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Boundedness for Nongeneral-Type

3-Folds in P

Robert Braun, Giorgio Ottaviani, Michael Sehnetder,
and Frank Olaf Schreyer

One of the tantulizing problems in projective geometry is Hartshorne's
conjecture: smooth subvaricties X' < P, (L) with dim X > i arc complete
intersections, Due to Serre’s correspondence the most interesting case is
codim X = 2. In fact, in this case even 4-folds in Py should be complete
intersections. For n < § the remaining cases of “low codimension™ are sur-
faces in P4 and 3-folds in Ps. For surfaces in P4, Ellingsrud and Peskine 8]
liave established the foliowing beautiful boundedness result.

TheoreM | (Ellingsrud and Peskine). There are only finitely many
Jumilies of smooth surfaces in Py that are not of general typpe.

This result supports (at least psychologically) the many recent efforts
to classify nongeneral-type surfaces in Py of low degree (1,3, 14,15}, The
main purpose of this chapter is to establish a similar result for 3-folds in Ps.

THEOREM 2. There are only finitely many fumilies of smooth 3-folds in
B that are not of general type.

Robert Brann, Michae! Schneider, and Frank Olaf Sehreyer o Mathematisches Tnstitut, Universitiit
Bayreuth, Postfach 1012 51, D-8380 Bayreuth, Gertnany,  Giergie Ottaviani = Dipartimento
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This result had been conjectured in Refl. 2 and partly proved in Ref. 6.
Putling these two theorems and Ref. [1 together, we obtain the next resuit.

Trizorem 3. Let n 2 4. Then there are only finitely many families of
smooth 2-codimensional submanifolds X < B, that are not of general type.

‘The main technical result is the following: Let o be a positive integer.
Then there exists a polynomial P, of degree 8 with positive leading term
such that

—x(Oy) 2 Po(Jd)

for wll smooth 3-folds X < 5 of degree o contained in a (reduced, irreduc-
ible) hypersurlace of degree .

The proof relies completely on the ideas and results of the analogous
result Tfor surluces in Py by Ellingsrud and Peskine. In contrast to the surface
case this is not enough to conclude finiteness, The reason is the lack of a
clussification for 3-folds. We overcome this difficulty by using the gencralized
Hodge index theorem and the semipositivity of Ny/p,(—1), N being the
normal bundle. The bounds obtained are very far from what one expects to
bu best possible. For instance, for surfaces S < P4 lying on quintic hypersur-
faces the optimistic estimate would be deg § < 15, provided p(S) < 1. Ina
F section we give seme evidence toward this by deriving cstimates for
surfaces that are hyperplane sections of 3-folds in Ps. These estimates have
4 topological nature and have emerged in one dimension less in the paper
ol Illingsrud and Peskine. More precisely we prove the following result.

Provostrion 1o Let Fobe a vector bundle of rank r on a projec-
rrce qanifold X admitting o wmorphisne gy @M B seeh thar L=
cpeXorkootp) < )iy generically o local complete infersection variety of
cadimension 2. Then

oo By = 0.

2 cHE) z e By = 0.

3. ﬁ._ﬁm..mvﬁma\u‘v = h.w?-ﬁv = 0,

biere 20 means clfective.

1. Notations and Preliminaries

We use the following notalion:

X smooth 3-fold in Ps of degree d
H class of a hyperplane section of X

!
_w

'

Boundedness for 3-Folds in P4

K class of the canonical bundie of X
S generic hyperplane section of X

C gencric hyperplane section of S

g genus of €

We also use the following formulas {e.g., Chang [7]):

H=d (.
HK =25~ 2 -2, (1.2)
HK® = 3d(d + 1) = 9(g = 1) + 62(Us), (.3

K= —5d¥ 4 d(2g + 25) + 24(g — 1) — 367 (0s) = 24x(0x).  (1.4)

THEOREM 1.1 Q@Q:nx?ken.ﬁﬁ Jor « Vector Bundle E of Rank r on X').

1
2(E)= WFS@ = 3e/(B)ex(E) + 3os(EN} + Zerler(B) = 26 E)]

+ 1+ elelE) + L,
12 24

where ¢;= ¢;(Ty).

In particular,

2 (Ox) =361,

Furthermare,

and

o= (15— d)H* + 6HK + K,

which [ollows [rom the exact sequence

00— Ty— ﬂP_N.I. Ny, — 0,
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and
ﬁuﬁz‘_.\m.b =dH>

I _._Em_n__,.g 1.2 ( k:@ (16]). If Cis contained in a hypersurfuce of degree
o) 3_:._\ .Q o' < dy then S is contained in a hypersurface of degree . This is also
trice if Cis replaced by S and S iv replaced by X,

TuroreM 1.3 (Gruson and Peskine [91). If Ci ] ]
. A ; . k t -
surface of degree o — [, then OB 7 Clsnot contained i hyper

/
g1 MMMTI oo~ ).

A ,Emozmz 1.4 (Castelnuove bound (Harris [10]), Let VP mm an
irreducible nondegenerate variety of dimension k and degree d, Put !

o~ ] )
M= and

n—k e=d=1-Mn~k),

where [x] is the greatest integer less than or equal to x. Then

P V)= bcﬁ "N DJ < M (n— k) + M :
R kJ

where Vis a resolution of 'V (ie., Vi .
. X L e, Vis a smooth variety mapping holom -
feally and birationally to V). Y PP o

THrorEM 1.5 (Generalized Hodge Index Theorem [5
. 4 . L >
line bundles on X such that 4 is ample. Then D Let L and 4 b

ﬁhm.\pv\ﬁmﬁhp.gp.

In Ref. 5 this is proved only for L nef Bu i i
. . But the inequality does not
change if we replace L by L + kA. Now just take k large a:o:mw: to make
L + kA net (or ample) and apply Ref. 5.

By the Barth-Lefschetz theorem [4] we always have

H' (X, 0x) =0, (1.5)
and, therelore,

. H'(S, @5) = 0. (1.6)

")
[

Boundedness for 3-Folds h %
2. First Estimates

In this section we prove an inequality between d, g, x(0s), and x(Oyx)
that is deduced from the semipositivity of N(—i), N being the normal bundle
of X in 5. To bound the number of familics, we need only bound the

degree. This is the content of the following proposition.

ProposiTION 2.1, For any integer dy there are only finitely many irreduc-
ible components of the Hilbert scheme of 3-folds in Ps that contain 3-folds
with & < Qc '

Proor. The Hilbert polynomial of a 3-fold X in Ps is (see Theorem

1.1)

il

LAH® = LKEH? + 5115 — d)H? + 6HK + 2K™)tH + 2 (0x)
13d YK + 50(15 — d)d + 6H'K + 2KIH]+ x{0x).

x(Ox (1)

!

Assume d < dy. By Theorem 1.4 there are only finitely many possible
values for g, po(S), and py(X) and, hence, for y(0s) and x (@} since
H(0y) < pe(S) and #'(0s)=h'(0x) =0. By (1L1)-(1.4) there are only
finitely many possibilities for the above polynomizl. O

ProvosiTion 2.2. Let X be a 3-fold in Ps. Then

1. 127(05) 2d>~T7d— 18(g = ).
2. 24x(0s) 2 d* = 3d + (d— 15)(g = 1)+ 122(8x).

Proor. Since Nyp{—1) is globally generated, the Segre classes

(defined as the inverse Chern classes of the dual bundle) satisfy

s;(N(~1)) - Hz0 and s{N(=~1)) = 0.

Now
= nwln?
53 = n_mnw - Mnuv_
c(N(—1)) =4H + K,
S(N(=1)) = 16H® + BHK + K,

ca(N(—1)) = ca(N)} + () (—H}+ (—HY = (d~ SYH?— HK.
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Hence, by (1.1) (1.4),

D<sN(-1)) H={(2] —d)H* +9HK + K*]- H

(21 —Yd + 928 ~ 2= 2d) +3d(d+ 1) — (g — 1) + 6x(Cs)
—3d* + 3d + 9(g — 1) + 6 (0),
sy N(=1)) = (41 + K) 2013 — d)H* + 1OHK + K]
8(13 — dYH + 40H K + AHK* + 2(13 — d)H*K + 10HK* + K°
8(13 — d)d + 2(33 — d)H*K + 14HK? + K*
104d ~ 8d” + (66 — 2d)(2g ~ 2 — 2d)
+ 14Md(d + 1) = 9(g — 1) + 62(0s)] : .
—Sd®+d(2g + 25) + 24(g — 1) — 36x(@5) — 247 (0x)
L04d — 8d? + 132(g — 1) ~ 132d
— delg + Ad(d + 1) + Td(d + 1) — 126(g — 1)
+ 8y (O5) ~ Sd* + 2l + 25d + 24{g — 1) — 36x(0g) — 247(0x)
Red = 2 + 30(g — 1) — 2dy + 487 (04) — 24x(0y)
b — 2d* + (30 — 2d)(g — 1) + 48x (0s) — 245 (O ). |

]

A

I il

i

To obtain finiteness results for 3-folds X in Ps, we cannot directly apply
the tiniteness results of Ellingsrud and Peskine since .S is mostly of general
Gvn_c,&z if X is not. In the rest of this section we derive, however, some
special finiteness results that can be obtained by using the technical result
of Ref. 9, Proposition 3.

ProPOSITION 2.3. Let X be a 3-fold in Ps. If (3 —¢))- H<0 and if
o 2 148, then X iy eontained in a hypersurface of degree 6,

Proor. By (1.1)-(1.4) and Theorem 1.1,

(P—c))  H=[(d—1SYH* - 6HK] H

(d—15)d - 6(2g —2~2dy=4d*~3d—12{(g — ]).

Ir'.Y is not contained in a hypersurface of degree 6 and if 4 > 36, then by
Theorems 1.2 and 1.3,

d 1 3
g1l <—(d+21)=-~d*+ =
_a? } Z.a. mn..

7
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Hence,

(F—c) Hzd —3d—5d*—18d=}d*-21d>0  ford=143. )

CoroLLARY 2.1. Assume ¢, H20 and (¢} — ac;) H <0 for some
a < 1. Then deg X is bounded.

Proor. The assumptions imply (¢t = ¢) - H < 0. By Proposition 2.3,
X is contained in a hypersurface of degree 6 if 4 2 148, and so are Sand C

By Proposition 3 of Ref. §,
2(0s) = cd® + 1t in /4,

where ¢ is & positive ‘constant. Hence, by (1.1)~(1.4) and Theorem 1.1,

0z (cd~—ac) H
=[(—a)K* —a((15—d)H* +6HK)] - H
= (1 - a)lzd(d + 1) = 9(g = 1) + 62(0s)]
—af(15 — d)d + 6(2g — 2 — 2d)]
> 6c(l —a)d® + 1t in /\m (see Theorem 1.3).

Since 6¢(1 — «) > 0, d is bounded. The corresponding statement for surfaces
(i.c., ¢}~ uey 0 implies ¢ is bounded) implies the finiteness result by

applying surface classification. O

3. 3-Folds on Hypersurfaces of Fixed Degree

In this section we prove the main technical result (Proposition 3.1},
which is the analog of Proposition 3 in Ref. 8, and whose proof [oliows the

one there.

PROPOSITION 3.1. Let X < Ps be a smooth 3-fold contained in a hyper-
surface V of degree o with @ minimal, There is a constant dy depending only
on o, and there is a polynomial P, of degree 8 in Jd with positive leading
coefficient such that, for d = do,

Po(Jd) < —5(Ox) = p(X) — K (Ox) + 1.
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The proof follows zlong the line in Ref. 8. First define p=
e No{=a)) - H and assume o < d. Then by Lemma 1 of Ref. 8,

0<u<(o—1)4d, (3.1)
20(g —~ 1y=d* +dolac —4) ~ 1. (3.2)
Consequently,
Ll (0 1y
g | S R R
gtz mTq ) p (3.3

LiMMa 31, For it 2 o,
X He () == gyt F (60~ @)a ~ d]t?

1

+ 1151 — 18¢c + 20Y0 + —(d* + od(oc — 6) — ) |
[z

+ %2 (90 = S1a + 1262~ oMo — 8d

+ WEQI olo —4)) - E%

+ (274 = 2250 + 850 ~ 156° + oY) — 1x(Gs) — x(Ox)
=1 Q1) — x{O).

Limma 3.2, Let &, =minf{tito—dz o and (ta—d)* -y - (to —
dyo(c —4) > 0. Then

I dic <t <d/a+ Jd+o.
2o x(Fr(n)) = A d' + 11 in Jd, where A Is a constant depending

only on o.

PrROOF OF ProrosiTioN 3.1, We may assume £; = o. Recall from Ref.
B othat

! _
. 2 (0s) = %% + Lt in J/d.

Boundedness for 3-Folds in Px 19

By Lemma 3.1,
=x2(0x) = 2 (F v (1) — Q).
Lemma 3.2(1) yiclds

1 1 i
- e —d* —
et z 24 ¢r” 6o 4e5°

= ‘_;:x + Lt in /\m

240

4t L in Jd
iTe)

Using Lemma 3.2(2), we obluin

g (Ox) 2 ——d® + 1t in Jd. O
240°

Proor oF LEmMMa 3.1, From the exact sequences

0 = Op,(t = o) = Op{t) > Ov(} =0,
0= Je (1) = Oy (1) =+ Ox (1) = 0,

we have
2 (B (D) = 2(On (D) = 2(Gp,(t — 0)) = (G5 ().
Step 1. 1 =0,

t+5

i uuww_: + 5) (¢ + D+ 3+ D+ 1)

% (Opy(0) um
- %: + )+ T 12+ 30+ 2)

= %: + 5)(r* + 102+ 357 + 50¢ + 24)

~ %Ama + ~M~a + mm“.w 4 Mwmau A 2741 - *NCV
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Step 2.tz 0.

(+5-¢
3

y (Gt = a))

1
wT.Tmio‘v?:ﬂnlo.uQ+ulo.vQ+levQ+_iqu

'

[

_ 2
= U S = o)+ (7= 20)+ (12= 70 + o7)]

x Tm +(3=2o4+(2~3c+ O.N.i

!
=5 (1 + 5~ o)t + (10— o)’ + (35 — 300 + 6501

+ {50 = 00 + 300 — 40 )t
1 (24 = 500 + 3547 ~ 106" + o))
!
_.f_z P15 = Sy | (85 = 6o + [0a™)
L g22s  25h0 )1 Y0o' o'y’
(274 4500 1 2557 BSer' | Sy
+ (120 = 2740 + 2250% — 8507 + 150" ~ 7).
Step 3. By Theerem 1.1 (also sce proof of Proposition 2.1), (1.1)-(1.4)
and (3.2), “
2 (00 =4’ = P HPK
+350[(15 ~ d)d + 6H*K + 2HK?] + (0y)
=:Pd -1 2g — 2 - 2d)
+ (15— d)d + 6(2g — 2 — 2d)
+d(d+ 1)~ 18(g — 1) + 122(05)) + 2(Ox)

2|
=po'd =4 .ml,ftﬂc.lovlk
a G
kil ad -3 K
. Pl ad . QT\.TQAQIASt-... +1x(Os) + x{0x).
o2
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Putting all this together, we obtain the assertion. O
To prove Lemma 3.2(2) we use the following two lemmas.

LEMMA 3.3, Let X < P, be a simooth variety of dimensionn — 2 (n 2 4),
and let C:= X r P, be a generic curve section of X, Assume that X Is contained
in a hypersurface V of degree o with o minimal (d > ab). Let Vo=V Py
and V¢ be the normalization of V. Then for ty as in Lemma 3.2, there is a
constant A, depending only on & such that, for k > 1y,

k

S A (S (V) S AJd + Lt in Jd, (3.4)
n-1

IR OATACD) m,N_Iq/\ﬁﬂLﬁ Lt in Jd. (3.5)
yv=0

Proor. The choice of ¢, implies [8, Lemma 5] mc?ﬁn_ velt1)) # 0.

Proofof(3.4). Let L= dep () and &= o~ d{ic, 6, is the degree
of L restricted to a generic section of Op.(1)). Recall that &, < oJjd + o
by Lemma 3.2(1).

I8, Lemme C):
W}, i t-regular it T2 3(a’ = 2¢7 4+ 4o = 9).

[8, Lemme D]
If r is an integer such that @¥, is {r — 2)-regular and r = 20 — 2, then

1. L is (ré))-regular.
2. Op, is r-regular,

(We have #°(LY # 0 since 1°(Jz p (1)) # 0.) Fix r as above and let T be ¢
generic plane section of C, Vr- the corresponding section of V¢, and Vrthe

normalization of ¥r.

Observation. There is a constant B depending only on o such that

S K (O () < B,

nmQ
Proof of Observation. From

0 - Op(n— 1} = Gp (1) — p, {n)—0,
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we deduce

(s (1)) < 3 K (05 ().

=0

Then
0 Op (i) = Op (i) » Q-0
implics
W (@ (i) < (@ ().
fence, i
M (trp.(n)) = o V (O, (1)) < N (i + DAY Gy (r = i) =
n=0 n=0i=0

Since Vi is a plane curve of degree o, the choice of r implies that B does
depend only on o.
Now let L be defined by

0= @p.— L—L~0.
The regularity of L implies
. R (E(r81)) = 0.
Consider
0 - L(rs) — 1) = L&) = L(ré ) | o = 0.
Since deg £ = &, and dim(Supp(L)) = 1, we have, for all 5,
W) ) =8, A(L)]p) =
This implies
W(L(ré, = 1)) <
and by an easy induction for all i > 0,

* W (L(ré, — D)) <i8,. , (3.6)

=]
=
L
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Consequently, for k> 1,

k=t

S B eV = T A0

vy e}
<5 (@) + REGD
rdy
< T R(Op(m)+ T HECS — 1)
n=0 I=1
<B+ Ww Q.m_v mewﬁw&_xw.m_ + 1)+ B
im |

<3ir Qu/\mm+: in /\a_

This is the assertion of (3.4).
Proof of (3.5). Again let L:=J¢ p. (1)) and consider, for 0 <u <1

0= Gp(—n) = L{—=n) = L{=m) = 0.
Since ¢ is normal we have, for 0 <n <4,
A (Opc(—n)) = 0.
This implics, by (3.6},
B(L(=n)) < B L(=m) = B (E(ré, = (18 + ) < (r&1 + )6

(where r and &, are as in the proof of (3.4)). Therefore,

__M_ B (I peV)) = M RYL(=n))

ym0 el

!
s M (18 + WS = 8F + 3800+ 1)
nel
d , . d*o
|T,qm+:.§/\m+ /\»+:5/\
I3
um_l,\% + 1t in /4.
o

This is the assertion of (3.3).
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Livma 3.4, Keeping the notations of Lemma 3.3, we have

(I v (1)) € Bo Jd ™3 4 [t in Jd. a7

Fori=l,n=3,n—-2,n-1,

K( e (1))) < B /d* ™DV 4 14 in [, (3.8)

where the B/'s are positive constants depending only on .

Proor,

1. Claim. Let ¥ < Py beasmooth (¥ — 2)-dimensional variety (N = 3)
contained in a hypersurface ¥y of degree o. Then, fori=0, 1 and all k <0,

__:..A.\Qw‘_ V«Qﬁvv =0

Proof. This is an easy consequence of the long exact cohomology
sequences of the following two exact sequences;

0 .\s‘u\_vtﬁku - %-.;.an - Oy(k)— 0,
0 @p,(k ~ o) .\%_ﬂzmwv - t&.ﬁ_ k) — 0.

Now let X be as in the assertion and consider generic hyperplane
sections:

_ﬁu: .....U_ﬁ_...._l_Hv...U _UUu

C ) U
V= Vo o V|, D5 Vg Voiy
J v [
X=Xy o X5 o2 X,

where #7,_4 is the normalization of ¥, 3.

2, Claim. Let Q be defined by

Q - .‘\ﬂ\:t: [P - .‘.W:Iw_ﬁ.lu - Q - O-

et

M= NP e SR ST

e
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Then, for all k£ = 0, .

H(QU)) < Dk + 1),

where D is a positive constant depending only on .

Proof. Notice first that R(Q(k)) = 0 for all k <0, Let I' be a generic
plane section of X,_; and consider

0 Qtk — 1) —» Q(k) ~ Qr(k) - 0.

Since the support of Qr is precisely the singular points of a generic plane
section of ¥,—3, we obtain, for all re Z,

H(Qe(n)} = D,

where D depends only on o. Hence,

k
R(QK) < & W(Qr(n) < Dk +1).

r=0

Recall Lemme B from Ref. 8: there exists a constant 4 depending only on
¢ such that

dl

Y Kyt pry(R)) < A/A + 1t in /d,

k=1

-~

Look at the exact sequences

0 — S vk — 1) = Iy {le) = Fxyoi v (K) = 0,
O - r\mﬂzlu_u\a:uﬁ\ﬁv - .\ﬁ\\_lu_ﬁTuﬁ\ﬂv - @ﬁ\ﬁv - O.

From the long exact cohomology sequences and the above preparations we
obtain _

K S v(1)) M»_M_ Sk €+ < W_. e wmmﬁ.\@l_s-u@v
- 1

1

fl

MM e \ucﬁ.\w.alu_n-aluﬁ_\_ﬂvv
1

BT UASD + 1t in Jd) € BoJdP T L in Jd,
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Anualogously, using Lemma 3.3, we have

B ) S5 5 h (S aivaos ()

n f

<Y e T S, e, k) + HQUON

<UNESE L in JAN Y ¥ Dk + 1)
| 1

< a.ﬂ_z\%mu:lw + 1.t in /\mv d (Dot L in )

< B Jd* 7+ Lt in Jd.

3 Clain, Let Y <ty be o smooth (N = 2)-dimensional variety of
degree d (N = 4); assume that Y is contained in a hypersurface of degree o.
Then, fori= N—~3, N=2, N=1land all k = d,

\J_ﬁ.m%‘u\_ S‘.Qnuv = 0.

Proof. 11 N =4, #yp, is (¢ = 1)-regular by Ref. 12. Hence, the claim
follows Irom the exact sequences

0= Op, (k — ) =+ Fy1p, (k) = Fryv (k) = 0.
Now jet ¥ > 4 and consider the exact sequences
0 = Fypigk) = Fyiodk + 1) = Frnpy vpnoy. (k1) =0
The Jong exact cohomology sequences yield

\___.A.S\_S.Qf,: = Mm W _ﬁ.ﬁw)ez»:v_‘)tziquv =

rek

'Y

vii the induction hypothesis if k zdand i—1=N—-4 N~3 N - 2,
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Now we can prove the remaining cases { =n — 3,4~ 2, n— | of (3.8)
{again using Lemma 3.3):

d
H( e () < T 0 " (Feyn(R) < L BN S i ()

k>n k=1

< < ...W.«H_A.\y‘.r___\?_?.&v {((i = 1) sums)

d d
ot M M }_Qwﬁ SQSV
-

Ik

A
A
S N TNE S B

o d o
AR IEED YO NEEEI N U 6 RT3 b ({(n =~ 3) sums)
[ S |
c o d d \
< 0= IRERE) M“ ct _ﬁ.\v?..w_mathAvv + }yﬁmﬁ_&u:
1 11

o
N
|
o i
&N FSAT L in Jd) + Y Dk )
k=1
B Jd™ ™ + 1t in /\M

1A

1A

Thus, the proof of Lemma 3.4 is complete. O
Proor or LEMma 3.2

1. Sce Ref. 8,
2. This follows from Lemma 3.4 and the obvious inequality

x(Fp(t)) 2 =R (S (1)) — B (S () O

CoroLLARY 3.1, Let o be a positive integer. There exist only finitely
many families of smooth 3-folds in Ps that are not of general type and are
contained in a hypersurface of degree o.

ProoF. Let X < Ps be a smooth 3-fold that is not of general type and
contained in a hypersurface of degree o. Since X is not of general type, we
have HX, wx(~1)) = 0, and hence

Pe(X) < pel(S). (3.9)



328 Chapter 13

But from Theorem 1.4 we know that

ﬁ—u
ps(S)< It ind (3.10)

On the other hand,
p(X)=1+ R (0x) — x(Ox) = —x(CUx).

By the prool of Proposition 3.1 we therefore obtain

X)) = -,mi + 1t in J/d. (3.11)
240"

From (3.9) (3.11) it follows that ¢ is bounded, and an application of
12

) 1 concludes the proof. ]

Proposi

Corontary 3.2, There exist only finitely many famifies of smooth
S-foldy in vy that are not of general type and satisfy

(¢ci~¢) H=0.

Proor. Tt suffices to combine Proposition 2.3 and Corollary 3.1, O

4. Boundedness
In this section we prove our main finiteness result. We prove an

inequality for 3-folds in Ps that comes from the generalized Hodge index
theorem.

PrROPOSITION 4.1, Let X & Py be a smooth 3-fold, Then

6x(05) < (g = 1’ iﬁ:&l 74 @.1)

Proor, We apply the generalized Hodge index theorem (1.5) to obtain

(K- HY 2 d(K*- H). (4.2)
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By (1.1}-(1.4) we have
K-H*=2g~2-2d
and

X d* d
K mnw+|1£m|:+§€&

Inserting these expressions into (4.2) yields the desired inequality. ]
We need another easy tool.

Prorosimion 9.2, Let X = Ps be a smooth 3-fold that is not of general
type. Then )

=x(ly) £ x(0y).
Proar,
=1 (Ux) = pX) = 1 = H(Ox) S pdX).
Consider the exact sequence
D= wx(~1) s ay—-ws(—1)=0.
Since X is not of general type, we have H°(X, wy (—1)) = 0, and therefore
Ps(X) S HU(S, 05(=1)) S p(5).

Thus, by (1.5) and (1.6), we get

—x(0x) S pX) S pe(SY 1+ pe(S) = x(Os). .

Now we can prove our finitoness result,

THEOREM 4,1, There are only finitely many irreducible components of
the Hilbert scheme of smooth 3-folds in Py that are not of general type.

Proor. Let X be a smooth 3-fold in Ps that is not of generai type. It
is enough to show that = deg X is bounded. Reeall the inequality

28 (0s) = d*—3d+ (d—15)(g — 1) + 12x(Ox)
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from Proposition 2.2, Using Proposition 4.2, we therefore obtain

2y (0y) 2o’ Dl (d~ 15)g ~ 1) ~ 129 (0s);

363 (0y) = d = 3d+ (d— 15)(g — 1). (4.3)

Inequality (4.1) yields
24 2 2
woﬁeqvmﬂ@t ) +6(g = 1)~ 3d* + 21d. (4.4)
I{

Combining (4.3) and (4.4) leads to

Uty 1) ..v_?. [y (o = 15) -+ 6|~ 4d” + 244, (4.5)
£

Assuming [irst that X Is not contained in a hypersurface of degree 12 (assume
ol > 12% = 144}, we have by Theorems 1.2 and 1.3 the estimate

2
-1 g &| + ola.
206 2
Inserting this into (4.5) gives
d 2
0<(g— 1) Im.r 129 1 — 447 4 244,

The right side of this inequality is negative for d =z 1677. Hence, we conclude

that < 1676 in this case.
If X is contained in a hypersurface of degree 12, it is enough to apply

Corollary 3.1. a
This result, together with Refs, 8 and : yields a solution to the finite-
ness conjecture in codimension 2.

ThreorEem 4.2, Let n > 4. There exist only finitely many families of
smooth 2-codimensional submanifolds of P, that are not of general type,

Proor. The case n = 4 is treated in Ref. 8, and n = 5 is the content of
Theotem 4.1, For n > 6 it was shown in Ref. 11 that, for X = P,, smooth
of codimension 2, either X is a complete intersection or wy = Cx(e), with

t
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e >n+ 2. Hence, X is of general type or a complete intersection. If X is a

complete intersection of two hypersufaces of degree a and b, which is not of

mo:c?._ type, we therefore have wy = @x(@+ b ~n—1)and a + h <n This
gives o bound for the degree of X:

2

N
d=qab<—. [l
QMA

5. Incqualities of Topological Type

In this section we point out that the inequality

2(Os)2c d®+ 1t in Jd

of Ellingsrud and Peskine for simooth surfaces 8 oz 14y, contained in o hyper-
surface of fixed degree o, can be improved for a large class of surfaces that
extend to smooth 3-folds in Ps by a Chern class inequality, The fact that
Castelnuovo-type inequalities between the degree 4 and the sectional genus
g of a smooth surface 8§ < P, can be derived by a Chern class inequality was
discovered by Ellingsrud and Peskine [8, Lemme 1].

ProposiTiON 5.1, Let X < s be a smooth hypersurface contained in «
hypersurface V of minimal degree o. Then V defines a nontrivial section s of
N3 (0). Assume that T = {s =0} has no divisorial component. Then

deg £ = d° — dod + ¢*d — 20(g — 1), (5.1)

PAZ)= (o —3)deg £ + 1. (5.2)

Proor oF (5.1}

Ny (o) H

[ NV )+ e (NY) - cH+ *HY) - H
[dH? — (6H + K)oH + ¢’H*] - H
(d— 60+ oP)d— o(2g —2—2d).

degZ

It

il

ProcF ofF (5.2). The exact sequence

ol.ﬁh_ki%kl%mlo
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22078 B B 4 (UM T A E WY IR 2 A B N
The Koszul complex of & reads
0 — del{N{=a)) = N(—a) = Fy0 — 0.

Flenee, by Theorem 1,1,

¥ A x(NC a)) x(dedN(-m)))
= =3 N(=a)) o N(=a)) + 3K e N(=a D) + 2(0x)
= ~3l(6 = 20)H + K] o M(—0)) + 1K - co(N(=0)) + 2(0x)
= {0 = D (N (=) + x(0x)
= (o - N deg T+ y (&),

This implies the assertion, 8

LemMa 5.1, Let G be a rank-n vector bundle on a projective mani-
Jold X, Suppose there is a morphism @: @70 - G such that =
ipe Xtk ¢(p} < n} is generically a local complete intersection subvariety of
(expected ) codimension 2, Then

. e(G) = 0.
2. ¢H(G) = e(G) = 0.
3 a(GY eG) = e3(G) = 0.

Here ¢ = 0 means that ¢ is represented by an effective cycle.

Proor, By definition the ideal sheaf of Z is generated by the maximal
minors of @: @170~ G e,

n+ |
Jr=Im{A"0: A" D O|RAGY — 0],
]
On the other hand, the dependency locus
Cii= s A Alyer— =0}

of any n + 1 — i sections &, . .., Sus1-,€ H%X, G) represents the ith Chern
cluss o {G) of G provided that C; has the expected codimension f. So the
submatrices of p: @7 '® ~ G carry information about the Chern classes of

TR
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G. Since % has codimension 2, we may assume that the sections &), . . ., S, |
defining ¢ are such that the ith minor of ¢,

_C_. vz ﬁ.w._ AN .P A A N T C*g

is an effective divisor representing ¢,(G), and any two of these divisors
intersect in & subvariety of codimension 2. 1t follws that ¢/ (G’ = D, - D,
is represented by an effective cycle, and, since Co = {5 A+ A g, = O s
i subvaricly of Py o~ Dy L also e(G) and e (G =~ 03{() are effective. This
proves (2). Actually (cf, Ref, 13},

e{GY = G} =L

For (3) we need that £ is generically a local complete intersection. By
Lhis assumption we may assume that C; and I have no common component
and that C; » D,_ has codimension 3. Thus, ¢,(G) - c2(G) is effective, and,
since Cy= {81 A -+ A $a—z =0} is & subscheme of ¢y n D,_,, es{) and
ci(G) - ca(G) — ¢3(G) are also effective. O

ProrosiTion 5.2, With the hypothesis of Proposition 5.1, we have
O<sm<wsy, where = s (Is (o~ 1)) are the Segre classes of
Frx(o — 1)

Proor. Note first that Sy x(¢ — [) is globally generated by the partial
derivatives of the equation defining V. This yields an exact sequence

[
Ol.mulw@ %&lcﬁm_kﬁal :lvc“

i—1

where F is [ocally free as syzygy module of s y(o ~ ). Furthermore, by
definition of the Segre classes,

5 = QCH./\U_

By dualizing the above sequence, we obtain a map

G

D @y - F,

im |

which is generically surjective and drops rank precisely in £, From Lemma
5.1 we abtain the assertion. (]
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CoroLLARY 5.1. With the hypothesis of Proposition 5.1 we have

d* d
miwmm._‘mmo,ié. {5.3)
4t d
r— 12 = (20 +1), 54
§ 2o No.ﬁ 7+ 1 (54)
x(Us) Nl_lel (2d - 9a) +%ﬁm+ _v+am_ INQﬁ, (5.5)
6ba 2 2
x(Cs) = V_H@ - D(2d = o + 20%) — %AMI mu
6a 2
+&AMQNIWQVH_. (5.6)

If d=io, then

RE s 1 1 o
0>~ —d*+ EA!IE|IV mﬁlq+i¥. 5.7
7(0s) aq? 2T 2 2777 G7)

Ifdz _M_Q - g2, then

__ u _m G mm
Nﬁemvm.o:m_wmat.rluhmqIm.v+a.mo.ulsmqu+lm..o.¥. Am.mv

Proar. Inequality (5.3) follows from (5.1) since deg 2> 0. Consider
the above Koszul complex of the section s twisted by Ux(o — 1):

0= Ox{(5 — 0)H + K) = Nyjp,(—1) = Fgix(0 — [y —0.
Let o= o (g x(o = 1)) Then

2 3
§ = ¢y, SH=0 — ¢z, S3=¢ — 2003t ¢a.
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From the above sequence,

(o - it

¢y

It

e N(=1)) — e (Ox((5 — 6}YH + K)) - ¢
=dH*—(6H+K)H+ H*— ((5-0)H+ K)o -~ NH

€2

= (d + o — 60)H* — o HK,
ey = (o~ D(d+ o*— 6a)d— o(c — 1)(2g ~ 2 — 2d)
= (o - DY(o? = 40)d + (o — )d* — 20(c — 1)(g ~ 1),

3= —c(Ox((S~ O)H + K)) * ¢
=—((5~a)H+K) ((d+ ¢ — 65)H* ~ cHK)
=(c— 5)(d+ o~ 6o)H®
+ [o(5 — o) — (d+ o* — 60)|H’K + o HK*®
=(c—5)d+c*~6o)d+[o(5—0)— (d+ o’ —60)](2g — 2~ 2d)
+olzd(d+ 1) — 9(g — 1) + 62(0s)]
= gTq — 5)(6* = 60) ~ 20(5 — &) + 2(¢” ~ 6a) + .m
+%T;M+N+L :
2
+(g = D2c(5— 6)—2d+ a® — 60) = 9a] + 6oy (s}
umﬁqul,\qﬁquﬁmY%T‘w +L
2 2
+ (g — (=24 - 45° + 130) + 60y (0s).
Hence,

515 = (0 — D’d = [(6 = )(o® — do)d + (¢ = )d* = 2c(c ~ 1)(g — 1)]
= (g~ D@+ d~ (o — 1)d* + 20(c ~ 1)(g — 1).
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Since 5,5 = 0 by Proposition 5.2, we obtain (5.4). Furthermore,

83 5= 818 — €10 F ¢y
=(o - 120+ 1)d~ (¢~ Dd*+20(c— 1){g— 1)
- [{o — )(c* — 40)d + (o — 1}d* ~ 20(c — 1){(g ~ 1)]
+ o.ul.___o.~+mQ+M&+ o,lw+mM;&~
+{—2d —4c + 13a)(g — 1) + 6oy )ly)

= Wq1 ) - m.i &P+ (90 = 2d)(g — 1) + 607 (Ts).

Now sy 2 0 gives {5.5).
To obtain {5.0) we look al xpyp =3 2 (1

s s =(g - DRe+ Dd— (o - Dd> + 2a(ag - D{g - 1)

- qu - m,i 4+ (90 ~ 2d)(g ~ 1) + 601 (0s)

(el

207~ 2o ld - | L~ 2 )
2 2

+ (20— g+ 2d) (g — 1) — 60x(0s).

Inequality {5.7) is simply (5.4) and (5.5}, and (5.8) is (5.3) and (5.6)! [

Rrmark. An optimistic point of view would be to prove the inequali-
ties in Corotllary 5.1 for surfaces in P4. This would lead to very sharp
cstimates, For instance, for ¢ =35 and p,(S) <1, one would get d < 14.
“Unflortunately” there is & surface of degree 15 in P, with p (S} =1 lying
on & quintic [2}.

Stll we believe in the existence of good estimates for surfaces in Py as in
Corallary 5.1 that might possibly be proved by “topological” means by
passing to a suitable 3-fold,
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The Curvature of the Petersson~Weil
Mectric on the Moduli Space of
Kihler—-Einstein Manifolds

Georg Schumacher

The Petersson-Weil metric is a main tool for investigating the geometry ol
moduli spaces. When A, Weil considered the classical Teichmiller space
from the viewpoint of deformation theory, he suggested, in 1958, investigat-
ing the Pelersson inner product on the space of holomorphic quadratic
differentials. He conjectured that it induced a Kéhler metric on the Teich-
miiller space. Afler proving this property, Ahlfors showed, in 1961, that
the holomorphic sectional and Ricci curvatures were negative. Royden’s
conjecture of a precise upper bound for the holomorphic sectional curvitture
was proven by Wolpert and Tromba in 1986 along with the negativity of
the sectional curvature.

The Petersson-Weil metric is strongly related to the variation of the
hyperbolic metrics on the fibers of a holomorphic family, For compacl
manifolds of higher dimension the considerations have to be based on the
existence of Kihler-Einstein metrics according to Yau, for negative and zero
Ricei curvature &, and Siu [13], Tian [14], Tian and Yau [15], and Nadel

Georg Schumacher » Institut fiir Mathematik, Ruhr-Universitdt Bochum, D-4630 Bochum |,
Germany.
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