 2n generic linear forms (that can be choosen
as a part of a system of homogeneous coordinates over P**+1),

Let {a,;) be a generic kX n matrix with complex coefficients. Denote
by D(f;) the diagonal matrix with p-th entry equal to f,.

Let A: OF — O(1)*+% defined by:

[D(z) ] e D(&) | D{w:) | a- D{m:)] (3.2)
For n =1 (3.2) reduces to (3.1).
PROPOSITION-DEFINITION 3.3 — [Let A asin (3.2). We have
(1) AJA* =0,
(11) tkA = k for every point in PP

We call the symplectic instanton bundle defined by A (see (1.0}) a
't Hooft bundle.
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Proof - (i) is straightforward.
In order to prove (ii) for a generic choice of A we can make the {ollowing
choices: divide a system of homog. coord. into two subsets

{$0,...,$n} {$n+1;---;$2n+1}

Pick up z,&; as linear combination of {zy,...,z,}. Pick up w;,n; as
linear combination of {Zn41,...,Zam+1}. It is then sufficient to check
that the mafrix [D(z;) | a-D(&;)] has rank k for every (zo,...,2,) € P™.

Choose (a;;) with all nonzero minors of any order and choose z;, &;
in such a way that for every subset of n + 1 elements of them the
intersection of the corresponding n + 1 hyperplanes is empty. This
means that the corresponding hyperplanes have normal crossing.

Let £ € P". Let z,,...,2; (with j < n) be the forms such that
z,(Z)=0forp=1,...,5.

Consider &y,...,ép41—;. By the assumption there exists ¢ €
{1,..., n+ 1~ j} such that £,(Z) # 0.
Now comnsider 611 v J€Q1J .- 7§n+1—ja£n+2—j-

By the assumption there exists £,, among the above such that &;,(7)

£0.

In this way we get

2y By By wkby - €y,

that are k forms all nonvanishing in Z.
It follows that the minor of [D(z;) | a- D(&)] corresponding to these
forms does not vanish in Z.

ProroSITION 3.3 — Let E be a *t Hooft bundle. HO(E(1)) con-
tains a n-dimensional subspace W, such that the degeneracy locus of
the evaluction map

O W, — EQ1)

is given by the union Z of the (k+n) linear subspaces of codimension 2
{z; = w; = 0} t1=1,...,k,

{§{, =n; =0} j=1,...,n.
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Proof — Define
1 —2Z1

= o T o & (3:3)

Tn ; ’"gn

and check that Ao C = 0.
Then argue as in the proof of prop.3.2.
Of course we have

C'JC =0 (3.4)

REMARK — The codimension of Z in the prop. 3.3 is the expected
one only for n = 1. Moreover the theorem 3.7 will show that for &£ > 3
HO(E(1)) = W,. For k = 1,2 W, is a proper subspace of H°(E(1)).

For every j x n complex matrix F' define a subspace ]P?,—Tl F1-2j by
the equations

& -
F. : =0
n (3.5)
L)1
F- : =0
Mn /

ProrosiTION 3.4 — Let FE be a ’t Hooft bundle.
For every ]P?;”"'l_zj as in (3.5) we have EiPan-z,- ~ E'&O% where
o

E' is a 't Hooft bundle over P¥H1~27
Proof — Straightforward

ReEMARK — The family of ]P?H_zj considered in the prop. 3.4 is
parametrized by the Grassmannian Gr(Pf,F*~1).
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COROLLARY 3.5 — Ewvery 't Hooft bundle is trivial on the generic
line.

THEOREM 3.6 — FEwvery t Hooft bundle is stable in the sense of
Mumford.

Proof — Tt follows word by word by the theorem 3.7 of [AO2],
using the prop. 3.4 at the place of the theor. 3.1 of [AO2].

TEEOREM 3.7 — Let E be a generic ’t Hooft bundle over pintt
with ¢3 = k > 3. Then R°(E(1)) = n.

Proof — For n = 1 the result is well known. For simplicity we
give all the details in the case n = 2, the same pattern works for n > 3.

Let (zg, 21, 22, wo, w1, w2) be a system of homogeneous coordinates
over P°.

We consider a ’t Hooft bundle (as in the proof of the prop.3.3)-
corresponding to the following simple form:

A= z0(do | 0101 0)+ 2(di | (a,0)[0]0) + 22(d2 | (0,0”} [ 0| O)+
+wo(0 | 0] 80 ] 0)+wi(0]0 46| (a',0))+wx(010] 2] (0,a%))

where d;, §; are k x k diagonal matrices and a* are kX 1 column vectors.
Let b be an unknown (4 + 2k) X lcolumn vector representing an

element of HO(E(1)) (as a column of C' in (3.3)) such that AJb=0.
Let us denote

b = (béw bgvbga bé)zo + (b%vb%vb:;! b?)zl + (b%,b%, b%’b%)32+
-i-(c[l),cg, cgs Cg)wﬂ + (c%, c%, C?’clll)wl + (6%5 c%: C%’C%)ub

where, as above, the 4 blocks have size respectively k,2,k, 2.

The condition AJ& = 0 divides into 21 blocks, each one consisting
of k equations. Each block correspond to a guadratic monomial over
P, ‘

We consider first the 6 blocks corresponding to the 6 monomials
225 4,5 =0,...,2.
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This system of 6k equations in the 3k + 6 scalar unknowns b3, 63, &3,
b, b2, b5 can be explicitly solved and the only solution is the zero one.

In a more elegant way, consider.that the kernel bundle
0 — K —s (94“?‘, AL oY — 0
restricts on the P? where w; =0 té:
Klp ~ F @ OF?
where F is a 2-bundle over P? such that

0—~>F-+O§?——+Opﬂnk—ﬁo

The claim is equivalent to the statement that HY(F(1)) = 0. This
vanishing follows easily by the isomorphism

P(1) = FY(~k+1)

For n > 3 this argument can be repeated by using the theorem 2.2 of
[AO2]. )

In the same way we consider the 6 blocks of equations corresponding
to the 6 monomials w;w; 2,7 =0,...,2.

It is then sufficient to show that the system of 9% equations cor-
responding to the monomials zw; has & + 2 solutions in the 64 + 12
scalar unknowns '

1 ;2 3% ;2 31 32 3 4 3 4 3 4
b(}?b(}:blzbhb2:b27cﬂuc{]?clrcls‘:2:cz

let us denote
b% = (ﬁel,ﬁoz) Cé = (701>702)
'5% = (ﬁlhﬁlz) Cii = (’Yu;’hz)

b% = (fa1, Baz) 3 = (a1, Y22)
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so that the system of these 9k equations (9 matrix equations) is:

dgcg — 505%, =0

doc — 6108 — a'fp1 =0

dgcg — 525%) —a%Bpa =10

dycg — Sgbt —alvar =0

dic§ — b3} —al(yn = fu) =0

dicj — G3b1 — alya1 ~ @*frz = 0

docd — Gobl + a?y02 = 0.

dycd — 6183 + a®yia— B =0

dac3 — 6205 + a®(v22 — f22) = 0

We perform a Gaussian elimination. More precisely we can
climinate b} by 2and3 (adding multiples of 1)

Cg » 3 ” ” 2

» b% ” 5 a.nd 6 n ” 4
) Cg » 6 » ” 5
» b% 73 8 and 9 . ” . ” - 7
” Cg ” 9 b3 » 8
” Cg ” 5 an d 8 ” ” 9
” C% »” 6 an d 9 » n 3

We get the system
docd — Gobl =0
docs — alBor — 61651d0c‘3 =0
dac3 — a?Bog — 6267 1doct + 82677 alBor = 0

—80b} + i} + a'yn =0
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a*{731 — fu1) — 5150_10:1’}’01 + dld(;lfliﬁm =0

@'y — ¥ Bz — 5251_10;1({)(11 — B11) + d1dgta*Boy
—dydy 867 0 By = 0

dacd - Loby 1 aPyer =0

a? 112 — ' By1 — 6165 aPyop + dady at oy = 0

a*(722 — Baz) — 8267 aPy1z + 6207 'l o + dadg a?Bos
—dydy 6267 at By = 0

Now the matrix equations n. 1, 2, 3, 4, 7 are a system of 5% equations
of rank 5k. The other 4%k equatioms in the 10 remaining unknowns
Bo1, Boz, Br1 — 711, B2, Bat, Baa — Y22, Yo1, Yoz, T12, Y21 have rank 10 (here
we need k > 3).

So the rank of the system is 5k + 10 as we wanted.

This ends the proof of the theorem 3.7.

REMARK — From the theorem 3.7 it follows that generic t Hooft
bundles have not natural cohomology

THEOREM 3.8 — ’t Hooft bundles depend on 5kn + 4n? parame-
ters for k > 3.

Proof — We sketch two different arguments.
By the prop. 3.3 and the theorem 3.7 the degeneracy locus of the
evaluation map

0% 30(5(1)) — E(1)

is the union Z of & + n linear subspaces of codimension 2. The form of
the matrix A in (3.2} shows that, for a fixed Z, there are kn parameters

more. So the number of parameters is

(k +n) - dim Gr (P*~1 P#F1) 1 kn = Bkn + 4n?
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A second argument is the following: we can arrange the first row of
matrix ¢ in (3.2) to be (1,...,1). Then A depends on

(2k+2n) 2n+2)+ (k- 1)n

parameters.
Now GL(k) x Sp(n + k) acts over A by

(g,8),Ar> gAs

It can be shown that the isotropy subgroups of this action is given by
diagonal matrices g and symplectic matrices s consisting of 4 diagonal ‘
blocks. -

Subtracting to the above expression the dimension 4k + 3n of the
isotropy subgroups we get 5kn 4 4n’.

REMARK — Moreover a stronger statement is true, that is
k! (S2E) = 5kn - 4n? for a generic 't Hooft bundle E. This result
will appear in [AO3] and will be sketched in the section 4. From the
explicit description of the elements of H(S?E) it follows that every
small deformation of a generic ’t Hooft bundle is again a 't Hooft bun-
dle, confirming the theorem 3.7. .

In [S-T] it was defined the class of special symplectic instanton
bundles.

They are invariant for a particular action of SL(2) over P***!. By
using this §L(2)-action it was computed in [O-T] for a special sym-
plectic instanton bundle E:

R (End E) = 4(3n — D)k + (2n — 5)(2n ~ 1)
Moreover the following is true [D]:
RY(S?E) = k(10n — 2) + (4n® — 10n + 3)

These results give another proof of the fact that M Ipens1(k) (resp.

M I8p2nt1(k)) is singular at a special symplectic instanton bundle for
n>2, k> 0[MO]
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One reason for a singularity to occur is now clear: two irreducible
components meet at the points corresponding to special symplectic in-
stanton bundles. A surprising fact is that the component of symplectic
't Hooft bundles has dimension bigger than one of the components of
U(n)-bundles. The details will appear in [AQ3].

4. The twistor fibration and the reality condition

Let A, B matrices over H = C 4 jC. We emphasize that in gen-
eral (AB)* is different from (B‘A!). Anyway the equality & 38 =
B-& Ya,B € Himplies that

A-B =B -4

Moreover af = ja Yo ¢ H.
We can define the twistor fibration

Fr(C) T pr(H)
(ZO: .. 72271-{—1) Ll (Q’O; LR :Q'n)

by the formulas ¢; = # + jzuy144. Salamon in [Sal] defines a Sp (n)-
connection on a complex 2n-bundle over F*(H) starting by n+1 quater-
nionic & X n matrices Ag,. .., A, satisfying the following two conditions:

i) > Aigi is invertible ¥ (qo, .. . ,q.) € F™(H)
=0

i) A,‘fij- is symmetric V1, j (4.1)
™
In fact ZA;qi define a bundle map
=0 ‘
[ H® —— otk

where H is the tantological line bundle over P*(H). Let A; = oy +
3B Over H®™¥ there is a hermitian metric. We have the splitting
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H™"+* = E'® f(H®*) and we denote by p : H*** — E’ the orthogonal
projection. Then po d is a Sp(n)-connection over . Moreover
m*FE’ = E where E is a symplectic instanton bundle defined by the

matrix

A= zi(og | Bi) + zngrai(~Bi | &) (4.2)

i=o
The link between (4.1) and the monad condition can be explicitly seen
in our case by the following lemmas:

LeMMa 41 — Let A; = o+ 38 fori=0,....,n be the E X n
quaternionic matrices. Define A as in ({.2).
Then the following properties are equivalent

i) AJA* =0

ii) A;A% is symmetric Vi, j

i) (3o q:A:) (O ¢ Ai)t is real Vg € P*(H)
Proof — Straightforward.

LEMMA 4.2 — With the notations as in the lemma 4.1, the fol-
lowing properties are equivalent:

i) A; satisfy the two Eonditz’ons (4.1)
i) (T 6iA)(T ¢idid) € GL(k,R) Vg€ H®""\{0}

iti) A define a bundle in the monad (1.0).

Proof — Straightforward.

Let 0 : HY(M ® N @ O(1)) — H(M @ N @ O(1))

37 zi(ei | B+ znprgi(i | 8) = D 28 | =7 + znpri(—8: | &)

=0 i=0
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ProrosiTioNn 4.3 -
i) o =id
i) o(G - A) = Go(A) YG € GL(k)
#i) o(A-L)=o(A)e(LY VI &Sp(n-+k) ivkere
3 Sp(n-+ k) Sp(n + )
is the involution such that de(l} = —I*
w) o(Q) C @ (see the remark 1.5)
v} A has rank k ¥z € P2H(C) <= o A) has rank k ¥z € P?+1(C)
vi) A = o(A) if and only if A has the form in ({.2)

vii) If A = o(A) then A defines an instanton trivial on the real lines.

Proof — The properties from (i) to (vi) are straightforward.
In order to prove (vii) consider that

P] = (Zoj._."zn, Zﬂ'{'17“'722’ﬂ.+1)
P2 = (_§n+1:- LR _2271—{-1, 20, . ,Zn)
are always two distinct points on the w-fiber of (z0 + jzng1,..., 20 +

JZome1)- Infact (2 + J2at141) -5 = —Zntrge + 52
Hence from A = a{A) it follows

AP = A(Py)

and A(P}A(P) = A(P,)A(P,)" which is hermitian positive definite.
By the lemma 1.8 of [OS} this implies the result.

The prop. 4.3 shows that ¢ is an involution on MISpens: (k) and
the fixed points of this involution correspond to real instanton bundles

which come from the Salamon construction.
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Description of real 't Hooft bundles

The 't Hooft bundles which satisfy the condition o(A) = A (and then
come from Sp (n) Yang-Mills connections over F"(H) can be described
in the following way ( in a convenient system of coordinates):

A= [Z?:o 2 D(b;) + znpr4a - D(ei) | a - D(z) | = 20 2 D(&) +

bansrse D) | @ Dlonrisi)
(4.3)
where ¢;,b; € C, ai; € R.
We call the instanton bundles defined by A as in (4.3) the real 't
Hooft bundies.

In quaternionic form we have ) A;q; with
A; = [D(bi) = 5 D(es) | (©,...,d,...0)]
where @’ is a k X 1 real column vector.
The proofs of the following theorems will appear in [AO3].
THEOREM 4.4 — For a generic 't Hooft bundle E we have
RY(S?E) = 5kn + 4n*

Moreover ker(f\ A) (see prop.1.4) is generated by the following ele-
ments:

a) A-L YLeSp(n+k)
8) G-A VG e GL(K)
v) M-C*-J where C isin (3.3) and M is a k x (k+ n) matriz

§) X4 i F; where F; = [D(es) | a- D(f) | D(g:) | @ - D(h:)|
ey fir iy hiy hp € C, a is a (k X n) malriz.
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REMARK - The elements in ¢) and in 5} have an obvious mean-
ing. The elements invy) correspond to the image of the map

H(E(1))® HY(E(-1) — H'(S®E).
The elements in §) correspond to the image of the map

HYS?E(-1)® V -— H(SE).

THEOREM 4.5 — For a generic real 't Hooft bundle the real kernel

of A A is generated by
o} asin 4.4 with [ = — L}
3) as in 4.4 with G real
v) as in 4.4 with M real
§) asin 4.4 with o(F;) = F; (with obvious notations)

The real dimension of this kernel is 5kn + 4n?, equal to the number of

real parameters for real 't Hooft bundles.
The following result is simple but important.

THEOREM 4.6 — The Kuranishi map vanishes for 't Hooft bun-
dles. ‘

FProof — Here we take the theorem 4.4 for granted.

We have a case by case analysis:
We call € the bilinear form associated to the Kuranishi map.

a— @) B(AL, ALy) = ALLJ(LLAY) + ALy J (L AY) =
= AL LoJ A — AJILIE At € Tm(A A)
o« —f) B(AL,GA) = ~AJFAIG — GALIA® € Im(A A)
5 f8) ®(G1A,Ga4) =0
o — %) B(ALMCH) = —AJLIICM' — MCILIA' € Im(A A)
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B—7) ®GAMCL)=0

¥ —7) (M, MC'J) =0 (by using (3.4))

a—6) AL F)=-AJL'Ff-F;LJA' € Im(iA)

B—8) ®(GAF;) = GAIF} + F;JA'G" = —-GF;JA' - AJF!G' €
Im(f\ A) (because AJF} is symmetric)

y—8) B(MC',F;) = —MC'F} + F;CM" = (C*'F} = C'JA* for
some C') = —MC'JA* — AJC*M* € Im(A A)

§—06) O(F;,Fiy=0

Appendix

We list two Macaulay scripts ([BS]).

2
The first one computes the dimension of ker(A A) and prints the di-
mensions h'($?E), k2(S§*E) for a given symplectic instanton.
The second one produces a generic 't Hooft bundle.

;SCRIPT hih2s2

;USAGE: hih2s2 a

incr-set prlevel 1

if #0=1 start

incr-set prlevel -1

;h1h2s2 A

:Calcola le dimensioni di H1(S" 2(E)) 3 H2(S" 2(E)) per E dato
;dalla matrice A e le scrive su video.

incr-set prlevel 1

jump end

start:

nrows #1 nre
poly one@ 1

nvars R nv@

int nn@ (ave-2)/2
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tensor #1 #1 tcce
submat tcc@ tccl@

1. . nr@* (2*nn@+2*nr@)
submat tced tcc2@

'7 nr@*(Z*nn@+2*nrQ)+yi1?*nr@£fﬁ*nn@+2*nr@) e

subtract tccl@ tcc2@ tce@

set autocalc 1

set auntodegree 2

syZz tcc@ -1 sitcc@

ncols sltcc@ ncsitcct

set autodegree 1

5yZ tcc@ -1 s0tcc@

ncols s0tcc® ncsOtcc®

“int syz1@ (nv@-1) *ncsO0tcc@+ncsitccld

int h2Q 5yzi@-nr@*(2*nne+2¥nrQ) * (2+nnd+2} +nr@* (nre-1i) =*
(2%nn@+3) * (nne+1)}/2

int hi@ syzi@-nx®nr@-(an@+nre) * (2*nn@+2+nrQ+l)
shout type hil@

shout type h2e

set autocale -1

end:

incr-set prlevel -1

;SCRIPT RANDSIM
;USAGE: RANDSITM k n a

iner-set prievel 1

if #0=3 start

incr-set prlevel —1

;randsim X n 2

;definisce un istantone simplettico genericé
;con ¢c2=k su P (2n+1) e lo chiama a

;tale che a.j.a” t=0

incr-set prlevel 1



196 G. OTTAVIANI

jump end
start:
ring 5@
i7

1

aQ

random #1 #2%242 ri@
random #1 #2*2+2 r2Q
random #1 #2 r3@
<ring 2*#2+2 x[0]-x[2+#2+1] RQ
fetch riQ@ ri@

fetch r2Q r2q@

fetch r3Q r3Q@
<getvars rv@
transpose rv@ rviQ
mitlt ri@ rvtd al@
mult r2@ rvt@ a2e
submat ai@ £1Q

1

submat a2@ f2@
i

if #i=1 saltaloopi
int i@ 2

loopl:

submat al® bHi@

i@

submat a2@ b2¢
i@

dsum f£1@ bi@ fie@
dsum £2€ b2e f20@
int i@ i@+1

if i@<#1+1 loopl
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saltaloopl:
submat rvt@ gie
1

submat rvt@ g2@
#2+2

if #2=1 saltaloop2
int i@ 2

loop2:

submat rvtQ@ bil@

i@

submat rvi@ b2@
#2+1+i@

dsum gi@ bie gi@

dsum g2@ b2@ g2Q

int iQ i@+1

int iQ@<#2+1 loop 2
saltaloop2:

mult r3@ gi@ gie@

mult r30 g2@ g2
“concat £1@ g1@ £2@ g2q
copy £1Q #3

end:

incr-set prlevel -1
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