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ON GENERIC IDENTIFIABILITY OF 3-TENSORS OF SMALL RANK*

LUCA CHIANTINIT AND GIORGIO OTTAVIANIf

Abstract. We introduce an inductive method for the study of the uniqueness of decompositions
of tensors, by means of tensors of rank 1. The method is based on the geometric notion of weak
defectivity. For three-dimensional tensors of type (a,b,c¢), a < b < ¢, our method proves that
the decomposition is unique (i.e., k-identifiability holds) for general tensors of rank k, as soon as
k < (a+1)(b+ 1)/16. This improves considerably the known range for identifiability. The method
applies also to tensor of higher dimension. For tensors of small size, we give a complete list of
situations where identifiability does not hold. Among them, there are 4 X 4 X 4 tensors of rank 6, an
interesting case because of its connection with the study of DNA strings.
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1. Introduction.

1.1. Statement of main results. Let A, B, C be three complex vector spaces,
of dimensions a, b, ¢ respectively. A tensor t € A ® B ® C is said to have rank k if
there is a decomposition

k
t:Zui@)vi@wi
=1

with u; € A,v; € B,w; € C, and the number of summands k is minimal. Such a
decomposition is said to be unique if for any other expression

k
_ / / /
t= E u; ® v; ® w;,
i=1

there is a permutation o of {1,...,r} such that
— a2/ / / .
U; Q@ v; Q@ w; _uo'(l) ®Uo(i) ®wo.(i) Vi = ].,...,k.

When ¢ has a unique decomposition, the vectors u; € A, v; € B, w; € C can be
identified uniquely from ¢, up to scalars.

It is known that the set of tensors of rank k& consists of a dense subset of an
irreducible algebraic variety S (Y'), which is called the kth secant variety of the variety
Y of tensors of rank one. The variety Y is isomorphic to the (cone over the) Segre
product P(A4) x P(B) x P(C).
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The main result of our paper determines a bound for the rank, in terms of the
dimensions of the vector spaces, which implies identifiability.

THEOREM 1.1. Let a < b < c¢. Let o, 8 be maximal such that 2% < a and
26 <'b. The general tensort € A® B ® C of rank k has a unique decomposition if
k< 20th=2,

So if a, b are both powers of 2, then the general tensor of rank k has a unique
decomposition if k < %b. In the general case, the inequality of the theorem can be
written as k < 2(llog2al+llog>b]-2)  Gince a4l < 2% and L < 27, one can say that
the unique decomposition holds if & < (a + 1)(b+ 1)/16.

In our terminology, when the unique decomposition holds for the general tensor
of rank k, we will say that the variety of tensors of rank one is k-identifiable.

Here the meaning of “general” is that, among tensors of rank k, the ones which
do not have a unique decomposition consist of a set of zero measure, more specifically
in a proper subvariety of Si(Y).

In particular, Theorem 1.1 applies to “cubic” tensors. The general tensor ¢t €
A® A® A of rank k has a unique decomposition if k < % (indeed, Theorem 1.1
provides a better bound, when a is close to a power of 2).

Our bound is log-asymptotically sharp for cubic tensors. As explained in Propo-
sition 2.2, one cannot have a unique decomposition when the rank exceeds a value
kmaz = k(a, b, c), which depends on a,b,c. Then sup, k(‘zz’c) is finite. On the other
hand, even for tensors of small size, the result is not sharp. In the first cases, with
the help of a computer, we can improve Theorem 1.1.

Unique decomposition has been studied by several authors, and there is a huge
amount of literature on this theme. Let us remind the reader that §trassen and

Lickteig [Lick] proved that the general tensor t € A® A® A has rank [57— ] for a # 3
and rank 5 for ¢ = 3 (indeed, the case a = 3 is known to be 4-defective, meaning
that the corresponding 4th secant variety has dimension smaller than the expected
one. The definition of k-defective is analogous). In this case, the aforementioned
bound implies that if @ > 3, then the general tensor of rank k can have a unique
decomposition only if k < (3;{2] — 1. The following theorem shows that this bound
is almost always achieved for small a.

THEOREM 1.2. The general tensor t € AR A® A of rank k has a unique

decomposition if k < k(a), where

a |2 345 6 7/8 9 10

k(a)[2 3 5 9 13 18|22 27 32

A more general list, which holds in the noncubic case, is given in section 5.

Comparing the previous table with the table of the general rank (for a > 3, the
general rank —1 is the best possible achievement), and with Kruskal’s result (see
Proposition 1.5), one can appreciate the improvement.

a 234 5 6 78 910

3

Gen. rank (a #3) [Lick] [5%5][2 4 7 10 14 19|24 30 36
Kruskal bound [K] 322112 3 5 6 8 9|11 12 14

The more evident lack of uniqueness is when a = 4 and k = 6. The case a =4 is
particularly interesting due to the models in phylogenetics [AR, ERSS], where a basis
in C* can be indexed by the nucleotids {A, C, G, T}.
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THEOREM 1.3. The general tensor t € C* @ C* ® C* of rank 6 has evactly two
decompositions.

It is interesting that the exception on uniqueness (a = 4) holds very close to the
defective case a = 3. This phenomenon is quite general and it can be encountered
already in the case of symmetric tensors.

In the case ¢ > (a — 1)(b— 1) + 1 our results become necessary and sufficient and
we get the following theorem.

THEOREM 1.4. Assume ¢ > (a — 1)(b—1) + 2, (a,b,c) # (2,2,3). Then the
general tensor of rank k in P(C* ® C® ® C°) has a unique decomposition as sum of k
summands of rank one if and only if k < (a—1)(b—1). In the case (a,b,c) = (2,2,3),
the general tensor of rank k has a unique decomposition as sum of k summands of
rank one if and only if k < 2.

1.2. A few historical remarks. In this subsection we sketch how our result
fits in the literature.

The most celebrated result about uniqueness of decomposition of tensors is due to
Kruskal [K]. It is often quoted in terms of Kruskal’s rank. A consequence of Kruskal’s
criterion is the following statement, which applies to general tensors (see Corollary 3
in [AMR]).

ProposITION 1.5 (Kruskal’s criterion). The general tensort € A® B® C of
rank k has a unique decomposition if

k < = [min(a, k) + min(b, k) + min(c, k) — 2].

N =

In the cubic case, the general tensort € AQARA of rank k has a unique decomposition
if
3a —2

< .
ks 2

Kruskal’s result is so important in the literature, that recently there have been
published (at least!) three different proofs [Land, R, SS].

De Lathauwer [Lat] proves that the general tensor t € A ® B ® C of rank k
has a unique decomposition if k¥ < ¢ and k(k — 1) < a(a — 1)b(b — 1)/2. Rhodes,
in [R] addresses explicitly, as a problem at the end of the introduction, the need of
sufficient conditions, stronger than Kruskal’s ones, that guarantee the uniqueness of
the decomposition, for general tensors. Our Theorem 1.1 gives a sufficient condition
which improves Kruskal’s bound for large k. For k& < ¢ de Lathauwer’s bound remains
better than ours. An anonymous referee remarked that for & > ¢ our bound improves
Kruskal’s bound if ¢ +4 < (a — 7)(b — 7)/8. Our bound becomes considerably better
than Kruskal’s bound for tensors of format close to the cubic format.

Let us mention, on this subject, the work of Strassen, who gives a sufficient
condition, for the identifiability, when the dimension of the largest vector space is
odd (see Corollary 3.7 of [Str]). We observe that our methods have an easy, natural
extension to tensors products with an arbitrary number of factors (see section 6).
This extension looks difficult using Strassen’s approach.

The tensor decomposition we are looking for is also called Candecomp or Parafac
decomposition in the numerical literature. Among recent surveys on the topic is
section 3.2 in [KB] and Landsberg’s book [Land], which try to use a language under-
standable by both the numerical and the geometrical communities. From this point
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of view, one should also consider section 2 of [AMR], an interesting bridge between
the two worlds.

An anonymous referee asked if the unicity results of this paper can be extended
to tensors defined on the real numbers. It is important to remark that the closure of
the sets of tensors of fixed rank are algebraic varieties over the complex numbers (so
they are described by polynomial equations), while are semialgebraic varieties over the
real numbers (so they are described by polynomial inequalities). It may happen that
in the unique complex decomposition of a general real tensor, whose complex rank
satisfies the assumptions of Theorems 1.1 or 1.2, two conjugate summands appear, so
that the real rank is bigger than the complex rank. With these differences in mind,
Theorems 1.1 and 1.2 still hold on the real numbers, when applied to the general real
tensor of real rank k, with the same proof, while we do not know about Theorem 1.3.

1.3. Outline of the proof. In a line, our technique consists of putting together
the inductive approach of [AOP] with the tool of weak defectivity developed in [CC1]
and [CC2].

We consider the projective space of tensors P(A ® B ® C). In this space, the
tensors of rank one give the Segre variety P(A) x P(B) x P(C).

Our geometric point of view consists of the use of the celebrated Terracini’s
lemma, which allows us to study the identifiability of varieties, using properties of
their tangent spaces. We refer to [CC1] and [CC2] for a more precise account of the
theory behind.

A variety is called k-tangentially weakly defective (k-twd, see Definition 2.6) if the
span of the tangent spaces at k general points of X, is tangent also in some other
points.

It is a consequence of Terracini’s lemma that if X is k-not twd, then the general
tensor of rank k£ has a unique decomposition.

So our aim is to prove the k-not twd of Segre varieties X = P(A) x P(B) x P(C).
The proof is performed by induction, by splitting A = A’ ® A” and by specializing
some points on the lower dimensional Segre varieties P(A") xP(B) xP(C') and P(A”) x
P(B) x P(C). It turns out that the induction works if we prove a stronger statement,
concerning the so-called (k, p, ¢, 7)-weakly defectivity, which is defined in section 3.

1.4. Outline of this paper. In section 2 we develop the basic notations on
Segre varieties and weak defectivity. At the end of this section we prove the cases
a < 7 of Theorem 1.2. Section 3 contains the definition 3.1 of (k,p, ¢, r)-defectivity
and the inductive step (Proposition 3.7). At the end of this section we prove the
remaining cases of Theorem 1.2. In the section 4 we prove Theorem 1.1. In section 5
we prove Theorem 1.3 and we give other examples of small dimension. Also we expose
a list of all the examples of triple Segre product that we know when the uniqueness
for general tensors of a given rank does not hold. In section 6, we show an extension
of the previous results to products of many factors.

2. Preliminaries on Segre varieties. Let A, B,C be complex vector spaces
of dimension a, b, ¢, respectively. Consider the product X = P(A) x P(B) x P(C). X
is naturally embedded, by means of the Segre map, into PV, where N = abc — 1.

Sometimes, when there is no need to specify the vector spaces, we will refer to
the variety X also as P21 x Pb=1 x Pe—1,

Glossary of algebraic geometry Let © = (x¢,...,xn) be a system of homoge-
neous coordinates in PV. A projective variety X C PY is defined as the zero locus of a
collection of homogeneous polynomials fi(x),... fr(z). X is called nondegenerate if it
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is not contained in a proper linear subspace of PY. When X C PV is nondegenerate,
the projective space PY is called the ambient space of X. The same equations define
acone X C CN*+1 and X is called the projectification of X. X is irreducible when the
ideal I = (f1,... fx) is a prime ideal; that is if gh € I, then g € I or h € I. In this case
the quotient ring K[z, ..., x,]/I is a domain, and the trascendence degree of its field
of fractions is the dimension of X and it is denoted by dim X. The codimension of X
is by definition N — dim X. The tangent space Ty X at y € X is the linear subspace

of PV defined by the linear equations ZZ 0 aij (y)x; =0for j=1,... k. X is called

smooth at x € X if dimX = dimT,X. Note that the cone T, X := ’]I‘;X Cc CN+!
is a vector space of dimension dim T, X + 1, which is called the affine dimension of
X. For the Segre variety X = P(A) x P(B) x P(C), the cone T,guzwX coincides
with AQv@uw+u® Bw+u®v®C. Its projectification TygywX i obtained
identifying the vectors up to scalar multiples. A smooth variety is a variety which is
smooth at all its points. A smooth variety of dimension n is locally homeomorphic
(with the Euclidean topology) to an open subset of C™.

Call Sy (X) the kth secant variety of X, defined as the closure of the union of linear
spans of k general points in X. The following definition works for any nondegenerate
projective variety X.

DEFINITION 2.1. X is called k-identifiable if a general element in Sk(X) has a
unique expression as the sum of k elements in X.

From the tensorial point of view, this means that a general tensor of type a x
b x ¢ and rank k can be written uniquely (up to scalar multiplication) as a sum of k
decomposable tensors.

PROPOSITION 2.2. There is a mazimal rank for which the k-identifiability of
tensors is possible, namely

i _ N+1 _ abe
T dim(X) 4+ 1] latbte—2]°

Moreover L%bj < kmaz < ab.
Proof. For k > k., the abstract secant variety

{(z1,...,2p,u) € XF x PN tue<ay,... 2 >}

has dimension bigger than NV, so that necessarily the general u € Si(X) belongs to
infinitely many k-secant spaces. The inequality follows from

a_b< abc B ab < ab 0
3 Ta+bte—2 etz

Our theoretical starting point is a criterion for k-identifiability, which follows from
Terracini’s lemma and which we will use under the following form (see, e.g., [CC1],
the tangent spaces to X have been described in the glossary in section 2).

LEMMA 2.3 (Terracini). Let X be an irreducible variety and consider a general
point u € Sk(X). If u belongs to the span of points 1, ...,z € X, then the tangent
space to Si(X) at u is the span of the tangent spaces to X at the points x1, ..., xg.

Our criterion is the following.

PROPOSITION 2.4. Let X C PN be a nondegenerate, irreducible variety of dimen-
sion n. Consider the following statements:

(i) X is k-identifiable
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(ii) Given k general points 1,...,x € X, the span < Ty, X,..., Ty, X > con-
tains T, X only if x = x; for somei=1,... k.

(iil) There exists a set of k particular points x1,...,x, € X, such that the span
< T, X,..., Ty, X > contains T, X only if v = x; for somei=1,... k.

Then we have (iii) = (ii) = (i).

Proof. (iii) = (ii) follows at once by semicontinuity.

Let us prove that (ii) = (i). Take a general point v € S(X) and assume that

u belongs to the span of points x1,...,zr € X. By the generality of u, we may
assume that x1,...,x; are general points of X. If u also belongs to the span of
points y1,...,yr € X, with at least one of them, say y;, not among the x;’s, then,

by Terracini’s lemma, the span of the tangent spaces to X at the points z;’s, which
is the tangent space to Si(X) at u, also contains the tangent space to X at y;. This
contradicts (ii). O

Condition (ii) of Proposition 2.4 is strongly related with the notion of k-weak
defectivity.

In [CC1], Ciliberto and the first author give the following definition: a variety
X is k-weakly defective if the general hyperplane which is tangent to X at k general
points x1, ..., Tk, is also tangent in some other point y # x1,.. ., Tk.

It is clear that a variety which does not satisfy condition (ii) of Proposition 2.4,
is also k-weakly defective. However, the converse does not hold.

Ezample 2.5. Consider the Segre product X = P! x P2, It is classical (see, e.g.,
Zak’s theorem on tangencies in [Z]) that the tangent space at one point to a smooth
variety is not tangent elsewhere.

On the other hand, a general hyperplane tangent to X at one point is also tangent
along a line. Indeed, it is well known that the dual variety of X is not a hypersurface
(see [E]). Thus X is 1-weakly defective.

For maintaining the consistency with all the previous notation in this subject, we
dare propose the following.

DEFINITION 2.6. If X satisfies condition (ii) of Proposition 2.4, we will say that
X is k-not tangentially weakly defective. Otherwise, we say that X is k-tangentially
weakly defective (k-twd, for short).

We understand that the notation is becoming odd. However, the increasing num-
ber of definitions is a phenomenon which also occurs in the study of contact loci,
which seems however helpful for applications to the geometry of secant varieties (see,

e.g., [CC3)).
Weak defectivity has been intensively studied in [CC1]. Notice that when X is
k weakly defective, a general hyperplane tangent to X at general points z1,..., g

is also tangent along a positive dimensional variety. We do not know if a similar
phenomenon takes place also for k-twd.

Relations between k-weak defectivity and k-twd are probably stronger than ex-
pected, at least as far as one is interested in k-identifiability. We do not further
develop this analysis.

Notice that when we deal with inductive steps in the proofs, we will need an even
more complicated notion of weak defectivity. Compare with Definition 3.1.

For our purposes, Proposition 2.4 establishes that k-not tangentially weakly de-
fectivity implies k-identifiability, when N > k(n + 1).

Remark 2.7. Let us notice that, by Proposition 2.2, if N+1 < k(dim X +1), then
k-identifiability is excluded. When k = (N +1)/(n+1) the criterion of Proposition 2.4
does not apply because the span of the tangent spaces is expected to fill the ambient
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space. For example, our criterion could not be applied to study the 2-identifiability
of P! x P! x P

Now we are already able to prove the first cases of Theorem 1.2.

Proof of Theorem 1.2 in case a < 7. For a = 2 the theorem is well known. For
a > 3, the proof is a straightforward application of Proposition 2.4. A random choice
of k(a) points satisfies condition (iii) of Proposition 2.4. Then X is k-identifiable. The
Macaulay?2 files which we used are available as ancillary files in the arXiv submission of
this paper. The user may open the file weakhiddenlaunchspan.m2 and in the comments
at the beginning he/she can find the instructions to run it. The other file is called
automatically by this one. For the Macaulay2 package, we refer to [GS]. O

Remark 2.8. More powerful computers and/or better suited algorithms will even-
tually allow us to check the condition (iii) for larger values of a, and we encourage
experts in numerical algebraic geometry in going further. We stopped at a = 7, be-
cause for @ = 8 our algorithm on a common PC consumed too much time and memory.
In the next section we show how the computation for larger values of a can be reduced
to other computations for smaller values of a.

3. The inductive statement. We remind from the glossary in section 2 that
ifr=u®v®uwis a point of X = P(A) x P(B) x P(C) embedded in P(A® B ® C),
then the projective tangent space T,X is the projectification of the linear tangent
space T, X = A@uv@w+u®@ Bw+u®v®C. We call these three summands,
respectively, [T, X]; for i = 1,2,3, so that T, X = [T, X|1 + [ToX]2 + [T2 X]s.

The idea is to fix two linear subspaces A’, A” of A, such that A = A’ & A",
then split the set of k points in two subsets and specialize them to the two spaces
P(A") x P(B) x P(C) and P(A”) x P(B) x P(C). Then, the implication (iii) => (i) of
Proposition 2.4 suggests that one could play induction.

Unfortunately, the situation is a little bit more complicated, since one cannot
translate condition (ii) of Proposition 2.4 into the analogous condition on lower-
dimensional spaces.

Instead, following the idea of [AOP] (Theorem 3.4) (suggested also from the split-
ting method of [BCS]), we need a more elaborated condition.

DEFINITION 3.1. A triple product X = P(A)xP(B)xP(C) is called (k, p, q,r)-not
weakly defective if

e for k general points x1,...,x, € X,

e for p general points u; € X,

e for q general points v; € X,

e for r general points w; € X,

then the span of Ty, X, [Tu, X|1,[Tv; X]2,[Tw; X3 contains TuX if and only if x =
x;, for some i =1,...,k. Otherwise X is called (k,p,q,r)-weakly defective.

Clearly, (k,0,0,0) weak defectivity coincides with k-twd.

Remark 3.2. In order to compare the previous definition with the one in [AOP],
we remind that the statement T'(a, b, ¢; k; p, g, ) given in the Definition 3.2 of [AOP]
means that

o for k general points z1,...,z, € X =P(A) x P(B) x P(C),

e for p general points u; € X,

e for ¢ general points v; € X,

e for r general points w; € X,

then the span of Ty, X, [Ty, X|1,[Tv, X]2,[Tw,; X |3 has the expected dimension

min (abe, k(a +b+c—2) +pa+gb+rc).
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Remark 3.3. We will often use the computer algorithm, available in our arXiv
submission, to prove that some triple Segre product is (k, p, g, r)-not weakly defective.

For instance, the algorithm shows that P2 xP?xP? is (1,2, 1, 1)-not and (2,1,1,1)-
not weakly defective. This is rather interesting, because the 4th secant variety of
P? x P? x P? has dimension smaller than expected, namely P2 x P2 x P? it is 4-
defective.

Ezample 3.4. Counsider A, B, C, all of dimension 2 with basis {u1,us2}, {v1,v2},
{U}l, ’wg}.

Call 1 = uyvwy, x2 = ugvewy. Then Ty, + [Th,]s = Twy + [Thy]s. This shows
that P! x P! x P! is (1,0,0,1) weakly defective. Nevertheless, Ty, + [T4,]3 has the
expected (affine dimension) 6 and it does not fill the ambient space.

Remark 3.5. (a) With the previous notation, by semicontinuity it is clear that
when X is (k,p,q,r)-not weakly defective, then it is also (k¥',p’,q’,7’)-not weakly
defective, whenever (k',p’,¢’,7") < (k,p,q,r), in the strict ordering.

(b) By semicontinuity, X is (k,p,q,r)-not weakly defective whenever one gets
that for particular sets of points {x;}, {u;}, {v;}, and {w;} as above, then the span
of Ty, X, [T, X1,[Tv; X]2,[Tw,; X]s contains T, X if only if z = z; for some i =1,...k.

(¢) By Proposition 2.4, one soon gets that (k,0,0,0)-not weakly defective implies
k-identifiable.

We will often apply the following reduction step.

LEMMA 3.6. Assume that P! x PP=1 x P! 4s (k,p, q,r)-not weakly defective.
Then P% x PV x P is (k,p,q,r)-not weakly defective for any triple (a’,b’',c") >
(a—1,b—1,c—1) (in the strict ordering).

Proof. We need just prove the statement for (a’,b',c’) = (a,b —1,c — 1). Write
X =P x PP~ x P~ = P(A') x P(B) x P(C) so that dim(4’) = a + 1.

Assume that X is (k, p, ¢, 7)-weakly defective; then, for k general points z1, . ..,z
€ X, p general points u; € X, q general points v; € X, r general points w; € X, the
span A of the tangent spaces to X at the z;’s and the spaces [Ty, (X)]1, [Tv, (X)]2,
[Tw,(X)]s is also tangent in another point y.

Take a general point P = (u,v,w) € P x P! x P°~! and consider the projection
mof X from L = u® B®C. The image of the projection is Y = P(A) x P(B) x P(C),
where A C A’ has codimension 1. Furthermore, by the generality of P, L does
not meet A, as well as any line spanned by y,z;. It follows that the span of the
tangent spaces to Y at the general points m(x1),...,m(xx) and containing the spaces
(T () V)15 [Tro) (Y)]2y [Tr(w,)(Y)]3 is also tangent in another point 7(y). Thus Y’
is (k, p, q,r)-weakly defective. By induction, we get a contradiction. O

Now we are ready to state and prove our inductive criterion.

Let X' =P(A")xP(B)xP(C), X" =P(A”)xP(B)xP(C). Note that AQ BRC =
(A@B®C)® (A" ®@ B® (). Denote by 7" and n” the two projections.

PROPOSITION 3.7 (inductive step). Assume that X’ is (ki,p + ka2, q1,71)-not
weakly defective and X" is (ka,p + k1, g2, 72)-not weakly defective. Then X is (k1 +
ka,p,q1 + g2, 71 + 72)-not weakly defective.

Proof. We specialize k1 + ko points on X in order that k; of them belong to X3
and ks of them belong to Xs. Let x1,...,zk, € X' and y1,...,yk, € X”.

Let z; e X fori=1,...,p.

We specialize g1 +-¢2 points on X in order that the first ¢, of them (say vy, ..., vy, )
belong to X’ and the last g» of them (say v{,...,v” ) belong to X”. Call @1 =

[Toy (XD)]2 + -+ + [Ty (X2, Q2 = [Top (X7)]2 +- Ty (),

@ o
We specialize 71 +r7 points on X in order that the first 71 of them (say wy, ..., w;.)
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belong to X’ and the last ry of them (say w{,...,w;)) belong to X". Call Ry =
Ty (X3 + - -+ [Ty, (X3, Q2 = [Tug (X3 + - + [Tug, (X")]s -

We want to prove that 7' =T X +- -+ T, X + Ty, X+ + Ty, X+ [T%, X]1 +
o+ [T, X1 + Q1 + Q2 + Ry + Ry is tangent to X only at x1,..., Tk, Y1, - Yko-

Let T,X C T, with + = v ® v @ w. Then m1(T,X) C m(T). Let u = v +u”.
At least one among v’ and w” is nonzero, so let’s assume u’ # 0. Then we get
m (T X)=A@vw+uv @BRw+u @ve®C while m (T) = Tle’+~-~—|—Tzk1X’—|—
[Tle/]l +---+ [Tyk2X/]1 + [Tle/]l +---+ [szX/]l + @1 + R;. By the assumption
that X’ is (k1,p + k2, q1,71)-not weakly defective it follows that v’ ® v ® w is one
among ;.

If also u” # 0, then the same argument shows that u” ® v ® w is one among ;,
which is a contradiction. Then u” = 0, that is x = v/ ® v ® w is one among z;. It
follows that X is (k1 + k2, p, q1 + g2, 71 +72)-not weakly defective, as we wanted. O

The inductive procedure stops eventually when we find some condition on weak
defectivity, which does not hold. This does not necessarily mean that our starting
example was not k-identifiable, but merely that we specialized the points too much,
in order to expect a meaningful answer.

Proof of Theorem 1.2 in cases a = 8,9,10. In the case a = 8 we start with 22
points and we want to apply iteratively Proposition 3.7. Splitting one 8-dimensional
vector space of the product in a direct sum of two 4-dimensional spaces, one sees
that the (22,0,0,0)-not weak defectivity of P” x P7 x P7 follows if one knows that
P3 x P7 x P7 is (11,11,0,0)-not weakly defective. Repeating the procedure with the
second factor, everything reduces to prove that P2 x P? x P7 is (5,7, 6,0)-not weakly
defective and (6, 4, 5, 0)-not weakly defective. The first statement reduces to show that
P3 x P3 x P? is (3,3,3,2)-not weakly defective and (2,4, 3, 3)-not weakly defective.
These statements have finally a reasonable size and can be checked with a random
choice of points with our Macaulay2 algorithm. The last statement reduces to show
that P3 x P3 xP3 is (3, 2, 3, 3)-not weakly defective and (3,2, 2, 3)-not weakly defective,
which follows from the above check and by the Remark 3.5 (a).

In the case a = 9 we start with 27 points and we split the nine-dimensional space
in three three-dimensional summands. The inductive step is better explained by the
following table:

a b c k p q T
9 9 9 27 0 0 O
399 9 18 0 0
3 39 3 6 6 0
3 3 3 1 2 2 2

The last statement can be checked again with Macaulay2.
The a = 10 case starts as follows:

a b ¢ k P

10 10 10 32 0
5 10 10 16 16
5 o5 10 8 8
5 5 5 4 4 4

oo O O R
- O O O

The second statement reduces to show that P! x P* x P* is (1,7, 2, 2)-not weakly
defective and P? x P* x P4 is (3,5,2,2)-not weakly defective. Both these statements
can be checked with Macaulay2. This concludes the proof. O



ON GENERIC IDENTIFIABILITY OF 3-TENSORS 1027

4. Proof of Theorem 1.1. In order to use the inductive step, we need a starting
point.

LEMMA 4.1. P! x Pt x P! 45 (1,0,0,0)-not and (0,1,1,1)-not weakly defective.

Proof. The first fact is true for any smooth variety; see Example 2.5. For the
second one, we consider X = P(A) x P(B) x P(C), where A, B, C all have dimension
2 and we choose basis spanning each space, A = (ap,a1), B = (bo,b1), C = (co, c1).
Then, without loss of generality, we may consider the span T'= A ® by ® ¢y + ag ®
B®ci+a; ®b; ®C. In the monomial basis of A ® B ® C' this span contains all the
monomials with the only exception of ag ® b1 ® ¢y and a; ® bg ® ¢1. Then, a vector
V= Zijra; @bj ® cx, belongs to X NP(T) if all the 2 x 2-minors of the two following
flattening matrices vanish:

000 Tool 100 0 Z000 0 00 z110
0 mo11 110 T1i11 Tool 011 0 =11

We recall that the flattening matrices of v are the matrices associated to the contrac-
tion maps induced by v like BY®CY — A, and the other maps induced by permutation
of the three spaces. A straightforward check on the minors shows that X NP(T) con-
sists of the following six lines in the five-dimensional space P(T") = {z¢10 = 101 = 0}:

To = V(QJQ()l,ZIJ()Q(), 2100, 33110) (the variety given by the equations ool = Looo —
T100 = 7110 = 0),

r1 = V(Z000, 100, T110, £111),
T2 = V($100,$110,$111,$011),
s = V($110,$111,$011,$001),
ry = V(Z111, 011, 001, £000),

75 = V (011, Zoo1, T000; £100);
which have the property that, for ¢ # j,

A — one point ifi=j54+1,7—1 mod 6,
o 0 otherwise.

Indeed it is straightforward to verify that at the points of the six lines both the
flattening matrices drop rank. Since deg X NP(T) = deg X = 6, by degree reasons
X NP(T) cannot contain anything else. It follows that P(T") is not tangent anywhere,
because the tangent space at a point meets X in three concurrent lines, and there are
no three concurrent lines in X NP(7T"). This proves that X is (0,1, 1, 1)-not weakly
defective. O

Remark 4.2. We will use affine spaces whose dimension is a power of 2, as well
as sets of points or subspaces whose number is expressed in terms of powers of 2,
essentially because they allow the following recursive application of Lemma 3.7.

Assume we want to prove that P2°~1 x P2°~1 x p2'~1 = P(A) x P(B) x P(C)
is (2x,2%,2Y,2¥)-not weakly defective. Then, by splitting the first linear space A in
a direct sum of two subspaces of dimension 2°~! and balancing the splitting of the
number of points and linear spaces, by Proposition 3.7 it is sufficient to prove that
P2 =1 P21 P27 g (g, 2%, 2971, 2@ 1) not weakly defective.

We will use this trick so often, in the arguments below.

The final statement will be that if we order the dimensions so that 1 < a < 8 < v,
then X = P2 —1 x P2°~1 x P27 -1 ig (k,0,0,0)-not weakly defective for k < 20+6-2,

Before showing this fact, we need a series of lemmas.
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PROPOSITION 4.3. Assume that X = P2"~1 x P2°=1 » P2'=1 s (k,0,0,0)-not
weakly defective. Then also X' =P?"~1 x P21 x P2 s (k,0,0,0)-not weakly defec-
tive.

Proof. The proof follows immediately by Lemma 3.6. O

So, in order to prove Theorem 1.1, we can reduce ourselves to the case 8 = v,
k= 2o¢+672'

LEMMA 4.4. Take X = P2 —1 x P22 =1 5« P21 with a1, as,as > 1. Pick non-
negative integers ui,us, u3 such that u; < aj + ap — 2, whenever {i,j,k} = {1,2,3}.
Then X is (0,2%1,2%2 2¥3)-not weakly defective.

Proof. We make induction on the sum a; + as + as.

If a1 = a2 = a3 = 1, then the numerical conditions imply that u; = us = u3 =0
and the conclusion follows from the fact that P! x P* x P! is (0, 1,1, 1)-not weakly
defective, which holds by Lemma 4.1.

Assume (without loss of generality) a; > 1 and split the first projective space in
a sum of two spaces of dimension 291~!. Then there are three possibilities:

(1) Assume uy = usz = 0. Then, by using Lemma 3.7, the claim reduces to
prove that P2~ —1 x P2"2-1 x P21 i (0,2%,1,1)-not weakly defective and it is
(0,2%1,0,0)-not weakly defective. The first consition implies the second condition.
Since a1 > 1, the six numbers a; — 1, a9, as, u1,0,0 fulfill the numerical inequalities
of the statement. Hence the claim follows by induction in this case.

(2) Assume uz > ug = 0. Then the claim reduces to prove that P21
P27 -1 x P21 s (0,2%, 1, 2%~ 1)-not weakly defective and it is (0,2%1,0,2%~1)-not
weakly defective. The second condition is contained in the first. One checks that the
six numbers a1 —1, as, as, u1, 0, uz—1 fulfill the numerical inequalities of the statement.
Hence the claim follows by induction.

(3) Assume uy, us > 0. Then the claim reduces to prove that P2~ —1 x P22 =1 x
P2*° -1 g (0,21, 2v2=1 2us=1) ot weakly defective. One checks that the six numbers
a1 —1,as, a3, u1, us —1,us— 1 fulfill the numerical inequalities of the statement. Hence
the claim follows by induction. O

LEMMA 4.5. Take X = P2"' =1 x P2 =1 « P21 with aq, a2, a3 > 1. Pick non-
negative integers ui, us, us such that u; < aj + ax — 2, whenever {i, j, k} = {1,2,3}.
Then X is (1,2%1 — 1,2%2 — 1,243 — 1)-not weakly defective.

Proof. We make induction on the sum a; + as + as.

If a1 = a2 = a3 = 1, then the numerical conditions imply that u; = us = u3 =0
and the conclusion follows from the fact that P! x P! x P! is (1,0,0,0)-not weakly
defective (Lemma 4.1).

Assume a; > 1 and split the first projective space in a sum of two spaces of
dimension 2%1~1. Then there are three possibilities:

(1) Assume ug = uz = 0. Then, by using Lemma 3.7, the claim reduces to
prove that P2 1 P2l P27l g (0,2%1,1, 1)-not weakly defective and it is
(1,2 — 1,0,0)-not weakly defective. The first condition follows by the previous
Lemma 4.4. For the second condition, notice that since a; > 1, the six numbers
a1 —1,az,as,uy,0,0 fulfill the numerical inequalities of the statement (and 0 = 2°—1).
Hence the claim follows by induction in this case.

(2) Assume ug > uy = 0. Then the claim reduces to prove that P2~ —1xP2"* =1 x
P2*—1 s (0,2%, 1,2 1)-not weakly defective and it is (1,2% —1,0,2“~ — 1)-not
weakly defective. The first condition follows by Lemma 4.4. The second condition
follows by induction, since one checks that the six numbers a1 — 1, as, a3, u1,0,u3 — 1
fulfill the numerical inequalities of the statement.

1
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(3) uz,us > 0. Then the claim reduces to prove that P2"'~ =1 x P2*2 =1 x P2 ~1 jg
(0,21, 2u2—1 2us—1) not weakly defective and it is (1,2%1 —1,242~1 —1 2%~1 —1)-not
weakly defective. One checks that the numerical conditions in the statement are still
fulfilled, by the six numbers a; — 1, as, as, u1,us — 1, us — 1. Hence the claim follows
by induction. d

Now we are ready to prove the following theorem.

THEOREM 4.6. X = P2°—1 x p2°—1 » p2°~1 45 (k,0,0,0)-not weakly defective,
for k < 20+6=2,

Proof. Write o+ 8 — 2 = 2p + e, where e is the remainder.

Now we start our reduction.

(A1) One can split the vector space in the middle as a sum of two spaces of
dimension 2°~1. By using Proposition 3.7, it turns out that X is (2‘“'8’2, 0,0, 0)-not
weakly defective when P2°—1 x P2°7'=1 x p2°~1 jg (20+6=3 (, 20+A=3 ().not weakly
defective.

(A2) Splitting now the third vector space as a sum of two spaces of dimension
261 and using Proposition 3.7, this reduces to prove that

P2l P27 p2 T T g (2‘”6*4, 0,20+8-4, 2a+'8*4)—not weakly defective.

(As) Now repeat the procedure, splitting the space in the middle: Everything
reduces to prove that

P21y p2’ -1y p2? T -1 g (2°‘+5_5, 0,20+P—4gatB=5 2°‘+5_5)—not weakly defective.

Now split again the third vector space, and repeat the steps. At the end of the
(a+ B —2)th step, after the computation, we find out that we need just to prove that

pte—1 p—1
P21 27Tl P27 g (1, 0, Z 2t Z 2i> -not weakly defective.
i=0  i=0

Notice that all of these steps can be performed because § —p > —p—e > 1.
Indeed we have o < 3, thus 26 — 2 > 2p +¢; hence 26 > 2p+ e+ 2> 2p + 2e.
Now, S°PHe71 9 = 9p+e 1 while Y°P~ 1 27 = 2P — 1. Moreover

p+e<a+(f—p) —2 since 2p+e=a+ B3 — 2,

p<a+(f-p—e)—2 since 2p=a+f—e—2.

Thus we may apply Lemma 4.5 and see that P2°—1 x P277"7"=1 x p2° 771 jq
(1,0,2P7¢ — 1,27 — 1)-not weakly defective. The result is settled. O

When a = j, i.e., when the product is balanced, we find that X is k-identifiable
for k < 22272,

Proof of Theorem 1.1. Fix «a, 8 maximal such that 2% < @ and 2% < b. Then,
by Theorem 4.6, P2 =1 x P2"~1 x P2°~1 i5 (k,0,0,0)-not weakly defective, for k <
20+6=2 = 9298 /4. Thus also P(A)RP(B)®P(C) = P~ xP*~1 xPc~Lis (k,0,0,0)-not
weakly defective, for k < 2098 /4. The conclusion follows. O

Comparing our result with the maximal & for which the identifiability of P(A) x
P(B) x P(C) makes sense, i.e.,

I _ abe
T a4+ b+e—2]"
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(see Proposition 2.2) and considering that ab/3 < k. < ab, we see that the bound
in Theorem 1.1 is, at least log-asymptotically, sharp for cubic tensors, as explained in
the introduction.

In any event, it improves Kruskal’s bound for identifiability.

Remark 4.7. In principle, there are no obstructions in repeating the argument of
Theorem 1.1, when we substitute powers of 2 with powers of any other integer p > 1.
The final statement is

X =Pl x pPPl PPl g (k,0,0,0)-not weakly defective, for k < p*T#=2,

The proof is achieved very similarly, by splitting, step by step, a vector space of
dimension p™ into p spaces of dimension p"~! (see, e.g., the case a = 9 in the proof
of Theorem 1.2).

We can use this statement, instead of Theorem 4.6, in the proof of Theorem 1.1,
obtaining another bound which implies k-identifiability.

In most cases, however, the new bound is weaker than the one of Theorem 1.1.
On the other hand, in some specific case, typically when powers of 3 are involved, it
can be stronger.

To give an example, let us consider X = P26 x P26 x P26, Using Theorem 1.1, we
obtain k-identifiability for k < 24+4=2 = 64. Using powers of p = 3, instead, we get
k-identifiability for k < 331372 = 81. It is an improvement, but still a long way from
kmaz = 249.

5. Some examples in low dimension and the proof of Theorem 1.4. In
this section, we study the k-identifiability of Segre products X = P(A4) xP(B) xP(C),
when the dimensions a, b, ¢ are small. We also provide a proof for Theorem 1.4.

Proof of Theorem 1.3. Consider X = P32 x P? x P3. This product is 5-identifiable,
by Kruskal’s criterion. On the other hand, accordingly with Proposition 2.2, one may
ask about the 6-identifiability of X.

We are able to prove that X is not 6-identifiable, and the general point in Sg(X)
sits in exactly two 6-secant 5-planes. From the tensorial point of view, this means
that a general 4 x 4 x 4 tensor of rank 6 can be written as a sum of six decomposable
tensors in exactly two ways (up to scalar multiplication and permutations).

The reason relies in the fact that through six general points z1,...,z¢ of X =
P3 x P3 x P3, one can draw an elliptic normal curve I' of degree 12, which spans a
projective space L = P!, containing the linear span of z1, ..., zs. So, a general point
u € Sg(X) lies in a linear space L spanned by an elliptic normal curve I' C X. By
[CC2], Proposition 5.2, it is known that I" has 6-secant order 2, i.e., there are exactly
two 5-planes, 6-secant to I', inside L. By Proposition 2.4 of [CC2], if we prove that I’
coincides with the contact locus of a general 6-tangent hyperplane, then X must have
6-secant order equal to 2. This last fact can be checked by our Macaulay?2 algorithm.
Unfortunately, the existence of an elliptic normal curve, of degree 12, passing through
6 randomly chosen points of X, gives only a probabilistic argument for the existence
of such a curve passing through six general points of X. To overcome this problem,
we offer the following theoretical argument.

We remind that a normal elliptic curve in P" is a smooth curve of genus one and
degree n + 1, which is not contained in any hyperplane. This is the minimal degree
for a curve of genus one not contained in any hyperplane, and every smooth elliptic
curve can be obtained as a linear projection from a normal elliptic curve.

Consider the projections z;1, ..., zig of 1, ..., s, into the ith copy of P3, so that
Zi1,. ..,z are general points of P3. Normal elliptic curves C passing through the six
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points of P? are given by pairs of quadrics through the points, so they are parametrized
by the Grassmannian G of lines in the space P? of quadrics through z;,..., 2. In
order that three normal elliptic curves C,C’,C" in the three copies of P? correspond
to the same abstract curve, they need to differ by an element of PGL(3). So, once
we have C' (four parameters), we can choose ¢,1 € PGL(3) for the two remaining
maps C' — P3 (thus a total of 4 + 15 + 15 = 34 parameters). On the other hand, we
need to impose that ¢(C) = C’ (resp., (C) = C”) pass through zs1, ..., 296 (resp.,
231,.-.,236). Since each point imposes two conditions, we get a total of 24 algebraic
conditions on the 34 parameters.

Moreover, if we want that after this correspondence, C,C’, C" are projections of
the same curve passing through 1, ..., zg, we also need that the projectivity ¢ : C' —
C’ (resp., ¥ : C — C") composed with the automorphisms of the curves which sends
211 t0 221 (resp., z11 to 231), also sends any z1; to z9; (resp., z1; to z3;) for ¢ > 2. This
gives ten more conditions, which are algebraic on the coefficients of the two quadrics
and the entries of the matrices of ¢, 1.

So, we have a total of 34 conditions, which are algebraic on the 34 parameters, i.e.,
on the projective coordinates of G x PGL(3) x PGL(3). Thus we get at least a finite
number of curves passing through x4, ..., xg, for a general choice of the points. a

Remark 5.1. In the previous example, notice that if the three projections of the
points x1,...,x; differ by a projectivity, then the number of conditions decreases,
and we find infinitely many normal elliptic curves.

It is easy to see that this implies that a point in the secant variety Sg of any of
these curves indeed belongs to infinitely many 6-secant spaces.

The case of products of projective spaces of dimension three is particularly inter-
esting, due to its applications to statistical studies on DNA strings.

If we have many substrings of DNA strings, each formed by three positions, and
we record the occurrence of the four bases in each position, we get a distribution which
can be arranged in a 4 x 4 x 4 tensor 7. The rank k£ of T suggests the existence of
k different types of substrings, in the probe, such that for each type, the distribution
of bases is independent. So T is the sum of k tensors 17, ..., Tk, of rank 1.

An obvious question concerns the possibility of recovering the k tensors T;, start-
ing from 7. When k > 7, this possibility is excluded, since 7 exceeds the maximum
given in Proposition 2.2. For k < 5, k-identifiability (by Kruskal’s criterion) tells us
that, at least theoretically, the reconstruction is possible.

The amazing situation happens for & = 6. Although one could expect that 6-
identifiability holds, Theorem 1.3 shows that there are exactly two sets of tensors of
rank 1, whose sum is T'. Hence, at least over the complex field, there are exactly two
different sets of distributions in the six types that produce the same distribution 7.

In [AOP], section 6.3, one finds the list of known Segre varieties X = P(A) x
P(B) x P(C) = P*~! x P*~1 x P*~! (with a < b < ¢) such that the dimension of kth
secant variety is smaller than the expected value. Recall that when the dimension of
Sk(X) is smaller than the expected value, i.e., when the variety X is k-defective, the
k-identifiability necessarily fails.

A list of known Segre varieties X which are not k-identifiable, i.e., such that the
general tensor of rank k in C® ® C ® C° does not have a unique decomposition, is the
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following (for k < kpaz):

(a,b,c) k notes

Defective c>(a-1)b-1)+1 (a—1)(b-1)<k [AOP, CGG]

Unbalanced k < min (c, ab)

Defective (3,4,4) 5 [AOP]

Defective (3,b,b) bodd % [Str]

. d

W. defective 3<a (a=1)b-1)+1 ((a—l)(b—1)+1)

Unbalanced ¢>(a—1)(b—1)+2 decompositions
where d = (a+ﬁz2)

a

(Theorem 1.4)

W. defective (4,4,4) 6 2 decompositions
(Theorem 1.3)

W. defective (3,6,6) 8 (%)

A computer check shows that this list is complete for ¢ < 7. In the last case
marked with (**), the contact variety is a 4-fold in P39 of degree 108. This case needs
an “ad hoc” analysis which goes beyond the space of the present note and will be
addressed in a forthcoming paper [CMO)].

In the unbalanced case, the identifiability can be proved theoretically.

PROPOSITION 5.2. The general tensor of rank < (a—1)(b—1) in P(C*®Cb @ C®)
has a unique decomposition as sum of (a —1)(b—1) summands in P*~1 x P—1 x pe~!
fore>(a—1)(b—1).

Proof. Let ¢ € C* ® C® ® C€ be general of rank k < (a —1)(b—1). It induces the
flattening contraction operator

Ay (CO)Y - Co@CP

which has still rank k&, by the assumption ¢ > (e —1)(b—1). Indeed, if ¢ = Zle U; ®
v; @ w; with u; € C*v; € C’,w; € C¢, where w; can be chosen as part of a basis
of C, then Im Ay is the span of the representatives of v; ® w; for ¢ = 1,...,k. It
is well known that the projectification of this span, whose dimension is smaller than
the codimension of the Segre variety Y = P¢~! x P*~1 ¢ P(C® ® C%), meets Y only
in these k points (see, for example, the Theorem 2.6 in [CC1]). The proposition fol-
lows. 0

PROPOSITION 5.3. Ifc=(a—1)(b—1) orc=(a —1)(b— 1)+ 1, then the rank
of a general tensor in P(C* @ C* ® C°) is ab—a — b+ 2.

Proof. When ¢ > (a — 1)(b — 1) + 1, we are in the unbalanced case, according
to Definition 4.2 of [AOP] in the defective setting, the range of the unbalanced case
is slightly bigger than in the weakly defective setting. In this case the rank of the
general tensor is min{c, ab} by (ii) of Theorem 4.4 of [AOP].

Assume ¢ = (a — 1)(b — 1). Using the same technique, we show that the secant
variety Sy, (P21 x P*~! x P°~1) has the expected dimension, for k < (a — 1)(b— 1),
and fills the ambient space, for k = (ab—a — b+ 2).

Indeed, with the notations of [AOP], T(a—1,b—1,ab—a—b; (a—1)(b—1);0,0,0)
reduces to T'(a — 1,b — 1,0;1;0,0,ab — a — b), which is true and subabundant, while
T(a—1,b—1,ab—a —b;ab—a— b+ 2;0,0,0) reduces (for b > 3) to T'(a — 1,b —
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1,0;1;0,0,ab —a — b+ 1) and T(a — 1,b — 1,0;2;0,0,ab — a — b), which are both
superabundant and true. O

PROPOSITION 5.4. Assume ¢ > (a — 1)(b— 1) + 2. Then the rank of the general
tensor in P(C°®@CP®C®) is at least (a—1)(b—1)+2, and it is equal to (a—1)(b—1)+2
in the border case ¢ = (a — 1)(b— 1) + 2. The number of different decomposition of a
general tensor of rank (a—1)(b—1)+1 is ((afl)(‘zfl)ﬂ), where d = deg(P*~! x PP~ 1) =

(a:f;z), This number is always bigger than 1, with the only exception a = b = 2.
Proof. We apply the same argument of the proof of Proposition 5.2. The unique

difference is that, now, the dimension of the projectification of Im Ay equals the

codimension of P*~! x P*~!. Thus we get d points of intersection. Any choice of

(a—1)(b—1)+ 1 among these d points yields a decomposition. O

Remark 5.5. The case a = b = 3 of Proposition 5.4 is connected to the work of
ten Berge, who showed in [tB] that there are six different decompositions of a general
rank 5 tensor in C?* ® C* ® C®, chosen taking five among six possible summands.
Our argument, which we gave for ¢ > 6, can be extended to the case ¢ = 5 and
k = kmaz = 5, and it gives a geometric explanation of this phenomenon. Indeed the
six possible summands correspond to the six intersection points of P? x P? with a
general P4,

As a consequence of the three previous propositions, we get the proof of Theorem
1.4.

6. Products with many factors. At the cost of the growth of the notation,
we can generalize the statement of our main Theorem 1.1 to products of many vector
spaces.

In this section, we simply list the corresponding definitions and results. The
proofs are absolutely straightforward, following the pattern of the corresponding ar-
guments in the previous sections. Only the initial step of the induction needs an extra
argument, which is displayed in Lemma 6.5.

For a given set of complex vector spaces Ay, ..., A,, with n > 3 and dim A4; > 2,
let us give the general definition.

DEFINITION 6.1. A Segre product X = P(A1)x---xP(A,,) is called (k,p1,-..,pn)-
not weakly defective if

o for k general points x1,...,x € X,

e for p; general points w;; € X, fori=1,...,n,j=1,...,p;,

the span of the spaces Ty, X, [Twin]i contains T, X if and only if x = x;, for
somei=1,... k. Otherwise X is called (k,p1,...,pn)-weakly defective.

Remark 6.2. (a) With the previous notation, by semicontinuity it is clear that
when X is (k,p1,...,pn)-not weakly defective, then it is also (K,pi,...,p),)-not
weakly defective, whenever (K, p},...,p),) < (k,p1,...,pn) in the strict ordering.

(b) By semicontinuity, X is (k,p1, ..., pn)-not weakly defective whenever one gets
that for particular sets of points {x;}, {w;;}, as above, then the span of T;, X and all
[Tw,; X]; contains T, X if only if x = x; for some i =1,... k.

(c) By Proposition 2.4, one soon gets that (k, 0, ..., 0)-not weakly defective implies
k-identifiable.

LEMMA 6.3. Consider X = P(A;1) X -+ X P(A,) and assume that, for a choice
of subspaces A; C A;, the product P(A]) x --- x P(A}) is (k,p1,...,pn)-not weakly
defective. Then X is (k,p1,...,pn)-not weakly defective.
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The inductive criterion can be rephrased as follows, always following the lines in
[AOP].

PROPOSITION 6.4 (inductive step). Split the vector space A; in the sum of two
spaces A and All. Let X' =P(A1) x - x P(A}) x -+ x P(A,), X" =P(A1) x -+ X
P(AY) x -+« x P(4,),

Assume that the product X' is (ki,p},...,pi + k2,...,D)-not weakly defective
and the product X" is (ka,p},...,pi + k1,...,p),)-not weakly defective. Then, setting
pj = p; +pj for j # i, we get that X is (k1 + k2,p1,-..,Di,---,Pn)-not weakly
defective.

Now we use again the previous criterion, when the dimension of the vector spaces
are powers of 2, i.e., when dim(A4;) = 2% for all i. We agree to order the spaces, so
that

The following numerical criterion is the exact generalization of Lemmas 4.4 and
4.5.

LEMMA 6.5. Take X =P(A1) x---xP(A,), withn > 3 and dim(4;) = 2% > 2.
Pick nonnegative integers uq, ..., u, such that for all i

wi<ar ot @t o — (n— 1),

Then X is (0,2%1,...,2%)-not weakly defective and (1,2%1—1,2%2—1,... 2% —1)-not
weakly defective.

Proof. The proof goes by induction. For the inductive step, one can follow the
proof of Lemmas 4.4 and 4.5, rephrased for products of many vector spaces. Thus we
need only check the starting points of the induction, namely that ¥;, = P! x --- x P!
is (1,0,...,0)-not weakly defective and (0,1, ..., 1)-not weakly defective.

The first fact follows soon, as P! x - - - x P! is smooth, so that the general tangent
hyperplane is not bitangent.

The second fact follows by induction on n. Namely it is true for n = 3, as observed
in Lemma 4.5. For general n, write Y;, = P(A;) x -+ x P(4,,), with dim(A4;) = 2,
and split A; in a direct sum of two 1-dimensional spaces A’, A”. Using Lemma 6.3,
one has thus to prove that ¥,,_; = P® x P! x ... x P! is (0,1,0,...,0)-not weakly
defective and (0,0,1,...,1)-not weakly defective. The former claim is obvious. The
latter follows by induction. O

We get the following proposition.

PROPOSITION 6.6. Take X = P(A;) x --- x P(4,,), with n > 3 and dim(4;) =
2% > 2. Order the a;’s so that oy < -+- < . Then X is not k-weakly defective, for
k< 2a1+---+o¢n,17(n71)'

It follows that we have the next theorem.

THEOREM 6.7. Take X =P(A;) x---xP(A4,,), withn > 3 and dim(A;) = a; > 2
and, for all i, take oy maximal, such that a; > 2% . Then X is k-identifiable for

k< 20¢1+~"+0¢n—1—(n—1).

Comparing our result with the maximal k for which the identifiability of P(A4;) x
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- X P(A,,) makes sense, which, in the case of a product of many factors, reads as
n—1
Hi:1 a;

n—1
14+ 2oy ai—(n=1)

Qn

kmaw =

We see again that the bound in Theorem 6.7 is log-asymptotically sharp for hypercubic
tensors when a; = a.

The inequality of the theorem can be written as

fe < 2(Si5 llogs ai—1])
Since 2% > “lTH we get the general tensor of rank k is k-identifiable if

[T (@i + 1)

k S 221172

In [SB] Kruskal’s bound was extended to the case of n factors. A sufficient
condition for the k-identifiability of the general tensor of rank k is

2k+n—-1< Zmin(k,ai).

i=1

To compare with our condition, in the hypercubic case where a; = a, the bound
in [SB] is

k< n(a—21)+1’

while our bound is

ko < 2(n=1)(llogy a—1))

For a > 4 we get also the weaker, but more handy, inequality

a+ 1 n—1
e ()
When a,, is large enough, so that the format is far from the cubic one, and in the
cases k < a,, better bounds than ours are in section 5 of [Ste] and a bound for n =4
is in [Lat].

Ezxample 6.8. Instead of giving the proofs, which, we repeat, are analogue to the
proofs of the statement of section 4, let us see how the reduction works in a concrete
example.

Take A; = -+ = A5 = C'6 and consider X = P(A;) x --- x P(A5). We want to
prove that X is k-not weakly defective for k = 24+4+4+4=4 = 4096.

The reduction step starts as in the following table:
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Ay Ay A3 Ay As k p1 P2 P3 P4 D5
16 16 16 16 16 4096 0 0 0 0 0
& 16 16 16 16 2048 2048 0 0 0 0
8 8 16 16 16 1024 1024 1024 O 0 0
8 8 8 16 16 512 512 512 512 O 0
8 8 8 8 16 256 256 256 256 256 O
8 8 8 8 8 128 128 128 128 128 128
4 8 8 8 8 64 192 64 64 64 64
4 4 8 8 8 32 96 96 32 32 32
4 4 4 8 8 16 48 48 48 16 16
4 4 4 4 8 8 24 24 24 24 8
4 4 4 4 4 4 12 12 12 12 12
2 4 4 4 4 2 14 6 6 6 6
2 2 4 4 4 1 7 7 3 3 3

Then use Lemma 6.5 with w1 = us = 3, ug = ug = us = 2.

Remark 6.9. As in the case of triple Segre products, in principle, there are no
obstructions in repeating the argument, when we substitute powers of 2 with powers
of 3 (see the proof of Theorem 1.2 we gave in case a = 9), or any other integer p > 1.

For some numerical cases, the bound for identifiability that we get using powers
of numbers bigger than two can be closer to the maximal value k4.
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