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The Horrocks bundles of rank three on P?

In memoria di Franco Tricerri e della sua famiglia

By Vincenzo Ancona and Giorgio Ottaviani') at Firenze

There are only few examples of indecomposable vector bundles of small rank on the
complex projective space P". The only known indecomposable rank 2 bundles on P* are
the Horrocks-Mumford bundle and its pullbacks under a finite morphism = : P4 — P4,
Moreover these 2-bundles on P* are stable and the families obtained by pulling back the
Horrocks-Mumford bundle under all the finite morphisms of fixed degree are invariant
under small deformations [DS]. No indecomposable 2-bundle is known on P>,

Horrocks defined [Hor 2] a stable 3-bundle E on P3, called the parent bundle. Decker,
Manolache and Schreyer proved that every small deformation of the parent bundle can be
obtained by the action of an automorphism of P> [DMS].

Horrocks also showed how to modify the parent bundle in order to obtain some 3-
bundles E, ; , (which are a particular case of the relation bundles defined in this paper)
depending on nonnegative integers o < f < y satisfying a + f <.

The main goal of this paper is the study of the small deformations of E, ; ,.
More precisely let us take into account the following diagram

w

Co\0 —2> C®\0
(0.1) In In
pS pS

where in a suitable system of coordinates w is given by six homogeneous polynomials
f1s -+, f¢ wWithout common zeroes of degree

y—oa, y—p, y+oa+p, y+a, y+p y—a—f.

1) Both authors have been supported by MURST and by GNSAGA of CNR.



70 Ancona and Ottaviani, Horrocks bundles
Horrocks proved that w*n*E descends to a vector bundle E, , , on P3, so that
N*E, ., ~ 0*n*E.

Of course E, ; , depends on w but for simplicity we omit this fact in the notations. The
parent bundle correspond to « = f =0, y =1 and its pullbacks, under a finite morphism
o': P35 - P53 of degree d°, correspond to a = f = 0, y = d. We refer to bundles obtained
from the diagram (0.1) with the construction we mentioned above as bundles coming as
pullback over C®\0. The reader should bare in mind that only in the case « = f = 0 the
map o descends to w’: P% - PS5,

We prove that the family of bundles E, ; ,, which Horrocks constructed by pulling
back the parent bundle over C°\0, is invariant under small deformations if and only if
o= B =0 (see corollary 3.11). In order to construct all the small deformations of the
bundles E, ; , obtained by pulling back the parent bundle over C®\0, we proceed as follows.
Let Q, 5., be obtained by pulling back over C®\0 the quotient bundle Q on P (we call
Q..5,, @ weighted quotient bundle). Let #' = 0() @ O(B) D O(—a— ), K =W D #*.

A relation bundle E, ; , is defined as the cohomology bundle of a monad

@(_'Y) - Ba,ﬂ.y - @(y)

where B,

2.8, 1S, 10 its turn, the cohomology bundle of a monad

Qupy(—1) > A2 RO - QF, ,(1).
The E, 4, coming as pullbacks are relation bundles.
Our main results are as follows:

Theorem A. Let E) s,y be a relation bundle coming as pullback over C®\0. Every
small deformation of E_ 5.y is a relation bundle E, ; .. Moreover, the Kuranishi space of

EQ g , is smooth at E, ..

Theorem B. Let E, ; , be a relation bundle coming as pullback over C®\0. What
Sfollows is equivalent:

(i) E,p, is stable.

(i) E, g, is simple.

(iii) 3y —2a—45>0.

An immediate consequence of theorem A and theorem B is the following

Theorem C. Let3y— 20— 48> 0. The moduli space of stable 3-bundles with Chern

classes ¢, = ¢3 =0, ¢, = 3y? + 4af — 4(a + B)? is smooth in those points which correspond

to relation bundles E, , , coming as pullback over C5\0; its dimension in those points has

been computed in [AO). If y > 3a + 3 this dimension is h° (5 (y)) — h°(End #").
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The Chern classes of E, 5 , are ¢, = ¢; =0, ¢, = 392 + 4af — 4(a + B)2. Schwarzen-
berger conditions imply that 3-bundles on P> with Chern classes ¢, = c¢; = 0 can exist
only if ¢, =0,3,8 or 11 (mod 12) [Hor2].

Theorem D. Let t>0,1=0,3,8 or 11 (mod12). There exists a semistable E, ;.
coming as pullback such that c,(E, ;) = t.

Lett>0,t=3,80r 11 (mod12). There exists a stable E, ; , coming as pullback such
that ¢,(E, 5 ,) =t

As a consequence of our results we prove the following two theorems about 3-bundles
on P> by using some elementary number-theoretical arguments.

Theorem E. VNeN,VieZ, t=0,3,8 or 11 (mod12) there exists a family of non-
isomorphic 3-bundles on P> with Chern classes ¢, = ¢3 = 0, ¢, = t of dimension = N.

Theorem F. Let Mps(0,£,0) = X, 0X,U...uX,, be the decomposition into irre-
ducible components of the moduli space of stable 3-bundles on P*> with Chern classes
c;=c3=0,c, =t Then limsupn(t) = + c0.

t

Theorem E generalizes the analogous result for 2-bundles on P? obtained by
Hartshorne [Har] and it shows that there is plenty of 3-bundles on P*. Theorem F
generalizes the analogous result for 2-bundles on 3 obtained by Ein [Ein].

The first draft of this paper [AO] contains more results about weighted lambda-
three bundles and weighted nullcorrelation bundles.

The authors benefited from many helpful conversations with W. Decker, N. Mano-
lache and F.O. Schreyer. In particular N. Manolache communicated to us the minimal
resolution of the parent bundle (theorem 1.9).

0. Notations and conventions

Let H be a 6-dimensional complex vector space and P° = P (H) the projective space of
lines in H with homogeneous coordinate ring S = C[x,, ..., x¢].

Let ¥ be an m-dimensional complex vector space, and denote by u,, ..., 4, _, the
fundamental weights of SL(V) ~ SL(m) = SL(m,C). We remind the reader that the irre-
ducible representation of SL (V') with highest weight )" a, i; (a; € Z , ,) can be represented by
the Young diagram consisting of n, =a, + --- +a, _, boxes in the first row, and of
n, =a,+ ‘- + a,, _, boxes in the second row, up to n,, _, = a,, _, boxes in the (m — 1)-th
row. We denote such representation either by the symbol Vg, ,, or I'" ="'}, In
particular

itimes

Vv =F1 ..... 1,0,..., OVZ/\iV.

Wi
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If # is a bundle on P™ "' = P(V), the bundle Fy,,, = I'"""+" -1 F is defined.

If #= @ 0(d,), then
i=1

0.2) rrom- (@ 0(d) ~ @ 0(b,)
i=1

jelJ
where J is the set of all the combinations of the d;’s which fill the boxes of the Young
diagram with n; boxes in the i-th row. The indices of the d;’s are strictly increasing in the

columns and non decreasing in the rows, and b, is the sum of all the d; appearing in the
combination j.

We are mainly interested to the two cases:

(1) V= H a 6-dimensional vector space.

(2) V= W a 3-dimensional vector space. Note that in this case
r'w=Sw, r*"'\w=A*W=w*,

(p+2)(q +1)(p—q+1).

moreover I'PIW = I'PP 4 * and dim '"1W = >

Let A,, 4,, 4, be the fundamental weights of Sp(6) = Sp(6, C). We denote by H, the
3
irreducible representation of Sp(6) with highest weight A= ) a;4;. For example

i=1

H, ~H, H,,~ \N*H|C, H;,~ N*H/H.If & is a symplectic 6-bundle the bundle #,, ;.
is naturally defined, for example %, = A 2% /0. We will use this notation throughout the
paper many times when & is the bundle # defined in (2.1).

If W is a complex vector space of dimension 3, then W@ W * has a natural symplectic
structure.

We will use Mumford-Takemoto definition of stability.

If & is a coherent sheaf over a complex space X and f: X — S is a morphism, we
denote by Quotg,y s the Grothendieck space which parametrizes the coherent quotient
sheaves of # which are flat over S. We have a projection Quotg, ;s =Z — S and for
s€ S we have Z; ~ Quotg x. .

If E is a vector bundle on a compact complex space X, a Kuranishi space Z exists
which is the base for the versal deformation of E. Let z, € Z be the point corresponding to
E. Z is equipped with a universal family and the germ (Z, z,) is unique up to auto-
morphisms. The same bundle can appear many times in the versal deformation but only
once does the E itself appear in a neighborhood of z,.
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1. Some known results about bundles on P3
Let G be a connected, simply connected, semisimple complex Lie group and let ¢ be

the set of the roots of G. Let A = {«,, ..., o} be a fundamental system of roots. We have
the Cartan decomposition

LieG=%® ) %@ ) 4%,.

aed™ acopt

Let " (i) = {a € ¢* |a = ) n;a; with n; = 0} and let P(;) = G be the parabolic sub-
group such that Lie P(x;) = %, ® 9% ® Y 9. Then G/P(x) is a rational homo-
geneous manifold with Pic = Z. *<¢ aed+ (i)

Let {v,, ..., v} be the fundamental weights with respect to A.

We will apply this construction to the cases

(i) G=SL(6),A={B;,...,Bs}, SL(6)/P(B,) ~P?; the reductive factor in the Levi
decomposition of P(f,) is isomorphic to SL(5) - C*. We denote in this case by {y,, ..., s}
the fundamental weights.

(i) G = Sp(6), A = {0,,0,,05}, Sp(6)/P(0,) ~ P>, the reductive factor in the Levi
decomposition of P(a,) is isomorphic to Sp(4) - C*. We denote in this case by {1,,4,,43}
the fundamental weights.

Let g(v) be the irreducible representation of P(x;) whose restriction to the reductive
factor has highest weight v = anvj with n; 2 0 for j =+ i. Let E¥ be the homogeneous
vector bundle over G/P(x;) associated to g (v).

The quotient bundle Q on P° = P(H), is defined by the Euler sequence
0->0(-1)»>H®O->Q->0.
The bundle Q, as well as Q*, is stable and S L(6)-invariant, precisely
Q ~ E¥s, Q*~ Er"H,
Remember also 0(f) ~ E'*"'Vie Z.

We list now some cohomological lemmas that are applications of Bott theorem [Bo]
which will be used in the rest of the paper. For more details see [AO].

0 fort+ —1,

Lemma 1.1. H'(End A%Q(t)) = H*(End Q(1)) = {H for t=—1.

Lemma 1.2. H'(A2Q® A*Q*()) =0 VteZ.
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Lemma 1.3.
H°(A*Q® A?Q*)=H,,,

HO(A4Q® AZQ*(I))=H(I‘1)M1+M2+M® Htm+u4 for tz1

(all the previous groups are zero for t <0),

0 for t+ —1,
A3H for t = —1,

for t = 0.

HY(A*Q® A2Q*(1) = {
H°(A*Q(0) = H,

u1t p2

Let N be a nullcorrelation bundle on P® corresponding to a nondegenerate symplectic
form yp e A 2H* (see [DMS], §1 for details). The bundle N is symplectic, hence A 2N has

a distinguished nowhere vanishing section @ —2 A 2N whose cokernel is a rank 5 bundle.

Definition 1.4. A lambda-three bundle is the bundle A 2N/ @ for some nullcorrelation
bundle N.

A lambda-three bundle B is stable and orthogonal, and has a resolution

(.1) 0- A%Q* L s A20* 5 B0
where f is defined by contraction with the symplectic form e A 2H*.

The moduli space of lambda-three bundles is naturally isomorphic to the moduli space
of nullcorrelation bundles, which is the space of nondegenerate symplectic forms p e A2H*
(up to a scalar multiple). Moreover, any small deformation of a lambda-three bundle is

again a lambda-three bundle. As A *Q* = Q(—1), any lambda-three bundle is the coho-
mology bundle of a monad

1.2) 0(=1) > AZHR O - 0*(1).
The symplectic form yp € A 2H* induces a natural action of Sp(6) on P>, such that
P* =~ Sp(6)/ P(s;)

and N and B are naturally isomorphic to E*2~ 4 and E*~* respectively. Hence from
Bott theorem for Sp(6) [Bo] we obtain easily

Lemma 1.5.
H°(B()) = Hy 2,42, fort2zt,

HI(B@5)=0 for 1<i<4
Vi€ Z with the only exceptions H*(B(—2)) = H3(B(—4)) =C,

H'(EndB(t)) =0
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Vte Z with the only exceptions H'(End B) = H'(A%B) = H, ,
H'(End B(—1)) = H'(A2B(—1))=H.
The minimal resolution of B is by [DMS]
13) 0-0(-4)->H®0(-3)-> H,®0(-2) > H,,®0(—1) > B->0
and is Sp(6)-invariant.
Lemma 1.6.
H'(B®A?Q*(1)) =0 fort+0, H'(B®A2Q*)=H,,,
H*(B®A2Q*(1) =0 fort+—1, H*(B®A2Q*(—1))= H,,.
Proof. Straightforward computation from (1.3).

Definition 1.7. Let B be a lambda-three bundle. A parent bundle E is defined as the
cohomology of a monad

0(—1) » B - 0(1).

The existence of parent bundles was shown by Horrocks in [Hor2] (see also remark
2.13). All parent bundles are isomorphic under the action of SL(6).

It is easy to check that ¢, (E) = ¢;(E) = 0, ¢, (F) = 3 and that E is stable [DMS]. As
in [Hor2] we can split H = W@ W* so that the symmetry group of E is SL(W) X Z,, in
particular E is SL(W)-invariant. We remark that in Horrocks notations [Hor2]:

[m]~[m]' ~I'*™"™W formz=0,
[p, —ql =T****W@IP**1W* forp+gq,p,q20.
Lemma 1.8.
H*(E(-2) = H*(E(-4) =C,
H'(E(-1)) = HY(E(-5) =C,
HY(E)=H*(E(—6)=W® W*,
HY(EQ)) = HYE(=T) = I*'W=T>'W*=WQ W*/C.
All other intermediate H'(E(t)) for 1 <i <4, teZ are zero.
H'(EndE)=(W@W)e(WRW*)® (W*Q W*),
HY(EndE(—-1) =W W*,
H'(EndE(t)) =0 fort<-2.
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Proof. [Hor2], [DMS].
We point out that no parent bundle is self-dual, in particular /°(E® E) = 0.

N. Manolache kindly communicated to us the minimal resolution of a parent bundle
E in terms of SL(W) X Z, representations. Later W. Decker showed us that this resolu-
tion can be obtained by using the same techniques of [DMS], prop. 2.1. We are only referring
to the case of SL(W)-representations because it will be sufficient for our purposes (e.g.
for the theorem 2.15).

Theorem 1.9 ((DMS]). Let P> = P(W® W*). The minimal resolution (which is
S L(W )-invariant) of a parent bundle E on P? is

0-L,®O(—=7) > Ly®O(—6) - L,; ® 0(—5)® O(—4)
L, ®@0(—)® L, ®0(-3) > Ly; ®(—3)D Ly, ® O(=2) > E > 0
where
Ly=T>'W, L,=[S*W@®S*W*®@TI*'wWaer*> w+],
Ly =[S’WeS*W*er*'wer>' w*er+*wer>'wj,
L, =[*"'"W@r*'w*@r*»'wer» w+,
L,=[W@®W*], Ly=T*"?W, Ly,,=T"'W.

Proof (Compare with [DMS], prop. 2.1). Remind that S= @ S'(W® W*) is the
t

coordinate ring. The display of the monad of definition 1.7 gives the two exact sequences

0-R->B->01)-0,
0->0(-1)>R->E->Q.
First we claim that the minimal (S L (W )-invariant) resolution of the artinian module
@H'(P%EM) =D H' (P R®) is
t t
0> L,®S(—7) = Ly®S(—6) > Ly; ® S(—5) @ S(—4)°2
- L;®@S(—49)® LY ®S(-3)
- Ly ®@S(-)SI*' Wor>' wowew*1® S(-2)
- [S*We S*W*dCI®S(—1) » S(1) > @ H'(P?,R(®) > 0.
t

This claim can be straightforwardly verified. For example the 22-dimensional term
[F**wWer*'we wao W*] is obtained as the complement of

WOW*R[S*We S*W*@C]
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in §* (W@ W*), inspecting the degree 3 terms of the resolution of @ H(P%, R(¢)). Then
t

we prove the theorem comparing the resolutions of each term of the two exact sequences
of S-modules

0— S(—1) » @H(P5,R(t)) > P H(P%E®) -0,

t t

0> @PH'(P?R(1®) > PH (P B() - S1) > D H' (P R(t) »0.

t t

2. Pulling back bundles over C°\0
In this section we explore the construction of pulling back bundles over C%\0 intro-
duced by Horrocks in the last section of [Hor2]. This construction can be applied to any
bundle on P" whose symmetry group contains a copy of C*.

Let o < B be two nonnegative integers, we define

2.1) Wi=0@® 0B S0(—a—p),
H=WOW*.

Let moreover f1, ..., f¢ be homogeneous polynomials of degree
y—a, y—pB y+a+B y+o y+p y—a—p,

defining a surjective morphism # AR O(y) (this happens if and only if they have no
common zeroes).

Lemma 2.1. The dimension of the degree t summand A, of the artinian algebra
S/(f1s---> fs) is equal to

6
Y (=D)IRLANH#®O@—jy].
j=0
In particular it is nonzero if and only if 0 St < 6y — 6.

Proof. Immediate from the twisted Koszul complex of the map # — 0 (y)

0> O@—6y) > H({—5y) > AN2#({—4y) > NH(t—3y) > AN2H(t—2y)
- H({t—y) > 0@0) -0
and the fact that 4, is isomorphic to the cokernel of the map H [t —y)] = H°[O(D)].
In order to study the deformations of Horrocks 3-bundles defined in [Hor 2] we need

to pull back over C®\0 not only the parent bundle but also some other bundles on P°.
We begin with the easy example of weighted quotient bundles.

6 Journal fiir Mathematik. Band 460
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The polynomials f;, ..., fs define a map w:C%\0 —» C®\0. Look at the diagram
(0.1). On the domain of w consider the standard multiplicative action of C* and on the

codomain of w the action 1, 5, : C*x C®\0 — C®\0 defined by

(22) T,,,p,,(t, Ula tee v6) = (ty_avls ty_.ﬁl’29 t7+a+ﬂv39 t'y+uv4, ty+ﬁv5, ty—z—ﬂv6)

so that
w is C*-equivariant .

Observe that the action of C* given by 7, 5, descends to P°. The quotient bundle Q
is SL(H)-invariant, hence n*Q is C*-invariant under the action of 7, 4 ,. It follows that
w*n*Q is C*-invariant under the multiplicative action and then it descends to a bundle
on P3, that is

o*n*Q ~n*0.
We say that J is obtained by pulling back Q over C°\0.

Definition 2.2. Lety > a + . A weighted quotient bundle Q, , . is a bundle obtained
pulling back the quotient bundle over C®\0 or equivalently, a bundle defined by an exact
sequence:

0-0(=y)> #—>Q,4,—0.
We often drop the indices a, f, y and we use J for Qep,y

We get also w*n*(H® 0) =n*s# and if T is any representation of SL(H) then
(with obvious notations) w*n*(T(H) ® 0) = n* T (). The functor n* gives an equivalence
of categories between bundles over P> and bundles over C®\0 endowed with the standard
multiplicative C*-action. Hence the minimal resolution of 0* can be obtained by pulling
back over C®\0 the minimal (S L(6)-invariant) resolution of Q* and indeed it is

(2.3) 0 - O(=5y) > ASH#(—4y) > A4 (—3y)
= A3H(=2y) > AN2#(—y) - §* > 0.

Lemma 2.3 (Bohnhorst-Spindler). A weighted quotient bundle Q, , , is stable if and
only if y>Sa+58.

Proof. [BoS].

This construction can be generalized in the following way (we refer to [Hor2]
for more details). Fix a decomposition H= W@ W* and choose the coordinates
(%4, ..., Xg) so that (x,, x,, x,) are coordinates on W and (x4, x5, X¢) are coordinates on W *
(see [DMS]). Then SL(W) embeds into SL(H).

Definition 2.4. Let G be any bundle on P* which is SL(W )-invariant. Then w*n*G
is C*-invariant under the standard multiplicative action and it descends to a bundle G on
P3, so that

0*n*G ~n*G.

We say that G is obtained by pulling back G over C°\0.
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Our basic examples of SL (W )-invariant bundles will be B, E, End B, End E where
B is a lambda-three bundle and E is a parent bundle.

Remark 2.5. The minimal resolution of G can be obtained by pulling back over C%\0
the minimal resolution of G, which is SL(W)-invariant. We would point out that if T is
any representation of SL(W) then o*n*(T(W)® O) ~ n*T(¥#").

The cohomology module @ H'(P?, G(¢)) has a natural structure of SL (W )-module.
teZ
We remind that H'(C®\0, n*G) is isomorphic to @ H'(P?, G()) and is endowed with the

teZ
C*-action induced by the standard multiplicative action (that we notice by v+ o (¢)v). The

graded summand H'(P%, G(m)) is isomorphic to the weight space
{ve H(C®\0,n*G)|o(t)v = t™v Vte C*}.

For te C*lett, 4., (f) € GL (H'(C®\0, n*G)) denote the C*-action induced by
on Hi{(C®\0, n*G) we have the new graduation

. Then

a, B,y

Ve, =1{ve H(CO\0,n*G)|1, 5 ,(t)v = t™v YVt e C*}

a, B,y

so that H(C®\0,7*G) = @ V,,. We have the isomorphism

meZ
(2.4) HI(C®\0,0*n*G) ~ H'(C°\0,n*G) ®¢c S/(f1, ---> fe) -

This isomorphism is C*-equivariant if we consider on the left side the standard multi-
plicative action and on the right side the action 1, 45, on H'(C®\0, n*G). Let 4,, be the
degree m summand of S/(f}, ..., fs) (see lemma 2.1). Then our main technical tool is the
formula (obtained by (2.4))

6y—6

(2.5) H(PS5,Gm)~ P 4,0V
j=0

In the special case @ = f = 0 we have V;"} , = H'(P*,G(m)) and we have the well known
formula

@ H'(P%,G(m) = S/(fy, .-, f6) ®c [D H'(P*, G(m))]

meZ meZ

with the natural graduation. In this case the dimensions 4'(P?, G(m)), me VA suffice to
compute the dimensions # (P3, G (g)), ¢ € Z and the module structure of (P H'(P*, G(m))

is not involved. More precisely 4 (P, G(m)) depends only on H(PS,G(m")) with ym’ < m.
In particular if /°(P%, G) = 0 then also h°(P%, G) = 0. This fails in the general case, in fact
we will see (theorem B) that G can be unstable even if G is stable.

In order to compute the eigenspaces of 1, o7 let us write 1, 5, =7, o1, Where
T (8,0, ..., 06) = (1%, t Pu,y, 72 Puy, 1420, 1+ Ppg, 1% Pvg) and 1, is the multiplica-

tion by ¢?. Now 1, factors through SL(W) and the corresponding C*-action on the coho-
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mology can be easily computed by looking at the cohomology groups as SL (W )-repre-
sentations. For example if

0 t:*:_2,
WeWw* t=-2

H60) - |

then P H'(G()) = P V%, and dim V7 _ is equal to the number of times m occurs in

t m
the sequence {—2y+a, —2y+ B, =2y —a—f, —2y—a, =2y — B, —2y + a + B}. This
remark together with lemma 2.1 allows us to write (2.5) more explicitly, as follows:

Theorem 2.6. Let G be an SL(VI{')-inuariant bundle and let H'(G(t)) = T*(W) where
T' is a representation of SL(W). Let G be obtained pulling back G over C®\0. Then

6
RGED)=Y Y (=1)/RIN(H# (=) QT"#*)Q0(t—hy)].

heZ j=0

Remark 2.7. An analogous result holds with other linear groups in place of SL(W).
Observe that SL(W) = Sp(6), so that a lambda-three bundle is S L (W )-invariant.

Proposition 2.8. Let O be a weighted quotient bundle. Then

a, B,y
(2.6) h'(EndQ, 5.,)
= (K () —h°(H#® H)+H(A2H#® H(—7) — P (N3H# R H(—27)).

Proof. By lemma 1.1 and by theorem 2.6 we have as follows:

6
W EQ,,) = T (~IRIAA(=D® K ()]

We have proved the proposition because the summands with j = 4 are zero.

By pulling back over C®\0 a lambda-three bundle we have a bundle B, ;4 ,. It is easy
to check that it fits into an exact sequence

2.7 0- A4Q::ﬂ,v - AZQ:B.V = B,p, >0
hence B, g, is the cohomology of a monad

2.8) Qo gy (—7) > N2 > Oy, () .

Definition 2.9. A weighted lambda-three bundle B
(2.8) where Q, , , is a weighted quotient bundle.

2 5, is the cohomology of a monad

Remark 2.10. It follows from remark 2.5 that if B, 4 , is obtained as pullback over
C®\0 from a lambda-three bundle, its minimal resolution is

(29) 0 - 0(—4y) » H#(=3y) = H#,(—=29) > #,(=y) > B,;, > 0.
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We often use B for B, .,
Note that the dual of a lambda-three bundle is again a lambda-three bundle.

Proposition 2.11. Let B, ; , be a weighted lambda-three bundle obtained by pulling
back over C®\0 a lambda-three bundle. Then

6

h'(EndB, ;)= 3, (=D [A(H(-7) @ (#() ® #,)]

i=0
= h(H () — K (S*H#) — h° (A °H# @ #(—27))
+ (A2 Q@ N2#(—29) — i (AN>H#Q N2#(—37y) —1.

Proof. By lemma 1.5 and by theorem 2.6.
Now we can define the 3-bundles which are the main subject of this paper.

Definition 2.12. A relation bundle E, 4 , is the cohomology of a monad

@(—’})) - Ba,ﬂ,y - 0(')))

where B, ; , is a weighted lambda-three bundle.

We remark that E; , , is a parent bundle. The bundles obtained by pulling back over
C®\0 the parent bundle (which is SL (W )-invariant), are particular cases of the relation
bundles and were constructed by Horrocks in [Hor2]. In the notations of the last section
of [Hor2] we have m, =a, m, =, my = —a— B, r=1y.

Sometimes we use E for E, ;. It follows from the definition that the dual of a
relation bundle is again a relation bundle.

Remark 2.13. It is interesting to explicitly construct some relation bundles. Let B a
lambda-three bundle. The 14 x 14 matrix of the composition

H, ® 0(—1) > B~B* > H, ® 0(1)

(where the morphisms are defined by (1.3)) has been computed in [DMS], proof of
prop. 1.3. Denote by M this matrix. The space generated by the rows of M identifies
naturally with the space H°(B(1)) < H,,® H°(0(2)). Decker, Manolache and Schreyer
pointed out that the section o (resp. t) given by the sum (resp. difference) of 1* and 2™
rows does not vanish anywhere and that t o ¢ = 0. Hence this pair of sections defines a
monad whose cohomology is a parent bundle. Now, consider a morphism w : C%\0 — C®\0
as in (0.1) given by the polynomials f}, ..., fs. @ defines a bundle B, ; , obtained by pull-

%

ing back over C°\0 a lambda-three bundle B. The 14 x 14 matrix M of the composition

«9@,3("')’) = Dy g,y = Br:ﬁ,y - ‘%3(‘)’)
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(where the morphisms are defined by (2.9)) is obtained from M replacing x; by f;. The
space H°(B,, M('y)) can be interpreted as the space of linear combinations of the rows of
M with coefficients homogeneous polynomials of degree 0, 0, 2, a+ f, —B, 28, —a,
—200—28, —2a, —a— B, B, —2B,a, 20 + 2 B (the coefficients are zero if the corresponding
degrees are negative). Let o (resp. 1)e H® (B,' m(Y)) be given by the coeflicients
1,1,0,0,0,0,0,0,0,0,0,0,0,0) (resp. (1,—-1,0,0,0,0,0,0,0,0,0,0,0,0)) . Then the co-
homology of the monad

O(—y) —> B, 5, —— 0(@)

isa 3-bundle E, ; ,. E, 4, comes as pullback over C°\0 from the parent bundle constructed
above. Note that for 0 <a < f only the first two coefficients, out of the fourteen we
mentioned before, are allowed to be constant, hence only the relation bundles defined by
sections of B, g ,(y), which are suitable linear combinations of ¢, t, come as pullbacks over
C*®\0. This family fibers over the family of their corresponding weighted lambda-three

bundles coming as pullbacks over C®\0, with 1-dimensional fibers.

We summarize in the following theorem the intermediate cohomology of a relation
bundle E, ; , coming as pullback over C®\0. It follows from lemma 1.8 and theorem 2.6.

H?* and H* can be found by Serre duality because E}}, , is again a relation bundle coming

as pullback over C®\ 0. H° can be computed from the minimal resolution (see theorem 2.15).

Theorem 2.14. Let E, ; , be a relation bundle coming as pullback over C°\0. What
follows next holds:

HY(E,p,0) =Y (=) {AHROt—j»@[O(+D) @ KD T W (-]},

H*(E, ,,, (1) = ;(—1)"’10{/\’(«%’(—7)) ®O(t+2y)}.

Theorem 2.15. Let E, ;, be a relation bundle on P° coming as pullback over
Cé\0. Let W = O(a) ® O(B) ® O(—a — B). The minimal resolution of E, j is

0 > T2 (=Ty) - [S2W @S W* DT> W@ I W *](—6y)
> [S*HWOS*W*OT>' Wer>' w*@r*>wer>' #1(-5y® o(—4y)

- [M*'wer+'w*er>'weor>' w*](—4) e[ ao#*1(-3y
- I'*2y (=3p)@r*»'w(-2y - - 0.

a,B,y

Proof. By theorem 1.9 and remark 2.5.

3. Proof of theorem A

Proposition 3.1. Let Q° 5.y be a weighted quotient bundle. Every small deformation
of Q2 ., is again a weighted quotient bundle Q, , ,. Moreover the Kuranishi space of Q. .,
is smooth at the point corresponding to Q7 5 ..
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Proof. Let 0, ' be two weighted quotient bundles. Every morphism from § to {’
lifts to a morphism of sequences

0 - O(=y) -» # - 0 - 0
l | |
0 - O(=y) » # - 0 - 0

(by the vanishing of H'(#(—7)) ). Moreover two elements f, f'€ Hom (0 (—7v), #) give
the same element of Quot, ps if and only if ge Aut(0(—y)) exists such that f= f'o
Let 0y = Q7 5,, be the cokernel of f, e Hom(0(—7), #). Let Y be the Kuranishi space of
0, and y, €Y be the point corresponding to J,. Let x, € Quot »ps e the point corre-
sponding to 0, and let X be the irreducible component of Quot »/ps containing x,. We
have a natural morphism of germs 7 : (X, x,) — (¥, y,), then

dim, Y = dim, X — dim, 7™ (y,).
If Z={xeX:0,~ 0, we have (17 1(y,), x,) = (Z, x,), hence
dim, Y =2 dim, X —dim, Z.
We have dim, X = h°(#(y)) — 1 = h°(Q,(y)). We obtain the formula
dim,  Z = h° (End #) — {dimension of endomorphisms of »# which fix f,} —1.

The sequence

(3.1) 0> 0fQH — Endo# —» #(y) » 0
shows that the number in braces in the last formula is equal to 4°(J* ® ).

It follows dim, Y 2 h°(5#(y)) — h°(End #) + h° OF ® #) = h* (0F ® H#) where
the last equality follows again from the sequence (3.1). Now the exact sequence

0~ g3(—y) > 0§ ®# — EndJ, - 0

shows h!(0* @ #) = h'(End J,), hence dim, Y = h'(End(,) and the equality holds
because the right-hand side is the dimension of the Zariski tangent space to Y at y,. In
particular dim Y = dim, X — dim, n~'(y,) and = is surjective between germs, q.e.d.

Corollary 3.2. The dimension of the Kuranishi space of Q, g, is

WO (H () — KK @ K) +h(N2H @ H (=) — h*(A°H @ H(-2Y)).
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Proof. By proposition 2.8 and proposition 3.1.

Corollary 3.3 (Bohnhorst-Spindler). Lety > Sa + 5 (see lemma 2.3). The weighted
quotient bundles Q, 5 , form a smooth open irreducible subset of dimension

ho(H (7)) —h°(H ® #)
of the moduli space of stable bundles with the same rank and Chern classes.

Lemma 3.4. Let B, B' be two isomorphic weighted lambda-three bundles defined from
the sequences

0> A*Q* > AN20* > B> 0,
0> A*Q'* > AN20* > B >0
where Q, Q' are weighted quotient bundles (as in (2.7)). Then § ~ §'.

Proof. By putting together the resolutions of A*QJ* and A20* we obtain the
resolution

(3.2 05 0(=4y) » H(=31) D O(=2y) > A2H#(=2) ® #(~)
> A3 (—y) > B-0.

The corresponding sequence of S-modules is exact. The piece O (—47v) kL (—=3y)
does not contain any summand that cancels in the minimal resolution because y>a+p.
Hence J(—37) ~ Cokerk is defined directly from the minimal resolution of B.

Lemma 3.5. Let Q). be a weighted quotient bundle. Any small deformation of
A2Q2 ., is isomorphic to N*Q, , . where Q, ;. is again a weighted quotient bundle. More-
over the map Q, 5,/ N\ 0., s,y induces an isomorphism between the germs of the corre-
sponding Kuranishi spaces.

Proof. We remark that lemma 1.1 combined with theorem 2.6 implies that

H*(End A2Q) ~ H'(End J)

for any weighted quotient J. Now, it is sufficient to verify that if A20Q'~ A20Q" then
Q' ~ Q" and this comes from the fact that in the minimal resolution of AZQ

0 - O(—29y) » #(—y) > AH# - A0 >0
the first cokernel on the left is isomorphic to J(—7).
Lemma 3.6. Let O be a weighted quotient bundle. Then H*(A*Q ® A*0*) = 0.

Proof. From lemma 1.2 and theorem 2.6.
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Theorem 3.7. Let BY v be a lambda-three bundle coming as pullback over C®\0.
Every small deformation of B, . is again a lambda-three bundle Ba s,y defined by a se-

quence (2.7). Moreover the Kuranishi space of B, is smooth at B?

aﬁy a, B,y

Proof. From lemmas 3.4 and 3.6 it follows that every isomorphism between two

lambda-three bundles B, B, as in the statement of lemma 3.4, is induced by a morphism of
sequences

0 - /\4Q~* - /\2Q~* - B S5 0
l l l

0 — A*Q* - A2Q* - B > 0.

B, stands for B? sy.y and we denote 0, the weighted quotient corresponding to B, uni-
quely defined by lemma 3.4. Let now £, € Hom (A *0¥ A2Q¥) be a morphism which defines
B,. f, f'e Hom(A*Q¥, A2Q¥) give the same element of Quot a2g4ps if and only if there
is an invertible # € End (A *Q,) such that f= f'o h. Let (¥, ¥o) be “the Kuranishi space of
A20, and the (T, t,) be the Kuranishi space of B,. Let # be the universal family over
Y% P3 and let Z = Quot,y ,ps/y. Let z, € Z be the element corresponding to B,. We have
two natural morphisms ¢ : Z — Y and n:(Z, z,) — (T, t,).

Let Z' be the subvariety of the component of Z, containing z,, which consists of

quotients A 2Q"* &, % for some weighted quotient 0" such that Kerg” ~ A *(Q"*. Hence
we have dim, T 2 dim, Z — dim, n™'(,) = dim, Z’' — dim, n~'(z,). Moreover from
lemma 3.4 we have (n7'(t,), 25) = (¢ " (§o), 20) = (QuOt \242 s, Zo). If

P:={xeQuot zg: s : B, ~ B,}

we check (17 1(t,), zo) < (P, z,). We have dim, P = h°(End A%2Q,) - {dimension of endo-
morphisms of A2, that fix f,} — h°(End A*Q,). The exact sequence

(3.3) 0 — B,® A20% —» End A2 0, » A*0,® A20% - 0.

shows that the term in braces of the last formula is equal to 4°(B, ® A%Q¥), hence
dim, P = h°(End A20,) — h° (B, ® A*0%) — h° (End A“QO) Now consider that all the
fibers of ¢l : Z' - Y have the same dimension h°(A*J, ® A2J¥) — h°(End A*J,) (de-
pending only on a, f§, ). By lemma 3.5 and prop. 3.1,

dim, ¥ = h' (End A2Q,) = h* (End J,) = h* (End A*Q,),
hence dim Z’ = h°(A*0, @ A20%) — h°(End A*Q,) + h' (End A*J,). It follows
3.4) dim, T = dim, Z’ — dim, P
= KO (A*Qy @ N202) — h° (End A20,) + h° (B, ® A*0¥) + h* (End A%0,) .
We claim that the image of the morphism H'(End /\62Q~0) - HY(A*Q, ® A20¥)

defined by the sequence (3.3) has the following dimension Y. h°[A# ® H#((1 —j)7)].
j=0
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In fact from the hypothesis the morphism End A20, - A*J, ® A2Q¥* is obtained by
pulling back over C5\0 a morphism End A?2Q — A*Q ® A2Q*. H'(A*Q ® A2Q*(?)) is
zero for ¢ + —1 and it is isomorphic to A°H = H@® H,, for t = —1 (lemma 1.3). We have
also H'(EndA2Q(—1)) = H (lemma 1.1), and we see from lemma 1.6 and the coho-
mology sequence associated to (3.3) that the morphism

DH'(EndA2Q(1) > DH'(A*'Q®A?Q*()

is an isomorphism on the subspace H just considered in degree — 1 thus proving our claim
from theorem 2.6. Then from (3.4) and the cohomology sequence associated to (3.3) it
follows:

6
dim, T2 h* (B, ® A203) + Y, W IA# Q@ #((1—j)y)].
j=0

J

By lemma 1.5 we have H'(End B(¢)) = 0 for ¢ + —1,0 and by lemma 1.6 we have
H'(BRA*Q*(1)) =0

for t+0, H'(B® /\2Q"‘2 = H,, = H'(End B). Hence, as H'(End B(—1)) = H gives a
contribution to H'(End B,) in the formula of theorem 2.6 exactly equal to

J

6
RN #Q #((1—j)7)]
=0

we get dim, T 2 A*(End B,), thus the equality holds and = is surjective, g.e.d.

Corollary 3.8. The dimension of the Kuranishi space of B, is
6
Y (=D IANI(H (=) ® (F () @ 4,)] .
j=0

Proof. By proposition 2.11.
The display of the monad defining £ gives the two exact sequences

(3.5 0-R

—

- 0@k -0,

a, B,y a,B.y

(3.6) 0->0(—y) >R = E,;,—0.

a, B,y

Lemma 3.9. Let R, , has a bundle appearing as a kernel in a sequence

0> Ry, = Bog, > 00) >0
where BY ; . is a weighted lambda-three bundle coming as pullback over C®\0 and such that
also R? 5.y comes as pullback over C®\0. Every small deformation of R? s,y appears again as
a kernel in a sequence as (3.5) where B, , , is a weighted lambda-three bundle defined by a

sequence (2.7). Moreover the Kuranishi space of R, , is smooth at R? By
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Proof. The proof is analogous to the proof of the theorem 3.7 and it is up to the
reader to check it out.

Theorem A follows now from the following

Theorem 3.10. Let E?, , be a relation bundle coming as pullback over C°\0.

Every small deformation of E_ s.y is a relation bundle E, , , corresponding to a weighted

lambda-three bundle B, z , defined from a sequence (2.7). Moreover the Kuranishi space of

EQ;., is smooth at EQg ..

Proof. We use E, for E2, .. Let R, be corresponding to Ej, that is the unique non-
splitting extension
0> 0(-y) »?>E, -0.
Consider the exact sequence

(3.7 0> EX®R, > EndR, - R,(y) » 0.

We begin to prove that the induced morphism g : H!(E* ® R,) - H'(End R,)) is surjec-
tive. We set

g H' (E*®R(t)) » H'(EndR(?)) .

As the tensor product is right exact we have that Coker g is the degree 0 summand
in [P Cokerg,] ®c S/(f1s---, f6) (see (2.4) and (2.5)).
t

Consider the two exact sequences

0 » E*® R(t) > EndR(f) » R(t+1) > 0,
0 - E*(t—1) > RQ E*(t) » EndE(f) » 0.

Cokerg, = 0 for t 2 1 and for ¢t £ —3 from the first sequence. It is easy to check
H'(End R(-2))=0.
From the second sequence H!(End E) = H'(E* ® R), from the first
H'(E*® R)< H'(End R)

and the last inclusion is the identity because H*(End E) surjects naturally over H'(End R)
(by lemma.3.9 in the case a« = B = 0). In the case t = —1 we have that

Cokerg_,cH'(R)=HY (E)=W@ W*
and hence it cannot contribute to the degree zero summand of the tensor product. Let us

also observe that from the second sequence it is easy to prove in the same way that
h'(E* ® R,) = h* (End E;). Hence we have proved g to be surjective.
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Let (7, t,) be the Kuranishi space of E,. As in the proofs of prop.3.1 and theorem
3.7 we can check that

dim, T = h°(R,(y)) — h°(End R,) + h° (E¥ ® R,) + dim {Kuranishi space of R}
= (by lemma 3.9) h°(R,(y)) — h°(End R,) + h°(E¢ ® R,) + h* (End R,)

where we used the sequence (3.7). Again from sequence (3.7) and from the fact that g is
surjective we have

dim, T = h*(E¢ ® R,) = h* (End E,)

as we wanted.

Corollary 3.11. The family of bundles obtained by pulling back a parent bundle over
C®\0 is invariant under small deformations if and only if a = f = 0.

Proof. If B % 0 amonad exists O(—y) — B, ;. * 0(y) where g, T correspond

to some linear combinations of the rows of the matrix M (see remark 2.13) with non-
constant coefficients. If « = = 0 let o’: P®> — P be a finite morphism of degree ¢°. By
theorem 3.7 every small deformation of w'*B = B, ,, is isomorphic to w”*B for
some @": P> — P because all the morphisms A*Q¥ , , > A2Q¥ , , are obtained as pull-
backs from a morphism A4Q* — A2Q*. In the same way every small deformation of
w*E = E, , , is isomorphic to ”*E for some »".

Remark 3.12. There is a simpler proof of corollary 3.11 without using theorem
3.10, following the lines of [DS].

4. Proof of theorems B, C, D, E, F

Theorem 4.1. Let E = E, ., be a relation bundle coming as pullback over C°®\0.
Then h°(E(t)) #+ 0 if and only if min{2y —a—28,3y —20—4B} < t.

Proof. By theorem 2.15 it is easy to check that h°(E(¢)) # 0 if and only if
RO(I*2 9 (=37 + ) @ T2 W (=2y+ 1)) £ 0.

Now consider that the sum of the degree in the Young diagram (according to (0.2))

a+p|a+p

—o

is a + 2 B, while the sum of the degrees in
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a+B |a+pB | a+p | a+p

is 2a+4p.
Proof of theorem B. (i) = (ii) is well known.

(i) = (iii). If 3y —2a—4B <0 then h°(E,,,) 0 and h°(E¥,,) +0 from the
theorem 4.1.

(iii) = (). If 3y —2a—4p>0 then h°(E, ;,) =0 and
h°(N%E, ;) = h°(E};,) =0
from the theorem 4.1 (recall that we have always 2y — o — 2 > 0).

Corollary 4.2. Let E be a relation bundle coming as pullback over C8\0. The
following are equivalent:

() E is semistable,

(i) 3y—2a—4p2=20.

Remark 4.3. In particular h°(E,,_, ,(—t+4)) + 0 for ¢ =1, hence the bundles
E, -1, are “strongly unstable” for ¢ > 0. On the other side the pullback bundles E, , ,
satisfy h°(E, o.,(¢)) = 0, so they are “strongly stable” for ¢ > 0.

Theorem C is immediate from theorem A and from theorem B.

Proof of theorem D. We apply theorem B and corollary 4.2. Choosing o = n — 3,
p=n,y=2n—2 for n >3 we have

3y—2a—48=0,
c, =372+ 4af—4(@@+p)*=12(n-2).

Choosing a =n—2,8=n,y=2n—1 for n =2 we have
3y—2a—4f=1, c,=12(n—-1)—-1.
Choosing &« = n—1, f =n, y =2n for n =1 we have
3y—2a—48=2, c,=12n—4.
Choosing & = f=n,y =2n+1 for n 2 0 we have

3y—20—4=3, c,=12n+3.
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Remark 4.4. For c, = 24 there is no stable E, ; , while for c, =12 E, , , is stable.
By using a computer to check the values of k£ such that a stable E, ; , exists with ¢, = 12k
we can see that for £ < 100 the only gaps are k = 2, 10, 14, 26, 34, 70.

Remark 4.5. There is no semistable E, ; , with ¢, = 0.

Proof of theorem E. Every relation bundle coming as pullback over C%\0 deter-
mines a unique lambda-three bundle, hence, by lemma 3.4, it determines a unique weighted
quotient bundle. Then it is sufficient so show that for a fixed second Chern class
392 + 4apf — 4(a + B)* we can find «, B, y satisfying a + B < y such that

S, B,7)=h(H ) — h°(H ® H) + h°(N°H Q@ H (7)) — h°*(N°H ® #(—27))
(see corollary 3.2) is arbitrarily big.
Starting from an integral solution (a,, B, 7o) of the equation

392 +4af —4(+p)2 =t

(it exists by [Hor2], prop.4.4, see also the proof of theorem D) we can check with easy
computations that (a,, ,, 7,) is an integral solution for every even n, where

an=a0,

ﬂ,.=<4 b l£vo)(?-ﬂf)" (9‘; b l?v)(Z—l/?)",
=<l§ao+l?ﬁo+%°)(2+l/§)"+( ﬁao @B0+229>(2—1/3)".

0
6 3
In order to see whether this solution is integral, we remind that
V3[R +)/3)-@2~)/3)]1=0@mod6) VneN,
Q+ 1/5)" +2- [/5)" = 0(mod4) for everyevenn.
It’s straightforwardly verifiable: if n > 0 then o, + f, <7, and
lim S @5 Bus ¥a) = + 0,

g.e.d.

Proposition 4.6. If two relation bundles E, ; , and E,, 4. . defined by two lambda-
three bundles B, g, and B, 4. .., as in the statement of lemma 3.4, are isomorphic then

(a’ﬂa'y)—(aaﬂ )

Proof. Every relation bundle determines a unique lambda-three bundle, hence, by
lemma 3.4 and by our assumption, it determines a unique weighted quotient bundle. The
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result follows because from the minimal resolution (2.3) of Q% , we can recover the
integers «, B, y.

Proposition 4.7. Let E, ; , and E, ;. .. be two stable relation bundles coming as

pullbacks from C®\O with (a, B,7) + (&, B,y'). They determine two different irreducible
components in the moduli space.

Proof. By the theorem 3.10 and the proposition 4.6.

Proof of theorem F. We can apply the prop. 4.7. We will prove a little bit more, that
is, that the number of components goes to infinity even in the range where Q is stable. We
will prove that the number

N@®):=#{(a,B,7)|3y* +4af—4@+f)>=t,y> Sa+ 58}

satisfies limsup N(#) = + oo. Let ¢, x, be such that
1+2e¢ 1
8e <27 and x-In 1+; =1—¢ for x2x,.

It is sufficient to check that if x = x, then

#{(@ B,7)|372 +4af—4(a+B)? =12x*(x + 1)*,7> Sa + 58} = ’g‘ _2.

. x x
For every integer a such that - < a < 3 we set

A-B
A= (x+177%% B=x*"(x+1)% a=f=""—, y=A+B.

These choices of a are at least % — 2. Now, we observe that in order to have «, f nonne-
gative we need A = B which is equivalent to (x + 1)*~ 2% 2 x*~ 2 which is satisfied because
as —;.We have

392+ 4af—4(a+p)> =3(4+B)*+(A4— B> —4(4— B)? =12AB =12(x + 1)*x*
as we wanted.

The inequality S« + 58 < y remains to be checked. It is equivalent to 24 < 3 B, that is

x—a ! a x 1 2a
(x+1> <§<x————+1> or <1+1> <§(1+—> .
x 2 X X 2 X
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3 1 2a
It is sufficient to verify e = 3 (1 + —) that is
X

InQ2e/3)

2e 1
—_— < — (R N S —
ln3 =2aln(1+x>, 2 S +1/3)

In(2¢/3)

_Int<e/>) .. ] ] .
2In(1 +1/%) and this is true by the choices of ¢ and x,

. . X
It is sufficient to check 3 =
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