
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 1, Pages 49–55
S 0002-9947(02)03126-4
Article electronically published on September 6, 2002

NONDEGENERATE MULTIDIMENSIONAL MATRICES AND
INSTANTON BUNDLES

LAURA COSTA AND GIORGIO OTTAVIANI

Abstract. In this paper we prove that the moduli space of rank 2n symplec-
tic instanton bundles on P2n+1, defined from the well-known monad condition,
is affine. This result was not known even in the case n = 1, where by Atiyah,
Drinfeld, Hitchin, and Manin in 1978 the real instanton bundles correspond
to self-dual Yang Mills Sp(1)-connections over the 4-dimensional sphere. The
result is proved as a consequence of the existence of an invariant of the multi-
dimensional matrices representing the instanton bundles.

1. Introduction

A symplectic instanton bundle on P2n+1
C is a bundle of rank 2n defined as the

cohomology bundle of a well-known monad (see Definition 2.2).
In [ADHM78] it was shown that instanton bundles on P3 satisfying a reality con-

dition correspond to self-dual Yang Mills Sp(1)-connections over the 4-dimensional
sphere S4 = P1

H. This correspondence was generalized by Salamon ([Sal84]) who
showed that instanton bundles on P2n+1 which are trivial on the fiber of the twistor
map P2n+1 → PnH correspond to Sp(n)-connections which minimize a certain Yang
Mills functional over PnH. We denote by MIP2n+1(k) the moduli space of symplectic
instanton bundles on P2n+1 with c2 = k (see Definition 2.4) and we denote by
IP2n+1(k) the moduli space of k-instanton bundles on P2n+1 (see Definition 4.1).

Up to now, very little is known concerning the geometry of the moduli spaces
IP2n+1(k) and a few results have been proved regarding MIP2n+1(k). For instance,
up to the authors’ knowledge, the only results concerning MIP2n+1(k) deal with
small values of n and k. Indeed, it is known ([ADHM78]) that MIP2n+1(k) has a
component of dimension 8k − 3 for n = 1, that it is smooth for n = 1 and k ≤ 5
([KO99]) but, it is conjectured that it is singular and reducible for n ≥ 2 and k ≥ 4
(see [AO00]).

The goal of this paper is to show that all the moduli spaces MIP2n+1(k), for any
n ≥ 1 and any k ≥ 1, share the following surprising property:

Theorem 1.1. MIP2n+1(k) is affine.

In addition, we will see that the same holds for all moduli spaces parametrizing
k-instanton bundles on P2n+1. Indeed, we will prove

Theorem 1.2. IP2n+1(k) is affine.
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As a by-product of Theorems 1.1 and 1.2, we will contribute to the study of a
problem posed in the 80’s (see for instance [HH86]) that, in the context of instanton
bundles on P2n+1, reads as follows:

Problem. Determine the maximal dimension of complete subvarieties lying on
MIP2n+1(k) (resp. IP2n+1(k)).

More precisely, in this case, we will completely solve the problem and in Corol-
laries 3.5 and 4.6 we will see that MIP2n+1(k) (resp. IP2n+1(k)) does not contain
any complete subvariety of positive dimension.

The technique we use to prove our main results is to exhibit MIP2n+1(k) (resp.
IP2n+1(k)) as the GIT-quotient of an affine variety Q0 (resp. P0) and then use
standard results in invariant theory. The fact that Q0 (resp. P0) is affine is a con-
sequence of the existence of an invariant of multidimensional matrices representing
the instanton bundles, which generalizes the hyperdeterminant (see [GKZ94] and
[AO99]).

The first named author would like to thank the Dipartimento di Matematica, U.
Dini for their hospitality and support at the time of the preparation of this paper.

2. Notation and preliminaries

We will start by fixing some notation and recalling some facts about k-instanton
bundles on P2n+1 = P(V ), where V is a complex vector space of dimension 2n+ 2.
(See, for instance, [OS86] and [AO94].)

Notation 2.1. O(d) = OP2n+1(d) denotes the invertible sheaf of degree d on P2n+1

and for any coherent sheaf E on P2n+1 we denote E(d) = E ⊗OP2n+1(d).

Definition 2.2. A symplectic instanton bundle E over P2n+1 = P(V ) is a bundle
of rank 2n which appears as a cohomology bundle of a monad,

(1) I∗ ⊗O(−1) A−→W ⊗O At−−→ I ⊗O(1),

where (W,J) is a symplectic complex vector space of dimension 2n+ 2k and I is a
complex vector space of dimension k.

We do not assume in the definition that E is stable, so we have to recall some
results.

The monad condition means that A is injective (as a bundle morphism), At is
surjective and imA ⊂ kerAt so that E ' kerAt/imA. The fact that the map W ⊗
O At−−→ I⊗O(1) is surjective, is equivalent to the fact that the matrix A ∈ Hom(V ∗⊗
I∗,W ) representing E is nondegenerate according to [GKZ94] (see Definition 2.3
for the precise definition).
Hom(V ∗ ⊗ I∗,W ) contains the subvariety Q given by matrices A for which the

sequence (1) is a complex, that is, such that AtJA = 0. GL(I)× Sp(W ) acts on Q
by (g, s) · A = sAg.

Definition 2.3. A matrix A ∈ Hom(V ∗ ⊗ I∗,W ) is called degenerate if the mul-
tilinear system A(v ⊗ i) = 0 has a solution such that 0 6= v ∈ V ∗ and 0 6= i ∈ I∗.

By [GKZ94], Theorem 14.3.1, this is equivalent to the standard definition of
degeneracy given in chapter 14.1 of [GKZ94]. It is easy to check that degenerate
matrices fill an irreducible subvariety N of Hom(V ∗⊗I∗,W ) of codimension k (see
[WZ96]). Hence, only in the case k = 1 is it well-defined as a hyperdeterminant
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according to [GKZ94]. In the next section we will define an SL(I) × Sp(W )-
invariant on Hom(V ∗ ⊗ I∗,W ), called D, which generalizes the hyperdeterminant
and is suitable for our purposes.

It was shown in [AO94] that all instanton bundles are simple, so that they carry
a unique symplectic form. Moreover, for n = 1, 2 it was proved in [AO94] that
all instanton bundles are stable, and it is expected that the same result is true for
n ≥ 3.

Recall that given X = Spec(A), an affine scheme, and a reductive group G acting
on X , then a theorem of Hilbert and Nagata shows that the ring of invariants AG

is finitely generated and X/G := Spec(AG) is what is called the affine algebro-
geometric quotient of X by G. In addition, X/G is a good quotient and it is a
geometric quotient if and only if all orbits are closed. In this setting, every orbit
contains a unique closed orbit in its closure and a point in X is called stable if its
orbit is closed and has the maximal dimension (see [PV89]).

In [BH78] it was essentially proved that there is a natural one-to-one correspon-
dence between

i) isomorphism classes of symplectic instanton bundles, and
ii) orbits of GL(I)×Sp(W ) on the open subvariety Q0 of Q given by nondegen-

erate matrices.
In fact, using the quoted results of [AO94], one can see that [BH78], Section 4

and the Theorem on page 19, adapt literally to our situation.
Moreover, in Theorem 3.3 we will see that Q0 is affine. Hence, if we denote by

G the quotient of GL(I)× Sp(W ) by ±(id, id), Barth and Hulek proved in [BH78]
that G acts freely on Q0 and, in particular, all orbits are closed (in fact, any orbit
contains in the closure orbits of smaller dimension). Therefore, all points of Q0 are
stable for the action of GL(I)× Sp(W ) and Q0 → Q0/G is a geometric quotient.

Definition 2.4. The GIT-quotient Q0/GL(I)× Sp(W ) is denoted by MIP2n+1(k)
and is called the moduli space of symplectic k-instanton bundles on P2n+1. It is a
geometric quotient.

The above discussion shows that MIP2n+1(k) coincides for n = 1, 2 with the open
subsetMIP2n+1(k) of the Maruyama scheme of symplectic stable bundles on P2n+1

of rank 2n and Chern polynomial 1
(1−t2)k

which are instanton bundles (this is an
open condition because by Beilinson’s theorem, it is equivalent to certain vanishing
in cohomology; see [OS86]). In particular, our notation for MIP3(k) is consistent
with the usual one. For n ≥ 3 it is expected that the same result is true, but at
present we can only say that MIP2n+1(k) is an open subset of MIP2n+1(k).

3. The invariant D and the proof of the main result

First, we remark that the vector spaces W ⊗ SnI and V ⊗ Sn+1I have the same
dimension (2n+ 2k)

(
k+n−1
n

)
= (2n+ 2)

(
k+n
n+1

)
. We can construct from

W
At−−→ V ⊗ I

the morphisms
At ⊗ idSnI : W ⊗ SnI −→ V ⊗ I ⊗ SnI,
idV ⊗ π : V ⊗ I ⊗ SnI −→ V ⊗ Sn+1I,

where π is the natural projection, and we consider the composition

(2) ∆A = (idV ⊗ π) · (At ⊗ idSnI) : W ⊗ SnI −→ V ⊗ Sn+1I.
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Definition 3.1. Let A ∈ Hom(V ∗ ⊗ I∗,W ). We define D(A) to be the usual
determinant of the morphism ∆A in (2) induced by A.

Notice that

D : Hom(V ∗ ⊗ I∗,W )→ (detW )α ⊗ (detV )β

where α = −
(
k+n−1
n

)
and β =

(
k+n
n+1

)
is a GL(V )×GL(I)×Sp(W )-equivariant map

and D(A) = 0 defines a homogeneous hypersurface of degree (2n + 2k)
(
k+n−1
n

)
=

(2n+ 2)
(
k+n
n+1

)
. After a basis has been fixed in each of the vector spaces V , I and

W , the map D can be seen as an SL(V )× SL(I)× Sp(W )-invariant.
In fact, this definition generalizes the hyperdeterminant of boundary format as

introduced in Theorem 14.3.3 of [GKZ94].

Lemma 3.2. If A is degenerate, then D(A) = 0.

Proof. There are 0 6= v ∈ V ∗ and 0 6= i ∈ I∗ such that A(v ⊗ i) = 0. Hence,
v ⊗ Sn+1i ∈ V ∗ ⊗ Sn+1I∗ goes to zero under the dual of (2). �

If A is nondegenerate, we get D(A) 6= 0 only in the case k = 1 and, in general, it
can happen that D(A) = 0, because the codimension of N is k. Our main technical
result is the following.

Theorem 3.3. If A defines an instanton (that is, A belongs to Q0), then D(A) 6= 0.

Proof. From (1) we get the exact sequence

(3) 0 −→ K −→W ⊗O −→ I ⊗O(1) −→ 0.

The (n+ 1)-th wedge power twisted by O(−n) gives the exact sequence

0 −→ ∧n+1K(−n) −→ ∧n+1W (−n) −→ . . .

. . . −→ ∧2W ⊗ Sn−1I(−1) −→W ⊗ SnI −→ Sn+1I(1) −→ 0
where the H0 of the last morphism corresponds to ∆A in (2). Taking cohomology,
it is enough to prove

(4) Hn(∧n+1K(−n)) = 0.

The (n+ 1)-th wedge power twisted by O(−n) of the sequence

0 −→ I∗ ⊗O(−1) −→ K −→ E −→ 0

gives the sequence

0 −→ Sn+1I∗ ⊗K(−2n− 1) −→ . . . −→ ∧n−1K ⊗ S2I∗(−n− 2) −→ . . .

. . . −→ ∧nK ⊗ I∗(−n− 1) −→ ∧n+1K(−n) −→ ∧n+1E(−n) −→ 0.
In order to prove (4), taking cohomology, we need Hn+i(∧n−iK(−n− i−1)) = 0

for i = 0, . . . , n and Hn(∧n+1E(−n)) = 0. The first group of vanishing is easily
obtained by taking suitable wedge powers of (3). The crucial point used to get the
last vanishing is the isomorphism ∧n+1E ' ∧n−1E; it is true because E is a rank
2n vector bundle with c1 = 0. From the sequence

0 −→ Sn−1I∗(−2n− 1) −→ Sn−2I∗ ⊗K(−2n) −→ . . .

. . . −→ ∧n−1K(−n) −→ ∧n−1E(−n) −→ 0,
in order to prove Hn(∧n−1E(−n)) = 0, we only need to see that

Hn+i(∧n−1−iK(−n− i)) = 0 for i = 0, . . . , n,
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which follows by using the exact sequence (3) exactly as above. �

Now, we can state and prove the main result of this section.

Theorem 3.4. MIP2n+1(k) is affine.

Proof. By Theorem 3.3, we get that Q\N = Q0 = Q\{D = 0} is affine. It follows
that MIP2n+1(k) is affine too, because it is the quotient of an affine variety by a
reductive group; see, e.g., [PV89], section 4.4. �

As a consequence we deduce

Corollary 3.5. MIP2n+1(k) does not contain any complete subvariety of positive
dimension.

Proof. This follows from the fact that a quasi-affine complete variety is a finite
set. �

Remark 3.6. The invariant D is meaningful even in the case n = 0. In this case it
corresponds to the usual determinant of the map C2k → C2⊗Ck. For example, for
n = 0 and k = 2 the degenerate 2 × 2 × 4 matrices fill a variety of codimension 2
and degree 12 ([BS]) in P15 whose ideal is generated by one quartic (which is our
invariant D), 10 sextics and one octic. We remark that the case 2 × 2 × 3 is of
boundary format. The case 2 × 2 × 5 is interesting. Here degenerate matrices fill
a variety of codimension 3 and degree 20, and its ideal is generated (at least) by 5
quartics, 50 sextics and 12 octics. The 5 quartics define a variety of codimension 2
and degree 10. Hence, in this case no analog of the invariant D can exist.

4. Instanton bundles with structure group GL(2n)

Definition 4.1. A k-instanton bundle E on P2n+1 is the cohomology bundle of a
monad

(5) K ⊗O(−1) A−→ W ⊗O B−→ I ⊗O(1)

where W is a complex vector space of dimension 2n + 2k and I,K are complex
vector spaces of dimension k.

Notice that E is not necessarily symplectic and that this notion is a true gener-
alization of the one above only for n ≥ 2, because all rank 2 bundles on P3 with
c1 = 0 are symplectic.

Let (A,B) ∈ Hom(K⊗V ∗,W )×Hom(W, I⊗V ) defining E. The monad condi-
tion is now equivalent to the fact that the matrices A and B are both nondegenerate
and B ·A = 0.
Hom(K ⊗V ∗,W )×Hom(W, I ⊗V ) contains the subvariety P given by pairs of

matrices (A,B) for which the sequence (5) is a complex, that is, such that B ·A = 0.
GL(I)×GL(K)×GL(W ) acts on P by (a, b, c) · (A,B) = (cAb, aBc−1).

Arguing, as in the previous section, we can see that there is a natural one-to-one
correspondence between

i) isomorphism classes of instanton bundles, and
ii) orbits of GL(I)×GL(K)×GL(W ) on the open subvariety P0 of P given by

pairs of nondegenerate matrices.
Moreover, as in the second section and using Theorem 4.4, if we denote by H

the quotient of GL(I) × GL(K) × GL(W ) by (λ · id, λ−1 · id, λ · id), then H acts
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freely on P0. In particular, all points of P0 are stable for the action of GL(I) ×
GL(K)×GL(W ).

Definition 4.2. The GIT-quotient P0/GL(I)×GL(K)×GL(W ) is denoted by
IP2n+1(k) and is called the moduli space of k-instanton bundles on P2n+1. It is a
geometric quotient.

IP2n+1(k) coincides for n = 1, 2 with the open subset IP2n+1(k) of the Maruyama
scheme of stable bundles on P2n+1 of rank 2n and Chern polynomial 1

(1−t2)k , which
are instanton bundles. For n ≥ 3 we can say that IP2n+1(k) is an open subset of
IP2n+1(k). We remark that MIP3(k) = IP3(k). IP2n+1(k) is known to be singular
for n ≥ 2 and k ≥ 3 (see [MO97]) and reducible for n ≥ 4 (see [AO00]).

Definition 4.3. Let (A,B) ∈ Hom(K ⊗ V ∗,W )×Hom(W, I ⊗ V ). We define

D̃(A,B) := detS(A) · detR(B)

where det denotes the usual determinant and S(A), R(B) are the morphisms

S(A) : Sn+1K ⊗ V ∗ → SnK ⊗W,
R(B) : SnI ⊗W → Sn+1I ⊗ V,

induced by A and B respectively, as in Definition 3.1.

Theorem 4.4. If (A,B) defines an instanton (that is, (A,B) belongs to P0), then
D̃(A,B) 6= 0.

Proof. First, we will see that detS(A) 6= 0. From (5) we get the exact sequence

(6) 0 −→ K ⊗O(−1) −→W ⊗O −→ Q −→ 0.

The (n+ 1)-th wedge power twisted by O(−n− 2) gives the exact sequence

0 −→ Sn+1K ⊗O(−2n− 3) −→ SnK ⊗W ⊗O(−2n− 2) −→ . . .

. . . −→ ∧n+1W ⊗O(−n− 2) −→ ∧n+1Q(−n− 2) −→ 0
where the H2n+1 of the first morphism corresponds to S(A). Hence, taking coho-
mology, it is enough to prove

Hn(∧n+1Q(−n− 2)) = 0.

This is shown by considering the (n+ 1)-wedge sequence of the exact sequence

0 −→ E −→ Q −→ I ⊗O(1) −→ 0

and arguing as in the proof of Theorem 3.3.
In order to prove detR(B) 6= 0, we proceed exactly as in Theorem 3.3 and we

leave the details to the reader. �

Theorem 4.5. IP2n+1(k) is affine.

Proof. First, notice that given (A,B) ∈ P , if A or B is degenerate, then detS(A) ·
detR(B) = 0. Hence, by Theorem 4.4 we get that P0 = P \ {D̃ = 0} is affine.
Therefore, by [PV89] section 4.4, IP2n+1(k) is affine also. �

As a by-product of Theorem 4.5, we deduce

Corollary 4.6. IP2n+1(k) does not contain any complete subvariety of positive di-
mension.



MULTIDIMENSIONAL MATRICES AND INSTANTON BUNDLES 55

References

[AO94] V. Ancona and G. Ottaviani. Stability of special instanton bundles on P2n+1. Trans.
Amer. Math. Soc., 341, (1994), 677–693. MR 94d:14017

[AO99] V. Ancona and G. Ottaviani. Unstable hyperplanes for Steiner bundles and multidi-
mensional matrices. Advances in Geometry, 1, (2001), 165–192.

[AO00] V. Ancona and G. Ottaviani. On the irreducible components of the moduli space
of instanton bundles on P5. Geometry Seminars 1998-1999 (S. Coen, ed.), 95-100,
Bologna 2000. MR 2001h:14055

[ADHM78] M. F. Atiyah, V. G. Drinfeld, N. J. Hitchin, and Yu. I. Manin. Construction of in-
stantons, Phys Lett., A65, (1978), 185 –187. MR 82g:81049

[BH78] W. Barth and K. Hulek. Monads and moduli of vector bundles. Manuscripta Math.,
25, (1978), 323 –347. MR 80f:14005

[BS] D. Bayer and M. Stillman. Macaulay, a computer algebra system for algebraic geom-
etry (http://www.math.columbia.edu/ bayer/Macaulay.html).

[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and
Multidimensional Determinants, Birkhäuser, Boston, 1994. MR 95e:14045
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