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A linear bound on the t-normality
of codimension two subvarieties of /"

By A. Alzati at Milano and G. Ottaviani*) at Roma

§ 1. Introduction

Let X be a nondegenerate (i.e. not contained in a hyperplane), codimension two,
smooth subvariety of P"(C), n= 6. The well known Hartshorne conjecture says that X
is a complete intersection. To prove the conjecture is equivalent to prove the statement
that X is t-normal Vt>1; i.e. the natural maps H°([P", Opn(t)) = H®(X, (O4(t)) arc
surjective Yt =1, ([E-G], th. 2. 4).

If t =1 the theorem of Zak on linear normality (see [Z]), says that X is l-normal
for n=5 (and this is the best possible value). If t>2 the best global result we know
- about t-normality is Ran’s inequality: X is t-normal if n>3¢*+ 2t +2 (see [R]); it has

been improved only for little values of ¢ (see for instance: [E], [P-P-S], [A-O; 1],
[A-O; 2]).

Now the recent work of Ein (see [E]) about this subject, and the techniques we
have developed in [A-O; 2], are sufficient to prove the following:

Theorem 1.1. Let X be a non degenerate, codimension two, smooth subvariety
of P"(C), n=6, then:

1) X is t-normal if nz6t-2 (t=2).
i) H'(X,Ox@)=0 if r=1 and nz6t+r (t21).
Remark 1.2. For t=2 i) is proved in [E], in [A-O;1] and (essentially) in

[P-P-S]; for t=3 and ¢t=4 it is also proved in [A-O; 2] by different methods. For =1
and t=2 ii) is proved also in [E].

*) Both authors are members of GNSAGA of the Italian C.N.R.
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§ 2. Notations and preliminaries
[P": n-dimensional projective space on C.

Variety (subvariety): by this term we mean a smooth projective variety (sub-
variety) on complex numbers.

Oy : structural sheaf of the variety W.

Iy:  Opn-ideal sheaf of the variety W.

Nyw: normal bundle of the subvariety U in W.

Iyyw: Ow-ideal sheaf of the subvariety U in W.

F(s)=F ® Opn(s) where F is a coherent sheaf and s is an integer.
E*: dual bundle of the vector bundle E.

Ey: vector bundle E restricted to the variety U.

K.v.t.: Kodaira vanishing theorem.

Proposition 2. 1 (see [H-S], th. 5.1). Let X be a 2-codimensional projective variety
in [P", n=6; suppose that X is not a complete intersection, then:

det (Ny pn) = Ox(a) with a=2n+3.

Now we recall some results from [A-O; 1] and [E]. From now on X =X, will be
a 2-codimensional subvariety of /P". There is a chain of varieties:

Pn=X03X1:)X23X3D e :)XkD cee

such that dim(X,)=n—2k Yk=0 and such that X, is the smooth zero-locus of a
suitable section of Ny, x,_,(—1) Vk=2. In fact we can proceed as follows: we fix X,
in [P" and we choose a generic point P ¢ X,; we define X, as the locus of points of X,
such that the (n —2)-linear tangent space at them, passes through P.

We define X5 as the locus of points of X, such that the (n—4)-linear tangent
space at them, passes through P; and so on.

Remark that it is always possible to choose a point P such that every X, is
smooth, of dimension n— 2k, because if we consider the projection @ of X, from P into
a generic hyperplane of /2", we have that the X, (k=2) are Thom-Boardman varieties
associated to the map @ between the complex manifolds X, and /P""!, (see [Bo], p. 22,
24, 32; and [A-O; 2], §3); and in this case, by a result of Mather (see [M; 1], [M; 2],
th. 6 and p. 229, 244) there exists an open Zarisky set U in /P" such that if P ¢ U the
X, have the expected properties.
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In this way it is easy to see that X, is the smooth zero-locus of a suitable section
of Ny, ,ixe_,(—1) Vk=2 (see [A-O; 2], § 3).

Now we put:
0k=@xk, ngo, jkzlxklxk—x’ NkzNXk|P"’ 'Mk:NXklxkvl’ ngl

We suppose that X, is not a complete intersection, so that we can use proposition
2.1; by this assumption, by obvious facts, by the properties of 4;(—1) and the
definition of X, we can say that the following statements are true:

(2.2) There exist:
0_)N,:k_1/xk—)N:<_>./‘/,;*—’0 ngz,
0 — det [A4*(D] = H*(1) > Frpy >0 VA1,

0S4 —-0_,—>0,—-0 Vkx1.
2.3) MArNo (1), k22

(2.4) By Barth theorem, (see [Ba]), H"(X,, ¢4)=0 if n=4k+r and Pic(X,)~Z
if n=4k+ 2, hence det(A;) = O(a—2k+2) and det [#;(b)] (c) is ample if

2n+4+4+2b+cz2k, kz=1.

Now we apply to X, k=1, the results of Ein (see [E], th. 2.4; see also [P-P-S]);
we have the following

Proposition 2. 5. Suppose n=6k, k=1, then:
a) H'(X,, N1)=0 if n=6k+r—1,
b) H'(X,, 0,(1)=0 if n=6k+r,
©) X, is t-normal if H'(X,, Ny(j))=0 Vj=1,2,...,t,
d) H 7 '(Xy, 0,)=0 if n=4k+r r=2 and
H (X, NF()=0 Vj=12,... ¢t
Remark 2. 6. By using Zak’s classification of Severi varieties (see [L-VV]), it is

easy to see that X,, k=1, is 1-normal when n>max {6k —2, 5} and that propositions
2.5.c) and 2. 5.d) are true even when n> 6k —2 (see [E], th. 2.4).
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§ 3. Proof of theorem 1. 1
We get the proof of 1. 1 by considering the case k=1 in the following:
Theorem 3. 1. Let X, be a variety as in § 2, k=1, then:
a) HYX,, Ny@)=0 if t=1,q=22, n=26(t+k—1)+qg—1 and
HY(X,, O())=0 if t=1,g9g=1, n=Z6(t+k—1)+q.
b) X, is t-normal if t=1, nzmax{6(t+k—1)—2,5}.

Proof. We may suppose that X,, k=1, is not a complete intersection. We remark
that, in our assumptions, X, is always a positive dimension variety.

a) We fix n and g and we proceed by descending induction on k. We choose

- 1
k0=max{k|n;6k+q——l}=li%]; for k=k,.

3.1.a) is true because in this case t=1 and we can use propositions 2.5.a) and
2.5.b). Now we suppose 3.1.a) true for k+1 and we prove it for k<k,. We use
ordinary induction on t: for t=1 3.1.a) is true by 2.5.a) and 2. 5.b); now we suppose
3. 1.a) true for t — 1 and we prove it for t>1.

In our assumptions, by 2. 5.d), it suffices to show that HY(X,, N(t))=0 for g = 2.

By using the first exact sequence of (2.2) as many times as we need, we have only
to show that H*(X,, #/* x, (t))=0 Vs=0, 1,..., k—1. By (2.3) it is equivalent to show
that

HY(X,, /*(t—5)=0 Vs=0,1,...,k—1 (recall that N; =A4]).
Now we use the second exact sequence of (2. 2) and we have:
0—-det[M*(D)](t—s—1)—> M*(t—5)—> FHi(t—s—1)—>0.

H(X,, det [A4:*(1)] (¢t —s —1))=0 by using (2. 4) and K.v.t.

Now we use:
0> S t—s—1)>Ot—s—1)— O(t—5s—1)—0.

If t—s—1<—1 we use K.v.t.; if t—s—1=0 we use Barth theorem; if t—s—12>1
we use induction.
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b) We fix n and we use descending induction on k again: we choose

kozmax{klng6k—2}=|:n+2

]; for k=k, 3.1.b) is true because in this case t=1

and we can use remark 2. 6. Now we suppose 3. 1.b) true for k+1 and we prove it for
k<ky. We use ordinary induction on t: for t=1 3.1.b) is true by 2.6; now we suppose
3. 1.b) true for t —1 and we prove it for t> 1.

In our assumptions, by 2.5.c), it suffices to show that H'(X,, Nj¥(t))=0. We
proceed as in the previous case until we reduce to show that

HY(X,, Fsi(t—s—1)=0 Vs=0,1,...,k—1.

Now we use the following diagram:

—— H°(X}, G(t—s—1)) —— H°(Xy sy, Goyy(t—s—1)) — H (X}, iyt —s—1))

-/ 1

HO(P", Opn(t —s—1)) HY(X,, Ot —s—1)).

l

If t—s—1=<—1 we get our thesis by K.v.t. If t—s—1=0 we have only to show
that HY(X,, 0,) =0 and we use Barth theorem.

If t—s—12=1 by 3.1.a) we have that H'(X,, O,(t —s—1))=0; by induction X, ,,
is (t —s—1)-normal, so H!(X,, % .(t —s—1))=0 by looking at the previous diagram.

Added in proof. A slight modification of the argument given here allows to show
that Hi(Ix(¢t))=0for n=q+4t+3 and I=q=n-2.
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