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Seme Extensions of Horrecks Criterion to Vector Bundles
on Grassmannians and Quadries (%),

GIORGIO OTTAVIANI (**)

Sumwmary. — In this paper we prove that a vector bundle B on a grassmannion {(resp. on a guadrio)
splits as a direct sum of line bundles if and only if ceréain cohomology grouwps inwvolving B
and the quolient bundle (vesp. the spinor bundle) are zero. When vank B = 2 o beller ori-
terion is oblained considering only finilely many suitably chosen cohomology groups.

A well known criterion of Horrocks {[13], [14], [17]) says that a vector bundle ¥
on the complex projective space P- splits (i.e. is isomorphic to a direct sum of line
bundles) if and only if the cohomology groups H(P?, KE(t)) are zero for 0 < i< n =
= dim P* and for all i< Z, where H(f) denotes F 0(38 Opalt).

o

Let Gr (k, n) be the Grassmannian of linear k-planes in P+ and let ¢, b€ the
smooth quadrie hypersurface in Pr+i,

In this paper we obtain some extensions of Horrocks criterion and some related |
regult on Gr (k, ») and Q. -

Gr (k, ») and @, (#:=3) are the simplesb rational homogenecous manifolds of rank
one [23] besides P,

Most of the results contained in this paper have been announced in [19].

I wigh to thank Prof. V. AWcoN4, who posed to me this problem, for all hig
eneouragement and for many helpful conversations.

The paper iz divided as follows.

In section 1 we fix basic notations and in particular we recall the Bott theorem
for homogeneous vector bundles on Grassmanniang.

In section 2 onr main result is theorem 2.1. In particular we have the following
splitting criterion:

Let E be a vector bundle on Gr (%, »). Then F splits if and only if

H{Gr (b, 2y, AQ*® - @ AP @EB) =0 Vi, oy ?,
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such that 0<iy, .., f,<n— k& s<k; Yie Z; ¥i such that 0 <i<(k+ L){n— k) =
= dim Gr (¥, n) Wwhere ¢ = quotient bandle on Gr (k, n}, §* = dual of Q.

When k=0 or t=n—1 then Gr (% n) = P* and we get exactly fhe Hor-
rocks criterion. Obviously in the statement above we can replace §* by € (it is suf-
ficient to apply Serre duality and observe that ¥ splits if and only if £% gplits).

Then we specialize to the case: rank F = 2. In this case, by a simple argument
involving the Koszul complex of & line in the Grassmannian, we are able to prove
that the bundle F is uniform when fnitely many suitably chosen echomelogy groups
are zero {theorsm 2.9}, On the projective plane this result was proved in [18]. Uni-
form 2-bundles on OGrassmannians have been classified by Van pE Ve [24] and
GuyoT [11]. So our result implies a strong improvement of the splitding eriterion
quoted above. When the Gragsmannian is a projective space, we get another proof
of a result of Chiantini and Valabrega [7].

In section 3 we use some results from [20]. In [20] we have defined some vector
bundles on the quadric @, whick are the natural generalization of the universal
bundle and the dual of the guotient bundle on @, ~ Gr(1,3). We have called
them spinor bundles.

Spinor bundles appear in the main result of this section which is theorem 3.3.

In particular we have the following splitting criterion:

Let ¥ be a vector bundle on @, (n>3), let 8 be a spinor bundle on Q,, Then #
splits if and only if

HiQ.,, Bi)) =0 for 2<ign—1
H(Q,, SQEH) =0 for I<i<n—2, foralltcZ.

Wken rank B = 2, the analog of theorem 2.9 for quadrics is theorem 3.8.

1. — Notations and preliminaries.

For basie facts about veetor bundles we refer to [17]. When X = Gr (k, ») or
X =@, (n=3) we have Pic (Gr (k, n)) = Pic(Q,) = Z. So it is natural to keep
the notation B(t) = F () Ox( for te Z when E is a vecbor bundle on a Grassmannian
or on & quadrie. Ox

The first Chern class of & can be considered as an integer.

We use the definition of stabiliby of Mumford-Takemote.

We denote by &* the dual of the vector bundle E.

If Z is a subvariety of X we denotfe E® 9, by E|,. 3;is the ideal sheaf of Z.

If F is a sheaf on- X, we denote by hz(p) the dimension of the complex vechor
space HYX, 7). We shall need the. fo]lowmg lemma:

Ienwa 1.3, — (i) Let
0= dy> > 4> B0

be an exacht gequence nf ‘sheaves on a va,nety X, et # be an integer 0.
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If F+-3{X, A,) =0 for $=1, ., n then AYX;B)y== 0w . = -
. (ii) Led

,_,,, -0"—>A %- ..%‘A1—+B-—>O )

9._>A —-e-,..—>—A —>.B’—>—O

be two exact sequences of sheaves on a variety X.

Tf
HiX, 4) =0 for ¢=1,..,n—2
and
Hri(X, 4,) =0 or HvYX, A, ) =0
then '

Ho(B) = HB').

Proor. — We get (i} cubting the sequence into short exact sequences, or by a

spectral argnment.
Curting the first sequence of (ii) into short exact sequences, we get:

(1) 0> Kera, -4, B0
(2} - 0 +Kera, > A, > Kera, >0

_and so on until: 0 > 4, A,., — Coker (a,) —> 0. Then

MB) = (ﬁ’om (1))

= ho(A;) — R*(Ker a,) + h'(Kera;} = (from (2)}

= h"( 1) — Bolds) 4 (ALY + h(Ker a) — hH{Ker ay) + A (Ker a,) .
Thus, after » steps, we get h(B) as a sum involving only some echomology groups
of the sheaves A, (in fact Ker g, = A,z)

This gives the thesis.
In the case (ii) of lemma 1.1 we can prove in the same way a little more:

Lumvra 1.2, - Lt

(37) ' 0-+4,% . >4,% B0
(3id) , ' 0 >4, % . > 4,5 B 50

be two exact sequences of sheaves on a variety X.



320 GIORGIO OTTAVIANI: Some extensions of Horrocks oriterion, elo.

Then:

fi—%
(h*(B) — RO(B'}| < 3, W(44)

=1

B(B) — MBS WA 4 hX(d,).
3= 4

Proor. — Set yi(F) = E (—1 hf(}_?') for a sheaf F.

Then, eutting (3i) and (311) inte short exach sequences a8 in lemma 1.1 we have:

W(B) — h(B') < y{Ker a,) — x*{Ker a,) + hH{4,)
and:

yi(&er o)) — yi(Ker as)< g H{Eer ag) — g (Ker a,,) -+ B {4,0)

fori=1,..,n—1.
The same inequalities are true interchanging a, and a;.
As Ker ¢y = Kera, ;= A,, it follows that

B(B) — BB <3 B(A) .
i=1

In the same way we can prove the other inequalify.

On the Grassmannian Gr (k, ») we have the canonical exact sequence
(4) 08 =08 5@ 0.

The universal bundle § has rank & 4- 1, the quotient bundle ¢ has rank n— k.
We have 6(8)=—1, ¢(Q)= -+ 1. Considering the isomorphism Gr (&, n) ~
~ Gr (n — k— 1, n), the canonical exact sequence on Gr (%m kE— 1, n} iz the dunal

sequence of (4).
We consider Gr (&, ») as the complex homogeneous manifold SL(n - 1}/P where

P= {{:1 2 ] e 8L(n +1): hye GL{E + 1}} (see [26]) .

8ln +1)={de Mn + 1): tr A = 0} is the simple Lie algebra of SL(n + 1)
and = {de8l(n +1): 4 is diagonal} is a Cartan subalgebra of 3l(n -+ 1).

Let e;egl{in + 1) be the matrix with the (¢, §) entry equal to 1 and all other
entries equal to zero, {z,} the dual basis of {ey}, Then: @:= €y5— o 0T
i=1,..,n give o basis for . We call 2, ..., 3, €H* the dual basis of @y, ..., %
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and sef

7 r &
®= €1 Gy €HF

It is woll kriown that (A, %) = 8, where 1/(2(n - 1))(, ) is the Killing form'in h*
and §;; is the Eronecker symbol. ' )
Cyy ooy 0, Eives 2 basis of the root system @ of 8[(n L 1) with respect to Y.

Tt is well known that @ = @+ U ¢~ where

Dt = {Oti-f— Olsry + on Ot 1<?:\<H?.<\%}

ig the set of positive roots and ¢ = — @O+

A weight 2= 3 n;4; {n;€ Z) is called singular if (4, «) =0 for at least ome
i=1

« € @, and regular with index p if it is nob singular and there exists exactly p roofs

o & @+ such that (1, ¢} << 0. We set: 6= 1L=4%2

i=1 wedt
A homogeneous vector bundle #, of rank r on Gr (k, n) = SL(n -|- 1)/P is by
definition. & bundle arising from # representation g: P — GL(r). In particular a
homogeneous bundle satisfies the condition: j*H, = K, Vfe Aut (Gr (k, n))?, where
At (Gr (k, »))® is the connected component of the group of all antomorphisms of
Gr (%, n). :
We recall the fundamental theorem of Bott (5], th. IV, [26])

TremoREM (Bott), ~ Let F, be a homogeneous vector ‘bundle on Gr {k, m) ~
~ 8T(n + 1)/P, defined by an irreducible representation g, and let 4 be the highest
weight of Do: p— gl(r). ' :

(iy I 1+ 8 is singular them Hi(Gr (k, n), B,) = 0 Vi. _
(i) It 24 6 is regular with index p then HYGr (k, n), EQ) =0 for all is£p

and the dimension of H»{Gr (k, n), B,) is the dimension of the representafion of
8i(m 4 1) with highest weight s(4 -}~ 6)— 6. Here, (i -]- 8) denoctes the unignely
determined element of the Weyl chamber of 3{(n -~ 1) which i3 econgruent to A - 8
under the action of the Weyl group of reflections r, with respeet to the hyperplane
orthogonal to «,. _]
We have .

As LB

rilh) = { Ay it Ay B =7

where we set 2.-,= Anty= 0.

The bundle AQ (i-th exterior power of Q) belongs to the irreducible representa-
tion with highest weight A;.
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TEanra 1.3, — Let 0 < i< dim Gr (&, n) = (&£ + 1}(n — &)
If s<k

HiGr (&, n),;\‘Q® ®;\ Q) =0 VieZ, for 0<iy,..,5,<n— %k

C if ?;1:'...1“1:;‘_5.1:?.;
iy a1 ﬁz——-’?’b—{—j—l;
Hi(Gr (b, 2, AQ® . QA Q) = i = —k— (k1) for 0<j<<n— k3

'[ 0  otherwise

h is
ProoF. — The bundle A @& ...GOA G belongs to a repregenfation not irreducible
but fully reducible. In fact § is given by the representation

P - GLin—k)
hy O
[h3 h.;] —
which is & surjeetive projection. So we limit ourselves to studying the representa-

tions belonging to A @& ...& /\ Q as GL{n — k)-representations (Le. homomorfphisms
GL{n— k) = Aut (V), V a vector space). '
The bundle @ belongs to the standard representation ¢ of GL(n— k) and

4y is i1 iy
AR ...\ Q belongs to Ae®..® A g By Littlewood-Richardson rule we can
decompose these representations info a direct sum with each summand isomorphie
to Q™™ for gome #;3>...3»#M,. We have found in [4] (pag. 879) a clear explana-
tion of how to handle Littlewood-Richardson rule. '

‘We consider Q™™ ag a bundle on Gr (&, »). It corregponds fo a Young diagram
with the ¢-th row given by », elements.

i times i

In parbienlar QLimmt — AQ, Q= 87Q (p-th symmetric power of ). As
’ n—ik .
det @ = A @ = O(1), we have:

ft— k-t times

'Qn”""n’(t) — Qﬂ1+i,...,ﬂr—1—£, | JA .

It is convenient o seb n,= 0 for <> r.
If @Preeo™ jg g direct summand of /\Q@...@/\Q then n<($ ¥i. This follows
by Littlewood-Richardson rule. In fact A Q corresponds to a Young diagram with 7,

41 ia -
rows each of them with only one element. AQ® AQ decomposes in some summands,
e-ch of them corresponds to a Young diagram consisting of rows with at most two

clements.
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Thus, /I\Q @ AQ decomposes into swmmands, each corvesponding to a Young
diagram eon51st1ng of rows with at most s elements.

Tt is well known that the highest weight of the irreducible. represeniation Q““
is A= Aylm— ) F As(na— ng) 4 oo Ao A reference for this fact is [12] theo-

" rem AT, where ki3, in our notatlon, equal o A;— Apqi - ,
Observe that r<n— k= rank Q. We recall that the hne bundle a(t) (ted)

belongs to the representation with highest weight 17 IR

et first s<k Then m,<k, in particular n;— %<k Then we claim that
A td. .-+ 6 is a singular weight for —n — n<i<—1— ni, iz regular of index 0
for t>— n,, is regular of index (b | 1){n — &} for tg—n — fy— 1.

Tor, let first — »— my<i<— # - k— n;. Then,

(fl + t/‘{-n—k + a: GCI."|_ Lo + OC_z_"‘) i (;!') Oc1_l_ s + a—#wnl) +
-+ (tl'n—kj o+ . Oﬂ—t—nl) + (Gt . F (x—t——ﬂl) =m+tt(—i— #,) = 0,

so that 2 - tAns 1 O is singular.
Let now — # + kb — #,+ 1<t<— 1 — n,. Consider the following decreasing se-

quence of integers:

&y = (2'+t;{nfk+ 6,0(1+...—[— fxn_k):nl+t+ﬂ—'—k
ty 1=+ At S ot b o) = M+ T 0 — E—1

Gporet== (A g+ 8, Otns) = My -1

We have _ - _
0Oy — ;=M — B+ 1< 1+ 1

By hypothesis: @, 1, @, <0, Let a4, be thé first elemeﬁt of the sequence which
is nonpositive. Then a;3>1, so that:

— k<<,
Thus

(]' + tln—k+ 5: OC:F+1+ e + ‘xﬂ—k—aﬁl) = {l + tlnfk + 67 ity + + ‘xn-k) +

—&it1 —d&iv1

+ Z (A + thoi+ 0, oits) = iy z 1=t Ga=0,

so that A 4 $3,—. -+ 8 iz singular.

It»— n,, then (A 4+ i3, + 6, ) >0 for each «e& @+, so that A | tAsn—+ o
is regular of index 0 {for all s). X t<—n—n;—1, then (A tdpp+ 8,2) <0
exactly for « = oy + ... -F a; with 1<@<4«,.,_, k< j<n, and positive otherwise. Then
A+ td, g+ 0 i regular of index (k+ 1)(n— %) (for all s}
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Thus, if s<k, we get the result from Bott theorem.

If s =%+ 1, we point out that when — #n — m<i<— 1 — n, the proof above
shows that A | 1, -+ § is singular for e+ — &k — 1.

When o, — — k—1, then a,=1 and

By~ A=K+ 1,

80 that the corresponding Young diagram has a row with exactly & + 1 clements

more than the above one.
After twisting by some line bundle, the corresponding bundle Q™" satisfies

the condition:
{ O<n,<k+1 Vi

t ! -
Loy — =51

go that

o — E+1 0 lisg
o0 i+1<i

K

k+1 Simes

A R 7
Qro---" ig then a direet snmmand of AGR .0 A €.
Consider the- corresponding weight:

A= (E+1) 2+ th,, with teZ.

When ¢ changes, A+ 6 is regular of index different from 0, (k¥ + 1)(»— k) only
when ¢t = —n 4 §j— 1, and in this case ((k 1A+ (—n+j— 1 s+ 6,20 <0
exactly when o = o+ ety 4 oo o, with § + 1<i<n— k<p<n, g0 that the
index of (b + 1) s (= a4 j— 1) oo+ 8 18 (n— & — §)(k +1).
By applying Bott theorem again, it remains only to show that (k4 1)4;-f-
4 (—n -+ j—1YA, -+ & is congruent to & under the action of the Weyl group.
This is explained by the following example:

Let » =6, k= 2, j =1 so that:
(b +1) A (— 2 4 j— DdgosF 8 = 42+ hab Ja— Bh+ Aot Ao
We appiy to this Weight ) Sequeﬁce of reflections (elements of the Weyl group)
oblaining:
(apply 7a): 44+ L— 4i, 52, — 44, Ay
step 1).1 (apply ro): 4h -+ Aa— 4A, 4+ Ach 44— 34,
(apply #g): 44,4+ l— 4+ A A+ 34
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(apply vy): 44— 834+ 41, — 34,4+ A1 34
step 2) 4 (apply 7): 4k — 34+ A+ 32— 24+ 34
(apply 70): Ak— 3kt At Ak 2kt A
(Gpply 7a): A 3h— 2h b Ak 2t
step 3) { (apply #): A+ At 23hL— AL+24L+ A&
{apply 7 A A+ L+ AR A A=4.

L

In general, if j =n — k the claim iz obvious.
I j<n-—k we apply to (k- 1044 (— PO g 1)}_,,_,;+ & the following se-
quence of reflections:

gtep 1) %',,o...oo*ﬁ_kﬂor,.“k (this is sufficient if § = »— &~ 1)
step 2) rn_lo...orﬂvkc{n_k_l (this is sufficlent if § =n— k— 2)

step #— k—17) Tir10.. 07420 4.

In the end we obtain §, as the reader ean convince himself.
This completes the proof of lemma 1.3.
As a corollary of lemma 1.3 we get the fo]lowmg well known, statement (look

at the duality Gr(k, ») = Gr (n— k-1, n)):

‘Prop. 1.4. — Let 0 < ¢ < dim Gr (&, #)

(i) We have Hi(Gr (k;n), 0()) = 0 Vie Z

- C k=0t=—ni=n=~1
(iiy Hi{(Gr.(k, n), Q1)) = ‘{0 othenfvise .

. X C kE=n—1, fosmm, b= m—1
HH{Gr (k, n), 8*(3)) = {0 otherwise !

2. — Splitting criteria on Grassmannians,

Consider now the problem of finding some cohomological conditions for a vector
bundle ¥ on Gr (k, n) that are equivalent to the splitting of #.

By prop. 1.4 we get that the condition H!(Gr {k, n), B(¥) — 0 for all t& 2, for
0 < ¢ <t dim Gr {k, n) is always necessary but is sufficient only when the Crass-
mannian Gr (k, ») is isomorphie to a projective space (le. k==0, n—1). So it ig
natural to look for more vanishing eonditions. )

The answer i3 given by the following theorem.
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TeErOREM 2.1. — Let B be a vector bundie on Gr (&, n).
The following conditions are equivalent:

a) E splits

b)) HGr (B m)y AQES @ N B = 0 Vi, ..., 4, stich that 0y, .., 6,
<n—k, s<k, Vi Z, Vi: 0 <t << (k| 1){n — k) = dim Gz (k, »)

¢) H{Gr (k, n), /\Q*®~--®RQ*®E(t)) =0, YE€ Z, Viyy .., 4,1 &b

8 3 .
St < ¥ by dim Grk—s;n—s)
=1 - . T

n=1. ®

0<@.7 Ogi]_,...,éséﬂ"—"k
: . i
where we set, \@*= 04, dim Gr(p,q) =0 if p <0,
PrOOF. ~ @) =-b) It follows from lemma 1.3 and Serre duality as cohomology
commutes with direct sums. ' :

B) =-¢) is frivial, becanse if s > % condition ¢} is empty.

0) = a} The proof is by induction on % and follows the pattern of the proof
of Horrocks criterion given in [3].

For % == 0 the implication is exactly the Horrocks criterion on P~ Congider
now a generic seetion s of § (@ is globally geixeiafed): it has zero loous Z
=~ Gr(k—1,n—1). Observe that ¢{; ~ @,. The first step in our proof is to show
that E[; splits. In order fo uwse the induction hypothesis, we claim that

’.1 i’ i1 . .V -
H(Z,NPR..QNQRED,) =0, VicZ, Vi..jf,isb:
. | 2inti < > iut HmGr(k—1—s,n—1—"s)
>0,
For, we consider the Koszul complex of s, alter tensoring it by B{E):

n—k—1

n—Fk
B 0> ANQREW) > A QPR EE > .. >
- AQ*®@ B Q@ Et) > E(t)]:-> 0.

This sequence is éxact,

We tensor (5) by RQ*@...@ /j\Q*

Our hypothesis together with lemma 1.1, (i) proves our claim. So we can’ con-
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struct a splitting bundle # on Gr (k) and 2 isomorphism ot F—[Z—>Efz, tty E
e T Z, (F*® B)|2). -

Qur second step is to show that o oan be extended to an 1somorphzsm
o HYGr (k, n), F*® B). The 7obstruotion to t}lls__eX_uenSI_OJ}__ lies in HYGr (%, n),
IR TR E). : : e T

The Koszul complex of s gives an exaot sequence:

n—k 2
(6} 0—+l/\Q*—>...—>/\Q*——>Q*-+Jz——>O,

We tensor (6) by F* @ K.
Our hypothesis together with lemma 1.1, (i) gives:

Hi(Gr (By n), Q@ FF@E) = 0.

Then there exists a morphism z: B — B, and then & morphism: det o det F —
— (et #. We cbiain
det o« ¢ HY{Gr (B, n), (det F)* @ det B) =
= H°(Gr (k, n), O{e:(B) — o)) = H(Gr (b, 7}, Ogm) = C -

Then det « is a constant; as it is nonzero on Z, it is nonzero everywhere on Gr (&, %).
Thus « must be an isomorphism. qe d.

RE\IABK 2. 2 - Theorem 5.1 is useful it k + 1<% — Fc O’shermse We can perform
the duality OGr {n — k—1,%) = Gr (k, ») and use the dual of theorem 2.1 with §

at the place of g*.

Remsrk 2.3. — The oomputation in Iemma 1.3fors==% + 1 shows that the bound
s<k in (b) of theorem 2.1 iy sharp.

TWXAMPLE 2.4, — Liet B be a vector bundle on Gr (1, 4} Theorem 2:1 gays that #

splits if and only if:
Ii(Gr (1,4), B{) =0 for 1<i<h, for all e 2
Hi{Gr (1, 4), @*®.E(®)) = 0 for 1<i<8, for all teZ

2 .
Hi{Gr (1, 4), AP @ E@)) =0 for 2<i<s, for all teZ.

On Gr (1, 3) = @, a better criterion will be found in section 3 (Gheorem 3.3).
Evans and Grreerea have proved in [8], th. 2.4, that if ¥ i3 a vector bundie on P
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and H#P» E{t)) = 0 for all te Z, for all £ such that 0 < ¢ < rank B, then F splits.
This improves Horrocks criterion when rank # ig smail.
Using the result of Bvans and @riffith, by & proof similar to that of theorem 2. 1,

we obtain the following:
THEEOREM 2.5..— Let & be & vechor h_undle on Gr (&, #). The following conditions

are equivalend:

a) E splits
i s
by Hi(Gr (B, n), AOF®R ... A @*& B(t)) = 0 for all teZ, Vi, ..., 4,, 1 such that:

E@ngt < E%-I" min {rank ¥, dim Gr (k— s, n — )}

n=1 B

0<e, 00y, 0yt — k.
We recall now that Horrocks gave the following characterization of the bundle A Q%
on P (recall that @ ~ TP+(—1) = (2(1))* on Pr):
B~ (;\ Q%)% i and only # (n>2):
B does not contain any line subbundle as direct summand, and

H{(P* B

C =, i
®) Q{O otherwise. -

We obtain the following result (for %32) exaetly in the same way we obtained
theorem 2.1:

THEOREM 2.6. — Let j such that 1<j<n — k— 1, and let k=2, Lét E be a veetor
bundle on Gr (%, »). The following conditions are equivalent:

a) B =~ (;\ 9+

b} E does not confain any line subbundle as divect summand and:

0 ¥iy, wvy %, Such that s<k,
0<tyy ey bysn— k, for all te Z,
Vi: 0 < i< dim Gr (&, »)
with the only exception s = £,

H(Gr (5 ), A Q*® . @ A §* @ Bl)) = P
b=
G o — =i, 8=k

t=jk+1), t=—1;



GIORGIO OTTAVIANT: Some extensions of Horvocks criterion, ete. 329

¢} B does nobt conbain any line subbundle as direct summand and:

(G (b 1y A Q5D e @ A Q*@ BEH) =0 Vi, vy iy, i such that:
S i< 3, dim Gr (h— 5, m - ) R
n=1 .

fi=1
0<i, 0y, ony st — K,

with the only exception s =k, 4y=...= %, =1}, t=jk-1) t=—14

% times

i i .
HE(Gr (5 2) AP R @ NFRE(— D) =€
i n—k—j
HiGr (b n), A@*® A Q*@E)=0 fori<i<n—Fk.

. A—k-1

REMARK 2.7. — As @ ~ A @Q%1), theorem 2.6 gives also a cohomological char-
acterization of the quotient bundle. _ ' n

From now on, we specialize to the case rank § = 2. We poinb ont that in this
case: F* ot B(— o(B)), regarding ¢ (H) as an integer.

It is well known that if I is a line on Gr (%, #) (Le. a Sehubert cycle of dimen-
sion 1, consisting of all P* such that P§~'c PFc Pi*' with Py~ Pi! fixed sub-
spaces of Pn) then H|, ~ O,(p)@ O:(g) with p + ¢= o (B).

When p, g do not depend on the line 7, the bundle # is called uniform: VAN DE
VeN[24] and Goyvor [11] have shown that uniform 2-bundles always split on Gr (&, )
(n>3), except in the ¢ase k = 1 when also the 2-bundle S} is wniform, and & =
= #— 2 when also the 2-bundle @(f) is uniform.

Let us consider the bundle

F — Q@I:@ O(l)®n-k—1

F is a globally generated vector bundle of rank (k 4+ 1) — k) — 1. Note that
des F = O(n—1) o :

A generic section of F' vanishes on a line 1, and the fellowing Koszul complex
is exact (we set d = (& -+ 1{n — k)):

d—1

(1) 0 o> A F* > o> | F% o> I% > 0, — 0; -5 0,

We recall also that Swisting by O(f), we can suppose thatb ¢, {H) =0 or
6. (#) = — 1. In fact B is uniform if and only if B(f) is uniform. A 2-bundle with
6,(B) = 0 or — 1 is called normalized.

Observe that an iterated application of the canonical decomposition

1+ i f#—i
AA®B) =D (ANA® A B), where 4, B are vector spaccs,

i=0
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shows that A #* iz the direet sum of some bundles isomorphie fo
T T . k
AR @ ANQHZr—1) with 0< > <t

=1 i=1

Lemwa 2.8, — On Gr (1,n), we have, for all 4,7 such that 0<C¢<2n— 2,
1<jcn— 2, for all te Z:

HiGr 3, n), ;\ Q*@ 8{H)) =0
with the only exceptions:
HY{Gr (1, n), Q*@IS) ~ H>3(Gr (1, n),ﬂ/_\zQ*@) S1—mn))=C.

PrOOF. — It is convenient to use Serre duality first. Then the lemma is a stan-
dard application of Botb theorem.’_ In fact S* belongs to the irreducible representation
with highest weight ... )

We get the following

THEOREM 2.9. — Tet B be a normalized 2-bundle on: Gr (k, ») (n>3).
@)} If ¢(B) = 0, F splits if and only if either one of the following holds:
i—1
a) Hi(Gr (&, n), N\FF@E(— 1)) =0 for i=1,..,d— 2;
a'y Hi(Gr (b n), \ F*@ B(— 1)) = 0 for i =3, ..., d— 1.
(i) ¥f e,(B) = — 1, E splits if and only if either one of the following holds:
i1 Lo '
b) H{Gr (b, n), A FE@ B(—1)) = 0 for i =1, ..., d— 1;
V) H{Gr ik, n), A\F*@E) =0 for i=1,..,d—1
(i) It e(F) = —1, B splits or k=1 and ¥ ~ § if and only if either one of
' the following holds: :
i—1 '
b1) Hi(Gr (b, ), A F*@ B(— 1)) = 0 for i =1, ..., d— 2;
He3(Gr (k, n), B—n)) = 0
i
BL') Hi(Gx (b, ), A F*@ B) = 0 for 4 = 2, v, d— 15
HY(Gr{k, n), B) =0 '
(iv) I &{E) = —1, E is uniform if and only i either one of the following
holds:

- i1 .
o) BHGr ke, n), N\ FF@E) =0 for i =1,..,d— 1
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o) H{GE (F m), A F*@ B(— 1)) = 0 for i =1, ., d— 1

i—1
&) H{Gr (b, n), A\F*QB) =0 for i =1, .., d—2;
He G (b, n)y B(—n +1)) =0

&) H{Gr (k, n), ;\F*@)E(— 1)) = 0 for i = 2,‘..., d—1;
HY{(Gr (k, 1), B(— 1)} = 0

ProoF. — First observe that «) and o), b) and ') and so on, are equivalent
. i d—i—1

by Serre duality and by the isomorphism A ¥~ A F® det F* (we recall that
Fgypm = O(— n--1) is the canonical bundle).

Tf B aplits, all conditions hold by theorem 2.1. If k=1 and # =~ 8, condi-
tion 1) holds by lemms 2.8. If K is uniform, conditions ¢) and d) hold by theo-
rem 2.1 and lemma 2.8,

Let now ¢,(F) = 0. If a) holds, we want to show that & is uniform. We ten-
sor (7) by E(— 1). Then from our hypothesis and from lemma 1.1 (ii) we get thab
if 1, 7 are any two lines in Gr (%, n):

H{l, B(—1)|,} = Ho(Vy B{— L)) -

This means exactly that # iz uniform, N

Since the bundles S(t), @(t) have odd first Chern class, then they are not iso-
morphie to 7. So ¥ must split, as claimed.

Tt now e,(B) = — 1. The proof iy gimilar, but in order to show thab ¥ is uni-
form, it is sufficient to verify that:

8 _ H"(l, E];) == H“(l', E[;)
or:
(9) Ho(t, B(— 1)) = AT, B(— 1))

for ¥, ¥ any two lines in Gr (&, »). From by or b1) we get (9). From o) or day wo -
get (8). Tn case b) the possibilities B ~ § for k=1 or Ho~g*for b=n—1 are
excluded by lemmsa 2.8 and lemma 1.3.  q.e.d. _ ,

By the well Imown Hartshorne-Serre correspondence bebween vector bundles
of rank 2 and 2-codimensional subeanonical smooth subvarieties (see [25] theorem 2.1
and 2.2) we can state Theorem 2.9 in the following equivalent form {for simplicity
we gtate only the cases a), b) and b1)).

THEOREM 2.10. — Let X c Gr (&, ») be a smooth subvariety of codimension 2.
Suppose that Ky Ogp miadly for some aeZ (Lo X is a-subeanonieal).
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(iy If @ + » + 1 is even, then X is a complete intersection if and only if one
of the following holds:

-1 7 . -
a) Hf((}r(k, ) \ 5@ Jx(ﬁi;‘—l))= 0 fori=1,..,d—2

) Hf(Gr(k, n),;\zﬂ*@jz(ﬁ-?-:}-))x 0 fori=—2, .. d—2:

H (Gr (%, 1), Tz (‘er—f:i)) 0

(ii) If @ 4 n + 1 is odd, then X is a complete infersection if and ronly if one
of the following holds:

) Hf(Gr (&, m, \ T Jz(%#)): 0 fori—1.,d—2;
Hl(((}r, k), F*® I (& —; n)) =0

)Hf(Grkn )y \ QJX(““L'”’)) 0 fori=1,..,d—9;

Hi( Gr (K, n), Iz (9—4%_2)) =0

(iii) If & + # + 1 iz odd then X is a complete inﬁersection, or k=1 and X
is the zero locus of a section of 8(f) if and only if one of the following holds:

L B |
b1) Hf(ar{k,ﬂ),/\F*Qa Jx(w))= 0 fori—1,.,d—2;

2
Hl(Gr (&, ), Jx(“+“)) 0
b2) Hi((}r(k, n),f\F*@ Iz “+”)) for i=29,..,d—2;
n

B n(oren a1

Proo¥. — The normal bundle of X in Gr (k, ») extends to a 2-bundle F on Gr (k, »),
with ¢/(#) =a +n+ 1, Biy= Nxiaate,m
We have an exact seguence

Hl((}r {k, n), Jx(

16) 0=+, —>F=3de+n—1)—0.

We normalize B after twisting by O(— (& 4 » | 1)/2) when ¢4 n 41 is even,
and by O(— {&# + » + 2)/2) when @ -+ » | 1 is odd. Then, we can tensor (10) by




GIoRGIO OTTAVIANI: Some extensions of Horrocks eriierion, ete, 333

suitable wedge powers of F¥, and then we apply theorem 2.9, lemma 1.3 and Serre
duality.

REMARE 2.41. — When k= 0 or k = n— 1, the Grassmannian Gr (%, ») is iso-
morphic to the projeetive space P». In this case F*= O(— 1)®"~% and in theo-

k]
rems 2.9 and 2.10 we can read Op.{— ) in plise of A\ F=

Condition &} is exactly Cor. 1.8 (i) of [7] (our proof is different).

On P condifions b) and 1) of theorem 2.9 are equivalent {observe that in this
case we c_aQn ask that b or 51) be fulfilled only for ¢ =1, ..., [#/2] by Serre duality),
and are exactly Cor. 1.8 (il) of [T].

Oondition ¢) is weaker than Cor. 1.8 (iii) of [7].

Condition 4) is apparently new for a=4.

We want to point ouf the following

THEOREM 2.12 (Sommese). — Let X c Gr (k, ») be a smooth subvariety of codi-

~ mension 2. : :
If n>6 then Pic (X) is generated by the hyperplane section. In partieular X is

subeanonical.

Proor, — In [21] ((3.5) and (3.6.3)) is _proved that, if @ e X
7,(Gr (k,.fn), X, m) = 0 for j<n 4+ 1~ 2 codim X
Then, by the relative Hurewicz fheorem ([22] ch. 7 sect. 5.4)
HGr (k,n), X, Z) =0 for j<n +1-—2codim X .

By (10), cor. 23.14, it follows that H(Gr (k, n), X, Z) = 0 for j<n 4+ 1— 2 codim X.
So in our hypothesis H(Gr (k, n), X, Z) =0 for j<n— 3. As n>6, we get in
particular A7(Gr (%, n), X, Z) = 0 for j<3. From the exact eochomelogy sequence
of the pair (Gr (k, n), X) it follows that HY(X, Z) =0 and that HHX, Z)=Z is
generated by the hyperplane section. Observe that by Hodge decomposition
HYX, Og) = HYX, Oy) = 0. Now from the cohomology sequence associated to
the exponential sequence ' ' '

0>Z—>0,->0%=0

we get the result.
Let B be a 2-bundle and let Ic Gr (&, n) be a line. I EJ; = Oi(e}@ 0:(b) We

define, as usual:
1 i i
[ Elb—al if ¢(H) is even
4 { ) = {%([b —al + 1) if ¢(F) is odd

and d(F) := &,(B) for generic L
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TEROREM 2.13. — Let E be a 2-bundle on Gr (k,n). Let [, I' be any two lines on
Gr (k,n). Let F = Q%@ 0(1)9 %% Then the following inequalities hold:

(&) — du(B <2h1(1/\f*®}_5’ (1))
) — (B < S B T @ Bl -+ T2\ T @ B(R))
=1

for & &) (7E)

2 -

k+ + 1 <d{E).

Proor, — It is eagy to check that, if

o, (H)

(11) 1k+ +1} am),
then

R(BE)]) = d(B) + | [el(zE)] ey

Thus, for & in the range of (11} we have
ldl(E ey E)| = |ho(E(k)|B) - hﬂ(E(k)!l)l .

Now it is sufficlent fo look at the Koszul complexes of 7 (Whmh is (7)) and ' and
apply lemmma 1.2, - .

RuyARK 2,14, ~ If ¢ is the minimum integer such that A{H(s)) == 0, then
_ [‘"’l(f)] — s <d(H) < B)

for each line #.c Gr (k, #). This means that when & is «very unstable» (ie. s <0)
then the inequalities of theorem 2.13 hold for k in a wide range. Observe that
when B is net uniform, the theorem says that the right-hand sides of the inequal-

ities are neonzero.

3. — Splitting criteria on quadries.

We recall now from [261 the definition and some properties of spiner bundles ongl,.

Let 8: be the spinor variety which parametrizes the fa-mily of (k—1)-planes
in Q. or one of the two disjoint families of k-planes in Q.

We have dim 8,= (k(k + 1))/2, Pic (8:) = Z and k(S,, O(1)) = 2* Spinor va-
rieties are rational homogeneous manifolds of rank 1[23]. When n=2k—1 i3
odd, consider Yz eQy , the variety {P*1e Gr (k- 1,2k) lee™1c Qoy}. This va-
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riety is isomorphie to 8, , and we denote it by (8-1).. Then we have » natural
embedding
' (Sem1)e 2> S

Considering the linear spaces spanned by these varieties, we have Vo e Qup a
natural inelusion H¥Se—)., O(1))* = H(S:, O(1)}* and then an embedding

61 Qpyy > G (21— 1, 2% 1) .
In the same way, when # — 2% is even, we have two embeddings:

8"t Qoo — G (281 — 1, 2 1)
81 @y — Gr (22— 1, 2% — 1)

¥ U is the universal bundle of Gr (2¥1-1,2¥—1) we call

s* U the spinor bundle_s on Qg q

8T, ¢* U the two spinor bundles on @y .

As 8, = Py §,= P% it is easy to verily that on ¢, ~Gr(l,3) the two spinor
bundles are the universal bundle and the dual of the quotient bundle.

We summarize the results that we need in the following theorem {seé [20]
theorems 1.4 and 2.3).

TomorEM 3.1. — {i) Let &', 8" Dbe the spinor bundles on @u, let ¢: Quy — Qu
be a smooth hyperplane section. Then *8" ~¢*§"~ § spinor bundle on @.

(ii) Let 8§ be the spinor bundle on @iy, let 4: > Qunyy be a smoofh
hyperplane section. Then ¢*8 ~ §'® 8", -where §8,8" are the spinor bundles
On. oy

(iii}) Let 8 be a spinor bundle on @,
Then: L :
HiQ., S®)) =0 for 0 <<i<<n, forallieZ.’

Consider now the problem of finding some cohomological conditions for a vector
bundle F on @, (n>>3) that are equivalent to the splitting of #.
It is well known that if F splits on ¢, then:

12) Hi(Qny B)) =0 for 0<i<mn, YicZ.

As in the case of Grassmannians, by theorem 3.1 (i) we ge$ that condition (12)
is too weak to force H to split.
So also in this case it is natural to leok for more vanishing conditions.
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Tignea 3.2. — Let B be 2 vector bundle on §, (#>=3), let § be 2 spinor pundle
on §,. Then F gplits if and only if

H{Q,, Bt)) = H{(Q,, F@8(t)) =0 for 0<t<<n YicZ.

Proor. — Ii B splits, we have see that L7%(Q,, B(l)) = H @, B® S{t)) = 0 for
1<ign—1, for all te Z.

For the converse, we prove first the result on @;.

If I is 2 line on @, then [, splits by Grothendieck theorem, so there exisis
splitting bundle ¥ on ¢; and a isomorphism «: F|;— |, «eHY(l, (F*® B)).

‘We have the following exact sequence of sheaves on @, (it is the Koszul complex
of a section of 8%, § gpinor bundle on ¢):

(13) 0 > Ofel) >8osdyo>0.

The obstruction to extend « fto HYQ,, F*® F) les in HYQ,, F*R ER J;). We
tengor (13) by F*® ¥ and we obfaln the exact sequence:

0 >FFRE(1)>F*RQERS ->T*RE® I —=0.
Ag ¥ gplits, by hypothesis:
HY Qs F*@QER8) =0 HY Q) F*QB(—1)} =0
50 ﬁha.t_Hl(Qa,F*@)E@ I}y =0 and we can choose a homomorphism o': F - &
which restricts to « on I
As ¥ and H have the same first Chern class,
det o Hﬂ(Qs, e, (B) — '01(F))) = HYQ,,9) = C.
Ag deb e is nonzero on I, it must be nonzero everywhere. Then « is an iso-

morphism, 28 we wanted.
If n>38 the result follows by induction on n. In faect, if

AHQ o1, BE) = 0 for 1<ti<n, VieZ
Hi(Quir, B® S(®) =0 for 1<i<n, Vted

then from the exact sequences. on €, (€. is @ smooth hyperplane section):

0 = B — 1) > B) = B(D)|g, > 0

0 >Fi—1Q8 >ENR 8 >EHR 8, —~0 {for all teZ)
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and theorem 3.1 it follows that if §; is & spinor bundie on &, then:

Hi{(}n, Blg,(0)) = 0 for i<i<n—1 VieZ
AQ,, B Ko, (8) = 0 for li<n—1 VieZ.
By the induction hypothesis By, splits then there exists a spiitting bundle B on

@ty and a isomorphism «: Bl, — H|y . As in the previous cages, the vanishing of .
HYQ s, B(t)) ¥te Z allows fo extend « on @, in sueh a way that & splits.

CorortAary 3.3, — Let F be a veetor bundle on @, and let @, c @, be a smooth
plane section. Then H splits if a,nd_ only if ® IQ splits.

Proor. — Out @, with hyperplanes and use theorems 3.1, 3.2 and theorem B.
We can prove now our main resulf:

TamoreM 3.4, — Let & be a veetor bundle on ¢, (fn>3), Iet § be a gpinor bundle
on @,. Then X splits if and only if

(1) Hi(Q., E)) = 0 for 2<ign— 1 Vi Z;
(i) H{Qn, BRQ S()) = 0 for T<i<n— 2 Vie Z.
Proor. — 15 suffices to observe that in the proof of Theorem 3.2 the hypothesis

H=4Q,, #® 8()) = 0 i3 not needed and the hypothesis HY{@,, F(#)) = 0 is needed
only to prove that if 2|,  splits then also E splits, but this assured by Corollary 3.3.

Remark, — Lemma 3.2 follows also from the following result, proved by Kxox-
RER, BUCHWEITZ, GREUEL and SCEREIER in [6], [15] conj. B remark 2 with com-
pletely different techniques.

TerorEM 3.5. — Let H be a vector bundle on @,. HQ,, B{f)j=0for 0 <i<n
Vie Z if and only if ¥ is isomorphic to a direct sum of line bundles and spinor
bundles twistéd by some O) (for » == 2 the line bundles must be of type O, ).

Looking at the previous theorem, we can give an elementary proof of the weaker:

TeeoreM 3.6. — Let # be a vector bundle on §;,
(i) If n»3 and HiQ,, () = 0 for 1<i<n—1, Vte Z, then K is uniform.
{ii) If » = 2 and HY(Q,, B()) = 0 for all t¢ Z, then & is uniform separately
on each family of lines on .

PROOF. — Tet § be the spinor bundle on Q,. For each line I on. ¢, there is a
section of §* which vanishes exactly on . For any two lines I, I’ tensoring by ()
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the respective Koszul complexes, we get fhe exach sequences:
L0 HE— 1) - S H(t) - B — HE), >0,
0 > Bt 1) - 8@ B{l) — B(t)— B(f)}, — 0.

Considering ¢ asgociated exact sequences of cohomology gromps, it is an easy
matter to check from our hypothesis that (see lemma 1.1 {ii)):

H{l, Bo)],)) =~ BV, B@)) VieZ.

This means exaectly that F iz uniform, as we wanted.
For n3 the result follows by induction on » using the fact that a bundle on 4,

which i uniform on every smooth hyperplane section is aniform.
For # = 2 the proof iz similar.

We now specialize fo the case: rank F = 2.
TEEOREM 3.7. — Let F be a 2-bundle on §,, #>3, let § be a spinor bundle.
(@) I a(B) =0, E splits if and only if
HiQ,, B(—i)) =0 for 1<@<E] .
(B Tfe,(B) = -— 1, B splits if and only if
T4 Qq, B(—4)) = 0 for Igign— 2
H{Q,, Bl i+ 1)®8) =0 for 2<i<n—1.
(¢} I¥ ¢(B) =—1, E is uniform (and hence splits for #»5) if and only if:
Hi{Q,, B(—4)) =0 for l<i<n—1

Proor. — I F gplits or is uniform, all conditions hold. In fact, by [9], all uniform
2-bundles on @, {%:=3) either split or are spinor bundles (ap to tensoring by some
line bundle). -

Observe that by Serre duality the vanishing of Hi(Q,, B(— 1)) for L<i<[n/2]
in case (@) is equivalent to the same condition for 1 <ign — 1. In fact, if ¢(H) =0
and E is a 2-bundle, then ¥ ~ F*. _

First we prove the result on @,: As in the proof of theorem 3.5, for each line
fc@s we have an exact sequence:

0 = B(—2) > BH—~ 1R 8 = B— 1) = Bl— 1)}, 0.

Then each one of our hypothesis implies that a7, B(— 1)|,) = #(I', B(— 1)],) for
each lines I, 7. This means that ¥ is uniform.
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It remains to show that if ¢(#)= — 1 ahd
Hl(Qa:E(“ 1)) (QsaE®S 1}) = 0

then B splits (in faet the spinor--buﬁdle had odd first Cheérn class, so that there are
no-problems in the case e (Fy - 0).
Tt is sufficient to note that H2(Q;, S® 8(— 1)} = € (e.g. by Bott theorem) and
50 the case # ~ S must be excluded.
If n>3 the proof is 'by induction on n, in the same way as in the proof of lem-

ma 3.2, using corollary 3.3. i

As in the ease of Grassmanniang, theorem 3.7 can be stated in the following
equivalent form (for simplicity we state only the case (a), ®):

THEOREM 3.8. — Let X c @, be a smooth subvariety of codimension 2. Suppose
that Ky~ O, (a})]x for some ec Z (ie. X is a-subeanonical).
Let 8 be & spinor bundle on §,.

(i) ¥ n 4+ o is even then X is a complete intersection if and only if

(ii) X » + a is odd then X is & complete intersection if and only if the fol-
lowing hold:

Hf(Qﬂ, Jx'(@j_;—fl—i)) =0 for T<icn —2;

Hi(Qn, Jx(mg—ﬂ—i)®8): 0 for 2<i<m—1.

PROOF. — By the Hartshorne-Serre correspondence [25], the normal bundle of X
in @, extends to a 2-bundle ¥ on @,. As K, =~ O(— n), we have (B = n+ a.
We get an exact sequence : :

O%OQ"%E—)JX(W—]—M»O.

We normalize E after twisintg by 9(— (» + @}/2) when » - & is even and by
O(— (n + a -+ 1)/2) when n + @ is odd. Then, we apply theorem 3.7 and Serre
dunality.

We want to point out the following:

TaroREM 3.9 (Barth-Larsen). — Let X cQ, be a smooth subvariety of eodi-
mension 2. If n>7 then Pic (X) = Z is generated by the hyperplane section. In
parficular, X i3 subcanonical.
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PROOF. — _X: is a codimension 3 smooth subvariety of Pe+t,
‘Then, apply the Barth-Larsen theorem for sabvarieties of Pt {16].

o KXAMPLE 8,10, -2 Lt 0 hea smooth sub
N SM00th quadf By f 208 €
T K,— Opla) la “With a odd, then C’ ig 2 comple’ﬁe mtelaectlon of s and tWO

other hypersurfaces of P* if and only if the restriction map

o) mfooet)

is surjective (1 e. 0 iz ((a -+ 1)/2)-normal in Qs) 7

If #is o 2- bundle on §,, and ! <€}, is a line, deﬁne now d,(#) and d(}_f}’) exactly
as before theorem 2.13.

The proofs of the following two theorems are completely analogous to the proof
of theorem 2.13 and are omitted.-

THEOREM 3.11. — Let F be a 2-bundle on 4. Let i, I’ be any two lines in ¢, and
let 8 be the spinor bundle on Q,. Then the following inegualities hold®

[ B) — du(B)| < E(R)) + B{BEE) S 8)
(B} — du(B)| < B (B(E)) 4 B BT — 1))
for - a )

THEOREM 3.12. ~ Let B be a 2-bundle on §,. Let I, I’ be any two lines in @, let §
be a spinor bundle on @, and ist # = §*® 0(1). Then the following inequalities

hold:
() — &) < I (B(0) + B(P*@ BB + he(\ F* & Bl
(0B) — ()| <B{B(RY) -+ W(F* @ B(R)) + W(B(k— 1)
for
I’“ + 2l cam
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