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On Cayley Bundles on the Five-Dimensional Quadric.

o

GIORGIO OTTAVIANI (¥)

Sunto. — Studiamo una famiglia di fibrati (olomorfi) stabili di rango 2 sulla
quadrica Q; di dimensione 5. Questi fibrati si definiscono in modo natu-
rale descrivendo Q; come la softovarields degli oftetti protettivi di Cayley
complessificati data dagli elementi con quadrato nullo, sulla quale agisce
il gruppo di Lie eccezionale Gy. Lo spazio dei moduli & fine ed & isomorfo
a P™\Q, = Spin (7)/Z,- G,, le rette di salio sono le reite dove il prodotio
di Cayley vale zero ¢ la sezione generica si annulla sulla varietd di bandiera
F(0, 1, 2) che risulta cosi immersa in modo liscio in Q;.

Introduction.

Let P»+! be the (n -+ 1)-dimensional complex projective space
and @, be the quadric hypersurface.

There are no known indecomposable rank 2 vector bundles on
P, for n>5 and only few are known on P* (essentially one: the
Horrocks-Mumford bundle).

We want now to consider the same situation with regard to @,.
There are no known indecomposable 2-bundles on @, for n>6.
The aim of this paper is to describe a family of indecomposable
2-bundles on Q5.

These bundles on Q; have been implicitly known for a long time.
In fact the five-dimensional quadric is a quotient of the simple

& e

exceptional Lie group G, ( E}) by the parabolic subgroup

P(&,) [Til]. The semisimple part of P(d,;) is SL(2), and the standard
representation of SIL(2) defines a stable 2-bundle on @; with
¢,=0,= 3. We call the normalized of such a bundle (with
¢,=—1, ¢,=1) a Cayley bundle. There are three more under-

(*) Work supported by the Fondazione Severi and by M.P.I1. 40%, funds.
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standable descriptions of this bundle (up to twost by a line
bundle O(1)):

(i) as the extension of the 2-bundle defined on a hyperplane
seetion @, from the codimension two subvariety = U 7’ (72, 7'
disjoint 2-planes) via the Hartshorne-Serre construction;

(ii) as the rank 2 irreducible component associated to the
filtration of the rank 4 spinor bundle on @ (or similarly of the
rank 5 tangent bundle), induced by the action of G,

(iii) as the bundle whose fibers of the projectivization on the
point p are given by all the special lines through p. Q; can be de-
seribed as the variety of projectivized complewified Cayley octonions
with null square, and the special lines through P are the lines con-
contained in the special 2-plane

7,={€@s: 2-p = 0 (Cayley product)} .

This third description is the geometrical interpretation of the de-
finition via representation.

We will examine closely the second description: we can make
explicit it in the following way. Let 8* be the dual of the spinor
bundle on @;. The generic section of §* does not vanish and defines
a bundle & from the sequence

0>0—->8**-G—>0

The 2-bundle @ has been studied in [Ot2]. It is stable with
Chern classes ¢,= ¢,= ¢,= 2 and all stable 3-bundles with these
Chern classes arise in this way and are parametrized by a fine
moduli space which is P’\Q,. We will see that G is homogeneous
under the action of @,.

We will see also that G*(1) has a nowhere vanishing section which
defines a bundle ¢ from the sequence

0—+90 —6*1)—->C@1) -0.

0O is normalized with ¢; = — 1, ¢,= 1. Observe that a(0(2) =
= ¢,(0(2)) = 3. A bundle ¢ arising in this way is a Cayley bundle.
Our main result (proved in section 2) is the following:

MAIN THEOREM. — (i) each stablé 2-bundle on Q5 with Chen cdlasses
a=—1, =1 is a Cayley bundle (i.e. is homogencous and irre-
ducible under the action of Gy);
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(ii) bundles in (i) are parametrized by & fine moduli space
which is P™\@s;

(iii) the natural action of Autb(Qs) on the moduli space s
tramsitive.

It follows from the theorem that the three description given at
the beginning are equivalent (up to twist).

We obtain also that on @, all stable 2-bundles F with Chern
classes ¢,= — 1, ¢;= (1, 1) have a section of F(1) vanighing on
two disjoint 2-planes and their moduli space is always P\@s
which is a P-fibration over P®x P\ H. This last result was ob-
tained in a different way by Arrondo and Sols [SA4].
~ In section 3 we compute the cohomology of Cayley bundles
and we prove that Cayley bundles do not extend on ¢,. We prove
also that the special lines are exactly the jumping lines and that
the generic section vanishes on the homogeneous 3-fold F(0,1, 2).

T thank V. Ancona and A. Huckleberry for many helpful talks
on this subject.

1. — Preliminaries.

1.1. — We use the Mumford-Takemoto definition of stability.
We have natural isomorphisms H*(Q,, Z) = H¥(Q;, Z) = Z except
HQ,,Z) = ZPDZ. Thus we denote the Chern classes by inters
and the second Chern class on @, by a pair (a, b) of integers. E* is
the dual of the bundle E. E() means E® O(f).

We refer to [St] for Bott theorem and basic facts about homo-
geneous rational manifolds.

1.2. — Let O be the algebra of complexified Cayley octonions,
which are defined (either over R or over C) by the generafors
1, €1, €, ..., ¢, subjected to the relations o =—1, 6;6,=— €6
(5 7) and €;-6,= 65, €,°€,= €5y 61°65= €7, €°65= €7, 62°6, = — Cs;
656, = 6;, €,°6;= 6, (more cyeclic permutations) [Di]. Other defi-
nitions in literature are equivalent to this one. Over R the left-
hand (or right-hand) division except by zero is always possible and
unique. Over C division is no more always possible. In faet if

8

7
we define the norm of an element a, -+ 3 a;¢; to be N = Y a; we get
: f=1 =1
that Cayley product preserves the norms, so that an element of

norm zero cannot be inverted.
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G, is the automorphism group of O {(in the sense that the action
of G, preserves sums and Cayley products) and it is easy to see thatb
G, acts on the variety of projectivized elements of O with null
Square which is in a natural way isomorphic to the varigty given

7
bu the homogeneous relations a, — > a; = 0, that is to Q;. The
i=1

isotropy subgroup in G, of a point in @; is a parabolic subgroup

& bz

which is P(%) [Ti1], [St]. The Dynkin diagram of @, in m .

Here |@| = +/3|d| so that & is the shortest root. ILet A1, Z; be
the fundamental weights associated to the roots Gyy &y

1.3. ~ Tits deseribes also G»/P(&,) as the variety of special lines
in @;. A line [ is ecalled special if #,yel =gy =0 (Cayley pro-
duct). All gpecial lines through p are exactly the lines contained
in the special plane n, = {r e Q;: #-p = 0}. G,/P(&,) is a 5-dimen-
sional variety in P, Consider the diagram

Gy P(%,, &)

N

G/ P(d,) G/ P(d;)

G,/ P(&y, G,) is the flag variety {, V): p €1, 1 special line in @,}.
We have the Levi decomposition P(&) = U p< [SL(2)-C*] where
U is the unipotent radical, SL(2)-C* is reductive and SL(2) is the
semisimple part. We set B = P(d,, &) (Borel subgroup). The
standard representation of SL(2) (with maximal weight 1,) is by
the Borel-Weil theorem the natural action of SL(2) on

H°(SL(2)/SL(2) N B, L;)

where L; is the line bundle with maximal weight J,. As
SL(2)/SL(2) N\ B ~ P(&,)/B ~ {fiber of a} it follows that the rep-
resentation extends to P(&) and that the bundle defined on
Qs =~ G,/P(&) by this representation is a,b*0(1). We have called
such a bundle (twisted by O(— 2) to normalize) a Cayley bundle
and we denote it by ¢. Then the fibres over p of the projectivized
of C are given by all the special lines through p. Note also that by
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the Borel-Weil theorem the natural action of @, on H*(Q,, 0(2))
is the adjoint representation.

1.4. — The inclusion of the subgroup Spin (7) c €I, = C(8) HC(8)
gives the spin representation o: Spin (7) — C(8) = GL(H"(Qs, §*))
(the last equality by Borel-Weil thorem, Spin (7) acts in a natural
way on ;= Spin (7)/P(®,) where P(e«,) = U > [Spin (5):C*] and
8% is defined from the spin representation of Spin (5) [0t2]).

Let 1 =(1,0,..,0)c 0 = C*= H*Q,, 8*). We have obviously
. Gyc{ve8pin(7): ¢(v)1 =1}, that is the action of G, on @, lifts
to an action on 8* which fixes exactly one section (for this see also
the remark after the proof of the main theorem).

As Q¢ =~ {P?: P*c Qs} ~ Spin (7)/P(x,) (Spin (7) acts transitively
on @; and the spinor bundle on @; lifts to any of the two spinor
bundles on @;) we can consider also the action of @, on Q;. It is

7
easy to check that G, preserves the form a) — > o} and the ele-
i=1
ment 1 so that we can verify from the fact that @, is transitive
on @; that the action of G, in @, has exactly two orbits: an hyper-
plane section @, (given by a,= 0, consisting of imaginary num-
bers) and the complement @,\Q;. Note that G, acts on the subset
of O given by imaginary numbers: in fact C-1 is an invariant sub-
space and € O is imaginary or € C-1 if and only if 22 C-1.
The orbit @; — ¢, can be realized as the variety of special planes
into the variety of all planes in @Q,.

1.5. — A% the level of Lie algebras, we can choose fundamental
systems of roots {a;, o, o} for Spin (7) and {&, &} for &, with
respective maximal weights {2, Z,, 4} and {1, 1,} such that the
restriction of o, or «; (resp. A, and 1) is & (resp. 1;) and the restric-
tion of «, (resp. A,) is &, (resp. ).

The following picture explains this restriction at the level of
Dynkin diagrams

rotate o around os
and get G,
- .y

~”
o . 7 \\

& &
2 A \
oy 223 X
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A quick proof of this fact is as follows. The tangent bundle
is defined by the adjoint representation [St]. The weights of the
adjoint representation which defines the tangent bundle on @, ~
=~ Spin (7)/P(«,) are exactly the roots which contain o, that are
in order

Ozy Oy -t Opy O ~F 0ty otg, oy + 0 205, 04y b 206 - 20 [Ti2] .

In a analogous way on_ @, ~ G,/P(3,) the weights of the adjoint
representation which defines the tangent bundle are the roots which
contain &, that are in order &y O+ Gay 20, + &, 36+ &gy 3%+
+ 28,. This proves our claim. The tangent bundle is irreducible
under the action of Spin (7). When we restrict to the action of G
the tangent bundle is reducible and we have the ordering

2

O =24— Ao <Gy + Gy = Ay— A <28, + &= A<
weights of C(1) weight of O(1)

<3G+ dy= 321‘— jl.:z<3é(~1‘|" 28, = zz
welghts of C(2)

2. — Proof of the main theorem.

LeEMMA 2.1. — Let F be o stable 2-bundle on Q, with ¢;= -1
= (1,1), We have H2(F(t)) = 0 Vte Z.

’

PrOOF. — By [ES] F remains stable on the generic hyperplane
section @, and we have AF|g(m)) =0 for m<— 1, then
R(F(m)) = 0 for m<— 1 (this argument works on @,). By hypo-
thesis we have A%(F) =0, h4(F) = h(F*(— 4)) = B(F(— 3)) = 0.
Moreover we have h*(F) = R(F(— 3)) = 0. By the Hirzebruch-
Riemann-Roch theorem we compute z(F) = — 1 and then it fol-
lows AYF)— h¥(F) =1, so that -

HYF) = HY(F*(— 1)) = Ext* (F(1), 0)=£0.
We obtain a nonsplitting extension 0 — QO — B*1) — F(1) — 0 with
cl(E) =2, Enorm = E(— 1), (E*)norm = E*.
From the sequence

0>0(—1)>E>F >0

it follows A°(E*) = 0. Now we want to prove that W(E(— 1)) = 0.
If on the contrary E(— 1) has one nonzero section we consider
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|

9 =

i ™S
LN

),
0—>F—>E-1)—-0-0

o

the diagram

We must have y = 0, otherwise the above row splits. Thus
we obtain an injective morphism from O to F, contradicting
R(F) = 0. It follows that E is stable. The Chern classes of H
are ¢ = 2, 6= (2,2), ¢;=2. In[HS] the moduli of E are com-
puted and it follows in particular that R2(E*(t)) = 0 Vi and then
R(F(2) = 0 Vi

LEMMA 2.2. — Let C be a stable 2-bundle on Qs with ¢,= —1,
¢z =1. Then we have an exact sequence 0 — O —-G*(1) -~ 01) =0
with G stable 3-bundle with ¢, = 6= ;= 2.

ProOF. — By [ES] for the generic hyperplane section @, Clq,
is stable and from the proof of the lemma 2.1 we have the sequence
on Q, 0 —> O — E*1) — C(1)|q,— 0, with E stable 3-bundle with
6= 2, ;= (2,2), ;= 2. From the lemmsa 2.1 B2(C(t)]o,) = 0 Vt,
then from the sequence 0 — C(t— 1) — C(f) — C(t)]|q,—~ 0 it fol-
lows h*(C(t)) = 1*(C()) = 0 Vi. Then the morphism HYC) —
— HY(C|o) is surjective, and when we interpret H(C) in terms of
extensions we obtain a 3-bundle G on @; and a diagram

00 —=G*1)—~>01)—=0

y

0 — O, — E*(1) - C(1)|e,— 0

As in the proof above we have A°(Gugym) = B(GE ) = 0, 80
that G is stable and also in this case the moduli of G are known
from [O12].

PROOF OF THE MAIN THEOREM. — Our aim is to show that the
moduli space of C is the same of G of the previous lemma, that
is P\, as in [Ot2], where the cohomology of the bundle G(f)
of the previous lemma is computed. In particular R(E*1) =1,
K(G*(1)]g) =2 and we have also m(Cle) = W(0) = h(G*) = L.
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Then we have a natural biunivoe map

quotient by the section of G*(1)

stable 3-bundle on @, and tensor by O(~1) ~  [stable 2:bundle on @
with ¢,=¢,=¢;,= 2

nonsplitting extension of ¢(1) by O

G | C.

We remark that both the extension and the section considered
in the map just defined are unique. This proves point (i) and (ii).
Spin (7) acts on the space P(H(Q5, 8*)) = P7 where Q, is a com-
pact orbit of codimension one, so that P™\Q; must be another
orbit because the action has no fixed points and stabilizes the
closure of every orbit. Of course one ean also compute directly
PORQ0*) =1 W(0R C*) =17 h*(C® C*) = 0 from Bott theorem,
but this is not needed. This concludes the proof.

REMARK ON THE PROOF. — In this remark we explicit the rela-
tion between Cayley bundles and embeddings on @, in Spin (7).
This gives a more algebraic description of the moduli space P™NQ,.
The isotropy subgroup of Spin (7) acting on P\, contains G,
because Cayley bundles are G;-homogeneous and has dimension
14 = dim G,. The affine quadric @, is the universal covering 2:1
of P™\@; so that x,(P™\Q,) = Z, and the homotopy sequence of
the fibration Spin (7) — P™\Q, shows that

P™\Qs ~ Spin (7)/Z,- G, .

Now the fact that @, fixes the element 1 c O ~ H(Q;, 8*) can
be interpreted in the following way. @, is the connected group of
the automorphisms of the bundle S8* which fixes oxactly one
section, i.e. in the sequence 0 — @ — §* — G — 0 we have that G
is homogeneous under the action of G,. The action is reducible
and each bundle @ defines a Cayley bundle as the rank 2 eompo-
nent of the irreducible filtration. We emphasize that any embed-
ding G; — Spin (7) defines an action of G on 8% an then defines
a Cayley bundle considering the filtration as above and conversely
any Cayley bundle defines a 3-bundle G as nonsplitting extension
and then an embedding

&, = {g € Spin (7): g*G ~ G}* = {g € Spin (7): ¢*C ~ C}° —> Spin (7)

with ¢, = —1, ¢,=1

}
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(the superscript ° means « connected component of the identity »).
In the same way Spin (8) acts transitively on the moduli space
of all 3-bundles on @, with ¢,=2 ¢,= 2 ¢;= (2, 0) or (0, 2) which
are Spin (7)-homogeneous [Ot2]. This gives a geometric inter-
pretation of the isomorphism =

P™\Q, = Spin (8)/Z,-Spin (7) .
Note that we have also
P\Q; = 80(7)/G, ~ SO(8)/Spin (7)

and

Q) = Spin (7)/@; ~ Spin (8)/Spin (7).

3. — Further properties of Cayley bundles.
TEEOREM 3.1. — Let C be a Cayley bundle (normalized), and let

1

Al) = z5 ¢ =1+ )+ 2)E+3)(+ 5.

Then B(0@) = A(t) for t>2, B(C() = — A(t) for t<— 6, all other
values of hW(C(t)) vanish ewcept h(C) = h4(0(— 4)) = 1.

Proor. — It follows from Bott theorem. The weights of ((2)
are 1, and 34, — 2, and we may suppose that the Killing form is

(A, 8;) = { bu AL LGJ
3 if (4,9

Then for example 1, + 27, is regular of index 0, 21, is singular,
— A+ 22, is regular of index 1 and so on. For > 0 from Weyl
formula

(t2aA- 275, )
dED+ (Z1+ sz‘x) =4t +1)

as @+t = {&1, &2, &1-}— &2,20~Cl+ &z, 3&1+ &2a 35‘1"‘ 2&2}

THEOREM 3.2. — Any Cayley bundle C does not extend on Qg as
a vector bundle.
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Proor. — Suppose that O extends to Q, to the bundle O (in the
sense that 5[05 ~ (). Then we have a sequence 0 — C(t— 1) —
—C(t) -~ O(t) -0 and from that we obtain B(C(t) = 0 for t<1,
r(C@) =0 for t<—1, 1C(t)) = o0 vt, »(0) = n(GQ)) = 1.
C restricts to a Cayley bundle at any smooth hyperplane section
by the main theorem. We get an extension on Qs

00 —->G¥1) >0a) -0

with 6,(G) = 6(G) = 2 () = (1,1). The restriction "2H(C(1)) -
—H 1(~O’(1)) is a isomorphism of one dimensional vector spaces and
then Glo,~ G. As hY(G*(— 1)) = h2(G*(— 1)) = 0 we get that the
morphism HY(G*) — HY(G*) is again a isomorphism of one dimen-
sional vector spaces: this means that there is a sequence on @,
09 —>A4->G >0 where 4 is a bundle which restricts to the
spinor bundle at any smooth hyperplane section @;: By [0t2],
th. 2.11 it follows that A is itself a spinor bundle and looking at
Chern classes we get ¢,(F) = (2,0) or (0,2) in contradiction with
¢(@) = (1,1). This concludes the proof.

The theorem above implies that there are no stable 2-bundles
on @ with ¢, = — 1, ¢,=1. In [O12] a class of stable 3-bundles B
on Qg with ¢, =2, 6,= 2, ¢,= (2, 0) or (0, 2) are constructed (they
are Spin (7)-homogeneous) but I*(1) has no sections.

REMARK 3.3. — From 1.5 we obtain the following filtration
0c C(1)c Gc TQ, with the sequences

0—-C1)—G—=0(1)—>0 0G>T0, 02)—>0.

The dual of the surjective morphism TQ;— 0(2) is given on
each fiber by the inclusion of the 2-plane given by all speecial lines
through p into the space of all tangent lines through p.

REMARK 3.4. — On @, we have again a unique nonsplitting ex-
tension B of C(1)|o,= F(1) by O but the section of E*(1) is not
unique. It follows that a stable 2-bundle on @, with ¢, = — 1,
¢;= (1,1) extends in a unique way on ;. The moduli spaces of
these bundles on @, is fine and is again P™\Q;. These bundles can
be constructed directly from the union of two disjoint 2-planes
via the Hartshorne-Serre construction. The computation on the
moduli shows that all stable 2-bundles F with o=—1, ¢=(1,1)
can be constructed in this way. Then each of these bundles on Q,,
twisted. so that ¢,=1 ¢,= (1,1) has a unique (up to scalar mul-
tiple) section which vanishes on the union of two disjoint 2-planes.



» ON CAYLEY BUNDLES ON"I‘HE'FIVE-DIMEI%SIONAL QUADRIC 97

The theorem 3.1 shows that

¢ + 1)(t + 2)(e2+ 3¢ ;'3) |

RO(F (1)) = h4(F(—1t —3)) = { 5

for t>1

N

and all other values of h*(F(#)) vanish except h'(F) = h*(F(—3)) =1.

THEOREM 3.5, ~ Let C be a Cayley bundle. If r is a special line
then C|, =~ O(— 2)DO@1). If r is not a special line then C|, =~
~ O(—1)®O. Then the special lines are ewactly the. jumping
lines of C.

ProoF. — In [Ot1] th. 3.2 the jumping lines of @ restricted to
Q,~Gr(1,3) are computed. It follows that on the generic
2-plane in @, there are not jumping lines for G and the generic
splitting is O @ O(1)? while on some 2-planes there is a pencil of
jumping lines (all the lines through a fixed point) where the split-
ting is 92@ O(2). Then the two possible splitting for G*(1) are
02@ 0(1) and 9(— 1)@ O(1)%. This is important because looking
at the cohomology sequence associated to

0 —~0,—>G*1),~01)],—~0

s e T TR . e om0 ok i —

we get
G*(1)], = 02 @ 0(1) < C(1)|, = 0D 0(1)

G+(1)], = O(— 1) ® O(1)* <> O(1)], = O(— 1) D O(2) -

Consider now that from 1.4 @, acts on {P?: P*c @;} =@, with
two orbits: the hyperplane @; given by the special planes (i.e. the
planes that Vp e @, contain all special lines through p) and the
complement @Q,\@;. Both G and C are homogneneous by the
action of G,: Then when = is not a special plane (|, has to be
uniform (precisely C|,~ TP*— 2) by cohomology reasons) and
when 7z is special O|, has a pencil of jumping lines that has to be
the pencil of special lines because on the special lines the splitting
has to be the same by the homogeneity. This concludes the proof.

REMARK 3.6. — The theorem 3.5 shows that the special lines
determines the isomorphism eclass of the bundle C. In fact the
set of special lines determines an embedding @; — {P*: P2c Qs ~ Qs
given by the hyperplane section and these are parametrized by
P™\Q, (we have to exclude the tangent hyperplanes).

The special lines form a B5-dimensional submanifold in the
7-dimensional manifold of all lines in ;. -

7
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The behaviour of @ and C when restricted to linear subspaces
in @ is summarized in the table 1.

Table 1 .
restricted to lines restricted to planes
o nonspecial: 0@ O(— 1) nonspecial: TP?(— 2)
special: O(— 2)@® O(1) special: not semistable bundle
with ¢, =—1 ¢ =1
aq nonspecial: O @ O(1)2 nonspecial: 242)@ O(1)
special: O2@ O(2) special: N|p:P O

N = nullcorrelation on P3

TEEOREM 3.7. — Let C be & Cayley bundle. C(2) is the first twist
which has sections and it is globally generated. Bach section of 0(2)
with smooth zero loci (and hence the generic one) vanishes on & sub-
variety isomorphic to the complete flag manifold F(0,1,2) of linear
elements of Pz,

ProOF. — ((2) is generated by global sections because is a quo-
tient of T'Q;: By the theorem 3.1 A°(0(2)) = 14. Let V be the
smooth zero loci of a section. By the adjunction formula K, ~
=~ Ko, ® det C(2)|p =~ O(— 2)|y: We have V ~ 6:(C(2)) as cycles in
@s and ¢,(C(2)) is equivalent to three times a section @3, so that
deg V= 6. V is then a Fano threefold of index 2 and degree 6.
By the classification given in [Mu] it follows that there are only
two possibilities: V~L-S(P?x P2) or V ~ P:x P1xXP'. The first
case corresponds to a hyperplane section of the Segre variety
P2x P* and it is easy to check that it is isomorphic to F(0,1, 2).
As P2 x P? can be smoothly projected from P? in, P7 then F(0,1, 2)
can be smoothly embedded in P?. The second case Ve~ Pix Pt x Pt
cannot occur and is excluded by the following computation.
We have:

ho(Tpxxpxxp:) - hl(Tpxxp1xp1) = 9 - 0 == 9
while on the other hand we consider the sequences:

(B1) 0TV —TQyy > C@2)y—0
(3.2) 0= (1) = 0g,(1) = 0p(1) - (3, means 3v.0,)
(83) 0->3H®0Q)—072)—>C@2)—0
(B4) 0-0(—=3)—=C(—1)—=>3H—=>0
(Koszul complex of the section defining V)
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(85) 0—>0(—1)=>0®RC*>3®0@2) >0

(above tensored by C(2))
(3.6) 0 - TQs|y — TP%y — 05(2) -0 -
(3.7) 0 — 0y —> O(1)7|y - TP}, — 0

By (3.5) one computes r(J® C(2)) =1, A(J® C2)) =T,
(3 ® C(2)) = 0, then by (3.3) it follows »°(0(2)y) =14 +
+ 7—1=20,h(C(2)]y) =0. By (3.4) twisted by O(1) we have
RO (3,(1)) = 0, R (Jp(1)) =1, k2(35(1)) =0, then by (3.2) k(9,(1)) =8,
B (Op(1)) = 0 and also in the same way A°(Op) =1, A0y) =
= h2(0y) = 0, h(05(2)) = 27. By (3.7) h(TP%|y) = 7-8 — 1 = 55,
k(TP¢)y) = 0, then by (3.6) h°(TQsly) — h{(TQsly) = 55 — 27 = 28,
At last by (3.2)

W(TV) — W(TV) =

= W(TQsly) — W (TQsly) — B°(C(2)|y) = 28 — 20 = 8 (instead of 9)
This gives the contradiction. Of course one can computes directly
h(TF)— h{TF) =28 (T'F is the tangent bundle of F(0,1,2)).

REMARK 3.8. — We observe that the hyperplane sections of
F(0,1, 2) are Del Pezzo surfaces isomorphic to P2 blown up at three
points and imbedded with the anticanonical system. These surfaces
are the zero loci of sections of C(2)|q,. From the proof of the theo-
rem 3.7 it follows also that, if we set F'= F(0, 1, 2) h%(JF,,(2)) =
= h*(C(1)) = 0. Then A°(Jpp:(2)) = 1, that means F is contained
in a unique quadric in P% which is smooth by our construction.
The generic section of C(2) on F is a smooth curve of degree 18
and genus 10.

REMARK 3.9. — The restriction ((2)[r is the normal bundle Ng,,
but the restriction on F of the sequence 0 - G — TQ, - C(2) — 0
of remark 3.3 is mot the sequence 0 — T'F — TQ;|r— Ngqo, — 0.
In fact from the embedding P'= S8IL(2)/B — SL(3)/B = B = F it
is easy to see that TF restricted to any line is isomorphic to
O(—1)P OA)D O(2) that is not a possible splitting for G (see
table 1). Then we can construct deformations of T'F as kernels of the
surjective morphisms T'Q;lr — Ny o,: Note also the filtration on
F0—»0—>TF1) > 0(—1,2)® 9(2,— 1) -0 which is analog on
Qs at 0 - 9O — G*(1) - C(1) - 0.

We can also show that F contains at least one special line. We
sketch only the reasoning. Considering the fibres of one of the two
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projections p: F — P? we may assume that C is uniform on this
family. Then by a well known argument we have that (up to twist)
p*p, C is a line subbundle of C. Then O is an extensions of two
line bundles and looking at Chern classes the.only pgssibility is
0—0(—2,1) - C - O(1,— 2) -0 so that the splitting of C on
one family is O(— 2)® O(1) which corresponds to special lines.

REFERENCES

[Di] L. E. DicksoN, Linear algebras, Cambridge, 1914.

[ES] L. Emx - I. Sors, Stable vector bundles on quadric hypersurfaces,
Nogoya Math. J., 96 (1984), 11-22.

[HS] R. HERNANDEZ - I. SoLs, On a family of rank 3 bundles on Gr (1, 3),
J. Reine Angew. Math., 360 (1985), 124-135.

[Mu] J. P. Murse, Classification of Fano threefolds according to Fano and
Iskovskih, in Algebraic threefolds, Springer LNM 947 (1981), 35-92.

[0t1] G. OrTaviawi, 4 claés of n-bundles on Gr (k, n), J. Reine Angew.
Math., 379 (1987), 182-208.

[0t2] G. OTTAVIANI, Spinor bundles on quadrics, Trans. Amer. Math. Soc.,
307 (1988), 301-316.

[SA] E. Arronpo - I. Sors, Classification of smooth congruences of low

: degree, J. Reine Angew. Math., 393 (1989), 199-219.

[St] M. SteinstEx, Uber homogen-rationale Mannigfaltigheiten, Schrifter.
Math. Inst. Univ. Miinster, 2. Serie, Bd. 23 (1982).

[Ti1] J. Trzs, Sur certaines classes d’espaces homogénes de groupes de Lie,

. Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8:, 29 (1955), 1-268.

[Ti2] J. Tirs, Tabellen 2u den einfachen Liegruppen und ihren Darstellungen,
Springer LNM 40, New York, 1967.

Note added in proof. — After this paper was written, B. Fantechi pointed
out to me using simple linear algebra that the chordal variety of P1X P*x P!
is P7: this allows to avoid the cohomological computations in the proof
of the theorem 3.7.
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