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Abstract
We describe the cohomology groups of a homogeneous vector bundle E on any
Hermitian symmetric variety X = G/P of ADE-type as the cohomology of a com-
plex explicitly described. The main tool is the equivalence (introduced by Bondal,
Kapranov, and Hille) between the category of homogeneous bundles and the category
of representations of a certain quiver QX with relations. We prove that the relations
are the commutative ones on projective spaces, but they involve additional scalars
on general Grassmannians. In addition, we introduce moduli spaces of homogeneous
bundles.
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1. Introduction
The Borel-Weil-Bott theorem computes the cohomology groups of an irreducible
homogeneous bundle on a rational homogeneous variety X. In this article we compute
the cohomology groups of any homogeneous bundle (including the reducible ones) on
a symmetric Hermitian variety of ADE-type. This class of varieties includes Grass-
mannians, quadrics of even dimension, spinor varieties, two exceptional cases, and
products among all of them.
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In order to compute the cohomology groups (see Th. 6.11), we have to describe
the homogeneous bundles as representations of a certain quiver QX. The moduli
spaces of such representations give moduli spaces of homogeneous bundles, which
are introduced in §7 and seem to have an intrinsic interest.

We describe now in detail the background of this article.
Let X = G/P be a rational homogeneous variety. It is known that the category of

G-homogeneous bundles on X is equivalent to the category P -mod of representations
of P , and also to the category P-mod, where P = Lie P (see, e.g., [BK]). Since P is
not reductive, its representations are difficult to describe. In fact, if E is a homogeneous
bundle, it has a filtration 0 ⊂ E1 ⊂ · · · ⊂ Ek = E where Ei/Ei−1 is irreducible, but
the filtration does not split in general.

Let P = R · N be the Levi decomposition, where R is reductive and N is nilpo-
tent. At the level of Lie algebras, this amounts to P = R ⊕ N as vector spaces.
Considering E as R-module (and hence as R-module), we get the graded bundle
gr E =⊕

iEi/Ei−1. The nilpotent radical N is an R-module itself, with the ad-
joint action, corresponding to the bundle �1

X. The action of P over E induces a
G-equivariant map

θ : �1
X ⊗ gr E−→gr E. (∗)

Our first result is that when X is a Hermitian symmetric variety, a morphism of R-
modules θ : �1

X ⊗ F−→F is induced by a P-action if and only if θ ∧ θ = 0 (see
Th. 3.1).

In analogy with [S], we call a completely reducible bundle F endowed with
such θ satisfying θ ∧ θ = 0 a (homogeneous) Higgs bundle. So the category of G-
homogeneous bundles turns out to be equivalent to the category of Higgs bundles. In
the pair (F, θ), F encodes the discrete part and θ encodes the continuous part.

By using the Bott theorem, we can prove that Hom(gr E ⊗ �1
X, gr E)G is isomor-

phic to Ext1(gr E, gr E)G (see Th. 4.3). In this setting, a reformulation of Theorem 3.1
implies that the set of P-modules E such that gr E = F is in natural bijection with the
set of e ∈ Ext1(F, F )G such that m(e) = 0, where m is the quadratic Yoneda morphism
Ext1(F, F )G−→Ext2(F, F )G.

Bondal and Kapranov had the remarkable idea that quivers are the appropriate
tool to manage P -modules; indeed, we state our results in the framework of quivers.

A quiver QX is associated to any rational homogeneous variety X. The points of
QX are the dominant weights of R, and the arrows correspond to the weights of N
in the action (∗). Bondal and Kapranov [BK] and Hille [H1] proved that the category
of G-homogeneous bundles on X is equivalent to the category of representations of
QX with certain relations to be determined (see also [Ki]). Hille in [H1] proved that
the relations in QX are quadratic if X is Hermitian symmetric and found that the
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relations of the quiver constructed in [BK] were not properly stated in the case of the
Grassmannian of lines in P3 (see Exam. 5.11). Then Hille showed that in QP2 , the
relations correspond to the commutativity of all square diagrams. If X is Hermitian
symmetric, we see that the relations are consequences of the condition θ ∧ θ = 0. This
allows us to extend Hille’s result to QPn (see Cor. 8.5). We have found that the relations
for general Grassmannians involve some additional scalars (see Prop. 8.4).

The second part of this article is devoted to the computation of the cohomology.
The Borel-Weil-Bott theorem computes the cohomology groups of an irreducible
bundle E on X. In particular, it says that H ∗(E) is an irreducible G-module. It follows
that for any G-homogeneous bundle E, there is a spectral sequence constructed by the
filtration gr E abutting to the cohomology groups of E. The main problem is that the
maps occurring in the spectral sequence, although they are equivariant, are difficult
to control. In fact, most of the main open problems about rational homogeneous
varieties, like the computation of syzygies of their projective embeddings, reduce
to the computation of cohomology groups of certain homogeneous bundles (see the
book [W]).

Assume now that X is Hermitian symmetric of ADE-type. Thanks to the Borel-
Weil-Bott theorem, and to the results of Kostant in [Ko], we can divide the points of QX

into several chambers, separated by the hyperplanes containing the singular weights,
which we call Bott chambers. We consider the segments connecting any point of QX

with its mirror images in the adjacent Bott chambers, and we define certain linear maps
ci : Hi(gr E) → Hi+1(gr E), by composing the maps associated to the representation
of QX corresponding to E, along these segments. We get a sequence

· · · −→Hi(gr E)
ci−→ Hi+1(gr E)

ci+1−→ · · · .

In Theorem 6.11 we prove that this sequence is a complex, and its cohomology
(as a G-module) is the usual cohomology Hi(X, E).

The proof of this result is obtained by comparing the maps ci with the boundary
maps. In the case of projective spaces, the computation of ci can be done quite easily.
The advantage of this approach with respect to the spectral sequence is that the maps
ci are defined at once, while in the spectral sequence we need an iterative construction.
Note that the spectral sequence can degenerate after a large number of steps. At present
it is not clear if our approach will be useful for the computation of syzygies of G/P .
It is worth noting that the derived category of homogeneous bundles was described by
Kapranov in the last section of [K]. The quivers allow us to refine that approach.

It turns out from our proof that the cohomology modules Hi(E) are equipped
with a natural filtration

0 ⊂ Hi[1](E) ⊂ Hi[2](E) ⊂ · · · ⊂ Hi[N](E) = Hi(E).
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The third part of this article deals with moduli spaces. There is a notion of
semistability of representations of quivers introduced in [Ki] (see also [M]) which
is suitable to construct moduli spaces according to Mumford’s geometric invariant
theory (GIT). This notion of semistability turns out to be equivalent to the Mumford-
Takemoto semistability of the bundle, and we get moduli spaces of G-homogeneous
semistable bundles with fixed gr E. More precisely, the choice of an R-module F is
equivalent to the choice of a dimension vector α as in [Ki]. All semistable P -modules
E such that gr E = F are parametrized by a projective moduli space MX(α). The
properties of such moduli spaces probably deserve further study.

In the last part of this article we compute explicitly the relations on any Grassman-
nians by using Olver maps. As one of the referees pointed out, in order to generalize
our result to other Hermitian symmetric varieties it would be necessary to find the
substitutes for the Olver maps.

Finally, we want to mention that some applications of this approach to the case
of homogeneous bundles on P2 appear in [OR].

We now sketch the content of the sections. In §3 we describe the equivalence of
categories between G-homogeneous bundles and Higgs bundles. In §4 we recall the
Borel-Weil-Bott theorem, in the form found by Kostant [Ko], which is suitable for our
purposes. In §5 we construct in detail the quiver QX with its relations, and we prove
the equivalence between the category of homogeneous bundles and the category of
representations of QX. In §6 we prove our main result about the cohomology groups.
In §7 we introduce the moduli spaces MX(α), and we compare some different notions
of stability. In §8 we make explicit for Grassmannians the relations stated in §5 by
using Olver maps.

2. Notation and preliminaries
Throughout this article, let G be a semisimple complex Lie group. We fix a Cartan
subalgebra H in Lie G. Let � = {α1, . . . , αn} be a fundamental system of simple
roots for Lie G. A positive root is a linear combination with nonnegative integral
coefficients of the simple roots. The Killing product allows us to identify H with
H∨ and thus to define the Killing product also on H∨. Let {λ1, . . . , λn} be the
fundamental weights corresponding to {α1, . . . , αn}, that is, the elements of H∨

such that 2(λi, αj )/(αj , αj ) = δij , where ( , ) is the Killing product. Let Z be the
lattice generated by the fundamental weights. The elements in Z which are a linear
combination with nonnegative coefficients of the fundamental weights are called
the dominant weights for G, and they are the maximal weights of the irreducible
representations of Lie G. In the ADE-case, all roots have length

√
2.

For any W -representation of G, we denote by WG its invariant part, that is, the
subspace of W where G acts trivially. If V is an irreducible representation, we denote
WV := Hom(V, W )G ⊗ V .



QUIVERS AND HOMOGENEOUS BUNDLES 463

If λ∈ Z, we denote by Vλ the irreducible representation of G with highest-weight
λ. In the case G= SL(n + 1), to any λ is associated a Young diagram. Precisely if we
have λ = ∑n

i = 1 niλi , then we set ai =
∑

j≥i nj , and we get the Young diagram with
ai boxes in the ith row. We use the notation where the first row is the top row. The
n-tuple a = (a1, . . . , an) is a partition of

∑
ai , and it is customary to denote Vλ by

SaV . In particular, S2V = Sym2V and S1,1V = ∧2
V .

Let X = G/P be a rational homogeneous variety, where P is a parabolic subgroup
(see [Ko], [FH]). We fix a splitting Lie P = Lie R ⊕ Lie N = R ⊕ N, where R is
reductive and N is the nilpotent radical. A representation of P is completely reducible
if and only if it is trivial on N (see [I] or [Ot]). In this case the representations are
determined by their restriction on R.

Homogeneous vector bundles. The group G is a principal bundle over X = G/P

with fiber P . Denote by z the point of X which is fixed by P , corresponding to the
lateral class P ∈ G/P . Any G-homogeneous vector bundle E with fiber E(z) over z is
induced by this principal bundle via a representation ρ : P → GL(E(z)). We denote
E = E[ρ]. Equivalently, E[ρ] can be defined as the quotient G ×ρ E(z) of G × E(z)
via the equivalence relation ∼, where (g, v) ∼ (g′, v′) if and only if there exists p ∈P

such that g = g′p and v = ρ(p−1)v′.
We denote by Eλ the homogeneous bundle corresponding to the irreducible rep-

resentation of P with maximal weight λ. Here λ belongs to the fundamental Weyl
chamber of the reductive part of P (see the beginning of §4).

Hermitian symmetric varieties. We recall that the tangent bundle of X is defined by
the adjoint representation over Lie G/Lie P . According to Kostant, we say that X

is a Hermitian symmetric variety if the above adjoint representation is trivial on N .
This is equivalent to asking if [N, N] = 0. The Hermitian symmetric varieties were
classified by Cartan, and their list is well known. They are the product of irreducible
ones. The irreducible ones are Grassmannians, quadrics, spinor varieties, maximal
Lagrangian Grassmannians, and two varieties of exceptional type of dimensions 16
and 27 (see Th. 5.12 for the precise list). For a modern treatment, see [Ko] or [LM].
According to the corresponding Dynkin diagram, an irreducible Hermitian symmetric
variety is called of type ADE if G = SL(m), Spin(2m), E6, or E7. Only odd quadrics
and maximal Lagrangian Grassmannians are left, which are called of type BC. A
Hermitian symmetric variety is called of ADE-type if it is the product of irreducible
Hermitian symmetric varieties of ADE-type. The reason for which we have to restrict
to the ADE-type in the computation of cohomology is explained in Propositions 6.4
and 6.5. In all the irreducible cases we have Pic(X) = Z. Thus on irreducible Hermitian
symmetric varieties the first Chern class c1(E) of a bundle E can be identified with
an integer, and the slope is by definition µ(E) = c1(E)/rk(E) ∈ Q. On any Hermitian
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symmetric variety X = X1 × · · · × Xr , where Xi are irreducible, there are several
possible choices of slopes. With obvious notation, if c1(E) = (c1

1, . . . , c
r
1) ∈ Zr and

a = (a1, . . . , ar ) ∈ Qr , then we define µa(E) = (∑
ci

1ai

)
/rk(E) ∈ Q.

It is easy to check (see, e.g., [R, §5.2]) that µa(E∑
niλi

) = ∑
niµa(Eλi

).

The Hasse quiver. Quivers are recalled in §5. For this paragraph it is enough to know
that a quiver is just an oriented graph. If X is a rational homogeneous variety, the
cohomology H ∗(X, Z) can be organized in a quiver in the following way. Consider
the action of a Borel subgroup B ⊂ P on X. Then it is well known that X is divided
in a finite union of orbits; their closures are called the Schubert cells and form an
additive basis H ∗(X, Z). The vertices of the Hasse quiver HX are the Schubert cells;
we draw an arrow between Xω ∈ H 2p(X, Z) and Xω′ ∈ H 2p+2(X, Z) if Xω ⊃ Xω′ . If
X is a Hermitian symmetric variety, the additive basis of H 2p(X, Z) corresponds to
the direct summands of �p. If X is Hermitian symmetric, the degrees of the Schubert
cycles in the homogeneous minimal embedding are computed as the number of paths
in the Hasse quiver which start from the corresponding vertex. We learned this fact
from L. Manivel (see [IM]).

The filtration of a homogeneous bundle and the functor gr. Let E be a homogeneous
bundle on an irreducible Hermitian symmetric variety.

We define gr E =⊕
iEi/Ei−1 for any filtration 0 ⊂ E1 ⊂ · · · ⊂ Ek = E such

that Ei/Ei−1 is completely reducible. The graded bundle gr E does not depend on the
filtration; in fact, it is given by the restriction of the representation giving E to the
reductive part R of P .

For example, the Euler sequence on P = P(V ) tells us that gr(O(1)P ⊗ V ) = OP ⊕
T P.

The functor E �→ gr E from P -mod to R-mod (which in the literature is often
denoted as IndP

R ) is exact. It is easy to check the formulas

(gr E)∗ = gr(E∗), gr(E ⊕ F ) = gr E ⊕ gr F, gr(E ⊗ F ) = gr E ⊗ gr F.

The spectral sequence abutting to the cohomology. The Borel-Weil-Bott theorem
describes the cohomology of the irreducible homogeneous bundles E. It says that
H ∗(E) is an irreducible G-module. For any homogeneous bundle and for any fil-
tration, there is a spectral sequence abutting to the cohomology of the bundle. Pre-
cisely, if gr E =⊕k

i = 1Ai as before, we have E1
p,q = Hp+q(Ak−p) abutting to E∞

p,q ,
where Hi(E) =⊕

p+q = iE
∞
p,q . Theorem 6.11 gives a more efficient way to compute

Hi(E).
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Yoneda product. We recall the Yoneda product on Ext according to [E, Exer. A3.27].
For any homogeneous bundles E, F , and K , there is an equivariant Yoneda product

Exti(E,F ) ⊗ Extj (F, K) → Exti+j (E,K),

and this product is associative. In particular, in the case where E = F = K and
i = j = 1, we get a (nonsymmetric) bilinear map whose symmetric part induces a
quadratic morphism

Ext1(E,E) → Ext2(E, E).

In particular, since it preserves the invariant part, it gives

m : Ext1(E, E)G → Ext2(E, E)G.

Tensor product of two irreducible representations. Let λ and ν be two weights in
the fundamental Weyl chamber of a Lie algebra K . The tensor product of the cor-
responding representations Vλ ⊗ Vν can be expressed as a sum

⊕
cλνκVκ , where

cλνκ are integers (counting the multiplicities). When K = Lie SL(n), the integers cλνκ

can be computed by the so-called Littlewood-Richardson rule (see [FH]). A more
conceptual algorithm was later conjectured by Weyman and proved by Littelmann in
[L]; this algorithm holds for arbitrary simple Lie groups. Let ν1 = ν, ν2, . . . , νk be all
the weights of Vν . Littelmann proves that

Vλ ⊗ Vν =
⊕

i ∈ I
Vλ+νi

, (1)

where I is a subset of {1, . . . , k} such that the weights νi for i ∈ I correspond exactly
to the standard Young tableaux of the form corresponding to ν which are λ-dominant
(see [L] for the precise definitions). A particularly interesting case is when λ + νi are
all dominant for i = 1, . . . , k; this is true when λ � 0. In this case we have the whole
decomposition

Vλ ⊗ Vν =
⊕k

i = 1
Vλ+νi

(see also [FH, Exer. 25.33]). Formula (1) applied to vector bundles gives

Eλ ⊗ Eν =
⊕

i ∈ I
Eλ+νi

,

where all the direct summands in the right-hand side have the same slope (see [R] or
[Ot]).
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3. P -mod and the category of Higgs bundles
Let X be a Hermitian symmetric variety. We recall that N is an R-module with the
adjoint action. Our starting point is the following.

THEOREM 3.1
(i) Given a P-module E on X, the action of N over E induces a morphism of

R-modules

θ : N ⊗ gr E−→gr E

such that θ ∧ θ = 0 in Hom
(∧2 N ⊗ gr E, gr E

)
.

(ii) Conversely, given an R-module F on X and a morphism of R-modules

θ : N ⊗ F−→F

such that θ ∧ θ = 0, we have that θ extends uniquely to an action of P over F ,
giving a bundle E such that gr E = F .

Proof

(i) For every r ∈ R, n ∈ N, f ∈ F , since E is a P-module we have

r · (n · f ) = n · (r · f ) + [r, n] · f ;

that is,

r · (θ(n ⊗ f )
)= θ

(
n ⊗ (r · f )

)+ θ([r, n] ⊗ f ) = θ
(
r · (n ⊗ f )

)
,

so that θ is R-equivariant. Moreover, for any n1, n2 ∈ N,

θ ∧ θ
(
(n1 ∧ n2) ⊗ f

)= n1 · (n2 · f ) − n2 · (n1 · f ) = [n1, n2] · f = 0

because [N, N] = 0, and this is equivalent to θ ∧ θ = 0.
(ii) We have, for any r + n ∈ R ⊕ N = P,

(r + n) · f := r · f + θ(n ⊗ f ),

and we have to prove that for any p1, p2 ∈ P = R ⊕ N, we have

[p1, p2] · f = p1 · (p2 · f ) − p2 · (p1 · f ). (2)

We distinguish three cases.
• If p1, p2 ∈ R, then (2) is true because F is an R-module.
• If p1, p2 ∈ N, then [p1, p2] = 0 and (2) is true because θ ∧ θ = 0.



QUIVERS AND HOMOGENEOUS BUNDLES 467

• If p1 ∈ R, p2 ∈ N, we have [p1, p2] ∈ N and

[p1, p2] · f + p2 · (p1 · f ) = θ
(
p1 · (p2 ⊗ f )

)= p1θ(p2 ⊗ f ) = p1 · (p2 · f )

because θ is R-equivariant. �

Theorem 3.1 allows us to construct a P-module in two steps. The first step consists of
giving the R-module F , which encodes the discrete part; the second step consists of
giving θ , which encodes the continuous part. This is made precise in §7 about moduli
spaces. At present, it is convenient to reformulate Theorem 3.1 in terms of vector
bundles.

We have seen in the introduction that on a Hermitian symmetric variety, the P-
module N corresponds to �1

X. Since [N, N] = 0, �1
X is completely reducible. Let

E be a G-homogeneous bundle E. The action of N over the R-module gr E induces
by Theorem 3.1 an R-equivariant morphism of completely reducible representations
N ⊗ gr E → gr E; hence we get a G-equivariant morphism θ ∈ Hom(gr E, gr E ⊗
TX)G such that θ ∧ θ = 0. To any E we can associate the pair (gr E, θ). Such pairs are
analogous to what is called in [S] a Higgs bundle. The pairs (gr E, θ) are the natural
extension of Higgs bundles for rational homogeneous varieties, where TX is globally
generated; so we maintain the terminology of Higgs bundles also in this case.

More precisely, we have the following.

Definition 3.2
Let X be a Hermitian symmetric variety. A Higgs bundle on X is a pair (F, θ), where
F is an R-module and θ : F−→F ⊗ TX is G-equivariant and satisfies θ ∧ θ = 0.

Higgs bundles form an abelian category, where a morphism between two Higgs
bundles (F1, θ1) and (F2, θ2) is a G-equivariant morphism f : F1−→F2 such that
(f ⊗ id)θ1 = θ2f . Hence Theorem 3.1 can be reformulated in the following way.

THEOREM 3.3
Let X = G/P be a Hermitian symmetric variety. There is an equivalence of categories
between
(i) G-homogeneous bundles over X and
(ii) Higgs bundles (F, θ) over X.

Remark. On any rational homogeneous variety, the category of G-homogeneous
bundle is equivalent to the category of pairs (F, θ), where F is an R-module and
θ : F−→F ⊗ TX is G-equivariant and satisfies certain relations.
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4. The Borel-Weil-Bott theorem
It is well known that the hyperplanes orthogonal to the roots of G divide H∨ into
regions called Weyl chambers. The fundamental Weyl chamber D of G is

D =
{∑

xiλi

∣∣∣ xi ≥ 0
}
,

and it contains exactly the dominant weights. The Weyl group W acts in a simple
transitive way as a group of isometries on the Weyl chambers. Following [Ko], we
denote g = ∑

λi . Any homogeneous variety with Pic = Z is the quotient X = G/P (αj )
for some j , where the Lie algebra of P (αj ) is spanned by the Cartan subalgebra, by
the eigenspaces of the negative roots, and by the eigenspaces of the positive roots
α = ∑

niαi such that ni ≥ 0 for any i and nj = 0.
The reductive part of P (αj ) has its own fundamental Weyl chamber D1 ⊃ D

defined by

D1 =
{∑

xiλi

∣∣∣ xi ≥ 0 for i �= j
}
.

D1 contains exactly the maximal weights of the irreducible representations of P (αj ).
Let

W 1 = {w ∈ W | wD ⊂ D1}

(see [Ko, Rem. 5.13]). The cardinality of W 1 divides the order of W .
Let Hφ be the hyperplane orthogonal to the root φ, and let rφ be the reflection

with respect to Hφ . It is well known that the reflections rαi
generate the Weyl group.

Let Yφ = Hφ − g.
Let ξ1, . . . , ξm be the weights of the representation giving the bundle �1

X, where
m= dim X. Let sj for j = 1, . . . , m be the reflection through Yξj

. Note that for any
weight λ,

sj (λ) = rξj
(λ + g) − g; (3)

thus sj and rξj
are conjugate elements in Iso(H∨). It follows that if w = rξ1 · . . . · rξp

,
then w(λ + g) − g = s1 · . . . · sp(λ).

An element ν ∈ Z is called regular if (ν, φ) �= 0 for any root φ; otherwise, it is
called singular. Observe that ν is singular if and only if ν ∈ Hφ for some root φ.

Denote (see [Ko, Rem. 6.4])

D0
1 = {ξ ∈ D1 | g + ξ is regular}.

D0
1 consists of the subset of D1 obtained by removing exactly the Yξj

. Hence a
convenient composition of sj brings D into the several “chambers” in which D0

1 is
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Figure 1

divided, which we call Bott chambers. (Do not confuse them with the usual Weyl
chambers.) The Bott chambers are obtained by performing a slight “separation” on
the Weyl chambers (see Fig. 1 in the case of P2 = SL(3)/P (α1), where the three Bott
chambers are shadowed).

Now for any w ∈ W the length l(w) is defined as the minimum number of reflec-
tions rα (with α a root) needed to obtain w. Any Bott chamber has its own length.
Two Bott chambers are said to be adjacent if they have a common hyperplane in their
boundary. The lengths of two Bott chambers are consecutive integers.

We state the Bott theorem (cf. [Ko, Th. 5.14]).

THEOREM 4.1 (Bott)
If λ ∈ D1, then ∃! w ∈ W s.t. w−1 ∈ W 1 and w(λ + g) ∈D.
(i) If w(λ+g) belongs to the interior of D, then setting ν = w(λ+g)−g we have

Hl(w)(Eλ) = Vν and Hj (Eλ) = 0 for j �= l(w). In particular, if λ ∈ D (thus w

is the identity), then H 0(Eλ) = Vλ and Hi(Eλ) = 0 for i > 0.
(ii) If w(λ + g) belongs to the boundary of D, then Hj (Eλ) = 0, ∀j .

We recall the following result of Kostant (see [Ko, Cor. 8.2]):

#
{
w ∈W 1

∣∣ l(w) = i
}= dim H 2i(X, C);
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in particular,

#W 1 = χ(X, C). (4)

We now explain the relation of the previous result with the Bott theorem. By
Hodge-Deligne theory, H 2i(X, C) is isomorphic to Hi(X, �i

X) = Hi(X, �i
X)G. More-

over, for any irreducible Hermitian symmetric varieties the bundle �1 is irreducible
and �i splits as a sum of direct summands; the number of these summands is equal
to dim H 2i(X, C). Moreover, on X = X1 × · · · × Xr with projections pi , we have
�1

X =⊕
p∗

i �
1
Xi

. The vertices λ of the Bott chambers correspond exactly to the direct
summands of �i for some i. Indeed, for any such a vertex λ there exists w as in the
Bott theorem (thus w−1 ∈ W 1) such that w(λ + g) − g = 0 (i.e., λ = w−1(g) − g) and
l(w) = i.

We note the following consequences of the results of Bott and Kostant.

COROLLARY 4.2
Let E be a completely reducible bundle on X Hermitian symmetric variety. Then
Hj (E)G is isomorphic to Hom(�j,E)G. This means that when E is irreducible,
Hj (E)G �= 0 if and only if E is a direct summand of �j .

Proof
We may suppose that E = Eλ. We have Hom(�j, Eλ)G �= 0 if and only if Eλ is a
direct summand of �j , and in this case it is isomorphic to C. By the Bott theorem, we
have Hj (Eλ)G �= 0 if and only if Hj (Eλ) = C, and this is true only if w(λ+g)−g = 0
(w as in the Bott theorem) and l(w) = j . These cases are exactly when Eλ is a direct
summand of �j . �

THEOREM 4.3
Let X = G/P be a Hermitian symmetric variety.
(i) There is a natural isomorphism Hom(Eλ ⊗ �i

X,Eν)G → Exti(Eλ,Eν)G,
∀λ, ν ∈ D1. Both spaces are isomorphic to C or to zero for i = 1.

(ii) If X is irreducible and Exti(Eλ, Eν)G �= 0, then µ(Eν) = µ(Eλ) + iµ(�1).
(iii) If X = X1 × · · · × Xr , product of irreducible ones, and Exti(Eλ, Eν)G �= 0

define ai = 1/(µ(�1
Xi

)), then with this choice for any i we have µa(�1
X) =

µa(p∗
i �

1
Xi

) = 1 (see §2), and we get µa(Eν) = µa(Eλ) + i.

Proof

(i) By Corollary 4.2, only the last statement needs an explanation. In fact, all the
irreducible components of Eλ ⊗ �1

X have multiplicity one. Indeed, look at (1)
and observe that eigenspaces of the roots of G have dimension 1.
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(ii) All direct summands of Eλ ⊗ �i
X have the same µ equal to µ(Eλ ⊗ �i

X) =
µ(Eλ) + iµ(�1

X).
(iii) This follows immediately as in (ii).

�

Remark. For i ≥ 2, there are some irreducible components of Eλ ⊗ �i
X which appear

with multiplicity greater than 1. For example, in the Grassmannian Gr(P1, P3) =
SL(4)/P (α2), let T be the tangent bundle. We have that Ext2(T , T (−2))G contains
H 2(�2) = C2, and correspondingly, T ⊗ �2 contains two copies of T (−2). Indeed,
�2 splits into two irreducible summands, and there is a copy of T (−2) for each of
these summands. In the case of quadrics Qn with n ≥ 5, the list of weights of the
irreducible �2 contains a weight of multiplicity [(n − 1)/2]; in this case, for λ � 0,
the tensor product Eλ ⊗ �2 contains a direct summand with multiplicity [(n − 1)/2].
In the case X = Pn, all irreducible summands of Eλ ⊗�2 appear with multiplicity one
by the formula (see [FH, (6.9)]); indeed, in this case all the weights of �2 are distinct.

COROLLARY 4.4
If E is an irreducible bundle on a Hermitian symmetric variety, then Exti(E,E)G = 0
for i > 0.

Proof
Apply Theorem 4.3 for λ = ν. �

COROLLARY 4.5
For every i < dim X and λ ∈ D1, there are λ′ and sj such that λ′ = sj (λ) and
Hi(Eλ) = Hi+1(Eλ′) or Hi(Eλ) = Hi−1(Eλ′). In particular, λ and λ′ differ by a mul-
tiple of ξj . There is exactly one of such λ′ in every Bott chamber having a common
boundary with the chamber containing Eλ.

Proof
Consider the vertex λ0 of the Bott chamber containing λ. Then consider all the sj such
that sj (λ0) is the maximal weight of a summand of �i+1. Such sj ’s work. �

Remark. From Corollary 4.5, λ′ and sj are unique in the case of Pn, but they are not
unique for general Grassmannians.

In Figures 2 and 3 we list all the vertices of the Bott chambers in the cases P4

and Gr(1, 4). The 4-tuple (x1, x2, x3, x4) denotes the weight
∑

xiλi . An arrow labeled
with the root β means the reflection

· �→ rβ(· + g) − g,
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so the arrow labeled with −ξj means the reflection sj . For example, (−2, 1, 0, 0) =
rα1 ((0, 0, 0, 0) + g) − g = s1(0, 0, 0, 0). To check Figures 2 and 3, Lemma 4.7 can be
useful.

• (0, 0, 0, 0)�α1

• (−2, 1, 0, 0)�α1 + α2

• (−3, 0, 1, 0)�α1 + α2 +α3

• (−4, 0, 0, 1)�α1 + α2 +α3 + α4

• (−5, 0, 0, 0)

Figure 2. P4

Figure 3. Gr(1, 4)

Of course, Figures 2 and 3 are exactly the Hasse quivers HP4 and HGr(1,4).
On Pn we have a simplification of the Bott theorem. In this case, �p are irreducible

for all p.
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PROPOSITION 4.6 (Bott on Pn)
Let X = Pn = SL(n + 1)/P (α1).
(i) If λ is any weight and ∃i ∈ N s.t. ν := rαi

· · · rα1 (λ + g) − g ∈ D, then
Hi(Eλ) = Vν and Hj (Eλ) = 0 for j �= i. In particular, if λ∈ D, then
H 0(Eλ) = Vλ and Hi(Eλ) = 0 for i > 0.

(ii) In the remaining cases, Hj (Eλ) = 0, ∀j .

Proof
It is sufficient, by Theorem 4.1, to prove that W 1 = {rα1 · . . . · rαi

| i ∈ {1 · · · n}} ∪ {1}.
It is well known that rαi

(λj ) is equal to λj if j �= i, and to λj−1 − λj + λj+1 if j = i

(with the convention that λ0 = λn+1 = 0). It holds that

rα1 · . . . · rαi

( n∑
j = 1

pjλj

)
=
(

−
i∑

j = 1

pi

)
λ1 +

i∑
j = 1

pjλj+1 +
n∑

j = i+1

pjλj .

(To check it, prove that rα1 · · · rαi
(λj ) is equal to λj if j > i and that it is equal to

rα1 · · · rαj
(λj ) = − λ1 + λj+1 if j ≤ i.)

Hence the elements rα1 · . . . · rαi
belong to W 1 for i = 1 to n, so these elements,

together with the identity, fill W 1 by (4). The last remark is that (rα1 · · · rαi
)−1 =

rαi
· · · rα1 . �

Point (iv) of the following lemma gives an alternative way to express point (i) of the
Bott theorem.

LEMMA 4.7
On Pn we have, for i = 1 · · · n,
(i) ξi = − α1 + · · · − αi ,
(ii) α1 + · · · + αi+1 = (rα1 · · · rαi

) (αi+1),
(iii) rξi+1 = (rαi

· . . . · rα1 )−1rαi+1 (rαi
· . . . · rα1 ),

(iv) rξ1 · . . . · rξi
= rαi

· . . . · rα1 .

Proof
This is straightforward. (For (iii), observe that by (ii), rα1+···+αi+1 = rrα1 ···rαi

(αi+1).) �

COROLLARY 4.8
On Pn if λ = si+1(λ′), then Hi(Eλ) = Hi+1(Eλ′). The converse holds if Hi(Eλ) �= 0.

In particular, λ and λ′ differ by a multiple of α1 + · · · + αi+1. Precisely, if
λ = ∑n

j = 1 pjλj , then λ′ − λ = −∑i+1
j = 1(pj + 1)(α1 + · · · + αi+1).
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Proof
By Proposition 4.6, only the converse needs to be proved. If Hi+1(Eλ′) = Hi(Eλ) �= 0,
then by the Bott theorem h(λ + g) = rαi+1h(λ′ + g), where h = rαi

· · · rα1 , and this
implies that h(λ + g) − h(λ′ + g) is parallel to αi+1, that is, that λ − λ′ is parallel to
h−1αi+1 = α1 +· · ·+αi+1 (by Lem. 4.7(ii)). Moreover, the last formula holds because
(λ + g, ξi+1) = −∑i+1

j = 1(pj + 1). �

5. The quiver and its relations
For a quick introduction to the theory of quivers and their representations, we refer to
[Ki]. More details about quivers with relations can be found in [GR] or in [H2].

Definition 5.1
A quiver is an oriented graph Q with the set Q0 of points and the set Q1 of arrows.
There are two maps h, t : Q1 → Q0 which indicate, respectively, the head (sink) and
the tail (source) of each arrow.

A path in Q is a formal composition of arrows βm · · · β1, where the tail of an arrow
is the head of the previous one. Paths can be summed and composed in a natural way,
defining the path algebra CQ. It is graded by pairs in Q0.

A relation in Q is a linear form λ1c1 + · · · + λmcm, where ci are paths in Q with
a common tail and a common head and λi ∈ C.

A representation of a quiver Q = (Q0, Q1) is the couple of a set of vector spaces
{Xi}i ∈ Q0 and of a set of linear maps {ϕβ}β ∈ Q1 , where ϕβ : Xi → Xj if β is an arrow
from i to j .

Let R be a homogeneous ideal in the path algebra. A representation of a quiver
Q with relations R is a representation of the quiver such that∑

j

λjϕ
j

1 · · · ϕj
mj

= 0

for every
∑

j λjβ
j

1 · · · βj
mj

∈ R.
Let (Xi, ϕβ)i ∈ Q0, β ∈ Q1 and (Yi, ψβ)i ∈ Q0, β ∈ Q1 be two representations of the quiver

Q = (Q0, Q1). A morphism f from (Xi, ϕβ)i ∈ Q0, β ∈ Q1 to (Yi, ψβ)i ∈ Q0, β ∈ Q1 is a set of
linear maps fi : Xi → Yi , i ∈ Q0, such that for every β ∈ Q1, β arrow from i to j , the
following diagram is commutative:

Xi

fi−−−→ Yi

ϕβ

� �ψβ

Xj

fj−−−→ Yj

It is well known (and easy to prove) that the category of representations of Q with
relations R is equivalent to the category of (CQ/R)-modules.
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A quiver Q is called leveled if there exists a function s : Q0 → Q such that for
any arrow i−→j , we have s(i) = s(j ) + 1.

Let X = G/P be a Hermitian symmetric variety. In order to describe all G-
homogeneous bundles on X, we define a quiver QX.

Definition 5.2
Let QX be the following quiver. The points of QX are the irreducible representations
of R, which we identify with irreducible G-homogeneous bundles over X = G/P or
with the corresponding elements in H∨. Let Eλ and Eµ be irreducible representations
with maximal weights λ,µ ∈D1. There is an arrow in QX from Eλ to Eµ if and only
if Ext1(Eλ, Eµ)G �= 0. The ideal of relations in QX are defined in Definition 5.7.

Observe that if Ext1(Eλ, Eµ)G �= 0, then this group is isomorphic to C by Theorem 4.3.

COROLLARY 5.3
If there is an arrow from Eλ to Eµ, then µ(Eµ) = µ(Eλ) + µ(�1). In particular, the
quiver is leveled (see Def. 5.1) by µa of Theorem 4.3(iii) (see [H1], [H2]).

Proof
The corollary is proved by Theorem 4.3. �

COROLLARY 5.4
The arrows (modulo translation) between elements of the quiver can be identified with
the weights of �1 (which are negative roots).

Proof
From (1), it follows that Eλ ⊗ �1 ⊂ ⊕

Eλ+ξi
; then we conclude by Theorem 4.3. �

We postpone the description of the relations in the quiver after we have defined the
representation associated to a bundle.

Definition 5.5
We associate to a G-homogeneous bundle E the following representation of QX. Let
gr E =⊕

λEλ ⊗ Vλ, where Vλ = Ck and k is the number of times Eλ occurs.
To the point λ, we associate the vector space Vλ.
For any λ ∈ Q0, let us fix a maximal vector vλ ∈ Eλ. For any ξi root of N, let us

fix an eigenvector ni ∈ N. We have

Ext1(gr E, gr E) =
⊕

λ,µ
Hom(Vλ, Vµ) ⊗ Ext1(Eλ, Eµ). (5)
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We know that Ext1(Eλ, Eµ)G = Hom(Eλ ⊗ �1, Eµ)G is equal to C or zero, and
when it is equal to C, then µ − λ= ξj for some j . We fix the generator mµλ of
Hom(Eλ ⊗ �1, Eµ)G which takes vλ ⊗ nj to vµ; indeed, Eλ ⊗ �1 contains a unique
summand of multiplicity one isomorphic to Eµ. This normalization appears already in
[BK, p. 48]. Hence in order to define an element of Hom(Vλ, Vµ), ∀λ,µ, it is enough
to give an element [E] ∈ Ext1(gr E, gr E)G, and this is the element corresponding to
θ of Theorem 3.1(i), according to the isomorphism of Theorem 4.3.

The correspondence E �→ [E] is functorial; indeed, a G-equivariant map E → F

induces first a morphism gr E �→ gr F and then a morphism of representations of QX

given by [E] �→ [F ].
A direct consequence of Theorem 3.1 is the following.

THEOREM 5.6
Let G/P be a Hermitian symmetric variety.
(i) For any G-homogeneous bundle E, we have m([E]) = 0, where m is the in-

variant Yoneda morphism recalled in §2,

m : Ext1(gr E, gr E)G → Ext2(gr E, gr E)G.

(ii) Conversely, for any R-module F and any e ∈ Ext1(F, F )G such that m(e) = 0,
there exists a G-homogeneous bundle E such that gr E = F and e = [E].

Remark. It is well known, although we do not need it, that for any bundle F the usual
Yoneda morphism Ext1(F, F ) → Ext2(F, F ) is the quadratic part of the Kuranishi
morphism. In particular, the invariant Yoneda morphism Ext1(F, F )G → Ext2(F, F )G

is the invariant piece of the quadratic part of the Kuranishi morphism.

Remark. We recall that the functor E �→ gr E from P -mod to R-mod is exact. Our
description of the quiver and Theorem 5.6 can be thought of roughly as an additional
structure on R-mod which allows us to invert the functor gr.

The theorem shows how to define relations in QX in order to get an equivalence
of categories. The relations have to reflect the vanishing m(e) = 0. We have to note
that since in Definition 5.5 we have fixed a normalization, the relations in QX can be
changed up to scalar multiplications of the maps involved (see Cor. 8.5).

Definition 5.7
Write e ∈ Ext1(gr E, gr E)G as

e =
∑

gµλmµλ,
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where mµλ ∈ Ext1(Eλ, Eµ)G were fixed in Definition 5.5 and gµλ ∈ Hom(Vλ, Vµ) come
from the isomorphism (5). The equation m(e) = 0 becomes∑

ν,λ

(∑
µ

(gνµgµλ)(mνµ ∧ mµλ)
)

= 0,

where mνµ ∧ mµλ ∈ Ext2(Eλ, Eµ)G is the Yoneda product of mνµ, mµλ and
gνµgµλ ∈ Hom(Vλ, Vν) are the composition maps. For any fixed λ and ν, the equation∑

µ

(gνµgµλ)(mνµ ∧ mµλ) = 0 (6)

gives a system of at most dim Ext2(Eλ, Eµ)G quadratic equations in the unknowns gνµ

and gµλ.
We define the relations in QX as the ideal generated by all these quadratic equations

for any pair λ and ν.

THEOREM 5.8
(i) For any homogeneous bundle E on X Hermitian symmetric variety, [E] satisfies

these relations; hence it gives a representation of the quiver QX with relations.
(ii) Conversely, given a representation e of the quiver QX with relations, there

exists a homogeneous bundle E such that e = [E].

Proof
By definition, the relations are equivalent to θ∧θ = 0. Hence the statement is equivalent
to Theorem 3.1 and to Theorem 5.6 (see also Exam. 5.13). �

The isomorphism class of [E] lives in Ext1(gr E, gr E)G/AutG(gr E). We note that in
each case, the isomorphism class of the bundle determines the isomorphism class of the
representation of QX (by the functoriality). Hence Theorem 5.6 can be reformulated
in the following way.

THEOREM 5.9 (Reformulation of Th. 5.8)
Let X = G/P be a Hermitian symmetric variety. There is an equivalence of categories
among
(i) G-homogeneous bundles over X;
(ii) finite-dimensional representations of the quiver (with relations) QX (associat-

ing zero to all but a finite number of points of QX);
(iii) Higgs bundles (F, θ) over X.
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Subquivers and quotient quivers. Since there is no danger of confusion, we denote by
CQX the path algebra of the quiver with relations QX, meaning that the algebra has
been divided by the ideal of relations. There are two basic constructions for quiver
representations that we need.

Definition 5.10
Let gr E =⊕

Vλ ⊗Eλ, so that V =⊕
Vλ is a CQX-module. For any subspace V ′ ⊂ V ,

the submodule generated by V ′ defines a homogeneous subbundle of E. In the case of
V ′ = Vλ′ for some λ′, we call this subbundle the bundle defined by all arrows starting
from λ′.

Also, (V ′ : CQX) := {v ∈ V | f v ∈ V ′, ∀f ∈ CQX} is a submodule, and the
quotient V/(V ′ : CQX) defines a homogeneous quotient of E. Let πλ′ : V → Vλ′

be the projection; in the case of V ′ = Ker πλ′ , we have V/(V ′ : CQX) = V/{v ∈ V |
πλ′f v = 0, ∀f ∈ CQX}, and we call this quotient bundle the bundle defined by all
arrows arriving in λ′.

Example 5.11 (cf. [H1])
Let P3 = P(V ). The bundle E = ∧2

V on X = Gr(P1, P3) has graded bundle
gr E = O(−1) ⊕ �1(1) ⊕ O(1). The corresponding representation of the quiver as-
sociates to

O(1)�
O(−1) ←−− �1(1)

the diagram of linear maps

C�θ1

C
θ2←−− C

Equivalently, θ splits into the two summands

θ1 : O(1) ⊗ �1−→�1(1)

and

θ2 : �1(1) ⊗ �1−→O(−1)

and satisfies θ ∧ θ = 0 because

Ext2
(
O(1), O(−1)

)G = Hom
(
O(1) ⊗ �2, O(−1)

)G = 0.



QUIVERS AND HOMOGENEOUS BUNDLES 479

In fact, in QX the commutativity of the diagram

0 ←−− O(1)� �
O(−1) ←−− �1(1)

is not a relation.

THEOREM 5.12
Let X be an irreducible Hermitian symmetric variety. The number of connected
components of QX is given by Table 1.

Table 1

Grassmannians Odd Quadrics Even Quadrics Spinor Varieties

SL(n + 1)/P (αk+1) Spin(2n + 1)/P (α1) Spin(2n + 2)/P (α1) Spin(2n + 2)/P (αn+1)
Gr(Pk, Pn) Q2n−1, n ≥ 2 Q2n, n ≥ 2 (1/2)Gr(Pn, Q2n), n ≥ 3

n + 1 2 4 4

Lagrangian Grassmannians Cayley Plane X27

Sp(2n)/P (αn) E6/P (α1) E7/P (α1)
Grn(Pn−1, P2n−1), n ≥ 2 OP2

2 3 2

Proof
The number of connected components is equal to the index of the lattice 〈ξ1, . . . , ξm〉Z

in 〈λ1, . . . , λn〉Z. It is easy to check in any case that

〈ξ1, . . . , ξm〉Z = 〈α1, . . . , αn〉Z

by the shape of the roots. (The list in the exceptional cases is in [Sn].) Hence
the number of connected components is given in any case by the determinant of
the corresponding Cartan matrix, and these are well known (see, e.g., [FH, Exer.
21.18]). �

Every homogeneous bundle E on X splits as E =⊕
E(i), where the sum is over the

connected components of QX and gr(E(i)) contains only irreducible bundles corre-
sponding to points of the connected component labeled by i. We analyze separately
each of the irreducible Hermitian symmetric varieties. The decomposition of Eλ ⊗�1

in the cases where G is of type A, D, or E appears already in [BK, Prop. 2].
• When G= SL(n + 1), then X = G/P (αk+1) is the Grassmannian Gr(Pk, Pn).

In this case, all the roots �1
X are βij = −∑j

t = i αt for 1 ≤ i ≤ k + 1 ≤ j ≤ n. If U
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and Q are the universal and the quotient bundle, it is well known that �1 = U ⊗ Q∗,
�2 = [

Sym2U ⊗∧2
Q∗]⊕ [∧2

U ⊗ Sym2Q∗].
Here µ(�1) = − (n + 1)/((k + 1)(n − k)). Every irreducible bundle on X can be

described by E = SαU ⊗ SβQ∗(t) for some partitions α, β and for some t ∈ Z. The
n+1 connected components are distinguished by the class of (|α|, |β|) ∈ Z×Z modulo
the lattice 〈(−1, 1), (k +1, n−k)〉Z. If gcd(n+1, (k +1)(n−k)) = 1, the components
are distinguished more easily by (k + 1)(n − k)µ(E) = 0, 1, . . . , n (mod n + 1).

• When k = 0, we get X = Pn. Due to the importance of this case in the appli-
cations, we stress our attention on it. We saw in Lemma 4.7 the corresponding roots
ξ1, . . . , ξn. We have the simple formulas (of course, some summands can be zero)

Eλ ⊗ �1 =
⊕n

i = 1
Eλ+ξi

,

Eλ ⊗ �2 =
⊕

1≤i<j≤n
Eλ+ξi+ξj

.

In Corollary 8.5 we see that the relations in the quiver QPn can be summed up by
saying that for any weight λ ∈ D1 and any 1 ≤ i < j ≤ n, all diagrams

Eλ+ξi
←−− Eλ� �

Eλ+ξi+ξj
←−− Eλ+ξj

have to be commutative. This fits with [BK]. The quiver QPn is isomorphic to the
half-space of Zn defined by the inequalities x1 ≥ x2 ≥ · · · ≥ xn for (x1, . . . , xn) ∈ Zn

with arrows following the standard basis (with the directions reversed). Here
µ(�1) = − (n + 1)/n. The n + 1 connected components are distinguished by
nµ(E) = 0, 1, . . . , n (mod n + 1) for an irreducible E.

• In the case of odd-dimensional quadrics Spin(2n + 1)/P (α1) = Q2n−1 ⊂ P2n,
we have that �1 has maximal weight −α1 = 2λ2 − 2λ1 for n = 2 and has maximal
weight −α1 = λ2 − 2λ1 for n ≥ 3, while �2 has maximal weight 2λ2 − 3λ1 for n = 2,
2λ3 −3λ1 for n = 3, and λ3 −3λ1 for n ≥ 4. Denote again by ξ1, . . . , ξm (m= 2n−1)
the roots of �1. We have

Eλ ⊗ �1 =
⊕m

i = 1
Eλ+ξi

,

while Eλ ⊗ �2 is contained in
⊕

1≤i<j≤mEλ+ξi+ξj
and can be determined according

to λ by the explicit algorithm in [L]. When λ � 0, then we have the equality. Here
µ(�1) = −1 and µ(S) = −1/2 for the spinor bundle. The two connected components
are distinguished by 2µ(E) = 0, 1 (mod 2) for an irreducible E.

• In the case of even-dimensional quadrics Spin(2n + 2)/P (α1) = Q2n ⊂ P2n+1

(λn and λn+1 correspond to the two spinor bundles), we have that �1 has maximal
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weight λ2 + λ3 − 2λ1 for n= 2 and λ2 − 2λ1 for n ≥ 3, while �2 splits with two
maximal weights 2λ2 −3λ1 and 2λ3 −3λ1 for n = 2 (this is the Grassmannian of lines
in P3 already considered); it has maximal weight λ3 +λ4 −3λ1 for n= 3 and λ3 −3λ1

for n ≥ 4. Here µ(�1) = − 1 and µ(S) = − 1/2 for the two spinor bundles. The
knowledge of µ is not enough to distinguish the several components. If E = E∑

piλi
,

the four components are distinguished by [(pn, pn+1)] ∈ Z2 × Z2.
• In the case of spinor variety Spin(2n+2)/P (αn+1), we have the universal bundle

U of rank n + 1, and it is well known that �1 = ∧2
U and �2 = ∧2 (∧2

U
) =

S2,1,1U . Let m = (
n+1

2

)
, and let ξ1, . . . , ξm be the roots of �1. Then it is easy to check

that

Eλ ⊗ �1 =
⊕m

i = 1
Eλ+ξi

,

while Eλ ⊗�2 is contained in
⊕

1≤i<j≤mEλ+ξi+ξj
which can be determined according

to λ by the classical Littlewood-Richardson rule (because the semisimple part of
P (αn+1) is SL(n + 1)). When λ � 0, then we have the equality. Here µ(�1) =
−4/(n + 1). If gcd(4, n+1) = 1, then the four connected components are distinguished
by (n + 1)µ(E) = 0, 1, 2, 3 (mod 4). Otherwise, the knowledge of µ is not enough to
distinguish the several components. Every irreducible bundle on X can be described
by E = SαU ⊗ O(t) for some partition α and some integer t . The four connected
components are distinguished by the class of (|α|, t) ∈ Z2 × Z2.

• In the case of maximal Lagrangian Grassmannians Sp(2n)/P (αn), we have
the universal bundle U of rank n, and it is well known that �1 = Sym2U and
�2 = ∧2(Sym2U ) = S3,1U . Let m= (

n+1
2

)
, and let ξ1, . . . , ξm be the roots of �1. In

this case, Eλ ⊗ �1 is contained in
⊕m

i = 1Eλ+ξi
and the inclusion can be strict. Indeed,

this computation can also be done by using the classical Littlewood-Richardson rule.
Note that we can write the ξi as γj + γk , where γj are the weights of U . A fortiori,
Eλ ⊗ �2 is contained in

⊕
1≤i<j≤nEλ+ξi+ξj

, and it can be determined according to λ

by the classical Littlewood-Richardson rule. Here µ(�1) = −2/n. The two connected
components are distinguished by nµ(E) = 0, 1 (mod 2) for an irreducible E.

• In the case of the Cayley plane E6/P (α1) = OP2 (see [LM], [IM]), the semi-
simple part of P (α1) is Spin(10). Eλ2 is a twist of one of the two spinor bundles, and
�1 = Eλ2 (−2).

Hence �2 = Eλ3 (−3) is irreducible. Here µ(�1) = − 3/4. The three connected
components are distinguished by 4µ(E) = 0, 1, 2 (mod 3) for an irreducible E. The
Cayley plane has an intrinsic interest because it is a Severi variety.

• Also, the 27-dimensional case E7/P (α1) has �1 = Eλ2 (−2) and �2 = Eλ3 (−3),
both irreducible. Here µ(�1) = − 2/3. The two connected components are distin-
guished by 3µ(E) = 0, 1 (mod 2) for an irreducible E.
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The case of the projective plane P2 allows an explicit description of some interest.
Let (x, y) ∈ N � C2. Consider the linear maps given by matrices with coefficients in∧∗ N,

Ck = 1

k + 1
·




x y

. . .
. . .

x y


 of size k × (k + 1),

Bk = 1

k
·




−ky

x −(k − 1)y

. . .
. . .

(k − 1)x −y

kx




of size (k + 1) × k.

Now it is easy to check that

Ck ∧ Ck+1 = 0, Bk+1 ∧ Bk = 0, Ck+1 ∧ Bk+1 + Bk ∧ Ck = 0. (7)

The interpretation in terms of representations is the following. The parabolic
subgroup P (α1) ⊂ SL(3) has the form

P (α1) =



 e x y

0 a11 a12

0 a21 a22



∣∣∣∣∣∣ e det A= 1


 .

The irreducible representation of P (α1) corresponding to SympQ(t) is de-
fined by SympAe−t . Consider the derivative P = Lie P (α1) → gl(SympC2),
and call it (with a slight abuse of notation) SympA − teI . The extension
w ∈ Ext1(SymkQ, Symk−1Q(−1))G = C defines a bundle with representation[

Symk−1A + eI wCk

0 SymkA

]
, (8)

where w is a scalar multiple and w = 0 if and only if the extension splits.
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Analogously, the extension w ∈ Ext1(SymkQ(2), Symk+1Q)G = C defines a bun-
dle with representation [

Symk+1A wBk

0 SymkA − 2eI

]
, (9)

where w is a scalar multiple, which is zero if and only if the extension splits. By
Theorem 3.1, several extensions as in (8) and (9) fit together to give a representation
ρ of P if and only if ρ|N ∧ ρ|N = 0 (see Exam. 5.13). We note that (7) are equivalent
due to the fact that the only relations in QP2 are the commutative ones (see Cor. 8.5)
in all the square diagrams and the relation a2b1 = 0 in the diagrams

O(t)�b1

O(t − 3)
a2←−− Q(t − 2)

for any t ∈ Z. These last relations can be seen as the commutativity in the diagrams

0 ←−− O(t)� �b1

O(t − 3)
a2←−− Q(t − 2)

Example 5.13
We describe explicitly the homogeneous bundle on P2 = P(V ) corresponding to the
representation that associates to

O ←−− Q(1)� �
Q(−2) ←−− Sym2Q(−1)

the diagram of linear maps

Ca
γ1←−− Cb�β1

�β2

Cc
γ2←−− Cd

where a, b, c, d are positive integers. We get

ρ




e x y

0 a11 a12

0 a21 a22


 =




Ac + 2eI γ2 ⊗ C2 β1 ⊗ B1 0

0 (Sym2A)d + eI 0 β2 ⊗ B2

0 0 0 γ1 ⊗ C1

0 0 0 Ab − eI


 ,
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and this is a P -module if and only if (by Th. 3.1)


0 γ2 ⊗ C2 β1 ⊗ B1 0

0 0 0 β2 ⊗ B2

0 0 0 γ1 ⊗ C1

0 0 0 0


 ∧




0 γ2 ⊗ C2 β1 ⊗ B1 0

0 0 0 β2 ⊗ B2

0 0 0 γ1 ⊗ C1

0 0 0 0


= 0,

which is equivalent by (7) to

γ2 · β2 − β1 · γ1 = 0,

confirming the commutative relations. In the special case of a = b = c = d = 1 and all
the maps given by the identity, this bundle is adV .

The isomorphism classes of representations are equivalent to the orbits in m−1(0) with
respect to the AutG(gr E)-action.

6. Computation of cohomology
In all of this section, X is a Hermitian symmetric variety of ADE-type.

We now want to describe how to compute the cohomology of a homogeneous
bundle E on X from the representation of the quiver.

We need the following easy lemma.

LEMMA 6.1 ([CE, Chap. XV, Lem. 1.1])
Let the following diagram be commutative:

C�φ ψ

A′ φ′
−−−→ A

η−−−→ A′′

and let the row be exact. Then

Im φ/Im φ′ � Im ψ.

Let

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Er = E

be a filtration of a vector bundle (not necessarily homogeneous).
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Now, let

Z
p

j := Ker
(
Hj (Ep+1/Ep)

∂−→Hj+1(Ep)
)
,

B
p

j := Im
(
Hj−1(E/Ep+1)

∂−→Hj (Ep+1/Ep)
)
,

where the maps are the boundary maps of the two obvious exact sequences.
The next theorem follows from the discussion at the beginning of [CE,

Chap. XV]. For the convenience of the reader, we sketch the proof.

THEOREM 6.2
B

p

j ⊂ Z
p

j , and

Hj (E) �
⊕r−1

p = 0
Z

p

j /B
p

j .

Proof
We have the commutative diagram

Hj (Ep+1)�φ ψ

Hj−1(E/Ep+1)
φ′

−−−→ Hj (Ep+1/Ep)
η−−−→ Hj (E/Ep)

hence B
p

j ⊂ Z
p

j , and from Lemma 6.1 we get

Im
(
Hj (Ep+1)

ψ−→Hj (E/Ep)
) � Im φ/Im φ′ = Im φ/Ker η = Z

p

j /B
p

j . (10)

Consider also the diagram

Hj (Ep+1)�φp ψ

Hj (Ep)
φp−1−−−→ Hj (E)

ηp−−−→ Hj (E/Ep)

We get again from Lemma 6.1,

Im
(
Hj (Ep+1)

ψ−→Hj (E/Ep)
) � Im(φp)/Im(φp−1), (11)

and since we have the graduation

Hj (E) �
⊕

p
Im(φp)/Im(φp−1)

(10)(11)=
⊕

p
Z

p

j /B
p

j ,

we get the result. �
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We return now to the case of homogeneous bundles.
We need a short digression about homogeneous bundles whose quiver represen-

tation has support on an An-type quiver; that is, gr E =⊕
Vλ ⊗ Eλ and Vλ is zero

outside a path connecting the vertices {λ + pξj | 0 ≤ p ≤ k}.
The following theorem is well known since the former work on quivers by P.

Gabriel (see [GR]).

THEOREM 6.3
Every representation of the Am-quiver is the direct sum of irreducible representations
with dimension vector

(0, 0, . . . , 0, 1, 1, . . . , 1, 0, . . . , 0),

where the nontrivial linear maps are isomorphisms.

The reader can deduce the previous theorem as a consequence of Theorem 5.9 for
X = P1 and the Segre-Grothendieck theorem, which says that every bundle on P1

splits as the sum of line bundles.

PROPOSITION 6.4
Let Eλ and Eµ be in two adjacent Bott chambers with Hi(Eλ) � Hi+1(Eµ) � W ;
then µ − λ = kξj for some integer k and some root ξj of �1. We have

dim Hom(Eλ ⊗ Symk�1, Eµ)G = 1.

Proof
By (1), it is enough to show that there are no other weights among

{
a1ξi1 + · · · +

ahξih

∣∣ ∑ ai = k
}

which are equal to µ − λ. With the ADE-assumption, ξj is a vertex
of the convex polytope containing the weights of �1 because all the roots have the
same length. Hence kξj is a vertex of the convex polytope containing the weights of
Symk�1. �

PROPOSITION 6.5
Let ξj be a weight of �1. We have

Ext2(Eλ, Eλ+2ξj
)G = Hom

(
(Eλ ⊗ �2, Eλ+2ξj

)G
)= 0.

Proof
Since ξj is a vertex of the convex polytope containing the weights of �1, there
are no distinct weights ξp, ξq of �1 such that ξj = (1/2)(ξp + ξq). Then apply
Theorem 4.3. �
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Remark. Without the ADE-assumption, Propositions 6.4 and 6.5 are false. For exam-
ple, if X = Q3, the weights of �1 are α1, α1 + α2, α1 + 2α2. The weight α1 + α2 is
shorter; indeed, 2(α1+α2) coincides with the sum of the two vertices (α1)+(α1+2α2).
In particular, dim Hom(Sym2�1, E2(α1+α2))G = 2, and dim Ext2(O, E2(α1+α2))G = 1.
Hence there is no indecomposable homogeneous bundle E with support A2 such
that gr E =⊕2

i = 0Ei(α1+α2).
With the assumption of Propositions 6.4 and 6.5, note that the distinguished

elements in Hom(Eλ+pξj
⊗�1, Eλ+(p+1)ξj

)G which were chosen in Definition 5.5 give
a distinguished element in Hom(Eλ ⊗ Symk�1, Eµ)G, which is one dimensional by
Proposition 6.4. These elements allow us to define extensions of the form

0−→Eλ+(p+1)ξj
−→Zp−→Eλ+pξj

−→0

which fit together (by Th. 5.6(ii) since the corresponding Ext2 vanish by Prop. 6.5),
giving a bundle P ′ with gr P ′ =⊕k−1

p = 0Eλ+pξj
and two exact sequences (this argument

is similar to the one in [De])

0−→Z′−→P ′−→Eλ−→0, (12)

0−→Eµ−→Z′−→Z′/Eµ−→0. (13)

THEOREM 6.6
We have

Hj (P ′) = 0, ∀j.

We need a short preparation in order to prove Theorem 6.6. Let λ′ (resp., µ′) be the
vertex of the Bott chamber containing λ (resp., µ). Let A be the unique indecomposable
bundle in the extension

0−→Eµ′−→A−→Eλ′−→0.

PROPOSITION 6.7
We have

Hi(A) = 0, ∀i.

Proof
The boundary map Hi(Eλ′)−→Hi+1(Eµ′) can be seen as the cup product of the class
of the Schubert cell corresponding to Eλ′ as subbundle of �i (by Hodge theory) with
the hyperplane class in H 1(�1), and it is nonzero by [Hi, Chap. V, Cor. 3.2]. �
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PROPOSITION 6.8
We have that gr(Eµ′ ⊗ W ) contains only Eµ as a direct summand with H ∗ � W .

Proof
Let Eα be the irreducible bundle such that H 0(Eα) = W . The weights of W as G-
module lie in a convex polytope PW whose vertices are the reflections of α through
the hyperplanes Hφ (for any root φ of G) which separate the Weyl chambers of G (see
[FH, p. 204]). The weights of Eµ′ ⊗ W lie inside PW + µ′.

Let P̃W be the convex polytope whose vertices are the reflections of g+α through
the hyperplanes Hφ . Note that PW is strictly contained in P̃W and that there is a natural
bijective correspondence f between the vertices of PW and the vertices of P̃W such
that if βγ is an edge of PW of length d

√
2, then f (β)f (γ ) is a parallel edge of P̃W of

length (d + 1)
√

2. Precisely, the corresponding vertices β̃ and β, respectively, of P̃W

and PW differ by wβ(g) for a composition of reflections wβ defined by β = wβ(α).
The point of PW of least distance from β̃ is β.

We have that µ′ = w(g) − g for some w. Let µ = w(α); then w = wµ. Then
µ= wµ(α + g) − g =µ + µ′ is a vertex of PW + µ′; hence it is a maximal weight of
Eµ′ ⊗ W .

By the Bott theorem, all the weights ν such that Hi(Eν) = W for some i are ob-
tained from α after reflecting through the hyperplanes that separate the Bott chambers
of G. All these weights are some of the vertices of P̃W − g.

It is enough to show that the vertices of P̃W − g meet PW + µ′ only in the
point µ.

The distance of β̃ − g from PW − g + (µ′ + g) = PW − g + wµ(g) vanishes
only when β̃ − wµ(g) ∈ PW , and this happens if and only if wβ(g) = wµ(g) (since
the point of least distance between β̃ and PW is β̃ − wβ(g)); thus β =µ. Then
β̃ − g = β + wβ(g) − g = β + wµ(g) − g = µ + µ′ = µ. �

Proof of Theorem 6.6
Let K be the submodule in A ⊗ W generated by the direct summands isomorphic to
Eλ. (It can be shown that there is only one, but we do not need this fact.) We have the
exact sequence

0−→K−→A ⊗ W−→Q−→0.

By Proposition 6.8, we have that Hj (K)W and Hj (Q)W are nonzero at most for
j = i or j = i + 1.

We claim that gr K contains all the direct summands isomorphic to Eµ; other-
wise, Eµ ⊂ gr Q, and we would have Hi+1(Q)W �= 0. Hence by Proposition 6.7,
Hi+2(K)W �= 0, which is a contradiction. Hence we get Hj (Q)W = 0, ∀j , and it
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follows that

Hj (K)W = 0, ∀j.

At last, let S ′ be the quotient of K obtained by restricting the quiver representation
to the path joining the vertices corresponding to Eλ and Eµ.

We have

0−→K ′−→K−→S ′−→0.

Now Hj (gr K ′)W = 0, ∀j ; hence Hj (K ′)W = 0, ∀j , and it follows that Hj (S ′) =
0, ∀j . Decompose S ′ into its irreducible components (see Th. 6.3); we get that S ′ is
isomorphic to the direct sum of several copies of P ′ by the definition of K . �

From the sequence (12) and Theorem 6.6 we have the isomorphism

Hj (Eλ)
∂−→Hj+1(Z′)W,

and from (13) we have an isomorphism

Hj+1(Eµ)
�−→Hj+1(Z′);

hence we get a distinguished isomorphism

jµλ : Hj (Eλ)−→Hj+1(Eµ). (14)

LEMMA 6.9
Let Eλ and Eµ be in two adjacent Bott chambers with Hj−1(Eλ) � Hj (Eµ) � W .
Denote by P the homogeneous bundle corresponding to the An-type, starting from Eλ

and arriving in Eµ, with the same representation quiver maps as for E. (It exists by
Th. 5.6(ii) again, by the same argument as before.) Then the boundary map

W ⊗ Vλ = Hj−1(P/VµEµ)W
∂−→Hj (VµEµ) = W ⊗ Vµ

is the tensor product of the distinguished isomorphism in (14) and the composition of
the maps of the quiver representation.

Proof
We first prove the theorem for P irreducible. We may assume that dim Vλ+pξj

= 1
for 0 ≤ p ≤ k and λ + kξj = µ; moreover, P defines nonzero elements in the
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one-dimensional spaces

Hom(Vλ+pξj
⊗ Eλ+pξj

⊗ �1, Vλ+(p+1)ξj
⊗ Eλ+(p+1)ξj

)G

= Hom(Vλ+pξj
, Vλ+(p+1)ξj

) ⊗ Hom(Eλ+pξj
⊗ �1, Eλ+(p+1)ξj

)G.

There is a natural isomorphism between

k−1⊗
i = 0

Hom(Vλ+pξj
⊗ Eλ+pξj

⊗ �1, Vλ+(p+1)ξj
⊗ Eλ+(p+1)ξj

)G

and

Hom(Vλ ⊗ Eλ ⊗ Symk�1, Vµ ⊗ Eµ)G = Hom(Vλ, Vµ) ⊗ Hom(Eλ ⊗ Symk�1, Eµ)G,

where in Hom(Vλ, Vµ) we perform the composition of the quiver representation maps.
It is clear that the element obtained in Hom(Vλ, Vµ) ⊗ Hom(Eλ ⊗ Symk�1, Eµ)G

is sufficient to reconstruct P .
Now we consider the two exact sequences

0−→Z−→P−→Vλ ⊗ Eλ−→0,

0−→Vµ ⊗ Eµ−→Z−→P ′−→0.

From the first sequence we have

Hj (Eλ ⊗ Vλ)
∂−→Hj+1(Z)W,

and from the second one an isomorphism (by Th. 6.6)

Hj+1(Eµ ⊗ Vµ)
�−→Hj+1(Z);

hence we get a map

cµλ : Hj (Eλ ⊗ Vλ)−→Hj+1(Eµ ⊗ Vµ) (15)

which by construction is the tensor product of the distinguished isomorphism jµλ

constructed in (14) and the composition of the maps of the quiver representation, as
we wanted.

In general, we have P =⊕
Pi , where Pi are irreducible by Theorem 6.3. More-

over, we have Vλ =⊕
V i

λ , Vµ =⊕
V i

µ, where every V i
λ and V i

µ has dimension one or
zero, and for each i the morphism W ⊗V i

λ = Hj−1(Pi/V i
µEµ)W

∂−→Hj (V i
µEµ) = W ⊗

V i
µ coincides again with the tensor product of the distinguished isomorphism jµλ

constructed in (14) and the composition of the maps of the quiver representation. �



QUIVERS AND HOMOGENEOUS BUNDLES 491

Figure 4

We now construct maps Hj (gr E)
cj−→Hj+1(gr E) by patching together the maps cµλ

already constructed in (15); that is, we have the following.

Definition 6.10
We have

cj :=
∑

cµλ,

where the sum is over all pairs λ, µ in two adjacent Bott chambers such that Hj (Eλ) �
Hj+1(Eµ).

Although separately the isomorphism jµλ in (14) and the composition of the quiver
representation maps depend on the choices made in Definition 5.5, it is easy to check
that their tensor product does not depend on these choices. (The numbers for which
one has to multiply cancel together.) Moreover, the construction in Definition 6.10 is
functorial; that is, given a morphism E−→F , we get a map H ∗(gr E)−→H ∗(gr F ).
We now see that H ∗(gr E) is a complex and that it gives a way to compute the
cohomology.

In the case of Pn, this construction can be made more explicit. We have maps given
by gλ,i : Wλ → Wλ+α1+···+αi+1 = Wλ′ . Let λ = ∑n

i = 1 piλi . Let pi(λ) = −∑i+1
j=1(pj +

1). Composing the maps Wλ+j (α1+···+αi+1) → Wλ+(j+1)(α1+···+αi+1) for i fixed and

j = 0, . . . , pi − 1, we get Wλ → Wλ+pi (λ)(α1+···+αi+1) and Wλ

g′
λ,i−→Wλ′ , where

Hi(Eλ) = Hi+1(Eλ′) and g′
λ,i =

∏pi (λ)
j = 1 gλ+(j−1)(α1+···+αi+1),i . The corresponding maps

c0, c1 in the case of P2 are shown in Figure 4.

Remark. We warn the reader that the use of the distinguished isomorphism (14) is not a
formal and superfluous addition, but it determines the correct signs that are necessary in
concrete computations. For example, assume that we have λ, µ, ν in three consecutive
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adjacent Bott chambers such that Hj (Eλ) � Hj+1(Eµ) � Hj+2(Eν) and assume that
we have λ, µ′, ν in the same situation (at most two µ’s exist between λ and ν); it may
be shown as an application of the well-known relation in [CE, Chap. III, Prop. 4.1]
that we have the anticommutative relation

jνµjµλ = − jνµ′jµ′λ.

The next theorem implies in this case that

cνµcµλ = − cνµ′cµ′λ;

hence it follows by the construction of cµλ that the corresponding composition of the
quiver representation maps is commutative for the square

λ −−−→ µ� �
µ′ −−−→ ν

taken from the Hasse quiver. In the last section about Olver maps, we give more
information in the case of Grassmannians.

THEOREM 6.11
(H ∗(gr E), c∗) is a complex, and its cohomology is given by

Ker ci

Im ci−1
= Hi(E).

Proof
Let W be any irreducible G-module, and let n= dim X. It is enough to compute that

Hj (E)W = Ker(Hi(gr E)W
ci−→Hi+1(gr E)W )

Im(Hi−1(gr E)W
ci−1−→Hi(gr E)W )

.

We consider the filtration of E defined in the following way.
E1 is defined by taking all arrows starting from any F ∈ gr E such that Hn(F )W �=

0 (see Def. 5.10).
E2 is defined by taking all arrows starting from any F ∈ gr E such that

Hn(F )W ⊕ Hn−1(F )W �= 0.

In general, Ei is defined by taking all arrows starting from any F ∈ gr E such that

⊕i−1

j = 0
Hn−j (F )W �= 0.
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We get

Hj (gr Ei+1/Ei)
W =

{
Hn−i(gr E)W if j = n − i,

0 if j �= n − i;

hence by the spectral sequence,

Hj (Ei+1/Ei)
W =

{
Hn−i(gr E)W if j = n − i,

0 if j �= n − i.

We have the commutative diagram

Hi−1(En−i+2/En−i+1)W

||
Hi−1(gr E/En−i+1)W�f ∂

H i−1(E/En−i+1)W
∂−−−→ Hi(En−i+1/En−i)W

∂−−−→ Hi+1(En−i)W

∂

�g

H i+1(gr En−i)W

||
Hi+1(En−i/En−i−1)W

where f is the projection given by the spectral sequence (Hi(gr E/En−i+1)W = 0) and
g is injective (because Hi(gr En−i)W = 0). Moreover, we note that the central term is

Hi(En−i+1/En−i)
W = Hi(gr E)W .

It follows from this diagram and Theorem 6.2 that

Hi(E)W = Zn−i
i /Bn−i

i = Ker(Hi(En−i+1/En−i)W
∂−→Hi+1(En−i/En−i−1)W )

Im(Hi−1(En−i+2/En−i+1)W
∂−→ Hi(En−i+1/En−i)W )

.

Now it is enough to show that the boundary map

Hi−1(En−i+2/En−i+1)W
∂−→Hi(En−i+1/En−i)

W

induced by the exact sequence

0−→En−i+1/En−i−→En−i+2/En−i−→En−i+2/En−i+1−→0

is the composition of the quiver representation maps tensored with jµλ in (14).
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Lemma 6.9 tells us that this is true in the particular case of the quiver representa-
tions with support Am, and we reduce to that case. Pick Vλ ⊗ Eλ ⊂ gr En−i+2/En−i+1

and Vµ ⊗ gr Eµ ⊂ En−i+1/En−i such that W � Hi−1(Eλ) � Hi(Eµ).
We have to show that the composition

Hi−1(Vλ ⊗Eλ)
l−→Hi−1(En−i+2/En−i+1)W

∂−→Hi(En−i+1/En−i)
W−→Hi(Vµ ⊗Eµ)

is obtained by composing the maps appearing in the quiver representation from Vλ to
Vµ.

Consider the commutative diagram

0 0 0� � �
0 −−−→ K ∩ (En−i+1/En−i) −−−→ En−i+1/En−i −−−→ Q′ −−−→ 0� � �
0 −−−→ K −−−→ En−i+2/En−i −−−→ Q −−−→ 0� �

En−i+2/En−i+1 −−−→ Q′′� �
0 0

where Q is the quotient of En−i+2/En−i obtained by taking all arrows arriving in Eµ

(see Def. 5.10) and the other bundles are defined from the diagram itself.
This diagram induces the diagram

Hi(Vλ ⊗ Eλ)�
Hi(En−i+2/En−i+1)W −−−→ Hi(Q′′)W�∂

�∂

H i+1
(
K ∩ (En−i+1/En−i)

)W f−−−→ Hi+1(En−i+1/En−i)W −−−→ Hi+1(Q′)W�h

H i+1(Vµ ⊗ Eµ)
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The composition hf is zero because Eµ is not a vertex of K; then the map h lifts
to

Hi(Vλ ⊗ Eλ)� r

H i(En−i+2/En−i+1)W −−−→ Hi(Q′′)W = Hi(Vλ ⊗ Eλ)

�∂

�∂

H i+1(En−i+1/En−i)W −−−→ Hi+1(Q′)W�h g

H i+1(Vµ ⊗ Eµ)

The last step consists of constructing the subbundle P of Q taking all arrows
starting from λ (see Def. 5.10); hence P is as in the assumptions of Lemma 6.9. We
get the commutative diagram

Hi(P/P ∩ Q′)W � Vλ ⊗ W
r−−−→ Hi(Q′′)W�∂

�∂

H i+1(Vµ ⊗ Eµ)W
k−−−→ Hi+1(Q′)W�g

H i+1(Vµ ⊗ Eµ)

where k and r are induced by the inclusions. By the construction of Q, we have
Hi+1(gr Q′)W = Hi+1(Vµ ⊗Eµ); hence it follows that Hi+1(Q′)W = Hi+1(Vµ ⊗Eµ),
where the equality is given by g and the composition gk is the identity.

By Lemma 6.9, the map ∂ in the first column of the last diagram is the composition
of the quiver representation maps tensored with jµλ in (14); then by chasing in the
above two diagrams, the claim is proved and the proof is complete. �

Remark. In principle, the fact that (H ∗(gr E), c) is a complex should be a consequence
of the relation θ ∧ θ = 0. Conversely, Theorem 6.11 shows that the relation θ ∧ θ = 0,
which is quite difficult to be handled directly, has simpler consequences. The reader
may find some more information on this topic in the last section about Olver maps.

Remark. The computation of cohomology allows an interpretation involving the
Hasse quiver HX (see §2). HX is obviously leveled according to Definition 5.1.
Let λ−→µ−→ν be any composition of arrows in HX. We define quadratic relations
in HX by asking that the sum of all the compositions of two arrows between λ and ν is
zero for all λ and ν. Now given a homogeneous bundle E and an irreducible G-module
W , we define a representation of HX in the following way. Let gr E =⊕

Vλ ⊗ Eλ.
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Given the vertex µ in HX, there is a unique λ in the Bott chamber with vertex µ such
that H ∗(Eλ) � W . Then we associate to this vertex the G-module W ⊗ Vλ. The maps
ci of the complex H ∗(gr E) give the maps of this representation. The direct sum of
all these representations for any irreducible G-module gives a representation of HX,
which satisfies the relations we have defined just because H ∗(gr E) is a complex.

So we have constructed a functor from representations of QX (in finite-dimensional
vector spaces) to representations of HX (in finite-dimensional G-modules). This func-
tor is not injective on the objects because the singular weights give zero contribution.
Also, it is easy to see that this functor is not surjective, so that the representations that
are in the image of the functor make an interesting subcategory.

We have that for any homogeneous bundle E (on X Hermitian symmetric variety),
the Yoneda product with [E] ∈ Ext1(gr E, gr E)G defines a complex

· · · −→Hi(gr E)
ci [1]−→Hi+1(gr E)−→ · · · .

It is a complex because m([E]) = 0. We get a functor from P -mod to the (abelian)
category Kom(G-mod) of complexes of G-modules

E �→ H ∗(gr E).

It is straightforward to check, by using the properties of the Yoneda product, that it is an
exact functor. So it is natural to ask about the cohomology of the above complex. It turns
out that, in the ADE-case, it gives only the first step of a filtration of the cohomology
H ∗(E). In fact, for any integer n, we can consider the map Hi(gr E)

ci [n]−→Hi+1(gr E)
which considers the summands of ci which are compositions of at most n arrows. The
(n= 1)-case is given by the Yoneda product, while when n is big enough, we get the
whole ci . Correspondingly, we have a filtration

0 ⊂ Hi[1](E) ⊂ Hi[2](E) ⊂ · · · ⊂ Hi(E).

Remark. The hypercohomology module of the complex

gr E
θ∧−→gr E ⊗ TX

θ∧−→gr E ⊗
2∧

TX
θ∧−→ · · ·

is another interesting invariant of E (cf. [S, p. 24]). The computation in the case of
E = KX shows that this should be related to the filtration above if we twist by O(t)
and sum over t ∈ Z.

7. Moduli and stability
For simplicity, we restrict in this section to the case when X is an irreducible Hermitian
symmetric variety. We now consider the moduli problem of homogeneous bundles E
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on X with the same gr E. Any R-module F =⊕
Vλ⊗Eλ corresponds to the dimension

vector α = (αλ) ∈ Z(QX)0 , where αλ = dim Vλ. The group

GL(α) :=
∏

λ ∈ (QX)0

GL(Vλ)

acts over

K(QX, α) :=
⊕

a ∈ (QX)1
Hom(Vta, Vha)

and over the closed subvariety

VX(α) ⊂ K(QX, α)

defined by the relations in QX. The affine quotient Spec(C[VX(α)]GL(α)) is a single
point, represented by F itself. King [Ki] considers the characters of GL(α) which are
given by

χσ (g) =
∏

λ ∈ (QX)0

det(gλ)σλ

for σ ∈ Z(QX)0 such that
∑

λ σλαλ = 0. The element σ can also be interpreted as a homo-
morphism K0(R-mod)→ Z which applied to Eλ gives σλ. A function f ∈ C[VX(α)]
is called a relative invariant of weight σ if f (g ·x) = χσ (g)f (x), and the space of such
relatively invariant functions is denoted by C[VX(α)]GL(α),σ .

There is a natural character, which is convenient to denote by µ(α), defined by

µ(α)λ = c1(F ) rk(Eλ) − rk(F )c1(Eλ).

Observe that µ(α)(F ) = ∑
λ αλµ(α)λ = 0. For any subrepresentation E′ of

E ∈ MX(α), let gr E′ =⊕
V ′

λ ⊗ Eλ with dim V ′
λ = α′

λ; then let

µ(α)(E′) =
∑

λ

α′
λµ(α)λ = rk E′ rk F

(
µ(F ) − µ(E′)

)
. (16)

Then we define

MX(α) := Proj
(⊕

n≥0
C[VX(α)]GL(α),nµ(α)

)
,

which is projective over Spec(C[VX(α)]GL(α)); hence it is a projective variety. The
moduli space MX(α) is the GIT quotient of the open set VX(α)ss of χµ(α)-semistable
points (see [Ki]). Different characters give moduli spaces that are birationally equiv-
alent to MX(α).
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We collect the known results about this topic in the following theorems. We
saw that E is determined by θE ∈ Hom(gr E, gr E ⊗ TX) such that θE ∧ θE = 0
(see Th. 3.1).

THEOREM 7.1
Let E be a homogeneous bundle on X irreducible Hermitian symmetric variety, and let
α be the dimension vector corresponding to gr E. The following facts are equivalent:
(i) for every G-invariant subbundle K, we have µ(K) ≤ µ(E) (equivariant

semistability);
(ii) for every subbundle K such that θE(gr K) ⊂ gr K⊗TX, we have µ(K) ≤ µ(E)

(Higgs semistability);
(iii) the representation [E] of QX is µ(α)-semistable, according to [Ki, Def. 1.1]

(quiver semistability);
(iv) E is a χµ(α)-semistable point in VX(α) for the action of GL(α) (see [Ki, Def.

2.1]) (GIT semistability);
(v) for every subsheaf K , we have µ(K) ≤ µ(E) (Mumford-Takemoto semista-

bility; see [OSS]).

Proof
The equivalence (i) ⇐⇒ (ii) follows from the fact that F ⊂ E is G-invariant if and
only if θE(gr F ) ⊂ gr F ⊗ TX. The equivalence (ii) ⇐⇒ (iii) is straightforward from
Theorem 5.9 and (16). The equivalence (iii) ⇐⇒ (iv) is proved in [Ki, Prop. 3.1,
Th. 4.1]. The equivalence (i) ⇐⇒ (v) is proved in [M] and independently in [Ro] (in
the last one, only in the case of Pn, but his proof extends in a straightforward way to
any G/P ; see [Ot]). �

Remark. Migliorini shows in [M] in the analytic setting that conditions from (i) – (v)
are equivalent to the existence of an approximate Hermite-Einstein metric, which can
be chosen invariant for a maximal compact subgroup of G. He also relates the stability
to the image of the moment map.

THEOREM 7.2
Let E be a homogeneous bundle on X irreducible Hermitian symmetric variety,
and let α be the dimension vector corresponding to gr E. The following facts are
equivalent:
(i) for every G-invariant proper subbundle K , we have µ(K) < µ(E) (equivariant

stability);
(ii) for every proper subbundle K such that θE(gr K) ⊂ gr K ⊗ TX, we have

µ(K) < µ(E) (Higgs stability);
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(iii) the representation [E] of QX is µ(α)-stable, according to [Ki, Def. 1.1] (quiver
stability);

(iv) E is a χµ(α)-stable point in VX(α) for the action of GL(α) (see [Ki, Def. 1.2])
(GIT stability);

(v) E � W ⊗ E′, where W is an irreducible G-module, and for every proper
subsheaf K ⊂ E′, we have µ(K) ≤ µ(E′) (Mumford-Takemoto stability of
E′; see [OSS]).

Proof
The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) are proved as above. The equivalence
(i) ⇐⇒ (v) is proved in [F]. �

Remark. The equivalence (i) ⇐⇒ (v) holds in Theorems 7.1 and 7.2 over any rational
homogeneous variety X (for any slope µa).

Remark. Theorem 7.1 and 7.2 extend in a straightforward way to any σ : K0(R-
mod)→ Z such that σ (gr E) = 0 at the place of µ(α).

Remark. Theorem 7.2 shows that Mumford-Takemoto stability is a stronger condition
than stability in QX. The Euler sequence on Pn just explains this fact. Indeed, O ⊗ V

corresponds to a stable representation of QPn , but it is not a Mumford-Takemoto
stable bundle. The points in MX(α) parametrize S-equivalent classes of semistable
homogeneous bundles E with the same gr E corresponding to α. The closed orbits in
VX(α)ss correspond to direct sums

⊕
jWj ⊗Fj , where Wj are irreducible G-modules

and Fj are Mumford-Takemoto stable homogeneous bundles.
When E is a Mumford-Takemoto homogeneous stable bundle, we get W = C in

condition (v), and an open set containing the corresponding point in MX(α) embeds
in the corresponding Maruyama scheme of stable bundles (see the construction of
families in [Ki, §5]). The tangent space at this point is H 1(End E)G.

Observe that the irreducible bundles do not deform as homogeneous bundles, and
their corresponding moduli space in the sense above is a single point (see Cor. 4.4).

Example 7.3
We describe an example of a homogeneous bundle on P2 with a continuous family of
homogeneous deformations. This example appears already in [H2, Exam. 1.8.7, Prop.
4.2.4].

Such an example is E = Sym2Q(−1) ⊗ S2,1V , whose rank is 24. It is easy
to compute that H 1(End E)G = C. The corresponding representation of the quiver
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associates to

O ←−− Q(1)� �
Q(−2) ←−− Sym2Q(−1) ←−− Sym3Q� �

Sym3Q(−3) ←−− Sym4Q(−2)

the diagram

C ←−− C� �f1

C
f4←−− C2

f2←−− C�f3

�
C ←−− C

The four arrows starting from or ending to the middle C2 determine four one-
dimensional spaces (two kernels and two images) which correspond to four marked
points in P1. The cross-ratio of these four points describes the deformation. The
generic deformation is Mumford-Takemoto stable. If we fix the dimension vector
α = (1, 1, 1, 2, 1, 1, 1) according to the diagram above, then

MP2 (α) = P1.

Indeed, the character µ(α) is 72(0, −1, 1, 0, −2, 2, 0). We can divide by 72, and the
coordinate ring ⊕

n≥0
C[VX(α)]GL(α),nµ(α)

is generated by

S = (f4f1)(f3f2)2 and T = (f4f2)(f3f2)(f3f1).

(Both correspond to n= 1.) If we do not divide by 72, then the two generators are S72

and T 72.
There are three distinguished points. We get the first one (corresponding to

S = 0) when Im f1 = Ker f4. In this case, there are three different orbits where the
S-equivalence class contains O as a direct summand. We have the second one (corre-
sponding to S = T ) when Im f1 = Im f2 or when Ker f3 = Ker f4. In this case, there
are three different orbits where the S-equivalence class contains Sym2Q(−1) as a
direct summand. We have the third one (corresponding to T = 0) when Im f1 = Ker f3
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or when Im f2 = Ker f4. Also, in this case, there are three different orbits where the
S-equivalence class contains adV as a direct summand. Observe that Imf2 = Kerf3

gives a nonstable situation where the middle row C
f4←−Im f2

f2←−C destabilizes.
There are other two particular points in MP1 (α) which correspond, respectively,

to Sym2Q(−1) ⊗ S2,1V and to adC where C is the rank 5 exceptional bundle defined
by the sequence

0−→Q(−1)−→C−→Sym2Q−→0.

Remark. It seems an interesting open question to understand when MX(α) is nonempty
or irreducible.

8. Olver maps and explicit relations for Grassmannians
The aim of this section is to make explicit in the case of Grassmannians the relations
coming from θ ∧ θ = 0.

We restrict to the case G= SL(V ). Let a be the Young diagram associated to a
weight λ; that is, let SaV be the representation with maximal weight λ. Let a′ be
obtained by adding one box to a. Let λ′ be the weight corresponding to a′. In the
unpublished preprint [O], Olver gave a nice description of the Pieri maps SaV ⊗
V −→Sa′

V . These maps are defined up to a nonzero scalar multiple. This description
was used in [D]; then a proof of the correctness of Olver’s description appeared in
[MO] in the more general setting of skew Young diagrams.

It is well known that SaV can be obtained as a quotient of SymaV : =
Syma1V ⊗ · · · ⊗ SymanV (see [DEP] or [FH]); namely, there is the quotient map
(see [D, §2.6])

ρa : SymaV −→SaV .

Olver’s idea is to consider Pieri maps at the level of SymaV and then factor through
the quotient.

We follow here [D], where a different notation is used; in particular, SymãV

in [D] is our SymaV . We refer to [D] for the definition of the linear map
χa′

a : Syma′
V −→SymaV ⊗ V . This is called an Olver map.

THEOREM 8.1 (Olver; [D, Th. 2.14])
Consider the diagram

Syma′
V

χa′
a−−−→ SymaV ⊗ V�ρa′

�ρa⊗1

Sa′
V SaV ⊗ V
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Then χa′
a (ker ρa′) ⊂ ker(ρa ⊗ 1), and χa′

a induces the nonzero SL(V )-equivariant

ψa′
a : Sa′

V −→SaV ⊗ V,

making the above diagram commutative.

A tableau on the Young diagram a is a numbering of the boxes with the integers
between 1 and n + 1. A tableau is called standard if the entries of the rows are
weakly increasing from the left to the right and the entries of the columns are strictly
increasing from the top to the bottom. The content of a tableau T is the function
CT : {1, . . . , n} → N such that CT (p) is the number of times p occurs in T . After a
basis e1, . . . , en+1 of V has been fixed, to any tableau T is associated in the natural
way a tensor T S in SymaV by symmetrizing the basis vectors labeled by each row. The
eigenvectors for the action of the diagonal subgroup of SL(V ) over SaV correspond
to ρa(T S) for T chosen among the standard tableaux. They form a basis of SaV .

Let Ka be the tableau obtained by filling the ith row with entries equal to i (it
is called canonical in [DEP]); Ka is the only standard tableau among those with
the same content. The projection ρa(KaS) is a maximal eigenvector for SaV , and
we denote it by κa . Let a′ be obtained from a by adding a box to the ith row,
and let a′′ be obtained from a′ by adding a box to the j th row. Consider the map
χa′′

a : Syma′′
V −→SymaV ⊗ V ⊗ V defined as the composition

Syma′′
V

χa′′
a′−→ Syma′

V ⊗ V
χa′

a ⊗1−→ SymaV ⊗ V ⊗ V ;

χa′′
a induces the nonzero SL(V )-equivariant morphism

ψa′′
a : Sa′′

V −→SaV ⊗ V ⊗ V.

Let Ka′
i,j be the tableau on a′ obtained by adding a box filled with j at the ith row

of Ka . We denote the element ρa′(KaS
i,j ) by κa′

i,j .

PROPOSITION 8.2
(i) If i > j , then

ψa′′
a′ (κa′′

) = (aj + 1)κa′ ⊗ ej +
∑
h�=j,i

τh ⊗ eh

for some τh.
(ii) If i = j , then

ψa′′
a′ (κa′′

) = (aj + 2)κa′ ⊗ ej +
∑
h�=j

τh ⊗ eh

for some τh.
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(iii) If i < j , then

ψa′′
a′ (κa′′

) =
(
− (aj + 1)(ai + 1)

ai − aj + j − i
κa′

i,j +τ
)
⊗ei + (aj +1)κa′ ⊗ej +

∑
h�=i,j

τh ⊗eh

for some τ , τh, where ψa′
a (τ ) has the coefficient of ej ⊗ κa equal to zero.

Proof
In (i) and (ii) the summand κa′ ⊗ ej is obtained with J = (0, j ) (see [D, §2.12]). In
(iii) the summand κa′

i,j ⊗ ei is obtained with J = (0, i, j ), while the summand κa′ ⊗ ej

is obtained with J = (0, j ). �

COROLLARY 8.3
(i) If i > j , then

ψa′′
a (κa′′

) = (ai + 1)(aj + 1)κa ⊗ ei ⊗ ej

+ · · · + (linear combination of other basis vectors

different from κa ⊗ ej ⊗ ei).

(ii) If i = j , then

ψa′′
a (κa′′

) = (aj + 1)(aj + 2)κa ⊗ ej ⊗ ej

+ · · · + (linear combination of other basis vectors).

(iii) If i < j , then

ψa′′
a (κa′′

) = (ai + 1)(aj + 1)κa ⊗
(
ei ⊗ ej − 1

ai − aj + j − i
ej ⊗ ei

)
+ · · · + (linear combination of other basis vectors).

Remark. The case (i) of Corollary 8.3 does not appear if i = j +1 and ai = aj . In such
a case, a′′ is obtained from a by adding two boxes to the same column, and the only
possibility is to add first the highest box and then the lowest one.

Now consider a bundle Eλ = SαU ⊗ SβQ∗(t) (as in §5) in the Grassmannian
Gr(Pk, Pn), where λ = ∑n

i = 1 ciλi . Let p, q ∈ N.
Let

np,q := −
q−1∑

i =−(p−1)

αk+1+i ,
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λp,q := λ + np,q,

λq := λ1,q = λ −
q−1∑
i = 0

αk+1+i .

We denote the corresponding morphism as

mλ,p,q : Eλ ⊗ �1 → Eλp,q
,

normalized according to Definition 5.5.
Then Eλp,q

= Sα′
U ⊗ Sβ ′

Q∗(t), where α′ is obtained from α by adding a box to
row p and β ′ is obtained from β by adding a box to row q.

In the following proposition we make the relations (see Def. 5.7) explicit for
QGr(Pk,Pn). We consider Eλ′′ = Sα′′

U ⊗ Sβ ′′
Q∗(t), where α′′ is obtained from α by

adding two box to the rows p1, p2 and β ′′ is obtained from β by adding two boxes to
the rows q1, q2. If p1 = p2 and q1 = q2, then Ext2(Eλ,Eλ′′)G = 0. By the symmetry,
we may assume that p1 ≤ p2, q1 < q2. Let

p̃ : =
p2−1∑
i = p1

ck+1−i + p2 − p1 = αp1 − αp2 + p2 − p1,

q̃ : =
q2−1∑
i = q1

ck+1+i + q2 − q1 = βq1 − βq2 + q2 − q1.

Note that p̃ = 1 if and only if p2 = p1 + 1 and ck+1−p1 = 0. In the same way, q̃ = 1 if
and only if q2 = q1 + 1 and ck+1+q1 = 0.

PROPOSITION 8.4 (Explicit relations for QGr(Pk,Pn))
(i) If p1 < p2, we have the following subcases:

(i1) p̃ �= 1, q̃ �= 1; in this case, we have the two equations

gλp1,q1 ,p2q2gλ,p1,q1

( 1

q̃
− 1

p̃

)
− gλp1,q2 ,p2q1gλ,p1,q2 + gλp2,q1 ,p1q2gλ,p2,q1 = 0,

gλp1,q1 ,p2q2gλ,p1,q1

( 1

p̃q̃
− 1

)
− gλp1,q2 ,p2q1gλ,p1,q2

( 1

p̃

)

−gλp2,q1 ,p1q2gλ,p2,q1

( 1

q̃

)
+ gλp2,q2 ,p1q1gλ,p2,q2 = 0;
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(i2) p̃ = 1 and q̃ �= 1; in this case, λp2,q1, λp2,q2 do not exist and we have the
single equation

gλp1,q1 ,p2q2gλ,p1,q1

( 1

q̃
− 1

)
− gλp1,q2 ,p2q1gλ,p1,q2 = 0;

(i3) p̃ �= 1 and q̃ = 1; in this case, λp1,q2, λp2,q2 do not exist and we have the
single equation

gλp1,q1 ,p2q2gλ,p1,q1

(
1 − 1

p̃

)
+ gλp2,q1 ,p1q2gλ,p2,q1 = 0;

(i4) p̃ = q̃ = 1; in this case, only λp1,q1 survives and there are no equations at
all. The Hille counterexample (see Exam. 5.11) fits this case.

(ii) If p1 = p2, we have the following subcases:
(ii1) q̃ �= 1; in this case, we have the equation

gλp1,q1 ,p1q2gλ,p1,q1

(1 + q̃

q̃

)
− gλp1,q2 ,p1q1gλ,p1,q2 = 0;

(ii2) q̃ = 1; in this case, we have the equation

gλp1,q1 ,p1q2gλ,p1,q1 = 0.

Proof
Let p1 < p2. Consider that

mλp1 ,q1 ,p2q2 ∧ mλ,p1,q1 (np1q2 ∧ np2q1 ⊗ vλ) = mλp1,q1 ,p2q2

(
np1q2 ⊗ mλ,p1,q1 (np2q1 ⊗ vλ)

)
−mλp1,q1 ,p2q2

(
np2q1⊗mλ,p1,q1 (np1q2⊗vλ)

)
=
(

− 1

p̃
+ 1

q̃

)
vλ′′ .

(The last equality is by Cor. 8.3.) In the same way, if q̃ �= 1,

mλp1,q2 ,p2q1 ∧ mλ,p1,q2 (np1q2 ∧ np2q1 ⊗ vλ) = − vλ′′ .

Moreover, if p̃ �= 1,

mλp2,q1 ,p1q2 ∧ mλ,p2,q1 (np1q2 ∧ np2q1 ⊗ vλ) = vλ′′ .

Besides,

mλp2,q2 ,p1q1 ∧ mλ,p2,q2 (np1q2 ∧ np2q1 ⊗ vλ) = 0.
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Now by computing the left-hand side of relation (6) on np1q2 ∧ np2q1 ⊗ vλ, we get the
first equation of (i1).

In the same way, by computing the left-hand side of relation (6) on np1q1 ∧np2q2 ⊗
vλ, we get the second equation of (i1). The other subcases of (i) are particular cases
of (i1). Case (ii) is analogous. �

Remark. The number of equations obtained in Proposition 8.4 measures exactly the
dimension of Ext2(Eλ, Eλ′′)G, which can be 2, 1, or 0. An interesting consequence
of Proposition 8.4 is that (with the assumptions in (i)) there is no indecomposable
homogeneous bundle on Gr(Pk, Pn) such that its quiver representation has support
equal to the parallelogram with vertices Eλ, Eλp1,q2

, Eλp2,q1
, Eλ′′ . The first consequence

is that on Gr(P1, P3), every homogeneous bundle E such that gr E = �1 ⊕ �2 ⊕ �3

decomposes. On the other hand, there exists an indecomposable homogeneous bundle
such that its quiver representation has support equal to the parallelogram with vertices
Eλ, Eλp1 ,q1

, Eλp2,q2
, Eλ′′ if and only if p̃ = q̃. The first nontrivial example is, on the

Grassmannian of lines in P3 = P(V ) , the cohomology bundle E of the monad

O(−2)−→S2,2V −→O(2),

whose graded bundle is gr E = O ⊕ �1 ⊕ �1(2) ⊕ (Sym2U ⊗ Sym2Q).

COROLLARY 8.5 (Explicit relations for QPn)
In the case of Pn, the category of homogeneous bundles is equivalent to the category
of representations of QPn with the commutative relations.

Proof
Put p1 = p2 = 1 in Proposition 8.4; we get

gλq1 ,q2gλ,q1

(1 + q̃

q̃

)
− gλq2 ,q1gλ,q2 = 0,

unless q̃ = 1.
Denoting

hλ,i := (ci + 1)(ci−1 + ci + 2) · · · (c2 + · · · + ci + i − 1)fλ,i,

we get a functor from the quiver QPn with the relations that we have defined to the
same quiver with the commutative relations

hλq1 ,q2hλ,q1 − hλq2 ,q1hλ,q2 = 0.

This functor gives the desired equivalence. �
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