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Some Applications of Beilinson’s Theorem to Projective
Spaces and Quadrics

Vincenzo Ancona and Giorgio Ottaviani®

(Communicated by Giorgio Talenti)

Abstract. In this paper we apply the Beilinson theorem [Functional Anal. Appl. 12 (1978),
214-216] to the following problems. (1) We give sufficient cohomological conditions in order
that a coherent sheaf on /P" or on the quadric contains as direct summand a generator of the
derived category (i.e. the line bundles, the bundles of p-forms on /P", the spinor bundles and the
bundles yp; introduced by Kapranov [Inv. Math. 92 (1988), 479—508]. (2) We characterize the
indecomposable sheaves of order one (with respect to H'! and H?) on /P? and we show that also
the diameter is one. (3) We give a new proof of the key theorem which Chang uses to
characterize the arithmetically Buchsbaum subschemes of codimension 2 in /P".

1980 Mathematics Subject Classification (1985 Revision): 14F0S.

Introduction

Beilinson’s theorem was stated in 1978 [B] and has been extensively used in many
works on vector bundles and other topics. The precise statement needs the language
of derived categories introduced by Grothendieck [H] and it describes quite
explicitly the derived category of coherent sheaves on /P".

The theorem is often used in a weaker form: from the cohomology of the sheaf one
can construct a spectral sequence which abuts to a filtration of the sheaf itself.

The aim of this paper is to link the abstract and general context of the theorem to
concrete examples and applications. Our feeling is that Beilinson’s theorem plays a
fundamental role in the study of sheaves on varieties. We apply Beilinson’s theorem
to investigate how certain vanishing of the cohomology imply conditions on the
sheaves themselves and we give also new proofs of known results in this area that
appear now in a common setting.

! Work supported by the MPI and by the GNSAGA of the Italian CNR. The second author
has been supported by the Fondazione Severi.
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Given a coherent sheaf & on /P", we will give in section 2 sufficient conditions
involving only a finite number of suitably chosen cohomology groups in order that
the sheaf & contains as direct summand the trivial line bundle @ or the sheaf of p-
forms Q7. In the case of the bundle @ our conditions are essentially the same as in
[Ei]. When & is a sheaf on the smooth quadric hypersurface Q,, we will give in the
sections 5 and 6 similar conditions in order that the sheaf % contains as direct
summand the spinor bundles [O2] or the bundles p, introduced by Kapranov [K].

As corollaries we find the Horrocks criterion for a coherent sheaf on /P" to split as a
direct sum of line bundles and its generalization to quadrics given by Buchweitz,
Greuel, Knorrer and Schreyer [BGS], [Kn]. On the quadrics an essential tool will be
the exact resolution of the diagonal in @, X Q, found by Kapranov.

In a similar way we will prove some characterizations of bundles Q7 on /P" (see
[Ho2]) and of the bundles y; on @, recovering in section 3 (Corollary 3.3) a result of
Chang [C1], [C2] which is the key point in Chang’s proof that arithmetically
Buchsbaum subschemes of codimension 2 in /" are geometrically Buchsbaum (i.e.
have an Q-resolution [C2]).

Another concept we are interested in is that of order of a sheaf studied by Ellia on
/P" [El]. We study in the section 4 the sheaves & of order one on /P3, and we prove
that for the indecomposable one also the diameter is one, that is there is only one
hi(F (1)) + 0fori =1, 2. We generalize to arbitrary coherent sheaves the description
of order one and rank two vector bundles given by Ellia [E1].

We work over the field of complex numbers. A variety is a smooth variety.

1. Preliminaries

Let us state the two forms of Beilinson’s theorem that we will use. We will apply the
strong form, that is a more handy version of the original theorem in [B], only when
we will need it. For a detailed proof of the strong form see [AO].

Beilinson’s theorem (weak form) [OSS]. Let & be a coherent sheaf over IP". There is
a spectral sequence EP? with E,-term EP* = Hi(P", % (p)) ® Q ~?(—p) such that

EP1=0 for p+q+ 0 and @ E_P? is the associated graded sheaf of a filtration
p=0

of .

Beilinson’s theorem (strong form) [B]. Let X = [P", denote by p,q: X X X — X the

two projections and by A the diagonal in X x X. For %,% e Coh(X) let us put
FKG=p*F ® q*9. Let F € Coh(X), te Z. Then

A) The diagonal A has the following resolution on X x X

11) 05 QWEO(—n) = ... > QU EO(-1)

A gr0 2 g*0l, > 0
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B) There exists a complex of vector bundles L' (t) on X such that:
1) L (t) ~ Z (t) in the derived category D®(Coh (X)).
F) ifk=0
0 ifk+0
) MO = @ X0, Xj() = ()T
Jjt

=i

In particular: H*(L (1)) = {

3) the maps vi(t,s): X}(t) > X;Z3*' (1) (s€ Z) induced by the differentials
L¥ — L**! gre zero for s <0

4) the maps v} (t,1) agree with the natural maps
Rip QDR F(—j) » Rp QG- DNRHF(—j+1)
coming from the exact sequence (which is (1.1) tensored by q* % (1))

05> QMR F(t—n) —> ... > QUEF(C—1) 25 ¢*F(f)
= P F(@)ls > 0
Definition-of order of a sheaf (this definition is slightly different from other ones in the
literature; for example [Ba]).

(i) on /P* [El]: Let & be a coherent sheaf on P". We set o(j)(¥)
= inf{k > 0|.4* - ®,H’(F () = 0} where ./ is the maximal ideal (x,, ..., x,) in
C[xo, ..., X,] (including the case o(j) = + o). In other words o(j)(# ) < k means
that the morphisms H/(Z (1)) - H/(Z (t + k)) given by multiplication by any
homogeneous polynomial of degree k are zero. The order of &F is o(F)
= max o()(¥F).

1<j<n-1 N

(ii) on a projective variety X: Let & be a coherent sheaf on X. Let L be an ample line
bundle. We set 0(j)(# ) =inf{m > 0|Vk >m Vse H°(L*) Vq € Z the natural map

HI(F ® L) 2% Hi(F ® L7*¥) is zero} (including the case 0(j) = + o). The

order of F is o(¥ ) = max  o(j)(# ). We note that the order depends on the
1<j<dimX-—1

bundle L chosen.

When X=/P" and L=0(1) the two definitions agree because H°(0(m))
=S™"H°(0(1)).
In general if L is very ample and X embedded by L is projectively normal, then

0()(F)=inf{m|Vse H'(L™) VqeZ the natural map HI(F ® L%) >
HIi(# ® L1"™) is zero}. This simpler definition works on quadrics.

Definition of diameter. Let & be a coherent sheaf on the projective variety X. Let L be
an ample line bundle. If #/(F ® L") =0 Vt we set d(j)(F ) = 0. Otherwise we set
d()(F)=sup{te Z|W(F ® L") + 0} —inf{tre Z|W/(F ® L") +0} +1 (includ-
ing the case d(j)= + o). The diameter of ¥ is d(¥)= max d()(F).

Obviously d()(#) = o(j)(# ) and d(F) 2 o(F). 1<j<dimX—1
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Definition of g.skyscraper sheaf. We call a sheaf & with dim supp % = 0 a generalized
(g.) skyscraper sheaf.

Lemma 1.1. Let & be a torsion-free sheaf on the variety X. Let O (1) be an ample line
bundle on X. Then H° (% (1)) =0 for t <0.

Proof. We may suppose h°(Z (f)) to be constant for ¢t <0. Let H be a general
hyperplane, from the sequence ([S] pag.277) 0 - H°(F(t—1)) >
H°(Z () » H°(Z (1)) we obtain that any section of Z (¢) is generically zero. As
F is torsion-free we have locally the embedding #, — 08", so that by the identity
principle any section of % (f) is zero everywhere.

Lemma 1.2. Let & be a coherent sheaf on IP" of order 1. Let p,q be the natural
projections of IP" X IP" onto [P". Then each arrow of the exact Koszul complex (1.1):

11) 0 - QERO(—n) - Q" 'r—1)KO(—n+1) > -
= Opuxpn > 04 - 0
induces the zero morphism

Rp, QD EF(=D) = Rp,(Q7T'(i-DRF(~i+1))
I Il

Q.’(i)m(y(—i» Qi-1(i— I)hf(f(—iﬂ))
Proof. Observe that the morphism

Q) K F () 5 QUN(-DRF(—i+1)
I |
ANR'HRO(-D] ® ¢*F AR O(-1)] ® ¢*F

is the tensor product of the identity on ¢* % and of the contraction map for the
section Y x* Xl x;e H*(TP"(—1) X O(1)) with x; basis of H°(P",0(1)) ~
HO(P", TIP"(—1))*.
Then R;p,u;:Q'() QcH(F (—i) » Q7' (i—1) QcH/(F(—i+1)) is the
contraction map by the element " x* ® x; and then it is zero because # has order 1.
For further reference we state the following easy lemma.

Lemma 1.3. Let A; (0 <j<n), B, (0 <k <m) be bundles on the variety X such that
Exti(4 »B) =0 for i>0,Vj,k. If there are morphisms such that the following
sequences are exact

0> K-> A4, > A4,., > ... A, > A, - 4, - 0
0O-B,»B,_,>..>B,>B -B,-C->0
then
(1) K is locally free
(i) Ext/(K,C)=H(K*® C)=0for i>0.
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Proof. (i) follows cutting into short exact sequences. Dualizing the first sequence and
tensoring by B, we get H{(K* ® B,) = 0for i > 0, V k. Tensoring the second sequence
by K* we get (ii).

Lemma 14. Let ¢: O — QB.(p + 1) be a section, for any hyperplane H consider the
restriction (¢h, p2): 0y — QE(P+1)® QF (). If ¢4=0 or ¢% =0 for the
generic H then ¢ = 0.

Proof. Consider that H°(P",Q?(p + 1)) = A?*' V where V = H®(P",0(1)). There
exists a basis vy, ..., v, of V such that ¢} =0 for H= H; zero loci of the section
v; (i=0,...,n). We can write the section ¢ as a linear combination ¢
=%a; i Vi Ao AV, As ¢i =0 we have that @, ;. =0 when

..... i,., are zero and ¢ =0. If ¢2 =0 the argument is

i¢{i;,...,i4+,}. Then all g,
similar (¢7, =0 means thata;,_; ., =0 whenie{i;,...,i,,})

Lemma 1.5. Let ¢ : Q7(r)®® —» Q%(s)®® with s < r and s > 0 be a morphism, for any
hyperplane H consider the restriction

(6, 92 QE(N®* @ Q' (r —D®* > Q)" @ 2 ' (s — D"

() If 2 =0 or ¢ =0 for the generic H then ¢ =0,
(1) If dulogees=0 or ¢ylog-14-1)0a =0 for the generic H then ¢ =0;

Proof. After twisting we consider ¢ : Q"(r + 1)®% - Q5(s +1)®%. As Q"(r + 1)®°
is globally generated it suffices to prove that for every p:0 — Q" (r +1)®° we
have that g oy : O — Q5(s + 1)®? is zero. Then (i) follows from Lemma 1.3. (ii) is
dual to (i).

The following proposition is probably well known. In the case & torsion-free see
Lemma 1.1 in [HH].

Proposition 1.6. Let & be a coherent sheaf on a projective variety X. The following
conditions are equivalent:

(1) & is adirect sum of a vector bundle and a g.skyscraper sheaf

() H(F ® L)=0 for t<0 0<i<dimX, VL ample line bundle (i.e. d(F) <
+oo w.r.toall L)

(i) H'(F ® L") =0 for t <0 0<i<dimX, for a fixed L ample line bundle (i.e.
d(F)< +o0 w.r. to a fixed L)

(iv) & has finite order with respect to each ample line bundle L

(V) & has finite order with respect to a fixed ample line bundle L.

Proof. (i) = (ii) by Serre duality and Theorem B. (ii) = (iv) = (v) is trivial.
(ii) = (iii) = (v)is trivial. It remains to show (v) = (i). Letd =dim X, o(¥) =k, w
be the canonical bundle of X and set ¢ (1) = L. By Serre duality we obtain that the
natural arrows Ext!(# (—n),w) —» Ext/(¥F (—n—k),w) are equal to zero for
0 <j < dim X, Vn and that dim (Ext!(# (— n),)) is a constant for n> 0. For n > 0
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we have Ext/(# (—n),w) = H°(8z¢/(F,w)(n)). This implies that £z¢/(F,w) =0
for 0<j<dimX and that y[z¢%(%,w)(n)] is a constant so that
dim Supp &z¢4(F,w) =0 ([S] p.276). We call V = Supp &=¢%(F,w). Then for
x ¢ V we have (£z¢7(F ,w)), = 0 for j > 0 so that & is locally free at x. This implies
that Supp T(Z# ) = V has dimension zero. Then from the sequence

0 > T(F) > F - FIT(F) - 0

we obtain that also % /T (¥ ) has finite order and then by Lemma 1.1 and the previous
argument & [T(F ) is locally free. At last

Ext'(Z/T(#), T(F)=H (T(F) @ [F/T(F)]*) =0
so that # = T(¥ ) @ [F/T(F )] as we wanted.

2. Sheaves on P"

Theorem 2.1 (see [Ei]). Let & be a coherent sheaf on [P". Suppose that for some t € 7
hi(F (t—i—1))=0for0<i<n. Then F contains O(— )" FD as direct summand.

Proof. We may suppose ¢t = 0. We write the Beilinson theorem in its strong form for
the sheaf #. ©*°®) is a direct summand of X (0). No nonzero map v (0, s) starts at
0"™*) and all the maps v}~ ! (0,i) for 0 < i < n which end at ©***) are zero by the
hypothesis. Then ©**®) is a direct summand also of H°(L (0)) = &, as we wanted.

Theorem 2.2. Let F be a coherent sheaf on IP" such that h'(F (¥)) =0 for 0 <i<n.
Then & is a direct sum of line bundles and of a g.skyscraper sheaf.

Proof. We may suppose that & is indecomposable, so that it will suffice to prove that
Z is a line bundle or is a g.skyscraper sheaf. If & is torsion-free by Lemma 1.1 exists
an integer m such that 1°(% (m — 1)) = 0, h°(F (m)) + 0. Then in this case the result
follows by Theorem 2.1. If otherwise & has torsion we write V¢ the E; step of
Beilinson sequence which abuts to & (¢):

Qn (n)h"(f(t*n)) N Qn‘— 1 (n)h"(.f(l——n +1)) - ... > Q 1 (I)h"(.?(t— 1)) — (9 h™(ZF ()
0 0 0 0
0 0 0 0
Qn(n)ho(f(t —n)) - OQn- 1 (n)ho(f(r—n+ 1y _ .o 0 1 (1)h°(.7(t— 1)) > 0 hO(F (1))

The first row is always exact with at most one exception at Q" (n)""**~" and we
denote the kernel of the first row by K. In the same way we denote the cokernel of the
last row at 0**&® by C,. By Lemma 1.3 X, is a direct summand of & (¢). As % (¢) has
torsion and it is indecomposable it follows K, = 0. Then all the first row is exact and
looking at its cohomology it is easy to see that all the row must be zero (e.g.
0=h2(O"FD)=h™(F (1), 0=h ' (Q1"EFCD) = h(F (t — 1)) and so on).
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Then h"(F (f)) = 0 V1, so that x(Z (¢)) = h°(Z (t)) must be a constant polynomial
(of degree zero) and by [S] pag. 276 it follows dim Supp # = 0.

Theorem 2.3. Let F be a coherent sheaf on IP". Suppose that for some t € Z and some
0<j<n

H(&F(@—i—1)=0 forj<i<n—1

H(F(t—i+1)=0 for1<i<j

Set n;=hi(F (t — j)). Then F contains Q’(j — )" as direct summand.

Proof. We may suppose ¢t = 0. Write the Beilinson theorem in its strong form for the
sheaf #. Q4 (j)™ is a direct summand of X (0). Exactly as in Theorem 2.1 no nonzero
map v/ (0, s) starts or ends at Q7 (j)™, so that Q7 (j)™ is a direct summand of H°(L"(0))
= %, as we wanted.

Corollary 2.4. Let F be a coherent sheaf on IP" such that H' (¥ (*)) =0 for0<i<n
. n—1 .
with the only exceptions h’(# (—j)) =n; for 0 <j<n. Then ¥ ~(P Q' ()") ®
i=1
{line bundles} ® {a g.skyscraper sheaf’}.

3. On a theorem of M. C. Chang

M.C. Chang proves in [C2] a characterization of arithmetically Buchsbaum
subschemes of codimension 2 in /P". The main step of the proof is a cohomological
characterization of bundles Q? ([C2] theor. 1.1) which is the following corollary 3.3.
Here we generalize this characterization and we point out some sufficient condition in
order that a bundle contains Q7 as direct summand. The theorem of Chang is then
extended to arbitrary coherent sheaves.

Lemma 3.1. Let & be a bundle on P" and let L' be a complex with L®
= @ pis=: 2™ (M) ™ which is isomorphic in the derived category to the complex
0> F — 0 (so that F is the cohomology of L' ). Let k = min{t > 0|a,,+ 0}.
Suppose that the map 0®° — L' is zero and that Q* (k) is a direct summand of F .
Then we can decompose Q*(k)™*= Q*(k)1® Q*(k)™* 9 in such a way that
QF(k)! —» L'iszeroand L™' — Q*(k)?is zero, i.e. Q* (k) is a direct summand also
in L.

Proof. By the hypothesis we have an injection j: 2%(k)? —» % and then a morphism
in the derived category Q*(k)?---» L'. As Ext!(Q”(p), 27(q)) = 0 for i > 0 [B] then
we have a morphism ([K], lemma 1.6) ¢

0 - Q¥k) - 0
a1y | le !

L—ILLOLLI
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which induces j in cohomology. As Hom (Q*(k)?, 27 (p)) = 0 for p > k [B] we have
¢ =(Py,0,): Q¥(k)T - Q¥ (k)™ @ O%°, As the diagram (3.1) commutes we have
Im ¢, = Ker B. Consider now that j = (¢,,¢,) mod Ima.

Let p: Ker B/Ima — Q*(k)? the natural projection, so that we have p o j = id guegry, -
Let n: Ker B — Ker f/Ima the canonical projection. From the hypothesis we can
write Ker f = B @ 0°° and as Hom (0, Q2*(k)) = 0 we have that p o 7 is a function
¢ of B and @ o ¢, = Idgxye, that implies that ¢, : Q*(k)? — Q*(k)™* is injective,
so that Im¢, is a direct summand of Kerf and we can write Kerf
=B, ® Q*(k)? ® 0“0, It remains only to prove that Q*(k)? nIma = 0 but this is
obvious because 7 is an isomorphism on the direct summand Q* (k).

Theorem 3.2. Let E be a vector bundle on IP" and i be an integer with1 < i <n — 2 such
that

(1) HP(E(—j)=0fori+1<p<n—1and0<j<n;
(ii) the maps HA(E|y(—1)) = HY(E|y(—t+ 1)) given by multiplication by any hy-
perplane section are zero for any linear subspace M of codimension0 <m <i—1,

1<q<i—m and 0<t<n—m—1; then E contains as direct summand
Qi(q)®MECD for 1 <g<i.

Proof. We work by induction on n. We may suppose that #9(E(— q)) =+ O for at least
one 1 <g<i Note that for any hyperplane H min{k > 2|h*(E(—k))+0} =
min{k > 1|h*(E|g(—k)) +0} + 1 and that A'(E(—1)) =+ 0 implies h'(E|yz(—1))
+ 0. Let ¢ =min{k > 1|h*(E(—k)) # 0}. We write the Beilinson theorem in the
strong form for E and we obtain a complex L such that L* ~ E in D®(/P"). As E is
locally free we obtain L'|; ~ E|, in D®(H). We must consider two cases.

Case 1 q = 2. We have
L0~ 0"® @ QU(q)"® P @ ..., h(E(~q) = h*"' (Ey(—q +1)
and
L0|H = @II;"(E) ® qul—l (g— 1)h'1“(En(—q+ ) Q}ql(q)h'l(b‘(*q)Hh‘”‘(E(—q—1))

By the induction hypothesis E|y contains Q§ ! (g — 1)* 'Ea(-4+1) a5 direct
summand.

We have that L°|, contains Q%! (g — 1)** 'En(=4+ 1) 35 djrect summand and by
Lemma 3.1 no arrow in L’| starts or ends at this summand. Then consider that the
maps Q9(q)"ECD 5 Q3(s)PED with 5 < g restrict to

qui(q)h“(E(—q)) @ Q 1 (g— 1)h‘1(E(—q))_, le,(s)h‘(b‘(—s» @ Qy l(s — 1)h’(E(—S))

so that by Lemma 1.5 we get also that no nonzero arrow in L° starts at Q9(gq)" -9,
Similarly no nonzero arrow ends at Q29(g)"*(~9 so that E contains Q9(g)"**E(-9 as
direct summand.

Case 2 g = 1. In this case h! (E(—1)) + h2(E(—2)) = h' (Ey(—1)) and as above
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we have that E|; and L°|; contain Q5 (1)"' =~ a5 direct summand. Exactly as in
the case 1 we get that E contains Q' (1)"" (1) a5 direct summand.

From Theorem 3.2 it follows the following characterization of Q* found by Chang
(see [C2] Theor. 1.1 for bundles)

Corollary 3.3. Let E be a coherent sheaf on IP" and let i be an integer with1 <i<n—2
such that

() HP(E#)=0fori+1<p<n—1;

(ii) the maps HA(E|\ (£)) > HY(E|y (¢t + 1)) given by multiplication by any hyper-
plane section are zero for any linear subspace M of codimension 0 <m<i—1,
1<q<i—m and for any t; then E is isomorphic to @ QPi(—k;)®""IE&D
@ {g.skyscraper sheaf} where 0 <p; <i and h? (E(k;)) are the only nonzero
cohomologies for 0 < p; <n.

Proof. Ehas finite order and by Proposition 1.6 we may suppose it is locally free. Then
twist £ and apply Theorem 3.2.

Note also that the proof of Theorem 3.2 (case 2) gives immediately the following

Theorem 3.4. Let E be a bundle on IP" such that

(i) the maps H'(E(—2)) - H'(E(—1)) given by multiplication by any hyperlane
section are zero

(1) h*(E(=1))+h2(E(—=2)) = h'(Eq(—1)) (this is satisfied if (i) holds with H?
in the place of H')

(iii) for the generic hyperplane section H we have that E|y; contains
QLM ECOFRXECD) g5 direct summand.
Then E contains Q5 (1) ECD @ Q2. (2)"*EC2) g5 direct summand.

In the same spirit of [C2] we prove the following two results that are weaker than
Theorem 3.2 and Corollary 3.3 but are easier to prove and more handy for
applications.

Theorem 3.5. Let E be a coherent sheaf on P" such that
(i) the maps HP(E(t)) » HP(E(t+ 1)) given by multiplication by any hyperplane
section are zero for 1 <p<n—1land —n<t<1
(i) If H?(E(k)) =0+ HY(E(h))and1 <p<qg<n—1, —n<k,h <0 then (p+k)
—(@+h)+1.
Then @ 1;QP(—k;) is a direct summand of E where h?/(E(k;)) = l; are the only
nonzero cohomologies for 0 <p;<n, —n<k;<0.

Proof. Write the Beilinson theorem in the strong form for E(p; + k;). By (i) and the
proof of Lemma 1.2 we have that v:;' (0,1) and v}’ (0,1), which respectively starts
and ends in ;Q% (p;) = X ;’j (0), are zero. By (ii) afl other arrows which start or end
in X;’J_’(O) are zero so that [;QP(p;) is a direct summand of H®(L (p;+k;))
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Corollary 3.6. Let E be a coherent sheaf on IP" of order one such that if
HP(E(k)) 0+ HY(EMh) and1<p<q<n—1,then(p+k)—(qg+h)+1.

Then we have an isomorphism E ~ @ [;Q%/(— k;) where h?/(E(k;)) = I; are the only
nonzero cohomologies for 0 < p; <n.

4. Sheaves on P3

The following theorem is a consequerice of Corollary 3.3 but we prefer to give an
independent easier proof:

Theorem 4.1 (see [Ho1] for bundles). Let E be a coherent sheaf on IP? witho(E) < 1.
Then E is isomorphic to the direct sum of a g.skyscraper sheaf, of some copies of Q' (t,)
with t, € Z and of some line bundles.

Proof. If h' (E(t — 1)) % 0 write the Beilinson theorem (in the strong form) for E().
Then L°(0) = X3(t) ® X[ (1) ® X?(f) and by the hypothesis no arrows v, (z,s)
different from zero start or end at the summand X (f) = Q1 (1)" ¢~ 5o that the
cohomology H°(L' (1)) contains Q'(1)*'E¢~1) a5 direct summand. Then E =
Q'(1 — "' E¢=D) @ E’and we may repeat the same reasoning with E’ in the place of
E. Continue in this way until 4! (E’(*)) = 0 and apply Theorem 2.2.

Theorem 4.2. Let E be a coherent sheaf on IP3 indecomposable with order o(E) < 1.
Then E is a g.skyscraper sheaf or there exists t, € Z such that H' (E(t)) = 0 for t # t,,
H?*(E(t)) =0 for t % t, — 2 and we have the exact sequences

0 - E(t,) — Ql(z)hz(E(to—Z))@ (9(_1)h3(E(to—3)) - OhE) _,
0 —» OMWE0-2) _, (9(1)h°(l£(to+l))@Ql(z)h‘(E(to)) - E(ty+2) - 0

In particular

(i) the diameter of E is less or equal than one,

(i) if k' (E(*)) = 0 then E is one of the following: a g.skyscraper sheaf, a line bundle,
Q2(¢) for some te Z;

(iii) if h*(E(x)) = 0 then E is one of the following: a g.skyscraper sheaf, a line bundle,
Q(¢) for some teZ.

Proof. By Proposition 1.6 we may suppose that E is a vector bundle.

If h!'(E(*)) =0 we may suppose that h2(E(—2)) # 0. Then no arrows vZ(0,s)
different from zero start or end at the summand X2 (0) = Q2(2)"*#¢=?), 50 that the
cohomology H° (L' (0)) contains 22 (2)"*®(~2) a5 direct summand and we obtain
E=Q?(2). In an analogous way we can consider the case h2(E(x)) = 0.

Thus we may suppose ¢, = sup{t€ Z|h' (E(?)) + 0} € Z. We obtain h?(E(1)) =0
for ¢t > t, — 1 otherwise always from the Beilinson theorem a twist of E would be
isomorphic to 22 and k! (E(x)) = 0 against our assumption. We write the Beilinson
theorem (in the strong form) for E(z, + 3). We get the complex
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0 - X3(t+3) > X5(lo+3) @ X (6o +3) > XP(to+3)

0,0? 3,1
OGEID, w3 (1o +3) @ X (to +3)

3
BT X3 o +3) — X0 +3) = X3o+3) > 0

so that E(t + 3) = [Ker(v3 (t, + 3,1))] ® [ X (to + 3)/Im (v (2o + 3,1))].

We want to show that Ker(v;(z, +3,1)) =0. If on the contrary E(t,+ 3)
= Ker(v3(ty +3,1)) and XQ(to+ 3)/Im(v?(¢t, +3,1)) =0 we have the exact
sequence

0 > XJ(tg+3) = Xi(to+3)® X2(to+3) -
- XP(to+3) > X§(to+3) - 0

Looking at its cohomology we get first A°(E (¢ + 3)) = 0, then h°(E(t, + 2))
=h°(E(ty + 1)) = h°(E(t,)) = 0 and at last hA'(E(t,)) = 0 which contradicts our
assumption. Thus Ker (v3 (¢, + 3,1)) = 0 and we have the exact sequence

0 > X3(to+3) = X3(te+3) = X(to+3) = X3(to+3) — 0.

Looking at its cohomology as before we get X3 (¢ + 3) = X2 (ty + 3) = X1 (ty + 3)
=XJ(ty+3)=0.

Now we write the Beilinson theorem for E(¢, + 2) and in the same way we obtain
X3(to+2)=0. Again writing the Beilinson theorem for E(t,+ 1) we obtain
X3 (o + 1) = 0. At last we write the Beilinson theorem for E(t,). We get the complex

- X3 (1) ® X3 (1) ® X0 (to) —
%5 X3 (o) ® X2(t) @ X1 (t6) ® XC(to) > X4 (te) — 0

where E(t,) = Ker f/Ima.

We have B = v3 (t,3) + v (to,2) + 0 + 0so that Ker B = Ker[v3 (¢9,3) + vZ (25,2)]
@ Xi(ty) ® X2(t,). We have a=(0,0,02(ty,2),02(ty,3) + vi(tg,2) + v?(t0,1))
so that Ima = (0,0,*) and Ker f/Ima contains Ker [v3 (y,3) + v (t5,2)] as direct
summand. The sheaf Ker[v3 (¢y,3) + vZ(¢,,2)] cannot be zero, otherwise we have
X3(ty) ® X2(tp) = X (£,) # 0 that means that a sum of ¢(—1) and 22 (2) is trivial.
Then E(t,) = Ker [v3 (£9,3) + v7(Z,2)] and we have the sequence

0 > E(ty) — X3(t0) @ X7(to) = Xj(t5) = 0

that is exactly the first sequence stated in the theorem, as we wanted. From this
sequence it follows also 4 ' (E(¢)) = 0 for ¢ < tyand h2(E(f)) = O for t < t, — 2 so that
h'(E(ty)) and h2(E(t,—2)) are the only possible nonzero intermediate coho-
mologies. Note also that #°(E(7)) = 0 for ¢ < t,. Now writing again the Beilinson
theorem for E(f,+ 1) we get the second sequence stated in the theorem. This
concludes the proof.
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Corollary 4.3. Let E be an indecomposable sheaf of order 1 on IP3 with h* (E) # 0 or
h2(E(—2)) + 0. We have 4[h" (E) — h*(E(—2))] = h*(E(—=3)) — h°(E(1)).

Proof. From Theorem 4.2 we have rank E = 3h%(E(—2)) + h3(E(—3)) — h'(E)
=h°(E(1)) +3h'(E) — h*(E(-2)).

Remark 4.4. There are many vector bundles on /P* of order 1. For example one can
consider the extensions0 - Q' - ? - N - 0or0 - N —» ? - N — Owhere Nis
a nullcorrelation bundle.

Proposition 4.5 (see [ El] for bundles). Let E be a torsion free sheaf on P> of order 1 and
rank 2. Then E is isomorphic to a sum of two line bundles or to a twist of a nullcorrelation
bundle.

Proof. From Theorem 4.2 we may suppose that E is a vector bundle so that by Serre
duality we have (up to twist E) h'(E) = h?(E(—2)). Then from the sequence of
Theorem 4.2 we obtain 3h'(E)+ h3*(E(—3))=h'(E)+2 so that 2h'(E)=
2 — h3(E(—3)). The only possibilities are 43 (E(—3)) =0 or 2.

If h3(E(—3)) =0 then h'(E) =1 and E is a nullcorrelation bundle.

If h*(E(—3)) =2 then h!(E) =0 that means h'(E(x)) = h2(E(*)) =0 and the
result follows from the Horrocks criterion.

5. The bundles ¥; on Q,

Let Q, be the smooth quadric in /P"*!. Kapranov defined in [K] the bundles y; to
construct a resolution of the diagonal in Q;, X Q,,, with the aim to give a description of
the derived category D®(Coh (Q,)). The bundles y; are simple (i.e. 1°(yp; ® p*) = 1),
then indecomposable and are homogeneous (but reducible, a filtration of
Y1 = Qpa+r1(1)|g, with irreducible quotients is 0= O(—1) =y, y,/0(—1)~
T Q,(—1)). First we will give an elementary definition of the bundles y; and we show
as from this definition it is possible to prove many elementary properties of ;. For
the reader interested in the original definition via graded Clifford algebras we refer to
[K1.

From now on we set Q7 = Qp.... We want to define inductively y; from the
sequence

51) 0> 20, = wi = viia >0
We set po:=0 y, =2 (1)|,,.

Lemma 5.1. Letn+1>q>p+2>2. Then
H'(P™*,27(p)* ® Q%()) = 0 Vi

O fori+2or q+p+2

H!(P"" 1, Q7 (p)* ® Qg —2) = {Cfor i=2andq=p+2.
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Proof. The first part is [B] lemma 2. We shall see as both the statements follow from
Bott theorem [Bo]. Let 4 = {«,, ..., ®,,,} be a fundamental system of roots for
SL(n + 2), (,) be the Killing form and 4,, ..., 4, , be the fundamental weights with
respect to 4. Q' (1)* is a homogeneous bundle on P"*! ~ SL(n + 2)/P(«,. ) with
maximal weight A,. @ (1) has maximal weight 4,,, and we have the isomorphism
Q(q) ~[Q" 9" (n—q+ 1)]* ® O(—1). By the Littlewood-Richardson rule [LR]
the tensor product Q7 (p)* ® Q7(q) decomposes as a direct sum where the summands
are irreducible with maximal weights (if for example p >n — g+ 1)A4,_,_ ;11 + 4,4
— Apyqforj=0,...,n— g+ 1.Summingup é = > 1, we get singular weights and this
proves (i) by Bott theorem.

For Q?(p)* ® Q9(q — 2) we have to sum 6 — 24,,, and we get only one regular
weightinthecaseq=p+2,j=n—q+ 1thatisd; + ... 4, , + 22, + 4, — 22,4,
which is regular of index 2. In fact (A, + ... 4, + 24,1+ 4, —24,4+1,2) <0
for ae®d* only for a =0a,,,, a,+,,,. Under the action of the Weyl group
A+ oAy +24,_y+ 4, —24,,, is congruent to § and this proves (ii) by Bott
theorem again.

Corollary 5.2. Let n+1>q>p+2>2. Then

O forixlor g+p+2

Hi(Q,,,Q”(p)*|Qn® Qilo,) = {@for i=1landq=p+2.

Proof. We consider the sequence

0 - QP*®QN(g—2) - 2Q"(P* R L q)
= QP(P)*lg, ® 24(Plg, = 0
and the previous theorem.
Theorem 5.3 (and definition of ¥,). Suppose we have already defined the bundles y; for
i<io<n—1 by means of sequence (5.1). Then if n+ 1> q > i, + 2 we have

0 fors+1or gq+iy+2

s(Q1 .
H(©2%(@lo, ® v3) {Cfors=1andq=io+2

and in particular Ext' (y;,, 2°* 2 (iy + 2)|y,) = C so that we may define v, , as the
unique nonsplitting extension in the sequence 0 — Q°*2(iy+2)|g, = Wi 42
g, = 0.

As Q1= 0 for i > n + 2 the sequence above defines in a natural way ; for all ie IN.

Proof. We use induction, the previous corollary and the sequence
0> i, > wh > Qio(’b)'qn* -0

From the definition itself, it is easy to check some first properties of the bundles v, .

Theorem 5.4. Let y; be the bundles on Q, defined as above. Then

(i) for i=n we have y;~y;,,
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(ii) rank ;= Y <:) in particular for i > n rank p; = 2"
j=0
(iii) A°(p) =0 for i>1
it1 /p4+1
RO(pi(1) = 3 ( j >
J

) )= %, (" ; 1)

1]

(v) w; are homogeneous i-1 (n _ 1) i (n _ 1)
b /e o=\ J

(vi) if r is any line in Q, then y;|, ~ O(—1)i=°
Proof. (i) is true because Q' = 0 for i > n + 2. (ii)—(iv) are proved by induction. In
order to prove (v) let f be an automorphism in the connected component of the
identity of Aut(Q,). We have f*Q(i)ly, ~Q'(i)lg, because f extends to an
automorphism of P"* ! and f*y;_, ~ y,_, by induction. Then as the extension in the
sequence defining ; is unique we must have f*y; >~ y; as we wanted. To prove (vi)
consider that

Q0L ~ A@ M) = AL0"® 0(~1)] ~ 0D ® 0(~ 1)t

so that it is easy to prove that y;|, may have as direct summands only @ and O (—1).
Now (vi) follows from (iv) and (ii).

In order to state the Kapranov theorem we have to recall the definition of the spinor
bundles (see [K], [02]). For n odd, n=2m + 1 consider the varieties

FO,m,Q,) = {(p, P™) € F(O,m,P"*")|pe P" < Q,}
and
Gr(maQn) = {PMEGr(ms /’D"+l)|/’Dm < Qn} = Sm+1

that is called a spinor variety.
We have Pic(S,,, ;) = Z, and the generator 0 (1) of Pic[Gr (m, P"* )] restricts to
twice the generator of Pic(S,,; ;). We have the natural projections:

0, < FO.m,Q) "> Gr(m,Q,)
We define S:= [a, f* ©(1)]* and we call it the spinor bundle on Q,. For n even we

have that Gr (%, Q,) contains two connected components, each one isomorphic to Sa.

Then we obtain in the same way two spinor bundles S’, S” on Q,,. In any case the rank

n—1
of a spinor bundle on @, is 282 .
We shall use the following exact sequences on Q, ([02], theor. 2.8):
if n=2m+ 1 (odd)
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(51a) 0> 8 > 08" > 51) > 0
if n = 2m (even)
54b) 0 - S > (933_2"' - S5"(1) - 0
Gac) 0 - S" - (932"' - S'1) -0
We shall need also the following isomorphisms
n=2m+1 = S*~S()

n=4m = S'*~S'(1) and S"* ~ S"(1)
n=4m+2 = S*~S§"(1)and $"* ~ §'(1)

Theorem 5.5 (Kapranov) [K]. On Q, X Q, we have the following resolution of the
diagonal A

0> K->y, {IOA—n) - ... > p, KO(-1) > O > Oy > 0
where K is isomorphic
{SS*(—n) for n odd
[S"XS*(—n]D[S" xXIS"*(—n)] for neven (see [O2]).
Let & be a coherent sheaf on Q,,. The resolution gives a spectral sequence EF? with
E-term Ef" = HY(Q,,# (p)) ® -, for p> —n

and

E-ma — {Hq(g'-@S*(—n))@S for n odd
VT [H(F Q@S (—n) RS TR [HU(F @ S"*(—n)®S"] for n even

such that EZ? =0 for p+q =+ 0 and @ E_P? is the associated graded sheaf of a
p=0

filtration of F .

Furthermore, given any %,% € {spinor bundles,p,_,,...,¥,Wo} we have
Ext!(#,%) =0 for i> 0.

It is easy to check, using the spectral sequence above for # = Q.1 () 1g, that the
bundles ; defined by Kapranov in [K] fit together into the exact sequences

0 - Qﬁ}nﬂ(i)b,. > Y > P, >0

and then coincide with the y; defined by Theorem 5.3.
Kapranov proves also the following form that will be used only in Theorems 6.3
and 6.7.

5.6 Kapranov theorem (strong form) [K]. Let X = Q,,, denote by p,q: X X X — X the
two projections and by A the diagonal in X x X. For &% ,% € Coh(X) let us put
F KXY =p*F ® q*%. Let F € Coh(X), t € Z. Then there exists a complex of vector
bundles L' (t) on X such that:
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F@) ifk=0
0 ifk+0;

) L= @ Xj0. X0 =D forj<n,
jrk=i

1 H"(L'(t))={

Shi(F ®S*(—n) for n odd

i —
Xa (1) = {Srh"(f®s"(—")) @ SHESS M) for n even

and all other X} (1) are zero;

3)  a) the maps vi(t,s) : X;(t) - X;Z3 (1) (s€Z) induced by the differentials
L* » L**! are zero for s <0
b) the maps vi(t,1) agree with the natural maps R'p,(y; & Z (1 — j)) -
Rip, (wj—1 & ZF (t — j + 1)) coming from the exact sequence (tensored by O (1))

0 K-y,  "IFU—-—n->..op9y,KF(-1)>qg*F > q*F|, >0

where K is as in Theorem 5.5 tensored by q* F .

6. Sheaves on Q,

Theorem 6.1. Let & be a coherent sheaf on Q,. Suppose that for some t€ Z
hW(F@t—i—1)=0for0<i<n-—2,
A"~ Y (F ® S(t—n+ 1)) =0 for any S spinor bundle.

Then F has O(— )" F® gs direct summand.

Proof. We may suppose ¢ = 0. Write the Kapranov theorem 5.6 for the sheaf & . The
reasoning is the same as in Theorem 2.1.

Corollary 6.2. Let & be a coherent sheaf on Q, such that

W(F*)=0for0<i<n—1
A"~ Y (F ® S(»)) = 0 for any S spinor bundle.

Then & splits as a direct sum of line bundles and a g.skyscraper sheaf.

Proof. By the hypothesis and (5.2) we get that also "~ ! (# (x)) = 0. Then the order of
Z is finite and by Proposition 1.6 we may suppose that % is locally free and
indecomposable. Twisting we may suppose that 1°(# (—1))'= 0and h°(F ) * 0, so
that the result follows from Theorem 6.1.

Theorem 6.3. Let F be a coherent sheaf on Q,,. Suppose that for some t € Z and some
0<j<n

H&F@t—i—1)=0forj<i<n-—2

H(F(—i+1)=0for1<i<j

H" Y (F ® S(t—n+ 1)) = 0 for any spinor bundle S.
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Set n; = hi(F (t — j)). Then F contains yp}’ as direct summand.

Proof. We may suppose ¢ = 0. Write the Kapranov theorem 5.6 for #. We have L°(0)
=} @ X, (0) and by the hypothesis no arrows v}(0,s) different from zero start or
end at the summand y}", so that the cohomology H (L’ (0)) contains y} as direct
summand.

Remark 6.4. The bundle y}* = & satisfies h'(# (j)) = 0for0<i<n, —n+1<;<0
with the only exception A" ' (# (—n+1) = 1 but h" " '(F ® S(—n+ 1)) + 0. This
shows that the hypothesis A"~ = 0 in Theorem 6.3 is necessary.

Corollary 6.5. Let & be a coherent shedf on Q, such that h'(F (*)) =0 for 0 < i< n
with the only exceptions h' (F ( ])) = n Jort<j<n—1.Leth" Y (F @ S(») =

for any S spinor bundle. Then & (—E ¥ @ {line bundles} ® {g.skyscraper sheaf }

Proof. From Corollary 6.2 and Theorem 6.3.

Example 6.6. An example of an indecomposable bundle F on Qj satisfying H'(F(f))
= 0for 1 <i <2, Vte Zwith the only exception H?(F(—2)) = C such that F# p},
F =+ y,. Define first a bundle E of rank 6 on Q5 as a nonsplitting extension:

61) 0-5S->FE->qpf->0

In fact Ext! (¥, S)=H'(p, ® S) = C*. It is easy to check that H!(E(f)) = 0 for
1 <i<2, VteZ with the only exception H?(E(—2)) = C. Then the only possible
direct summands of Eamong the y;(f) and y* (f) would be v, or p¥. v, is not a direct
summand of E because rank yp, = 7. p} has rank 4 and is not a direct summand of E
because each endomorphism of ¥ ~ T P*(—1)|,, is invertible or is zero so that the
morphism E — p splits the sequence (6.1) or cannot be surjective (again by rank
reasons). We are not sure that F is indecomposable, but there exists a direct summand
F of E with the required properties.

Theorem 6.7. Let F be a coherent sheaf on Q,. Suppose that for some te€ Z
hW(Ft—i—1)=0for0<i<n-—2.

IfH" Y (F @ S(t—n+1)) =0 then F has O(—t)*"*F™ as direct summand.

If H™ Y(F (t —n)) =0 then
for n odd F has S*(— )"~ " F OS¢V g5 direct summand
for n even F has S'*(—p)h" FOS ) @y gk (_hnTHFSS Ut D) gg
direct summand.

Proof. We may suppose ¢ = 0. We suppose for simplicity » odd (for n even the proof is
the same with slight variations). The Kapranov theorem 5.6 gives the exact sequence

0 - SHUESS(-nt) _, gh°F) , g
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where the sheaf % is a direct summand of & and A" Y(F ® S(—n+1))
—h"_l(g®S( n+1), h%(F)=h°%). If H" '(F ® S(—n+1)) =0 this se-
quence gives the result. So we may suppose a:=h""'(F ® S(—n+1))£0. It

+1
suffices to prove that ¢ contains S* as direct summand. We set N = 2 2. Consider
the diagram
B

085 0*® 2,9 50
| |

|
4 It z

|

|

| |

+ s Y
0-8 Ho" 2 sx50
where the second row is (5.2a), p is the natural projection on the first summand,
t exists for the vanishing of Ext'(¥4,0%) c Ext!'(#,0") = H"" (% (—n))" and the

existence of z is obvious.
In the same way (using A!(S) = 0, [02] th. 2.3) we can construct the diagram

085 P,qg Lo
1
| .
|
|

i t

*_)0

nN-—-———-

0 S s oF i»

where i is the natural immersion into the first summand such that p o i is the identity
map.

We have tt'y = tai = ypi = 7, then t¢' is the identity on Im y, so that ¢#¢" & 0. But ¢’
is defined by a constant matrix, so that there is a trivial line bundle L = @" such that
tt'|,, is an automorphism of L. L is not contained in S ~ Ker § because #°(S) =0,
then there exists /e L such that 6(/) & 0. Let /'e L be such that 7' (') = 1. We get
2z'6(I")=zBt'(I")=6tt'(I") =5() £ 0. Then zz’' + 0 and as S* is simple ([O2], th.
2.1) zz’' must be the identity. This shows that S* is a direct summand of ¥ as we
wanted.

Corollary 6.8 (see [BGS], [Kn] for vector bundles and [O1], [O3] for related
results). Let & be a coherent sheaf on Q, such that h'(F (x)) = 0 for 0 <i<n. Then
F =~ {line bundles} @ {spinor bundles twisted} @ {g.skyscraper sheaf’}.

We remark that if & is a spinor bundle then 2"~} (# ® S(x)) % 0 for some S spinor
bundle. For this reason spinor bundles did not occur in Corollary 6.2.

Theorem 6.9 (Kapranov [K]). On Q, we have
for n odd nt1

Yn = VYu+1 =S®2 2
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for n even

wn = 1P,,+1 = S'®27 @ SH@ZE-

Corollary 6.10. Let O, _; be a smooth hyperplane section of Q,. Then p;ly, _, ~ p; ®
Yi—1 lg,_, for i <n—1. Furthermore, for 1 <i<n—1 vy, does not extend as vector
bundle to Q,, . , and neither to P"* . The bundles y, andy, fori > n — 1 extendto Q, ,.

Proof. The statement about the restriction is immediate from Corollary 6.5. If Eis a
bundle on Q,,, (or on P"*') such that E|, ~1; for 1 <i<n—1 then the
intermediate cohomology of E vanishes (because 7 (E(t)) — h'(E(t + 2)) are always
surjective or injective V ¢ for 1 < j < n) and by Corollary 6.7 this is a contradiction. As
Y1 = Qpn+1(1)]g, we have the sequence 0 — y, — 0”2 —» O(1) - 0 that extend
obviously to Q, . ;. The bundles y; for i > n extend trivially to Q,,, 1, by Theorem 6.9
and the restriction behaviour of the spinor bundles ([O2], theor. 1.4). From the
sequence 0 - O(—1) - y,+; = W,—; — 0 it can be shown that y,_, extends to
0,4+, as the morphism O(—1) — v, extends.
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