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In this note we discuss an analog of the classical Waring problem
for C½x0,x1,…,xn�. Namely, we show that a general homogeneous
polynomial p ∈ C½x0,x1,…,xn� of degree divisible by k ≥ 2 can be
represented as a sum of at most kn k-th powers of homogeneous
polynomials in C½x0,x1,…,xn�. Noticeably, kn coincides with the
number obtained by naive dimension count.

sum of powers ∣ sum of squares ∣ Veronese embedding

We shall study a version of the general Waring problem for
rings as posed in, e.g., ref. 1. Namely, we shall be concerned

with the following problem.

Problem 1.For any ringA and any integer k > 1, letAk ⊂ A be the set
of all sums of k-th powers in A. For any a ∈ Ak, let wkða; AÞ be the
least s such that a is a sum of s k-th powers. Determine
wkðAÞ ¼ sup a∈Ak

wkðaÞ. (It is possible that wkðAÞ ¼ ∞).

In many rings it makes sense to talk about generic elements in
Ak and, similarly, one can ask to determine the number
~wkðAÞ ¼ supa∈ ~Ak

wkðaÞ; where ~Ak is the appropriate set of gen-
eric elements in Ak. We will refer to the latter question as the
“weak Waring problem” as opposed to Problem 1, which we call
the “strong Waring problem.”

Below we concentrate on A ¼ C½x0; x1;…; xn� and for conve-
nience work with homogeneous polynomials usually referred to
as forms. In this case it is known that Ak coincides with the space
of all forms inC½x0; x1;…; xn�whose degree is divisible by k. Thus,
the strong Waring problem for C½x0; x1;…; xn� is formulated as
follows. Denote by Sd

n the linear space of all forms of degree
d in nþ 1 variables (with the 0-form included).

Problem 2.Find the supremum over the set of all forms f ∈ Skd
n of the

minimal number of forms of degree d needed to represent f as a sum
of their k-th powers. In particular, how many forms of degree d are
required to represent an arbitrary form f ∈ S2d

n as a sum of their
squares?

Recall that dimSd
n ¼ ðdþn

n Þ and simple calculations show that

dimSkd
n

dimSd
n
< kn and lim

d→∞

dimSkd
n

dimSd
n
¼ kn:

Therefore, kn is the lower bound for the answer to Problem 2. A
version of Problem 2 related to the weak Waring problem is as
follows.

Problem 3. Find the minimum over all Zariski open subsets in Skd
n of

the number of forms of degree d needed to represent forms from
these subsets as a sum of their k-th powers. In other words, how
many k-th powers of forms of degree d are required to present a gen-
eral form of degree kd?

For sums of powers of linear forms a question very similar
to Problem 3 was studied in greater detail by J. Alexander and
A. Hirschowitz in the mid-1990’s and was completely solved
in a series of papers culminated in ref. 2; see also refs. 3 and 4.

(This problem has a long history starting from the 19th century;
see refs. 4 and 5, and it was later posed anew by H. Davenport.) In
our notation the latter problem means that one fixes d ¼ 1 in-
stead of letting d be an arbitrary positive integer and uses k as
a parameter. The above-mentioned authors proved that the weak
Waring problem for powers of linear forms has the solution ex-
pected by naive dimension count in all cases except for the case of
quadrics in all dimensions, cubics in five variables and quartics in
three, four, and five variables. On the other hand, their results
and further investigations indicate that for n > 1 the number
of powers of linear terms required to present an arbitrary form
of a given degree almost always exceeds the expected one ob-
tained by naive dimension count; see, e.g., ref. 6, 1.6.

Our main result is the following.

Theorem 4. Given a positive integer k ≥ 2, then any general form f
of degree kd in nþ 1 variables is a sum of at most kn k-th powers.
Moreover, for a fixed n this bound is sharp for all sufficiently large d.

Thus kn gives an upper bound for the answer to Problem 3 for
any n ≥ 1 and k ≥ 2, and it is optimal for all sufficiently large d;
see Remark 1 in Final Remarks.

Geometric Reformulation and Proof
For simplicity we work over C, although our results hold for any
algebraically closed field of characteristic zero. We refer to ref. 7
as a basic source of information on the geometry of tensors and its
applications. The following result is classical, see, e.g., ref. 8.

Theorem 5. (i) Any form f of even degree 2d in two variables is a sum
of at most two squares;

(ii) a general form of even degree 2d in two variables can be
represented as a sum of two squares in exactly ð2d−1d Þ ways.

The proof follows from the identity

f ¼ A · B ¼
�
1

2
ðAþ BÞ

�
2

þ
�
i
2
ðA − BÞ

�
2

and ð2d−1d Þ ¼ 1
2
ð2dd Þ is the number of ways f can be presented as the

product of two factors A and B of equal degree. Thus, for n ¼ 1
and k ¼ 2 the answer to Problem 2 is 2.

We recall that for any projective variety X , its p-th secant
variety is defined as the Zariski closure of the union of the pro-
jective spans hx1;…; xpi where xi ∈ X . The following result gives
a convenient reformulation of our problem.

Theorem 6. Given a linear space V , a general polynomial in SkdV
is a sum of p k-th powers gk1 ;…gkp where gi ∈ SdV if and only if
for p general forms gi ∈ SdV , i ¼ 1;…p, the ideal generated
by gk−11 ;…gk−1p contains SkdV . (We shall call such an ideal
kd-regular.)
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Proof: The statement is a direct consequence of Terracini’s lem-
ma. Consider the subvariety X in the ambient space PSkdV con-
sisting of the k-th powers of all forms from SdV . The tangent
space to X at gki ∈ X is of the form fgk−1i f jf ∈ SdVg. Therefore,
the p-secant variety ofX coincides with the ambient space PSkdV
if and only if the span of the tangent spaces to X at general gki ,
(which is equal to f∑p

i¼1 g
k−1
i f ijf i ∈ SdVg), coincides with PSkdV

as well. □

Theorem 6 relates Problem 3 to a special case of a conjecture
of the first author about the Hilbert series of ideals generated by
general forms in given degrees; see ref. 9.

We will show that if V is an ðnþ 1Þ-dimensional linear space
then the ideal generated by kn general forms of the form gk−1i
where gi ∈ Sd

nV is kd-regular, i.e., contains SkdV .
To prove the latter claim it suffices to find kn specific polyno-

mials fg1;…; gkng of degree d such that the ideal generated by
the powers gk−1i is kd-regular. Below, we will choose as gi’s powers
of certain linear forms. For powers of linear forms one can use a
new point of view related to apolarity. The space TgkX

⊥ ortho-
gonal to TgkX ¼ fgk−1f jf ∈ SdVg is given by TgkX

⊥ ¼
fh ∈ SkdV ∨jh · gk−1 ¼ 0 ∈ SdV ∨g, i.e., is the space of polyno-
mials in V ∨ apolar to gk−1. Moreover, when g ¼ lm, l ∈ V the
classical theory of apolarity provides a better result (for a recent
reference see Lemma in ref. 5, p. 1094).

Proposition 7. A form f ∈ SmV ∨ is apolar to lm−k, i.e., lm−kf ¼ 0 if
and only if all the derivatives of f of order ≤k vanish at l ∈ V .

Using Proposition 7 one can reduce Theorem 4 to the follow-
ing statement.

Theorem 8. For a given integer k ≥ 2 a form of degree kd in ðnþ 1Þ
variables that has all derivatives of order ≤d vanishing at kn general
points vanishes identically.

Our final effort will be to settle Theorem 8. Denote by x0;…xn
a basis of V . Let ξi ¼ e2πi

ffiffiffiffiffi
−1

p
∕k for i ¼ 0;…; k − 1 be the (set of

all) k-th roots of unity. By semicontinuity, it is enough to find kn

special points in PV ≃ Pn such that a polynomial of degree kd in
Pn that has all derivatives of order ≤d vanishing at these points
must necessarily vanish identically. As such points we choose the
points ð1; ξi1 ; ξi2 ;…; ξinÞ where 0 ≤ ij ≤ k − 1, 1 ≤ j ≤ n.

The following result proves even more than was claimed in
Theorem 8.

Theorem 9. For a given integer k ≥ 2 a form of degree kdþ k − 1 in
ðnþ 1Þ variables that has all derivatives of order≤d vanishing at kn

general points vanishes identically.

Proof: As above we choose as our configuration the kn points
ð1; ξi1 ; ξi2 ;…; ξinÞ where 0 ≤ ij ≤ k − 1, 1 ≤ j ≤ n. Consider first
the case n ¼ 1. If a form f ðx0; x1Þ of degree kdþ k − 1 has its
derivatives of order ≤d vanishing at all ð1; ξiÞ, then f should
be divisible by ðx1 − ξix0Þdþ1 for i ¼ 0;…; k − 1. Therefore, if f
is not vanishing identically, then its degree should be at least
kðdþ 1Þ, which is a contradiction.

For n ≥ 2 consider the arrangement of ðn
2
Þk hyperplanes given

by xi ¼ ξsxj where 1 ≤ i < j ≤ n, 0 ≤ s ≤ k − 1. One can easily
check that this arrangement has the property that each hyper-
plane contains exactly kn−1 points and, furthermore, each point
is contained in exactly ðn

2
Þ hyperplanes. Indeed, consider, for ex-

ample, the hyperplane H given by xn ¼ ξixn−1. The natural para-
metrization of H is by ðx0;…; xn−1Þ ↦ ðx0; x1;…; xn−1; ξixn−1Þ

and the kn−1 points that lie on H correspond, according to this
parametrization, exactly to ð1; ξi1 ; ξi2 ;…; ξin−1Þ for 0 ≤ ij ≤ k − 1,
1 ≤ j ≤ n − 1. In other words, they correspond exactly to our ar-
rangement of points in the previous dimension n. Our proof now
proceeds by a double induction on the number of variables n and
degree d. Assume that the statement holds for all d and up to n
variables. (The case n ¼ 1 is settled above.) Let us perform a step
of induction in d. First we settle the case d ≤ ðn

2
Þ − 1. Consider a

polynomial f of degree kdþ k − 1 satisfying our assumptions. Re-
stricting f to each of the above ðn

2
Þk hyperplanes xi ¼ ξsxj where

1 ≤ i < j ≤ n, 0 ≤ s ≤ k − 1 we obtain the same situation in di-
mension n. By the induction hypothesis f vanishes on each such
hyperplane and, therefore, must be divisible byH, whereH is the
product of the linear forms xi ¼ ξsxj defining all the chosen hy-
perplanes. (Obviously, degH ¼ ðn

2
Þk.) Thus, f vanishes identically

because kððn
2
Þ − 1Þ þ k − 1 < ðn

2
Þk. For higher degrees we argue

as follows. Take a form f of degree kdþ k − 1 satisfying our
assumptions. Restricting as above f to each of the above ðn

2
Þk

hyperplanes xi ¼ ξsxj we obtain the same situation in dimension
n. Again, by the induction hypothesis f vanishes on each such hy-
perplane and must be divisible by H. We get

f ¼ H ~f

where deg ~f ¼ kðd − ðn
2
ÞÞ þ k − 1 and ~f has all derivatives of order

≤d − ðn
2
Þ vanishing at the same kn points ð1; ξi1 ; ξi2 ;…; ξinÞ. In-

deed, in any affine coordinate system centered at any of these
points, f has no terms of degree ≤d. Because H has its lowest
term in degree ðn

2
Þ it follows that ~f has no terms in degree

≤d − ðn
2
Þ. By the induction hypothesis ~f is identically zero. □

Notice that we have also obtained the following result of in-
dependent interest.

Corollary 10. Any form of degree kd in ðnþ 1Þ variables can be ex-
pressed as a linear combination of the polynomials ðx0 þ ξi1x1þ
ξi2x2 þ…þ ξin xnÞðk−1Þd with coefficients being polynomials of
degree d.

Final Remarks

Remark 1: Although kn is the correct asymptotic bound, it seems
to be sharp only for considerably large values d. In particular,
computer experiments show that for k ¼ 2; n ¼ 3, and d ≤ 20 se-
ven general polynomials of degree d suffice to generate the space
of polynomials in degree 2d. All eight polynomials are required
only for d ≥ 21. Similarly, for n ¼ 4 and d ≤ 75 experiments sug-
gest that 15 (instead of the expected 16) general polynomials of
degree d suffice to generate the space of polynomials in degree
2d. Analogously, all 16 polynomials are required for d ≥ 76. The
ultimate challenge of this project is to solve completely Problem 3
for triples ðn; k; dÞ and, in particular, to find the complete list of
exceptional triples for which the answer to Problem 3 is larger
than the one obtained by dimension count. Obviously, this list
should include the list of exceptional cases obtained earlier by
J. Alexander and A. Hirschowitz.

Remark 2: Theorem 4 seems to be new even in the classical case
k ¼ 2, i.e., for a sum of squares. In this case we have shown that
any form of degree 2d in ðnþ 1Þ variables can be expressed as a
linear combination of the polynomials ðx0 � x1 � x2 þ…þ
�xnÞd with coefficients being polynomials of degree d. Note that
the former polynomials have real coefficients. But, obviously, our
main result does not hold over the reals. It only implies that there
is, in the usual topology, an open set of real polynomials of degree
2d that can be expressed as real linear combinations of 2n squares
of real polynomials of degree d. In other words, 2n is a typical
rank; see e.g., ref. 10. Notice that other typical ranks might also
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appear on other open subsets of polynomials. An example with
three distinct typical ranks occurring in a similar situation can be
found in ref. 10.

Remark 3: Although we only used powers of linear forms as the
generators of the ideal in the above arguments it is not true that
a general polynomial of degree kd can be expressed as a sum of at
most kn powers lkdi of linear forms li. For large d the number of
necessary summands of the latter problem (solved by J. Alexan-

der and A. Hirschowitz) equals ⌈ ðkdþn
n Þ

nþ1
nþ 1⌉. It grows as

ðkdÞn∕ðnþ 1Þ! and is considerably larger than kn.

Remark 4:Notice that the family of ideals generated by the powers
of linear forms ðξ0x0 þ ξ1x1 þ ξ2x2 þ…þ ξnxnÞd is a special case
of ideals associated with hyperplane arrangements that appeared
in several publications of the last decade; see e.g., refs. 11 and 12.
In particular, it should be possible to calculate the Hilbert series
of the quotient of the polynomial ring modulo these ideals, and
the answer should be a certain specialization of the Tutte poly-
nomial of the vector configuration given by the above linear
forms, cf. ref. 12, section 5.

Remark 5:The above mentioned conjecture of the first author pre-
scribes the Hilbert series of a homogeneous ideal generated by
general forms of given degrees. Computer experiments show that
the ideals generated by the powers of linear forms ðξ0x0 þ ξ1x1 þ

ξ2x2 þ…þ ξnxnÞd have, in general, another Hilbert series. On
the other hand, it seems that in case k ¼ 2 a different family
of ideals generated by the powers of linear forms have the pre-
dicted Hilbert series. Namely, for every nonempty subset
I ⊂ f0;…ng define xI ¼ ∑i∈Ixi and take ðxIÞd for all subsets I
with jIj odd as generators of the ideal in question.

Remark 6: It is classically known that plane quartics can be repre-
sented as sums of three squares. It was recently observed in ref. 13
that the closure of the set of plane sextics that are sums of three
squares forms a hypersurface of degree 83,200 in the space of all
sextics.

Remark 7:Our results can be interpreted in the setting of osculat-
ing varieties. In notations of ref. 14 we have shown that any
k-osculating space at the kn-th secant variety of the kd-Veronese
embedding of Pn fills out the ambient space.
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