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Abstract

We introduce the qubits and the mathematical model of a quantum circuit.
Two applications are presented, the Deutsch-Josza algorithm and the Grover
search algorithm. This introduction is largely inspired from the excellent [Na],
with a more geometric point of view. The two algorithms are explained with more
details in the comprehensive text [NC].
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1 Qubits

A bit is an element of {0, 1}, which is accessible to humans.
Let U be a complex Hilbert space of dimension 2. A qubit is an element of P(U),

which is not accessible to humans, but to God only.
We (humans) can have informations on the qubit space only by measurements, that

will be considered later. The space P(U) is homeomorphic to a 2-dimensional sphere
S2. The space U is endowed with a Hermitian scalar product (sesquilinear, Hermitian
and positive definite). It is customary to denote a preferred orthonormal basis of U
by |0〉, |1〉 (ket in Dirac notation).

With the choice of a basis, we may identify U = C2. The quotient map
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C2 \ {0} −→ P(C2) = S2 is the quotient by the action of C∗. Since any λ ∈ C∗ has
a polar form λ = reiθ, the quotient can be performed in two steps, first by acting with
r ∈ R+ and then by acting with eiθ ∈ S1. The result is the factorization

C2 \ {0} −→ S2

↘ p ↗ h

S3
(1.1)

where p(v) = v
|v| and h : S3 → S2 is the Hopf fibration, which deserves a separate

study. In the physical literature, S2 is called the Bloch sphere. Points of P1(C) = S2

correspond to S1 fibers that, as we see now, carry a natural algebraic structure of
subgroups (or lateral classes), and a natural metric structure of geodesics.

1.1 The Hopf fibration, algebraic aspects (Hamilton, Clifford)

The interesting point is that S3 is a Lie group (the only spheres which are Lie groups
are S0, S1 and S3). The simplest way to find this group structure is to identify

C2 = H = 〈1, i, j, k〉R,

the space of quaternions. The sphere S3 is the subgroup of H of quaternions of unit
norm. Recall that for q ∈ H is well defined the conjugate q ∈ H, we have the squared
norm qq = |q|2 and every q ∈ H \ {0} is invertible with q−1 = q

|q|2 . Decompose

H = R⊕ I, where I = 〈i, j, k〉R, then we have a natural embedding S2 ⊂ I (the sphere
of unitary imaginary quaternions). S3 contains several subgroups S1 ⊂ S3, one for
any n ∈ S2 ⊂ I, defined by {enθ = cos θ + n sin θ|θ ∈ R}. These subgroups are not
normal, but we see now that the set of lateral classes S3/S1 endowes the structure of
a manifold isomorphic to S2. In the following Theorem we make the standard choice
n = i, but the result remain true for any n ∈ I.

Theorem 1.1. The Hopf fibration h : S3 → S2 has the analytic expression

h(q) = q−1iq

and can be identified with the quotient map S3 → S3/S1. The group S3 acts on
S2 through the map h which is S3-equivariant, in the sense that ∀g ∈ S3 we have
h(g · x) = g · h(x).

Proof. It is straighforward to compute ∀q = q0 + q1i + q2j + q3k ∈ S3 (such that
q20 + q21 + q22 + q33 = 1)

q−1iq = i(q20 + q21 − q22 − q33) + j(2q1q2 − 2q0q3) + k(2q0q2 + 2q1q3) ∈ S2 ⊂ I

The stereographic projection from i, seen as “North Pole”, to the complex plane
spanned by the equator is

St : S2 → C ∪ {∞} = P1(C)

2



with equation St(xi + yj + zk) = y
1−xj + z

1−xk. Now St(q−1iq) = k
(
q0+q1i
q2+q3i

)
which

(apart from k which is needed to translate the result from the plane 〈1, i〉 to the plane
〈j, k〉) is the projective abscissa of the point (q0 + q1i, q2 + q3i) ∈ C2. This shows the
analytical expression of h. Note that q−1iq = i if an only if q = eiθ for some θ ∈ R.
The S3-invariance is obvious as a quotient map to the set of lateral classes.

Define ∀q ∈ S3 the isomorphism cq : I → I, cq(v) = q−1vq. q has a polar form

q = cos θ2 + Imq
|Imq| sin

θ
2 . Indeed the conjugation on H leaves invariant the two subspaces

R and I. The restriction to R (center of H) is the identity, and the restriction to I that
we have called cq is the interesting part. If q 6= ±1 (which gives Imq 6= 0) then cq is a

rotation through Imq
|Imq| of an angle θ. In the special case when q ∈ S2 ⊂ I then −cq is

the symmetry with respect to the hyperplane with normal q. A bonus of the previous
approach is that the map

S3 → SO(3)
q 7→ cq

is a 2 : 1 covering. Indeed cq = cq′ if and only if q = ±q′. This shows that SO(3)
is isomorphic to P3(R) and that π1(SO(3)) = Z2. The map from S3 to SU(2) which
maps (z, w) ∈ S3 ⊂ C2 to [

z −w
w z

]
(1.2)

is an isomorphism and it is the celebrated spin representation. The standard notation
for the universal covering of SO(3) is indeed S3 = Spin(3).

1.2 The Hopf fibration, metric aspects (Fubini, Study)

For every n ∈ S2 ⊂ I we have a subgroup of S3 given by {enθ = cosθ + n sin θ} which
is isomorphic to S1. If we fix i ∈ I we have a well defined subgroup S1 ⊂ S3 and
a corresponding Hopf map on the quotient h : S3 → S3/S1 ' S2. S1 acts by scalar
multiplication on S3 and points of P1(C) = S2 correspond to S1-orbits on S3.

Note also that the formula

cos d(P,Q) = Re
(
P ·Q

)
(1.3)

gives the geodesic distance d(P,Q) of two points on S3.

Lemma 1.2. 1. Given P ∈ S3, the orbit curve eiθP is a geodesic on S3 and a
fiber for the Hopf map. All geodesics through P have the form enθP for some
n ∈ S2 ⊂ I.

2. Given P,Q ∈ S3 and the two orbits eiθP , eiφQ, the geodesic distance on S3

between the point eiθP and the orbit eiφQ is equal to

arccos

√
(P ·Q)(Q · P )

(where · is the Euclidean scalar product on C2) and it does not depend on θ. So
any two orbits are “parallel” and the distance d(S1P, S1Q) satisfies

cos d(S1P, S1Q) = |
(
P ·Q

)
|. (1.4)
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Proof. enθP are “great circles” which makes obvious the first statement. Compute
the polar form P · Q = r · eiσ. Now the geodesic distance of two points, one on each
geodesic, is

cos d = Re
(
eiθP · eiφQ

)
= Re(rei(θ−φ+σ)) = r cos(θ − φ+ σ)

The minimum d is obtained for φ = θ+σ and it is equal to arccos(r) = arccos(
∣∣P ·Q∣∣).

Proposition 1.3. 1. Let q1, q2 ∈ I. Then

q1q2 = −q1 · q2 + q1 ∧ q2 ∈ R⊕ I

2. For q1, q2 ∈ S2 ⊂ I the distance dS2(q1, q2) can be computed as −Re(q1q2) where
the product is the quaternion product.

Proof. The statement in 1) is linear in q1, q2. Then it is enough to prove it when q1, q2
are chosen among the basis vector i, j, k and in this case it is a straightforward check.

2) is an immediate consequence of 1) and (1.3).

The formula in 1.3 1) has an intrinsic beauty since it links the quaternion product,
the scalar product and the cross product.

Theorem 1.4. Let dSn be the round distance on Sn. S3 acts as an isometry on itself,
that is

dS3(x, y) = dS3(g · x, g · y) ∀g ∈ S3

For any x, y ∈ S3 we have

2dS3(S1x, S1y) = dS2(h(x), h(y))

Proof. Thanks to the group action, we may assume x = 1 and h(x) = i. Let y =

q0 + q1i+ q2j+ q3k, β = dS2(i, h(y)), α = ds3(1, y). Then cosβ = Re
(
i · y−1iy

)
where

· is the scalar product, cosα = |1 · y| = q20 + q21. We compute cosβ = q20 + q21 − q22 − q23,
hence cos 2α = 2 cos2 α−1 = 2(q20 +q1)

2− (q20 +q21 +q22 +q23) = cosβ as we wanted.

Given ψ, φ ∈ S3, the length of a geodesic between ψ and φ is

d(φ, ψ) = arccos

√
〈ψ|φ〉〈φ|ψ〉
〈ψ|ψ〉〈φ|φ〉

(1.5)

where 〈 | 〉 is the Hermitian inner product on C2.

Remark 1.5. A special case in Theorem 1.4 is that orthonormal basis in C2 corre-
spond through the Hopf fibration to antipodal points on the sphere S2. Through the
stereographic projection these pair of points correspond to pairs z, w ∈ C∪ {+∞} such
that

w = −1

z
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Although not needed here, to complete the picture we show how to get the in-
finitesimal expression of Fubini-Study metric from the above. The proof (see [BZ]) is
the same in any dimension, and we consider the metric induced by S2n+1 → PnC.

Theorem 1.6. The round metric on S1-orbits in S2n+1 induces the Fubini-Study
metric on PnC which is

ds2 =
dP · dP
PP

− (P · dP )(P · dP )

(PP )2

Proof. Now compute (recall that cos2 x = 1− x2 + . . .)

1− ds2 + . . . = cos2 d(P, P + dP ) =

=
(PP + P · dP )(PP + P · dP )

(PP )(PP )

1

1 + (P ·dP+P ·dP )

PP
+ dP ·dP

PP

=

where we used next formula (1.5), and the second denominator is 1
PP

(P+dP )(P+dP ),

now set x = (P ·dP+P ·dP )

PP
, y = (P ·dP )(P ·dP )

(PP )2
, z = dP ·dP

PP
, we get

1− ds2 + . . . = (1 + x+ y)
1

1 + x+ z
= (1 + x+ y)(1− x− z + x2 + . . .) =

= (1− x2 + x2 + y − z + . . .)

Hence
ds2 = z − y

as we wanted.

1.3 Hermitian product on tensor products

If V1, . . . , Vk are complex Hilbert spaces (that we assume for simplicity of finite dimen-
sion), each Vi is endowed with a Hermitian scalar product qi. Recall the unitary group
U(Vi, qi) consists of {g ∈ GL(Vi)|qi(x, y) = qi(g · x, g · y) ∀x, y ∈ Vi}

The group U(V1, q1)× . . .×U(Vk, qk) acts in a natural way on the space Symd1V1⊗
. . .⊗ SymdkVk. The action is defined on decomposable elements as (g1, . . . , gk) · vd11 ⊗
. . .⊗ vdkk = (g1 · v1)d1 ⊗ . . .⊗ (gk · vk)dk and then extended by linearity.

Theorem 1.7. 1. There is a unique scalar product q on Symd1V1⊗ . . .⊗SymdkVk,
called the Frobenius product, such that on decomposable elements

q(vd11 ⊗ . . .⊗ v
dk
k , w

d1
1 ⊗ . . .⊗ w

dk
k ) =

k∏
i=1

qi(vi, wi)
di

2. q is the unique scalar product (up to scalar multiples) on Symd1V1⊗. . .⊗SymdkVk
which is U(V1, q1)× . . .× U(Vk, qk)-invariant.
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Proof. Uniqueness in 1) is clear since every element is sum of decomposable ones.
To show existence we consider in each vector space a basis (z1, . . . , zni) and a dual
basis (∂1, . . . , ∂ni) given by partial differential operators, define for elements f = f1 ⊗
. . . ⊗ fk ∈ Symd1V1 ⊗ . . . ⊗ SymdkVk (other tensors are sum of these ones) q(f, g) =∏k
i=1 fi(∂1, . . . , ∂ni)g. It is straightforward to check that this definition satisfies the

condition of the statement for decomposable elements.
Uniqueness in 2) follows from the irreducibility of Symd1V1 ⊗ . . .⊗ SymdkVk

Note SymdV is not irreducible for the action of SO(V ), indeed the harmonic poly-
nomials make an invariant subspace. As a consequence, there is a continuous family
of orthogonally invariant scalar products on SymdV .

1.4 Bra-ket Dirac’s notation

The Hermitian product on a Hilbert space U allows to identify U with U∨. If coordi-
nates are chosen with respect to a orthonormal basis, then the scalar product q(x, y)
can be written as xt · y, where x, y are identified with their column of coordinates. In
Dirac notation, this is written xt · y = 〈x|y〉, assuming that |y〉 is a column vector and
〈x| is a row vector.
|y〉 is called a ket vector.
〈x| is called a bra vector.
Alternatively, column vectors could be thought in U and row vectors could be

thought in U∨. The notation is efficient in manipulating expressions, for example,
after a basis |0〉 and 1〉 is fixed, which correspond respectively to the column vectors(

1
0

)
and

(
0
1

)
, and we have the expression

|v〉 = |0〉〈0|v〉+ |1〉〈1|v〉

Note that the expression
|0〉〈0|+ |1〉〈1|

corresponds to the identity operator. The expression |v〉〈v|x〉 represents the projection
of |x〉 on the line spanned by a versor |v〉. In this note we will use bra-ket notation
with some freedom, in particulat if |t〉 ∈ V q and 〈s| ∈ (V ∨)r, with s ≤ r, we denote by
〈s|t〉 ∈ V r−s the result of the contraction between t and s

2 Quantum circuits

A quantum circuit consists of three items

• State The state is initialized in a predefinite way. Its special feature is that it is
not accessible, unless with a measurement.

• Operations The state evolves by applying operations, specified in advance in the
form of an algorithm.
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• Measurement At the end of the algorithm some information on the state can be
obtained by a measurement.

2.1 State

We equip (C2)⊗q (tensor product of q qubits) with the Hermitian product as in Theo-
rem 1.7. This means that on decomposable elements q(v1 ⊗ . . .⊗ vq, w1 ⊗ . . .⊗ wq) =∏q
i=1 vi · (wi)t. A state is an element of

P((C2)⊗q)

The q modes of (C2)⊗q are called registers. Recall the qubits are not accessible, at the
same time also states are not accessible. A orthonormal basis of (C2)⊗q is denoted by
|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉 and has 2q elements, where
|0 . . . 00〉 = |0〉 ⊗ . . .⊗ |0〉 ⊗ |0〉, denoted |0〉q,
|0 . . . 01〉 = |0〉 ⊗ . . .⊗ |0〉 ⊗ |1〉, denoted |0〉q−1|1〉,
and so on.
As for qubits, it is convenient to consider states in the sphere

S2q+1−1 ⊆ (C2)⊗q

and then consider equivalent two representatives if they differ by eiθ ∈ S1. So our
states ψ ∈ S2q+1−1 satisfy 〈ψ|ψ〉 = 1.

In other words, we still have a diagram as in the single qubit case (1.1)

(C2)⊗q \ {0} −→ P((C2)⊗q)
↘ p ↗ h

S2q+1−1
(2.1)

The sphere S2q+1−1 is no more a group for q ≥ 2 and the algebraic description of
lateral classes crashes, though S1 is still a group acting on S2q+1−1 and the fibers of h
are orbits for this group action . Still the metric description works, since the fibers of h
are great circles S1 which are ”parallel”, and the orbit distance descends to P((C2)⊗q)
as the Fubini-Study metric.

We may denote states as

|t〉 =
∑

j∈{0,1}q
tj |j〉

with
∑

j∈{0,1}q |tj |2 = 1.

Definition 2.1. A state is called a product state if it is decomposable. Otherwise is
called entangled.

In other words, states have a rank, the product states have rank 1, the entangled
states have rank ≥ 2.
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2.2 Operations (gates)

Operations are unitary operators on the “quantum register” (C2)⊗q. They can be
described by 2q × 2q matrices.

The operations have the form

v1 ⊗ . . .⊗ vq 7→ U(v1 ⊗ . . .⊗ vq)

extended by linearity.
These operations are linear and reversible. Operations are represented as gates,

operating on q registers. The first input where a series of operations can apply is
chosen by convention as |0〉q.

Special single-qubit gates operate on just one register, they correspond to opera-
tions like

v1 ⊗ v2 ⊗ . . .⊗ vq 7→ U1(v1)⊗ v2 ⊗ . . .⊗ vq
extended by linearity. These single-qubit gates preserve the rank of a state. In general
a unitary operator destroys the rank of the states.

As operations on classical bits are composed by few standard operations, also oper-
ations on quantum register can be defined by a few gates. The first single-qubit gates
are the Pauli gates

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
The X gate is equivalent to a NOT gate in classical registers. Up to scalar mul-

tiples, the Pauli matrices are the images of the quaternion basis through the spin
representation (1.2).

The Hadamard gate is

H =
1√
2

(
1 1
1 −1

)
Note that H2 = I, H is a square root of the identity. Its importance comes from

the following

Proposition 2.2. The unitary matrix H⊗q operates applying H to any single qubit
and satisfies

H⊗q|0〉q =
1√
2q

∑
j∈{0,1}q

|j〉

note the target is the uniform superposition of all basis states.

Proof.

H⊗q|0〉q = (H|0〉)⊗q = (
1√
2
|0〉+

1√
2
|1〉)⊗q =

1√
2q

∑
j∈{0,1}q

|j〉
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The CNOT (controlled NOT) gate is a two qubit-gate, operating on a control qubit
and target qubit. If the control qubit is |0〉 nothing happens, while if the control qubit
is |1〉 the target qubit is flipped.

With the basis |00〉, |01〉, |10〉, |1〉 the matrix of CNOT is
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The reader is invited to browse [Na] at page 21, where it is shown that three

successive CNOT can make a complete swap of two registers.
A very important remark for our purposes is that any function

f : {0, 1}n → {0, 1}m

can be encoded in a gate on n+m qubits in the following way

Uf : (C2)⊗n ⊗ (C2)⊗m → (C2)⊗n ⊗ (C2)⊗m

|x〉n ⊗ |y〉m 7→ |x〉n ⊗ |y ⊕ f(x)〉m
(2.2)

where ⊕ is the sum in (Z2)
⊕m.

For example, if m = 1 and n = 2, let f be the function such that
f(00) = 0, f(01) = 1, f(10) = 0, f(11) = 1,
then Uf is 8× 8 with the following 4× 4 block structure

1 0
0 1

0 1
1 0

1 0
0 1

0 1
1 0


Every Uf is a permutation matrix, hence it is unitary. In the case m = 1 if we

apply Uf to the state |0〉n+1 we get |0〉n ⊗ f(0), but if we first apply the Hadamard
gate to the first n qubits and then apply Uf we get at the end

1√
2n

∑
j∈{0,1}n

|j〉 ⊗ |f(j)〉 (2.3)

which is pretty more interesting since it contains a superposition of all possible values
of f . Another instructive example is to start from |0〉n ⊗ 1, and again apply the
Hadamard gate to the first n qubits and then apply Uf , we get at the end

1√
2n

∑
j∈{0,1}n

|j〉 ⊗ |f(j)⊕ 1〉 (2.4)

Exercise 2.3. Construct f such that Uf does not preserve the rank.

Question Which inequalities exist between rk(t) and rk(Uf (t)), depending on f ?
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2.3 Measurement

A measurement can be considered as a special gate, which is degenerate and no more
reversible. Moreover its effect is probabilistic. It is a slippy concept that contains both
the difficulty and the power of quantum computing. Measurement is the only way we
can make accessible some partial informations on a state.

We can measure only along orthonormal basis of a given register. Let {ek0, ek1}
be a orthonormal basis of register k. For any |t〉 ∈ (C2)⊗q consider the contraction

〈ekj |t〉 ∈ (C2)⊗q−1 = C2 ⊗ . . . Ĉ2 . . .⊗ C2. Note that

1 =
∣∣|t〉∣∣2 = |〈ek0|t〉|2 + |〈ek1|t〉|2

Probabilistic procedure of measurement A measure on register k along the
basis {ek0, ek1} can have as output only ek0 or ek1. Precisely

• the output is ek0 with probability |〈ek0|t〉|2, in this case the state after the mea-

surement becomes
|ek0〉〈ek0 |t〉
|〈ek0 |t〉|

.

• the output is ek1 with probability |〈ek1|t〉|2, in this case the state after the mea-

surement becomes
|ek1〉〈ek1 |t〉
|〈ek1 |t〉|

.

The original quantum state is no longer recoverable. If t has a basis expression involving
ek0, e

k
1 at register k, only the summands containing ek0 (respectively ek1) survive in the

above first (respectively second) case.

Example 2.4. |t〉 = p|00〉 +
√

1− p2|11〉 (entangled state, with p ∈ [0, 1] ⊂ R) is
measured in the first register as |0〉 with probability p2, after this measurement the
state becomes |00〉 and the measurement with respect to the second register gives |0〉
with probability 1, the state remains |00〉.
|t〉 is measured in the first register as |1〉 with probability 1−p2, after this measure-

ment the state becomes |11〉 and the measurement with respect to the second register
gives |1〉 with probability 1, the state remains |11〉.

This confirms the fact that mesurements with respect to different registers are not
independent (see Proposition 2.11) .

In conclusion, after the measurement of |t〉 on both registers, we get (the final
probability is obtained as the product of the probabilities involved) |00〉 with probability
p2 and |11〉 with probability 1 − p2. The output |01〉 and |10〉, although possible, are
never obtained in this case (compare with Corollary 2.7).

Remark 2.5. The procedure implies the following basic but important principle. If a
measurement is repeated twice on the same register k, the second time it is obtained
the same output of the first measurement with probability 1. Note that if the second
measurement is done on another register different from k, then a third measurement
on the register k can give a different output.
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Lemma 2.6. Measuring with a second register m gives the following tree of probabili-
ties

|t〉



|ek0〉〈ek0 |t〉
|〈ek0 |t〉|


|ek0em0 〉〈ek0em0 |t〉
|〈ek0em0 |t〉|

with probability |〈ek0em0 |t〉|2
|ek0em1 〉〈ek0em1 |t〉
|〈ek0em1 |t〉|

with probability |〈ek0em1 |t〉|2

|ek1〉〈ek1 |t〉
|〈ek1 |t〉|


|ek1em0 〉〈ek1em0 |t〉
|〈ek1em0 |t〉|

with probability |〈ek1em0 |t〉|2
|ek1em1 〉〈ek1em1 |t〉
|〈ek1em1 |t〉|

with probability |〈ek1em1 |t〉|2

Proof. After the first measurement of register k we get t1 =
|eki 〉〈eki |t〉
|〈eki |t〉|

with probability

|〈eki |t〉|2 = ||eki 〉〈eki |t〉|2. After the second measurement of register m we get

t2 =
|emj 〉〈emj |t1〉
|〈emj |t1〉|

(2.5)

with probability |〈emj |t1〉|2 =
∣∣|emj 〉〈emj |t1〉∣∣2 =

∣∣|eki emj 〉〈eki emj |t〉∣∣2
|〈eki |t〉|2

. Since t1 appears in (2.5)

both at numerator and denominator, it can be replaced in this formula, up to scalar
multiples, by |eki 〉〈eki |t〉 getting the expression

t2 =
|eki emj 〉〈eki emj |t〉
|〈eki emj |t〉|

By the conditional probability formula we get that the final probability is∣∣|eki emj 〉〈eki emj |t〉∣∣2
|〈eki |t〉|2

· |〈eki |t〉|2 =
∣∣|eki emj 〉〈eki emj |t〉∣∣2

Continuing in this way for all q registers (in any order) gives at the end the following
fundamental

Corollary 2.7.

|t〉 =
∑

j∈{0,1}q
|j〉tj with tj = 〈j|t〉 ∈ C

is measured as |j〉 with probability |tj |2.

Remark 2.8. Recall that the choice of a orthonormal basis corresponds to the choice of
a line in R3 by Remark 1.5. The reader with a knowledge of Quantum Mechanics will
note that the counterintuitive behaviour of the procedure of measurement corresponds
exactly to the Stern-Gerlach experiment (see [NC, 1.5.1]) regarding the measure of
electron spin. This is one of the ways quantum computers can be physically constructed,
at least in principle.
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The probability appearing in the procedure of measurement have a simple geometric
interpretation in the case of a single qubit, as in the following Lemma.

Lemma 2.9. Let t ∈ S2 be measured along an axis v pointing on N , let call N − S
(North-South) the line spanned by v, so that the only possible measurement are N or
S. Let P be the euclidean orthogonal projection of t on the v axis. Then the measure
of t

• gives S with probability NP
2

• gives N with probability SP
2 .

Proof. In the Hopf fibration formalism we have |t〉 =
√

1− p2|0〉+ p|1〉, where |0〉 has
image the North Pole N and |1〉 has image the South Pole S. The angle θ between t

and |1〉 satisfies cos θ = p. Look at picture where

by Theorem 1.4 we have
_
St = 2θ, hence we compute Nt = 2 cos θ, NP = 2 cos2 θ = 2p2

as we wanted.

Remark 2.10. Measurement can be physically feasible only with respect to some dis-
tinguished basis. In [NC, exerc. 4.33] it is observed that the measurement with respect
to any basis can be obtained by a unitary basis tranform followed by the measurement
with respect to the basis |0〉, |1〉 .

Proposition 2.11. The measurements at any different registers of a state t are inde-
pendent if and only if t is a product state (not entangled).

Proof. [BC, 2.3].

3 The Deutsch-Josza algorithm

This is a toy algorithm which shows, in a special case, the advantage of quantum
algorithms on classical ones. Define a function f : {0, 1}n → {0, 1} to be balanced if

12



the two fibers f−1(0) and f−1(1) are two subsets of the same cardinality 2n−1. These
functions are in some sense opposite to the constant functions, where one fiber has the
maximum cardinality 2n and the second one is empty.

Alice secretly chooses one function, which can be only balanced or constant, and
prepares it in a black box. Bob wishes to discover if the function chosen by Alice is
balanced or constant and he can evaluate the black box choosing any input value. How
many attempts are necessary to Bob ? If Bob is lucky two attempts can be enough to
say that the function is not constant, hence balanced. But a winning strategy requires
in the worst case at least 2n−1 + 1 attempts. This is the easy classical story, and we
wish to see what happens if Alice and Bob are allowed to use quantum circuits.

In a quantum world, Alice prepares her black box in the form of a unitary transform
Uf like in (2.2). It is a unitary matrix of size n + 1. The surprising fact is that Bob,
using a quantum computer, can discover with certainty the nature of f by just one
evaluation through the operation Uf .

This is the following Deutsch-Josza algorithm

1. Start with the input state | 0 . . . 0︸ ︷︷ ︸
n

1〉

2. Apply the Hadamard transform to all n+1 registers, we get
∑

x∈{0,1}n
|x〉√
2

(
|0〉−|1〉√

2

)
.

3. Apply Uf

4. Apply the Hadamard transform to the first n registers.

5. Measure the first n registers:

{
if the output is |0〉n then f is constant with probability 1,

if the output is 6= |0〉n then f is balanced with probability 1.

The intriguing feature of this algorithm is that the probabilistic answer of the mea-
surement has been converted to get deterministic answers. The reason why the algo-
rithm works is hidden in step 3. Each summand obtained after step 2. has the form
|x〉√
2

(
|0〉−|1〉√

2

)
and it is transformed in itself if f(x) = 0 while it has a sign change if

f(x) = 1.
Hence, if f is constant, the output can be just the same or with a global sign

change. Applying again the Hadamard transform we get the input state or with just
a sign change (at least on the first n registers), so the measurement on the first n
registers gives |0〉n with probability 1.

If f is balanced the situation is different, exactly half of summands obtained after
step 2. are transformed in itself, the other half have a sign change. Now performing
the step 4. we see an interesting result. Each |x〉 goes to ( |0〉+|01〉√

2
)( |0〉+|01〉√

2
)( |0〉−|01〉√

2
) . . .

where + or − appears depending if 0 or 1 appears in x at the corresponding register.
Expanding this expression, the summand |0〉n appears always with a +, then taking
in account the sign changes due to the effect of Uf on exactly half of the summands,
the final coefficient of |0〉n vanishes. By Corollary 2.7 it follows that the output |0〉n
appears with probability 0, as we wanted.
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4 Grover search algorithm

Grover search algorithm can be used all the times a brute force search is needed to
detect a particular candidate β from a long list of size N . Its surprising feature is that
the search can be done with high probability in O(

√
N) steps, instead of the N/2 steps

which are needed in a classical search, just to get the answer with probability > 0.5.
Label the list with the basis of size 2n of n qubits. Our candidate β is codified by a
characteristic function f , such that{

f(x) = 1 if x = β
f(x) = 0 if x 6= β

The function defines a unitary transform Uf of size n+ 1 which, as in the Deutsch-
Josza algorithm, can be conveniently applied starting from the uniform stateH⊗n| 0 . . . 0︸ ︷︷ ︸

n

1〉 =∑
x∈{0,1}n

|x〉√
2

(
|0〉−|1〉√

2

)
The result of Uf is simply a sign flip in the summand where

x = β. So we have a unitary map Oβ which works as{
Oβ(|x〉) = −|x〉 if x = β
Oβ(|x〉) = |x〉 if x 6= β

The goal is to find the state β, while the simplest thing to be found is the uniform
state |ψ〉 = 1√

2n

∑
x∈{0,1}n |x〉.

The idea is to give a geometric interpretation of Oβ restricted to the real plane〈
|β〉, |ψ〉

〉
R. It is obviously a symmetry through the line 〈β⊥〉 as in the picture, where

〈β⊥〉 = frac1
√

2n − 1
∑

x 6=β |x〉We can then compose with a symmetry through
〈
|ψ〉
〉

which is 2|ψ〉〈ψ| − 2I. Such a unitary operator can be constructed by means of
the Hadamard operator H and other elementary bricks ([Na, ?]) but we skip this
point. Call θ/2 the angle between |β〉⊥ and|ψ〉. The composition G = (2|ψ〉〈ψ| −
2I) · Oβ is called the Grover operator and, being the composition of two symme-
tries, it acts on the plane

〈
|β〉, |ψ〉

〉
R as a rotation of angle θ (see the picture).
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The angle θ/2 satisfies cos(θ/2) = |β〉⊥·
|ψ〉 = 2n−1√

2n(2n−1)
=
√

1− 1
2n . Hence by Taylor approximation

cos(θ/2) = 1− θ2/8 + . . . ,

√
1− 1

2n
= 1− 1

2n+1
+ . . .

and we get
θ2

8
∼ 1

2n+1

and finally

θ ∼ 1√
2n−2

The best number of iterations needed to get a state close to β is when kθ ∼
π/2, hence with k ∼ π

2θ ∼
π
4

√
2n which confirms that the number of iterations is

approximatively O(
√
N) as promised.

In conclusion, the algorithm consists in applying ∼ π
4

√
2n times the operator G to

the uniform state ψ (which in turn can be obtained as H⊗n|0〉n as in Proposition 2.2.
At the end a measurement on the computational basis gives β with high probability.

In [NC, 6.1] there is an (easy) generalization to the case where we search for one
among M possible solutions in a list of N elements. Here the number of iterations gros
as O(

√
N/M).
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