3-bundles on ps

Vincenzo Ancona and Giorgio Ottaviani®

There are only few examples of indecomposable vector bundles of small rank on the complex
projective space P". The only known indecomposable rank 2 bundles on P* are the Horrocks-Mumford
bundle and its pullbacks under a finite morphism m:P* — P* Moreover these 2-bundles on P* are
stable and any family obtained pulling back the Horrocks-Mumford bundle under a finite morphism is

invariant by small deformations [DS]. No indecomposable 2-bundle is known on P5.

Horrocks defined on [Hor2] a stable 3-bundle on P° (called the parent bundle). He also showed
how to modify this example in order to obtain some weighted 3-bundles Ea, B,y {called in this paper
relation bundles, see definition 6.1) depending on nonnegative integers a <8<~ satisfying a+5<7.
The parent bundle corresponds to a=8=0, y=1. More precisely consider the diagram

C8\0 3 ¢85\
in in (0.1)

P° PS
where w is given by six homogeneous polynomials fi,..., fg without common zeroes of degree y—a,
T=B. v+a+B, 7+a. v+, 7~a—LB. w*n*E descends to a vector bundle Ea,ﬁ,'y on P, so that we
have U‘Ea,g,7-’=“’*’7'Eo,o.1- Of course Ea—,@.'y depends on w but for simplicity we forget this fact in
the notations. We refer to bundles obtained from the diagram (0.1) with the construction above as
bundles coming as pullback over C6\0, warning the reader that only in the case a=£=0 the map w

descends to w':P° - P53,

Decker, Manolache and Schreyer studied the moduli space and the geometry of sections of the
parent bundle [DMS]. In particular they proved that every small deformation of the parent bundle can
be obtained by the action of a automorphism of P®. In section 6 we remark that the family of bundles
Eo,ﬂ,‘,r constructed by Horrocks pulling back the parent bundle over C®\0 is invariant by small
deformations if and only if a==8=0 (the case of finite morphisms P> - Ps). We give a more general
construction of 3-bundles in terms of monads (the relation bundles), that includes all the small
deformations of Horrocks bundles Ea,ﬂﬂ(see theorem 6.5). In corollary 6.10 and theorem 6.12 we

prove that the generic E, B,y is stable if and only if 37 ~2a—45>0.

In prop. 7.2 it is computed the dimension of the Kuranishi space of E a8,y which turns out to
be h! (End E @B, ), in terms of «,3,y. The formula has a “principal part” that has a clear meaning

plus some “correction terms” that vanish when 730. The Chern classes of E, 8.y are ¢, =c3=0,

1Both authors have been supported by MURST and by GNSAGA.
1



c2=372+4aﬁ——4(a+ﬂ)2. Schwarzenberger conditions imply that 3-bundles on P® with ¢;=c3=0 can

exist only if ¢,=0,3,8 or 11 (mod 12). A consequence of our computations is the following:

Theorem 1 YNEN, VteZ, t=0,3,8 or 11 (mod 12) there exists a family of nonisomorphic 3-

bundles on P° with ¢y =c5=0, c; =t of dimension >N.

This generalizes the analogous result for 2-bundles on P® obtained by Hartshorne[Har] and
shows that there are plenty of 3-bundles on PS. Let M IPS(O,t.,O) be the moduli space of stable 3-bundles

on P° with ¢y =c3=0, c,=t, then we get:

Theorem 2 Let MPS(O,t,0)=X1UX2U...UXn(t) be the decomposition into irreducible

components. Then limsup; n(t)=+oo.

This generalizes the analogous result for 2-bundles on P3 obtained by Ein [Ein]. Our approach
gives also an alternative proof of Ein result, using representation theory instead of Cech cohomology

computations.

For some computations in theorem 6.7 and in lemma 7.10 we used the program Macaulay
[BaS), running on a personal computer. Anyway, the help of a computer is not necessary in order to
prove theorems 1 and 2.

This is the content of the sections:

0. Notations and conventions

1. Some known results about bundles on P>

(8

. The parent bundle
. Weighted quotient bundles

> o

. Weighted nullcorrelation bundles

. Weighted lambda-three bundles

(=) o

. Relation bundles

- . 1
7. The computation of h™(End Ea,ﬂ,'y)

The main technique used in this paper, that is the computation of cohomology of bundles
coming as pullback over C®\0 using representation theory, is explained with full details in sections 3
and 4, and then used throughout the paper. The proofs of the theorems 1 and 2 will be given in section
6. Sections 3 and 5 contain results that are used in section 6. In the appendix we have collected some

numerical information on the moduli of the relation bundles.

The authors benefited from many helpful conversations with W.Decker, N.Manolache and
F.Schrever. In particular N.Manolache communicated to us the minimal resolution of the parent bundle

(theorem 6.7).



0. Notations and conventions

Let II be a complex vector space of dimension 6, we consider [F'5=P(H*) with homogeneous

coordinates (a,b,c,d,e,f).

Let puy,..., 5 be the fundamental weights of SL(6)=SL(6,C). Let us recall that the irreducible
representation of SL(6) corresponding to the weight Y a.u. is represented by the Young diagram
consisting of a; +...+ag boxes in the first row, a,+...+ag boxes in the second row, up to ag boxes in
the fifth row. We will denote such representation with both the symbols H}:a- ) or

al+...+a5,...,a5 . “ul

r H. In particular L
1 times i

H#i:Fl“"'le/\'H.

ay+...+ag,..

If # is any 6-bundie, the bundle ¥ 41 % is naturally defined.

~T
Eai#i
6
In particular if F=& O(d;), then
=1

nl,...,ns 6

r '$ 0(d) :J_%O(bj) (0.2)

where J is the set of all the combinations of the d;’s filling the boxes of the Young diagram
with n; boxes in the i-th row in such a way that the indexes are strictly increasing in the columns and

increasing in the rows, and bj is the sum of all the d; appearing in the combination j.

Let vy, v,. v5; be the fundamental weights of Sp(6). Let v be a weight in the fundamental
chamber of Sp(6), we denote by H, the corresponding representation. For example Hyle,
H,,z': /\2H/C, HUB:/\?’H/H. If ¥ is a symplectic 6-bundle it is naturally defined the bundle ¥,,, for
example ‘JV2=/\2€F/O. We will use throughout the paper this notation many times when ¥F is the

bundle ¥ defined in (3.1).
If 7 is a bundle, the adjoint bundle ad F is End /0.

If W is a complex vector space of dimension 3, then W@®W™ has a natural symplectic
structure. We denote by TP''W the representation of W corresponding to the Young diagram with p

boxes in the first row and ¢ boxes in the second row. In particular I‘i'OW=SiW, TI'IVV=/\2W=W*,
. 2 -
moreover P> OW=I"*W* and dim 1*%w =2F2(a+De—a+1)
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If ¥ is any 3-bundle, the bundle rPq ig naturally defined .
We will use Mumford-Takemoto definition of stability.

If F is a coherent sheaf over a complex space X and f:X — S is a morphism, we denote by
Quotﬁ}/\(/S the Grothendieck space parametrizing the coherent quotient sheaves of F which are flat

on S. We have a projection Z = S and for s€S we have ZS:Quotcj /Xs'
s/ &g



Il E is a vector bundle on a compact complex space X there exists a Kuranishi space Z which is
the base for the versal deformation of E. Let 2o € Z be the point corresponding to E. Z is equipped with
a universal family and the germ (Z,zg) is unique up to automorphisms. The same bundle can appear

many times in the versal deformation but E itself appears in a neighborhood of zg only once.
1. Some known results about bundles on P°

Let G be a semisimple complex Lie group and let ¢ be the set of the roots of G. Let

A={ay,...,a,} be a fundamental system of roots . We have the Cartan decomposition

Lie G=Gy®3. Ga®) Go
O’€¢- aE¢+
Let ¢+(i) ={a€¢+| a=3 nja; with n;=0} and let P(a;)CG be the parabolic subgroup such

that Lie P(ai)=g0@z §a®>> Ga. Then G/P(e;) is a rational homogeneous manifold with
Pic=Z. @€ aest(i)

Let {A},....A} be the fundamental weights with respect to A.

We will apply this construction to the cases
i) G=SL(6), A={8,....,85}, SL(G)/P(ﬁl):PS; the reductive part in the Levi decomposition of P(3,)
is isomorphic to SL(5)-C*. We denote in this case {#y,...,15} the fundamental weights.
i) G=5p(6), A={0,,0,,03}, Sp(ﬁ)/P(al):PS; the reductive part in the Levi decomposition of
P(c4) is isomorphic to Sp(4)-C*. We denote in this case {v1,v5,v3} the fundamental weights.

Let (, ) be the Killing form over Lie G. We recall that a weight A is called singular if there

-

exists a€¢ ' such that (A\,@)=0 and is called regular of index p if it is not singular and if there exist

exactly p roots «€6™ such that (M) <0.

Let p(A) be the irreducible representation of P(c;) whose restriction to the reductive part has
maximal weight A:Enj/\j with n; >0 for j#i. Let E? be the homogeneous vector bundle over G/P(«;)
associated to p(A). Let 6=3";. The main result about the cohomology of EX is:

Bott theorem [Bo]
i1)If A+ 4 is singular then Hk(G/P(ai),E’\)=0 Vk
i) If A46 is regular of index p then
B*(G /P(a;),EN)=0 Vk#p
HD(G/P(Oi)’E/\)zvs(,\-{-&)—& where s(A+06) is the unique element of the fundamental Weyl
chamber of G congruent to A+§ under the action of the Weyl group.

The gquotient bundle Q on [PS:.P(H*), is defined by the Euler sequence
0-0(-1)2H*®0-Q -0



The bundle Q, as well as Q¥ is stable and SL(6)-homogeneous, precisely Q—_—.E#S,
Q*=E"27" Recall also O(t)=E"? Vt€Z. By Bott theorem HOQ (W) =By, 4, 107 21 the
intermediate Hi(Q*(t)) for 1<i<4 are zero for every t with the only exception HY(Q*(-1))=C.
Moreover HY(End Q(t))=0 for t# —1 and H(End Q(—1))=H, so that every small deformation of Q
is isomorphic to Q. The minimal resolution of Q* is

0 = O(=5) » ASH®O(—4) » A*H®O(—=3) » ASH®O(—2) » A’HE®O(-1)» Q* =0

We list now some cohomological lemmas that are applications of Bott theorem and will be

used in the rest of the paper.
Lemma 1.1 HY(End A2Q(t)) = H}(End Q(t)) Vt€Z

Proof From the Littlewood-Richardson rule End A%Q(t) =End Q(t)@Ep3+ﬂ4(t—-l). The
weight tug +ps+pus+6 is regular of index 0 for t>0, of index 2 for t=—3, of index 3 for t=-5, of
index 5 for t<—8 and it is singular for t=—1, —2, —4, —6, —7. In particular tpy+pgt+pgt+6is
never regular of index one, then from Bott theorem H(End A2Q(t)) = HY(End Q(t)) Vt€Z, hence

our claim follows.
Lemma 1.2 HY(A2Q®A*Q*(t))=0 YteZ

Proof Note that A2Q®A%Q*(t)=A2Q®Q(t—1) VteZ. We have A2Q@Q=T""'Qa&A%Q.
Tz'lQ is homogeneous corresponding to the maximal weight p,+pg. It is easy to check that the
weight tpy+puy+p3+2ps +2pug is never regular of index one, hence Hl(Fz'lQ(t—l))zﬂ VteZ by

Bott theorem. The analogous vanishing for A3Q is well known.

Lemma 1.3
HO(A%QoA%QY)=H,,, Ho(r%Qe A2Q*(t))=H(H)

groups are zero for t<0)

1L +” ! $IIt i l 1L fOI t>1 a]l the [)]eVl()“S
(A Qd/\ Q (t’)) i‘ Zero {OI tv#—l and it 1S iSOmOIpth tO A II fOI‘ t_—— I.

HO(A%Q(t))=H for t>0

tp+us

Proof A*Qe A2Q*(t)= I'??2?1Q(t—=1)® A%Q(t). The cohomology of the second summand is
well known. The first summand corresponds to the maximal weight (t—1)py+po+ps;
tpy+2ps+2us+ g+ pg is regular of index 0 for t>1 and it is regular of index one for t=-—1.
—py+ 20+ 2u5 4 s+ pg is congruent to g+ pio+2p3+ g +pg under the action of the Weyl group.

The result follows from Bott theorem.

Lemma 1.4 Hl(Fz'z'zQ(t)) =0 YteZ
HO(T222Q(4—9))=pbbtt2t2y _
HY(r212Q(t))=0 ViezZ

for t>2 and HO(I*'?2Q(t—2))=0 for t<2.

H
(t-2)py+2p5



Proof From Bott theorem

t,t,t-2,t-2,t-2H for t_>_2

2,2 r
Lemma 1.5 HO(I Q(t—‘l)):{ 0 for t<2

t,t-1,t-1,t-1,t-3
0,13.2,2,2 gy " Hfor t 23
T Qt-3)= { 0 for t<3

2,1
1,3.2,1,1 _JT"""H fort=1
HA(T Q(“?’“))“{ 0 for t1

1,:2.2,2,1 _JARH for t=1
HA(T Q(_3+t))—{ 0 fort#1

HY(A2Q(t))= VteZ
B3(r* Q) =H2(r* 1 11Q(1)=0 VieZ
Proof From Bott theorem

Definition 1.6 A nullcorrelation bundle N is the cohomology bundle of a monad
o(-1) 3 Heo 2 o)
Every nullcorrelation bundle fits into an exact sequence

0-0(=1)=Q*=+N=0
The following lemma is well known (for a more general fact see lemma 4.2).

Lemma 1.7 Every nullcorrelation bundle N is symplectic

Proof Let x,....xg be homogeneous coordinates on P5. We can identify a:Exiai,

b=3}"x;b; with a,,
bit 1x6 matrices. Let A be the square matrix whose i-th row is a, and B be the square matrix whose i-
th column is b,. The monad condition is equivalent to AB nondegenerate and skew-symmetric. We set
Q::(B'l)tA. We get Q skew-symmetric and A=BQ, B=—Q'1At, that is the dual monad is

isomorphic to the monad itself.

The above proof shows that the moduli space of nullcorrelation bundles is isomorphic to the
space of nondegenerate skew-symmetric 6x6 matrices (up to scalar multiple), that is to IP14\V3 where
V3 is the cubic hypersurface given by the pfaffian. Given a nullcorrelation bundle N, we can write a

suitable isomorphism PS:Sp(G)/P(al) in such a way that N=E"2""1,

By Bott theorem HO(N(t))~H for t>1, the intermediate Hi(N(t)) for 1<i<4 are
(t-1)v,+vy

zero with the only exceptions HY(N(—1))=H*(N(=5))=C. Moreover H}(End N(t))=0 for every t

with the only exceptions H'(End N)=H'(S*N)=H,,, H'(End N(—1))=H'(S’N(~1))=H. In

particular every small deformation of a nullcorrelation is again a nullcorrelation. The minimal

resolution of N is



0 0(-5)— HeU(—-4) -~ /\2H®O(—-3) - /\3H®0(-—2) - H,,2®0(—1) N0

Definition 1.8 A lambda-three bundle B is the bundle AN /O for some nullcorrelation bundle
N.

Vg—V .
We have B=E 3 ! (as N, also B depends on the choice of a nondegenerate skew-symmetric

matrix)

B is stable and orthogonal. By Bott theorem HO(B(t))=H(t_1)V +rg for t>1, the
intermediate Hi(B(t)) for 1<i<4 are zero with the only exceptions H2(B(—2))=H3(B(—4))=C.
Moreover S2N~AZB, and we have H!(End B(t))=0 for every t with the only exceptions
H(End B):HI(A2B)=H,,2, H(End B(—1))=H(A?B(—1))=H. From Beilinson theorem we get
the resolution

0-A%Q* L AZQ* 2B (1.1)
where { is defined by contraction with the same element of AZH defining N. Hence the moduli space of
lambda-three bundles B is naturally isomorphic to the moduli space of nullcorrelation bundles. As

/\4Q*=Q(—l) we have the

Alternative definition of lambda-three bundle, 1.9 A lambda-three bundle B is the cohomology

bundle of a monad
Q(=1) = A®H®O ~ Q*(1)
Every small deformation of a lambda-three bundle B is again a lambda-three bundle. The

minimal resolution of B is [DMS]
0 -0(—4) - HeO(-3) > HU2®O(—2) - H,,3®0(—-1) - B-0
Lemma 1.10 HY(B®A2Q*(t))=0 for t—1, H3(B® /\2Q*(—1))=HU3
HY(BS A2Q*(t))=0 for t20, HY(B®A?Q*)=H,,
Proof Straightforward computation from the minimal resolution of B.

Remark 1.11 The 14x14 matrix of the composition HV3®O(~—1) -+ B~B* - H,,3®0(1) has been

computed in [DMS]. In suitable coordinates a,b,c,d,e,f it is:



g d> bd d b2  be 2
qQq a? ae af e? ef 2
d2 2 —ef €2 q5 de df
bd 12 Lef laf  —ae ab —Icf Ibf de ldf
cd %ef —%e2 —af  lae ac  lce —%be lde df (1.9)
b2 2 —af a2 ab q3  bf
bc —ef laf  lac ——%32 lac  lab  ce —lad bf
c2 e  —ae a® ac ce qq
a? a, ab ac 2 —bc b2
ae de —jcf lce ab lac 12 Ipe led —bd
af  df  1bf —lbe lab  ac e —1b? —cd 1bd
e? de qs ce c? —cd d?
ef Jdf  ide  bf —lad ce —bc led Ilbd ~1a?
- 2 df bf q b% —bd d? —

where q; =ad +be+cf. q;=ad—be—cf, q3=-—ad+be—cf, q;=—ad—be+cf

2. The parent bundle

Definition 2.1 Let B be a lambda-three bundle. A parent bundle E is defined as the cohomology

of a monad
O(—-1)=B~ 0(1)

The display of the monad defines the two exact sequences
0-R-B-=0(1)->0
0-0(-1)»R-2E->0

The existence of a parent bundle is due to Horrocks and can be verified explicitly, as in [DMS],

in the following way.

The space HO(B(I))CH,,3®H0(O(2)) identifies naturally to the space generated by the rows
of (1.2). In particular the section o (resp. 7) given by the sum (resp. difference) of 3" and 9" rows

does not vanish anywhere and roo=0. Hence this pair of sections defines a monad whose cohomology

is a parent bundle.

It is easy to check that c;(E)=c3(E)=0, ¢,(E)=3 and that E is stable [DMS]. As in [Hor2]
one can split H=WSW™* and the symmetry group of E is SL(W)x|Z,, in particular E is SL(W)-
homogeneous. With the coordinates of remark 1.11 we have that a,b,c are coordinates of the subspace

W and d,ef are coordinates of the subspace W*.  Restricting representations of SL(W)X]Z, to
8



representations of SL(W) we obtain, in the Littlewood notation used by Horrocks in [Hor2):
[m]~[m)'~T*™™W for m>0 [p,—q) =TT W e TP TI%W* for p£q, p,q>0

Lemma 2.2
H2(E(—2))=H3(BE(—~4))=C
HY(E(-1)=H*(E(-5))=C
HYE)=H*(E(-6))=WoW*
HY(E(1))=H*E(-7)=T"'W=r?'Ww*=weWw*/C
All other intermediate H'(E(t)) for 1<i<4, t€Z are zero.
HY(EndE)=W@WeWeW*oW*@W*, H!(End E(—1))=WeW*, H1(End E(t))=0 for t<—2

Proof The statements about the cohomology of E follow from [Hor2] or [DMS]. The statements
about the cohomology of End E follow from the cohomology of End B computed in section 1 and from

the following four exact sequences of SL(W)-homogeneous bundles

0 = R®B(t) — End B(t) = B(t-+1) = 0 | (2.1)
0 - R{t—1) - B®R(t) » End R(t) =+ 0 (2.2)
0 -+ E*®R(t) » End R(t) » R(t+1) = 0 (2.3)
0 = E*(t—1) - E*®R(t) —» End E(t) - 0 (2.4)

with t <0, considering the following restrictions to SL(W) of Sp(6)-representations.

H=WoW*, H,,2=I‘2'1W65W€BW*, H,,3=C€BC@82W'6352W*

and the fact that h'(End E)=27 [DMS). Moreover we remark that given a parent bundle E; (that
determines By) H}(End Eg(—1)) is the tangent space at Ej of the moduli space of bundles E such that
E[P4 :E0|P4 on a fixed hyperplane P%. From the exact sequence

0-+B - B(1) - B(I)IP4 -0

one gets HO(B(l))zHO(B(1)|P4). Hence every B such that BlP4=B0|ﬂJ4 determines uniquely E such
that EIIP4 ~E, ]P 4 This explains that the natural morphism
Hl(End E(-1)) - H*(End B(—1))=W&W¥* is an isomorphism.

Remark 2.3 In [DMS] the following formula is proved

OHY(E(t)) = Clabeded
t (ad +be+cf,(a,b,c)<,(d,e,f))

(1).

The interpretation of this module structure in terms of SL(W)-representations is the following.

We have W=(abe), W*=(def), S=Clab,c,def]=@S(WoW*), HI(E(—1))=C=S,,
HY(E)=WeW*=S,. HYE(1))=T>'W is a quotient of Szl(W@W*). In the decomposition
SZ(VV@\V*)zsz\VC—:S2W*@C@I‘z’lw, the killing of S2W, SW*, C is given respectively by (a,b,c)z,
(d,e,t)z, ad+be+cf, where the last quadratic polynomial corresponds to the identity endomorphism of

9



W,

It is proved in [DMS] that a small deformation of a parent bundle is again a parent bundle and
the 27-dimensional moduli space My of the parent bundles has a natural fibration My - P14\V3
(corresponding to E +— B) whose fibers are isomorphic to IP13\V4 where V, is the hypersurface given
by the tangent variety to the isotropic grassmannian Grn([P2,[P5)CP13. Aut(Ps) acts transitively on

M,. We remark also that no parent bundle is sel{-dual, in particular hO(E®E)=0.
3. Weighted quotient bundles
Now we modify the constructions of the bundles defined in the previous section.

Let a </ be two nonnegative integers, we define
W:=0(x)00O(f)eO0(—a—0),
H:=Waow*. (3.1)

Definition 3.1 Let y>a+ 8. A weighted guotient bundle Qa B8,y is a bundle defined by an
1=
exact sequence:

02012 %=Q, 4,0

We often drop the indexes a,3,7 and we use 6 for Qa %

Lemma 3.2 (Bohnhorst-Spindler) A weighted quotient bundle Qa X is stable if and only if
1>5a+58
Proof [BoS]

Proposition 3.3 Let Qg B,y be a weighted quotient bundle. Every small deformation of

Qg,ﬂ“/ is again a weighted quotient bundle Qa,ﬁ,'y' Moreover the Kuranishi space of ng,ﬁ,'y 1s

0
a,8,v

smooth at the point corresponding to Q
Proof Let 5, 6' be two weighted quotient bundles. Every morphism from 6 to 6' lifts to a
morphism of sequences
0+0(=7)=> H%=Q-0
! Lol
0-0(—7) =+ %-Q >0
(by the vanishing of Hl(}l;(-—'y)) ). Moreover two elements f, f'e Hom(O(—1v),}6) give the same
element of Quot%/lps if and only if there exists g€ Aut(O(—7)) such thaif:f”og. Let 60:=Qg,ﬁ,7
be the cokernel of fy€Hom(O(~7),J). Let Y be the Kuranishi space of Qg and yo€Y be the point

corresponding to 60. Let x5€Quot be the point corresponding to 60 and let X be the irreducible

% /P°

component of Quot%ﬂ__>S containing x5. We have a natural morphisms of germs m:(X,xg) = (Y,¥0),
10



then dimonZdimxox—dimxow’l(yo). If Z={xeX: axzao} we get (w'l(yo),xo)C(Z,xo), hence
dimy Y >dimy X —dimy 7. We have dimx X =h°(3%(7))—1=h°(Qy(7)). We obtain the formula
dimXOZ:hO(End 36) —{dimension of endomorphisms of } which fix f,}—1.
The sequence
0-Q*®% - End % — 6(y) = 0 (3.2)

shows that the number in braces in the last formula is equal to h0(6*®3£).

It follows dimy Y >h%(36(7))—h%(End 3)+h%(Q* ® %) =h1(G* ® %)
where the last equality follows again from the sequence (3.2). Now the exact sequence
0 - 63(—7) - 63@% -+ End 60 -0
shows h1(6*®%)=h1(End 60), hence dimonZhI(End 60) and the equality holds because the right-
hand side is the dimension of the Zariski tangent space to Y at yg. In particular

dimyo\’zdimon——dimxovr'l(yo) and 7 is surjective between germs, q.e.d.

Now consider a bundle 6* given as kernel of a surjective morphism 3 £ O(7). f is given by
six homogeneous polvnomials fy, 15, f3, 14, {5, fg (of degree y—a, v—4, 7+a+ﬂ,b Y+o, v+5,
7—a—0) which define a map w:C®\0 - C®\0. Look at the diagram (0.1). On the domain of w
consider the multiplicative action of C* and on the codomain of w the action

ra’g‘jzc*xcﬁ\o ~ C8\0 given by

o, y=B ytet+B  vte  y+B y—a—f
20

’-a,,B,)(L‘Vl"“’VG) = (1 Vit v 3t Vgt V,t V) (3.3)

so that w is C*-equivariant. The quotient bundle Q is SL(H)-invariant, in particular 7*Q is
C*-invariant under the action of "o By It follows that w*p*Q is C*-invariant under the
multiplicative action and then it descends to a bundle 6 on [PS, that is

W *Qan*q.

We say that 6 is obtained pulling back Q over C6\0 (we refer to [Hor2] for more details). It is
easy to check that any weighted quotient bundle is obtained pulling back suitably over C6\0 the
quotient bundle Q. We get also w*n*(H®0)=n*% and if T is any representation of SL(H) then (with
obvious notations) F ¥ (T(H)®O0)=7*T(3). The functor n* gives an equivalence of categories
between bundles over P° and bundles over CO\0 endowed with the multiplicative C*-action. Hence the
minimal resolution of 6* can be obtained pulling back over C6\0 the minimal resolution of Q and
indeed it is

0= O(=57) = A°36(—47) =+ A*J6(=37) » A3T6(=29) = AZH(—7) = O = 0 (3.4)

When the six homogeneous have the same degree (this happens if and only if a=8=0) then w
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induces a finite morphism w':P> - P® and 6 is the pullback of Q under w'. When w is a Galois
covering (e.g. w given by six monomials which are powers of the six indeterminates) then 6 is
invariant under the action of the finite group
Zy_oxZ 7_ﬁxZ 7+a+ﬂxl .H_axZ 7+ﬁxZ y—a—p and then it descends to the S)rresponding
weighted projective space P(y—«a, y—08, y+a+8, v+a, v+8, y—a—p). In this case Q is obtained
as a pullback 7*Q’ where 7:P° — Ply—a, vy—08, y+a+8, y+a, v+ 6, y—a—p).

We recall that the cohomology group Hi(CG\O, 77Q) is isomorphic to its local cohomology
<) Hi(Ps,Q(t)) [Hor1]. In particular
te’Z

& H(P®,Q(t) ~ @ H(P5,Q(t))® Cla,b,c,d,ef] =~
teZ ( Q( )) teZ ( Q( )) C[flyf21f31f4)f5’f6] [ ﬂ

~ @ Hi(lPS,Q(t.)) C[a,b,c,d,e,f]

Y L L (3.5)
te Z C (flifz 1f37f4 ,f55f6)

In these isomorphisms the graded summands correspond if we consider tGB Hi(Ps,Q(t)) as
Clfy.f5.f3.f4,f5,fg}-module and then perform the graded tensor product over C. We recall that if S is a
graded ring, the degree t summand of the graded tensor product between two S-modules &A, and

.ot
©B, 15J.SO(AJ®Bt-j)'

The formula (3.5) holds with End Q in the place of Q. In general if G is a bundle obtained
pulling back over C®\0 a bundle G then the formula (3.5) holds with G in the place of Q. The 2"

proof of prop. 3.7, where we consider cohomology groups as SL(H)-representations, should clarify this

formula. First we need

Lemma 3.4 Let (fy,f,,3,f4,15,fg) be homogeneous polynomials defining a surjective morphism

¥ — O(y) (this happens if and only if they have no common zeroes). Then the dimension of the degree
Cla,b,c,dse,f] . ual to
(012 65 T T ls) e
> (=) N'H@O(E~jy)].
=0
In particular it is nonzero only if and only if 0<t<6y—6.

t summand of the artinian algebra

Proof Immediate from the twisted Koszul complex of the map % — O(v)
0= O(t—67) - H(t—57) = A2H(t—47) » ASH(t—37) = A2W(t—27) —
= H(t—7) = O(t) =0
and the fact that the needed degree t summand is isomorphic to the cokernel of the map
HO[3(t—7)] = HO[O(x)).

Remark 3.5 The dimension computed in the previous lemma is equal to hl(a*(t——y)), in fact
12



PH@ W)= il (7). Note als h°<6*<m>>=i2<—l)jh°{A"%®0(t+(1—j)v)]
J=

(f1uf0,05,04.85,f6
Example 3.6 In the case a=0, $=1, v=2 the dimension of degree t
Cla,b,c,d,e,f]
(a%,b,c®,d%,e3,1)

Proposition 3.7
hl(End Qup4) = hO(36(7)) =h® (% ©36) +h%(A?H @ 36(— 7)) —hO(A3 T @ T6(—27)) (3.6)

(By prop. 3.3 this number is the dimension of the Kuranishi space of Qoz 8 ~ , observe that this formula

summands of for t=0,...,6 are 1,4,8,10,8,4,1.

depends only on «,f,7)

1%t proof We use 6 for Qa,ﬁ,'r' From the proof of 3.3 it follows
h!(End 6)=h1(5*®3{a). Tensoring (3.4) by 36 we obtain the exact sequence
0~ H(=57) » APKHOK(—47) » A*H®@I(—37) -
- APHOH(—27) = A2HRT(—7) = Q* %6 — 0.
From  this  we get  h%Q*®%)=h(A2%@%H(—7))—ho(A3H®I(—27))  because
hO(A23€®I}G(—37)):0 due to y>a+f. From (3.2) it follows
h%(Q* ®%)—h}(Q* ©36)=h(%®36) —h°(36(7)), hence the result.

2" proof We computed in section 1 @ HY(End Q(t))=H at degree —1. As O(—1)=det Q*
and det@*:O(——’;’) it follows that vez
té“;ZHl(End Q(t)) as C[fy,15.f5,f,,f5,fg]-module has graded summands of dimension 1 exactly in the
degrees —y—a, —9—38, —v+0+8, —7+a, —7+f8, —y—a—p (with possible overlappings!). In
fact the degrees of the generators a,b,...,f become y—a, y— 3, Yy+a+8, v+a, vy+8, y—a—pL. Then
fo[—;.% (see (3.5) ) the contribution to H*(End 6) is equal

to the direct sum of the summands of

Cla.b.c.d,e,
——[a—iﬂ— of degree resp. +7+a, +7+06, +1—a—fF, +7—a, +7—8, +1+a+f
(1o Ty 1g i 1g)

in the graded tensor product with

6 - .
that is by lemma 3.4 to 3 (—-I)Jho{/\J[JG(—'y)]@Jﬁ('y)] which is the thesis because the
=
summands with j>4 are zero. ’

Corollary 3.8 (Bohnhorst-Spindler) If ¥>5a+53 then the bundles 6 fill up a smooth open
irreductble subset of dimension ho(f}G('y))—ho(JG@JG) of the moduli space of stable bundles with the

same rank and Chern classes.

Corollary 3.9 h°(End Q, 3 7)=h0(/\23{a®f}£(—7))—h0(/\3}€z®3{3(—27))+1. In particular
Qa,ﬁ,7 is stmple if and only if v>2a+38.

Proof From the exact sequence
0-End Q — Qo¥ » Q(7) » 0
it follows h%(End Q)—h'(End Q) = h°(Qe@¥)-hQ(1)) = hO(H®¥)—h°(¥(v))+1. Then use
13



(3.6). For the last assertion observe that 110(/\23(:®3{:(—7))=0 if and only if v>2a 438 and when it
is nonzero it is always bigger than h®(A2X®36(—27)).

Remark 3.10 The assertion about the simplicity of 6 can be verified also from the formula
0 _qt t . . . 0 ~y .
H"(End Q(t)) = S HeaH(t‘l)/‘l‘*'/b"’l‘s for t>1. Indeed S'H ngcfs no contribution to h”(End Q) in
the gradii tensor product (3.5) with End Q in the place of Q, while H(t’"l)ﬂ1+”2+/‘5
ho(End Q) only if ty<(t+1)a+(t+2)3. Indeed the maximum degree in the corresponding Young

contributes to

diagram t+1,2,1,1,1 is given by (t=4 in the picture)

a+fBlatB p+f p+B 48
B B

o

—a

-8B

and the sum is (t+1)a+(t+2)8 (we used (0.2)). Note that y>2a+38 implies ty>(t+1a+(t+2)8
Vi>1.

Remark 3.11 In general one can define W=0(a)®0(8)®0(—46) with 0<a<f<é and 6
from
0—05—0‘W€B‘W*—>0(7)—00
By [BoS] 6 is stable if and only if v>54. Prop. 3.3, prop. 3.7 and cor. 3.9 hold also in this case, while
6 turns out to be simple if and only if 7>26+ 5. We can study in this way even more general bundles

with J6= 66910(35), but this brings us far from the subject of this paper.
=
4. Weighted nulicorrelation bundles

Definition 4.1 Let y>a+8. A weighted nullcorrelation bundle Na,ﬁ,'y is defined as the
cohomology of a monad
O(=7) = 3 - O(v)
(3 is defined in (3.1) ).
Na,ﬁ,-y fits into an exact sequence
0 0(=7) = Q

where Q, 8,7 is a weighted quotient bundle.
Wy

*
a8y " Na,gy =0

We often drop the indexes a,,y and we use N for N

a,B,v

Weighted nullcorrelation bundles were studied by Ein [Ein] on P3 by different techniques. Our

approach can easily be extended to p2ntl

Lemma 4.2 Every weighted nullcorrelation bundle is symplectic

14



Proof Let N be the cohomology of the monad O(—17) Po % 3 O(7). We have to prove that there exists
a symplectic automorphism t:36 — 36 such that b=toa' (that is the monad is self-dual). We have the
exact sequence
0~ Q¥(7) = %(v) 2 o(27) = 0
where Ho(p):Hom(O(—-y),f}{a) ~ Hom(O(—7),0(7)) is the composition with a, that is H(p)(s)=aos.
Then the space of b':0(—7v) — 3 such that acb=0 identifies with Ho(a*('y)). Moreover we have the
resolution
0 O(—47) = 3(=37) = A2H(=27) » A3H(—7) » A2% 3 T¥(1) = 0

where Ho(q)(t)ztoat. From the resolution it follows that Ho(q) is surjective. It remains to check that
Ho(q)'l{injective bundle morphisms in Hom(O(—g),a*)} is equal to the set of symplectic
automorphisms. If t is invertible then toa' _is” injective. Conversely let us suppose that
VxEPst(x)oat(x)¢0. If t is not invertible then there exists a vector ¢ with entries homogeneous
polynomials such that t(x)ct(x)=0 VYxeP® (det t is a constant). There exists a point x, where a(xg)

and c(xq) are proportional, hence we get the desired contradiction.
Corollary 4.3 The minimal resolution of a weighted nullcorrelation bundle N is
0~ O(=47) = %(=37) » A?H(=27) = A3H(—7) = 3, » N =0

Proof If 1:0 - AZ% is any symplectic automorphism of 3 that corresponds to N as in the
above proof, then there exists s:A2% — O such that sot=id. It follows Coker t:f}GV2 and the

statement follows from (3.4).
Our main result about N is the following

Theorem 4.4 Let Ng 8, be a weighted nullcorrelation bundle coming as pullback over CG\O.
WM
Every small deformation of Ng{ B, is again a nullcorrelation bundle N, B,y Moreover the Kuranishi
1 k) 3 ’
space of deformations of Ng,ﬁ,-y is smooth at N?&,B,'y'
Proof First we remark that as in the proof of prop. 3.3 every morphism between two weighted
nullcorrelation bundles N, N’ is induced by a morphism of sequences

020(=7)»Q*+N=0

l tod
0~ 0(=7) = Q" =N 0
because of the vanishing of HY(Q(—7)). We use NO for N° and we denote 60 the weighted

o, B,y
quotient corresponding to Ny. Let Y be the Kuranishi space of Qo and let T be the Kuranishi space of

Ng with ty€T being the point corresponding to No- Let F be the universal family over YxP>. We set
Zz:Quon‘J/YxPS/Y ~and we denote by ¢:Z — Y the natural projection. Let 2g€Z be the point
corresponding to Ny We have a morphism of germs 7:(Z,29) = (T,tg), hence

-
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dimtoTzdimZOZ—dimzow'l(to). Every N arises from a unique Q, in fact because of Hl(N(—'y))zc
the corresponding Q can be constructed as the unique nonsplitting extension § + O(—v) =27 =+ N = 0.

It follows that we have (#~ (to) 20)C(¢° (yo),zo) Quota /pS’ zg)- Let fj EHom(O(—-y),ao) be the

~

*
0
morphism defining N We set P= {xEQuot~ Ny No}, hence (w'l(to),zo)C(P,zo) and we get

5/P5
. . . 0
dlmtoTZd’mZoZ—d‘mZoP' We have

dimzoP=h°(End 60)—{dimension of endomorphisms of 60 that fix fg}—1. Considering the exact
sequence

0—06*®N—»End6—06(7)—'0

we get that the term in braces in the last formula is equal to h°(6*®ﬁ). The fibers of ¢ are

isomorphic to a component of Quota */IPS containing a weighted nullcorrelation bundle and they have

. . 0
all the same dimension equal to

INCHENE

Hence dim, Z=dimy Y+h®(Q§(7))=1 =(by prop. 3.3) h'(End Qp)+h%(Q3(7))—1. It follows
dlmt T>h0( Q*(7))—h°(End 6)+h0(6*®ﬁ)+hl(End 6) Now consider the exact sequence

O—ON®’QV* —0End6 6*(7)—»0 (4.1)
From the cohomology sequence associated to (4.1) it follows that dlmt T> hY(N ®Q* ) because the
morphism H*[End Q] - H! [Q (7)] is zero. In order to prove this last c]alm consider that the natural
morphism @&H*[End Q( (t)] » ®H[Q*(t)] (that shifts one degree) is obviously zero and the morphism
we are considering is obtained by tensoring this one. Now we consider the cohomology sequence
associated to the sequence

O—ON(—-’y) -+ Q*®N < End N =0
The map H%End N) - HI(N(——'y)):C is  surjective and hz(ﬁ(—‘y)):ﬂ, hence
h1(6*®’ﬁ)=hl(End ?0) Then dimtoT=h1(End NO) and 7 is surjective, concluding the proof.

Consider the nullcorrelation bundle N on P® which is invariant by the action of the symplectic

group Sp(6)={A€SL(6)|AJA'=J) where _

1
1
1
I= —1
—1
-1
The map
(e 7
P
(o +h
t — o
t
Y
£
L 16 .




gives an embedding of C* in Sp(6), hence n*N is C*-invariant under the action of T8,y (see (3.3) ).
It follows also in this case, with the notations of (0.1), that there exists a weighted nullcorrelation
Na,ﬂ,'y such that

* kN ok
v 7’ N_T] Na’ﬂ’—y‘

Differently from the case of weighted quotient bundles, a general weighted nullcorrelation
bundle N, B, does not come pulling back over C6\0 from @ diagram as in (0.1). Indeed consider the
piece of the Koszul complex

AZH(=7) 5 %~ O(v) =+ 0

where in a convenient basis the morphism g is represented by the 15x6 matrix

—f; f;
 E T 1
—i, f,
—fs fy
—fe fy
—f3 f;
—f,
—fs fy
—Te ‘1, f5
—fs 13
—fs f3
—f 1,
—f, 1
—fg 15

The space of section of 6*(7) can be interpreted as the space of linear combinations of the
rows of the previous matrix, the coefficients being homogeneous polynomials of degree resp. a+ 8, — B,
0, 0—8, 2048, o, —a+p, 0, a+28, —20—08, —a—28,0, —a—p, B, « (of course any coefficient is
zero when the corresponding degree is negative). When a=8=0 we have the case of pullback over P®,
all these coefficients are constants and every Nisa pullback of a classical nullcorrelation bundle. On

the contrary, when 0<a< g only bundles given by linear combinations with nonzero coefficients of
17



rows number 3, 8 and 12 come as pullback over CG\O.

Exactly in the same way of 3.7 and 3.9 one can compute the cohomology groups of N coming

as pullback over CG\O. The results are the following

Proposition 4.5 Let N be a weighted nullcorrelation bundle coming as pullback over CG\O. The
following hold
h2(N(t))=h3(N(t))=0 VteZ
W) =R N (—1-0) =2 (1WA K0 +(1-5)7)]
i=

RO (1)) = iQ(—1>J'h°[A"3e®0(t+<1—j)v)]—h°(0(t—v»]
j=
~ 6 . .
h!(End N) = .ZO(—1)’110[/‘\](3{7(—7))®(3{’(7)@:}Gu2)] =
= ‘

=h%(36(7)) —h°(S?%) —h(A3H ®36(~27)) +hO(A2H & AZ36(—27)) ~hO(A3H ® A236(—37)) ~ 1=
=h°(3g(7))—h°(323e)+h°(0(4a+2ﬂ—27))+h°(0(2a+4ﬁ—27))+2h°(0(3a+ﬂ—27))+
2h°(0(o-+3ﬂ—27))+2h°(0(3a+26—‘2'y))+2h°(0(2a+3ﬁ——27))-—h°(0(4a+3ﬂ—3-y))—
h%(O(3a+48~37))—h®(O(4a+B—37))~h®(O(a+46—37))

h%(End N) =

1+h%(A3%(— 7)) —hO(ASH@T6(—27)) +h°(A2K® A23(~27)) —hO(A3H ® A23(—37))

Remark 4.6 In particular a bundle N coming as pullback is simple if and only if v>2a+28

(see theorem 4.8 for a more general statement)
In order to study the stébility of N we need the following

Lemma 4.7 Let F be a symplectic rank 4 bundle on P® such that he(F)=0, h°(A2F)=1. Then

F is stable.

Proof The hypothesis hO(F)=0 implies the nonexistence of destabilizing subsheaves of rank 1
or 3. We have A2F=0&F' with WO (Fhy=0. If § is a destabilizing torsion-free subsheaf of F of rank 2
we can suppose c4(§) =0, hence 0= /‘\2@**C A2F gives the only section of A%F. On an open subset the
fiber Gy is a subspace of Fy of constant dimension 2. If Gx is spanned by v, and v,, then Azﬁx is
spanned by v, Av, in /\2Fx, in particular it corresponds to a 2-vector of rank 2, while the only section

of A®F has rank 6 everywhere. This is the desired contradiction.

Theorem 4.8 Let N be a weighted nullcorrelation bundle. The following are equivalent
1) v>2a+28

ii) N is stable

18



i) N is simple
Proof i)=>ii) If v>2a +28 then h°(Q*)=0 from (3.4), hence h®(N)=0. Consider the exact sequence
0- N(-—'y) - A2Q* =+ AN =0
From the resolution
00— O(—4y) -~ /\SZ}G(-—37) -+ AV (=27) = A33G(—7) -+ A2Q* =0
we have ho(/\za*):hl(/\"’a*)zﬂ, hence ho(A2N)=h1(N(~7))=1 and the thesis follows from
lemma 4.7.
ii)=iii) is well known
iii) = i) If v<2a+2p4 then hO(I\BI}G(—y));éO, then hO(A26*)¢0 from the above resolution of A2Q*.
In particular we get hO(AQN)#O, then N is not simple.

Corollary 4.9 If v>2a+28 the weighted nullcorrelation bundles fill up an open reduced
irreducible subset of dimension ho(f}{a('y))—ho(SQJ{;)—l of the moduli space of stable bundles with the

same rank and Chern classes. Bundles coming as pullback over C6\0 are smooth points.

Remark 4.10 The proof of corollary 4.9 translates with slights modifications to P3 giving
another proof of theorem 3.1 b of [Ein]

Remark 4.11 As in remark 3.11 one can define in the obvious way N 5 In this case the

a,8,7,
necessary and sufficient condition for the stability and semplicity of Na 8,76 is y>a+p+6.

5. Weighted lambda-three bundles

Let Na B,y be a weighted nullcorrelation bundle appearing in the sequence
*
0= 0= ~Q 5,y 2 Nag,y =0
The second exterior power of this sequence gives

2n* 2
0Ny g =7 = A Qo8 = A Ng, g,y 0

. C . 2 - .
Lemma 4.2 provides a splitting A Na,ﬂ,-y— Ba,ﬁ,,yGBO. The bundle Ba,ﬂ,‘y is orthogonal
and it is easy to check that it fits into an exact sequence
4% 2%
0= 1 Q0 gy = A" Qg9 ™ Baygy = 0 (5.1
Let wGHom(O(—7),A2}G(—7))=H°(/\23G) be a lifting as in the following diagram

w /\235(—7)
2
s i
Z *
0~ O(=7) Qg ™ Napy = 0

where the vertical arrow comes from (3.4). The morphism w defines naturally w': ¥(—7) - /\336(-7)

and one can check that the following diagram is commutative
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0 O(=2y) - ¥H(—v) - A*Q* ~0

a,B8,y
lw v !
0= O(~47) = H(=37) - AZK( =27) » ASK( —7)» A%Q & 5 ~0
Ba,ﬂ,‘r

The proof of lemma 4.2 shows that w corresponds to a symplectic automorphism of J6, hence Coker

w:f}ﬁuz(—27), Coker “":JGV3(—7), and the minimal resolution of Ba,ﬂ,’y is

0= O(=47) =~ H(=37) = H,(=27) = Foyy(~7) + B, 5 =0 (5.2)
From the natural isomorphism A4QZ,ﬂ,7:Qa,ﬁ,7(_7)’ it is easy'to check that Ba,ﬂ,‘y is the

cohomology of a monad
2 *
Q4= 1) = A2 = Q5 *(7) (5.3)

Definition 5.1 A weighted lambda-three bundle Ba By is the cohomology of a monad (5.3)
where QQ 8,y is a weighted quotient bundle.

We often use B for Ba,ﬂ,‘y'

Note that the dual of a lambda-three bundle is again a lambda-three bundle.

Remark 5.2 As a particular case we have the weighted lambda-three bundles obtained pulling
back over C®\0 a lambda-three bundle B. If the morphism w: C®\0 — C®\0 as in (0.1) is given by
f,....fg then the composition I}{;U3(—-7) - Ba,ﬁ,yzBa,ﬁ,'y* - 3{;,,3(7) is described by the 14x14
matrix (1.2) where we replace f; by a, f, by b and so on. Let us call M this new matrix. The sections
of Ho(Ba,B,y("')) can be interpreted as the space of linear combination of the rows of M with
coefficients homogeneous polynomials of degree —2aq, 20, 0, a+ 8, —B, 20+28, a, —28, 0, —a—4,

B, —2¢—-28, —a, 23.

Lemma 5.3 Two isomorphic lambda-three bundles are defined by the same weighted quotient

~

Q.

Proof In the case B= ATN/O then the statement is obvious from the minimal resolution (5.2) because
6(—37) is the first cokernel on the left. In the general case the minimal resolution could be a priori
different. Putting together the resolutions of /\46* and /\26* one gets the resolution

0 ~0(—47) 2H(=37)®0(—27) = A2H(~27) @I(—7) +A3H(—7) =B —~0 (5.4)

Because HI(B((*))zO the corresponding sequence of Cla,...,f]-modules is exact. In particular

the piece O(—4y) > ¥(—37) does not contain any summands that cancel in the minimal resolution.
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Hence 6(—37)=Coker k is defined directly from the minimal resolution of B.

0
o8,y
is again a weighted quotient bundle. Moreover the map

Lemma 5.4 Let Qg B,y be a weighted quotient bundle. Any small deformation of A%Q

2
has the form A Qa,ﬁ,-y where Qa,ﬂ,‘r
Q —A%Q induces an isomorphism between the germs of the corresponding Kuranishi
o8,y a,B,y

spaces.

Proof We remark that lemma 1.1 combined with (3.5) (replacing Q by /\ZQ) implies that
H'(End /\26) ~ H(End 6) for any weighted quotient Q. Now it is sufficient to verify that if
/\26': /\26” then 5’: 6” and this follows from the fact that in the minimal resolution of Aza

0 - 0(=27) = H(—7) » A%K > A2Q -0

the first cokernel on the left is 6(—7).

As in the case of weighted nullcorrelation N, not all weighted lambda-three B come as pullback
from C€®\0. From the fact that HY(End N(*))~H(End B(x)) (see section 1) it follows that if N comes
as pullback over C®\0 then also ﬁ:Azﬁ/O comes as pullback over C®\0 and
Hl(End §)=H1(End N), already computed in prop. 4.5.

Lemma 5.5 Let Q be a weighted quotient bundle. Then Hl(/\26®/\46*)=0
Proof From lemma 1.2.

Theorem 5.6 Let Bg,ﬂ,y be a lambda-three bundle coming as pullback over C8\0. Every small
deformation of B is again a lambda-three bundle B . Moreover the Kuranishi space of
o . a,B,g o, B,y
Ba,ﬁ,‘)‘ 1s smooth at Ba,ﬂ,'y‘
Proof From lemmas 5.3 and 5.5 it follows that every isomorphism between two lambda-three bundies
ﬁ, B’ is induced by a morphism of sequences
0 A%Q* =+ A20* =B =0
l Lo
0- /\46* - /\26* +B'>0
We use ﬁo for Bg, B.v and we denote 60 the weighted quotient corresponding to go uniquely defined
by lemma 5.3. Let now foeHom(/\46(’;,/\268) be a morphism defining §0' f,f'eHom(/\463,A263)
give the same element of Quot ony o5 if and only if there is an invertible hGEnd(/\460) such that
f=f'oh. Let (Y,yg) be the Kuraﬁis%?sgace of Azao and let (T,ty) be the Kuranishi space of 'I;o. Let &

be the universal family over YxP> and let Z=Quot

¢:Z -+ Y and Ti(Z,29) — (T,tg).

. We have two natural morphisms
F/YxPS/Y P
Let Z' be the subvariety of the component of Z containing z, consisting of quotients
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1
A2QI!* g, G for some weighted quotient Q' (we are using lemma 5.4) such that Ker g~ A%Q!*.

Hence we have dimLOT}_dimzoZ——dimzow_l(to)Zdimzozl—dimzor'l(to). Moreover from lemma 5.3
we get

(71 (10):20) C(¢7}(¥o) 20) =(Quot. s,

~

). If Pr={x€Quot : By~ 0} we check

’Z ~
Qe A2Q5/P¥

(w'l(to),zo)C(P,zo). We have dimZOP=h0(EndAzao)—{dimension of endomorphisms of /\260 that
fix fo}—hO(End /\460). The exact sequence
0 - Bo®A2Q} » End A2Q, ~ A*Qu@A2QE 0 (5.5)
shows that the term in braces of the last formula is equal to h°(§o®/\263). Now consider that all the
fibers of dJIZ,:Z' — Y have the same dimension ho(/\460®Azaé)—ho(End/\“ao), (depending only on
@,6,7). By lemmas 5.4 and 3.3 dimy Y=h'(End Qo)=h'(End A*Qg)=h*(End A%Q,), hence
dim Z'=h°(A*Qe® A2Q%) —h°(End A% Q) +h (End A*Q,). It follows '
dimtoTZdimzoZ'—dimz o that is
dimy T> hO(A*Go® A2Q%) ~hO(End A2Q0)+h0(Bo® A2Q%) +h1(End AZG,). (5.6)
We claim that the image of the morphism H*? (End Aon) - HI(A4Q0®/\2Q0) defined by
the sequence (5.5) has dimension Z ho[/\ H@I((1—j)7)]. In fact from the hypothesis the morphism
End /\2Q0 - /\4(:20(;)/\2Q0 comés%s pullback over C°® \0 from a morphism B®/\2Q* —+ End /\2Q
and it can be computed by a graded tensor product. Hl(/\4Q®A2Q*(t)) is zero for t# —1 and it is
isomorphic to /\3H=H€BHU3 for t=—1 (lemma 1.3). We have also H!(End A2Q(—1)=H (lemma
1.1), and we check from lemma 1.10 and the cohomology sequence associated to (5.5) that the
morphism @H(End A2Q(t)) — ®H1(A4Q®/\2Q*(t)) is an isomorphism on the subspace H just

considered in degree —1 and this proves our claim. Then from (5.6) and the cohomology sequence
associated to (5.5) it follows:

dim T > h 1Boo n2QY)+ zj hO[AY36 ®36((1 —)7)]

We recall also from sectloﬁ' 1 that H(End B(t))=0 for t#—1,0 and from lemma 1.10 that
HY(BS A2Q*(t))=0 for t£0, H (B®/\2Q*)—H,,2 = HY(End B). Hence, as H;(End B(—1))=H gives
a contribution to H'(End B o) in the graded tensor product exactly equal to E ho[/\JJ-G®J€((1-J)7))
we get d1mt T>h? (End BO) thus the equality holds and = is surjective, q.e. d

Lemma 5.7 Let B be a weighted lambda-three bundle. Then Ho(ﬁ) is zero if and only if
T>2a+23.
Proof From (5.4) we get HO(’B‘) = Ho(}f:y3(—-'y)).

Lemma 5.8 Let B be any weighted lambda-three bundle. If v>2a+28 then h%(S2B)=1.

Proof Taking the second symmetric power from (5.1) we get
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0 A2(A%Q*) - A*Q* @ A20* - S2(A2Q*) =+ S2B = 0 (5.7)

We have Sz(/\za*):l‘z’z'za(—‘27)@6(—7). From lemma 1.4 we have Hl(l‘2'2'2Q(*)) =
HI(Q(*)) = 0 and HO(F2'2-2Q(L—2)) = H(t-2)p1+2p3 for t>2. The mz;x;rrzulm degree appearing in
H(t N, +2u is (t4+2)a+(t+2)8 hence if y>2a+28 we have HO(F “Q(—2%))=0. Moreover

Pt W] ~ ~

H%(Q(—7))=0. Summarizing we get for v>2a+24 that HO(S2(A%Q*)) = HY(S?(A2Q*)) = 0. From
the isomorphism /\2(/\46*)=/\36*(—7) it follows Hl(Az(/\l‘a*))=H2(/\2(/\46*))=0. From these
vanishings and the sequence (5.7) we get H%(S?B)=HY(A*Q*®A2Q*). The thesis is now a

consequence of the equality /\46*@)/\26*:1"2'1'16(—27)6)6*(—7) and lemma 1.4.

Proposition 5.9 Let B a weighted lambda-three bundle. If 4>2a+28 then
hO(A?B)=h%(A3B)=0
Proof Taking the third exterior power from (5.1) we get
0 -8 (A4Q%) »S2(ATH) @ A 20" 2 AT @ AZ(A20*) +A3(A20*) »A3E =0 (5.8)

Using Littlewood-Richardson rule for (/\26"‘)(8>3 and checking the dimension of the summands

we find that A3(A2Q*)=T??Q(—27)eT>%22(=39). If y>a+28 it follows from lemma 1.5 that

HO(A3(A2G*))=0. (5.9)
Consider now the decomposition /\46*®/\2(/\25*) =
r3'2'1'1'c§(—37)@r2'2'2'16(—37)@/\26(—27). Again from lemma 1.5 we have for y>2a428
HY(AQ*© A2(A2Q%)) =0. (5.10)

Going on. we look at the decomposition Sz(A46*)®/\26*=F3'1'16(——37)®I‘2'1'1'16(—37).

From lemma 1.5 we have as above

H2(S?(A*Q*) @ A2Q*)=0 (5.11)

Moreover H3(S3Q(t)):0 Vt€Z, thus
H3(S3(A%Q*))=0 (5.12)

From (5.9), (5.10), (5.11), (5.12) and the cohomology sequence associated to (5.8) it:follows that
hO(A3B)=0 for v>2a +23.
On the other hand AZ?B=A3%B* hence ho(/\z'ﬁ):O for v>2a+28 because B* too is a weighted
lambda-three bundle. This concludes the proof.

Theorem 5.10 Let B a weighted lambda-three bundle. The following are equivalent
i) v>2+2p
i) B is stable
iii) Bis simple
Proof i)=ii) If v>2a+28, then h°(§)=llo(A4§)=0 from lemma 5.7 and hO(A2§)=h°(A3§)=0
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from prop. 5.8. If 9CB is a proper subsheal of rank { with torsion-free quotient, we get
(ATF)*CATB, hence ¢1(%)<0 and B is stable.

il) =>1iii) is well known

ii)=1i) If y<20+28 then from lemma 5.7 we have h0(§)¢0, ho(ﬁ*);éO, then we can construct a
section of B®B* = End B which is not a homothety.

Proposition 5.11 Let B a lambda-three bundle. If y>2a+28 then B is orthogonal, in
particular B ~B*,
Proof In the hypothesis B is stable by theorem 5.10. By lemma 5.8 there exists a nonzero symmetric

morphism ¢:B - B*, that has to be a isomorphism because both 'ﬁ, B* are stable.

We do not know if for y<2a+28 any lambda-three bundle is orthogonal. This is true in the

case of bundles coming as pullback over CG\O.

Corollary 5.12 If y>2a+28 then the bundles B fill up a open reduced irreducible subset of
dimension ho(%(7))—110(823{;)—-1 of the moduli space of stable bundles with the same rank and Chern

classes. Bundles coming as pullback over C6\0 are smooth points.
Proof From theorem 5.6 and theorem 5.10.

Proposition 5.13 Let B be a weighted lambda-three bundle coming as pullback over CE’\O.
Then

H®(End B)—1+h°(:}sy3®3{,y( 27))—2h° (Fou, @, (—37))

Proof Tensoring by B* the minimal resolution of B,

Proposition 5.14 Let 6 be a weighted quotient bundle. /\26 is simple if and only if v>3a+48
Proof Starting from the sequence
0 -+ A2Q(~27) » A2Q*®@H(—7) » A23*® A2H — End A20* = 0
one computes
h°(End A2Q*) = 1+h°(/\31}£®/\ZJG(—'y))—hO(/\QJﬁQb/\2%(——27))—}10(/\33{569313(—27))
Now consider that A33€®A23}G=Gi90(ai) with miax{ai}=3a+4,8

Theorem 5.15 When v>3a+48 then the morphism No—»/\zﬁ/O from the moduli space of

weighted nullcorrelation bundles into the moduli space of weighted lambda-three bundles is bijective.

Proof We have Hom(O(—7'),6*)=A45, Hom(/\46*,/\26*)=/\46®/\26*. Looking at
lemma 1.3 and considering the corresponding Young diagrams, one can check that the maximum
P is (t+1)a+(t+2)8, in H(t 1) 2}‘*‘/‘ ptiis is (t+2)ar+(t+3)8 and in
H'-/il'f‘ll is (t+l)a+(t+'))ﬁ Hence if v>3a+48 both h A7Q) and ho(/\4Q®/\2Q ) are equal to

E( I)Jho{/\ ¥(- 7)®A23£] (only the summands with t=0 give contribution). We have then a
24
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natural isomorphism

Hom(O(—7),Q*) » Hom(A%Q* A2Q%) corresponding to N—A2N/0O. By corollary 3.9 and prop.
5.14 with our assumptions both 6* and A2Q* are simple, hence weighted nullcorrelation bundles
(resp. weighted lambda-three bundles) defined by the weighted quotient bundle 6 (see lemma 5.3)
correspond to a unique element of Hom(O(—'y),,a*) (resp. Hom(/\46*,/\26*) ), q.e.d.

6. The relation bundles

Now we construct the 3-bundles which are the main subject of this paper. We saw in the
remark 5.2 that if Bo:,ﬂ,—y is a weighted lambda-three bundle coming as pullback over C6\0 then
HO(BO,‘ﬂ,.y('Y)) can be interpreted as the space of linear combinations of the rows of the matrix M
defined there with coefficients being homogeneous polynomials of degree —2a, 2a, 0, a+ 8, =0,
20428, o, —28, 0, —a—f, 8, —2a—28, —a, 28. Let o, reHO(Ba,m(y)) be given by the
coefficients (0,0,1,0,0.0,0,0,1,0,0,0,0,0) and (0,0,1,0,0,0,0,0,—1,0,0,0,0,0). Then by the explicit form of
the matrix M, o and 7 do not vanish anywhere (because f}, ...fg have no common zeroes). Moreover
ator:(0,0,1,0,0,0,0,0,1,0,0,0,0,0)M(0,0,1,0,0,0,0,0,—1,0,0,0,0,0)t=0 because the matrix M is
symmetric. Hence the cohomology of the monad

O(=7) 3B, 5., % 0()
is a 3-bundle Ea,ﬁ,7' The action (3.3) of 70,8, gives an embedding of C* in SL(W) and as in the
discussion after (3.3) it is clear that n*Ea’ﬂ,y:w*n*E, that is Ea,ﬁ,-y comes as pullback over C®\0
from a parent bundle. We remark that n*W =w*n*(W®O). This construction was performed by
Horrocks in [Hor2]. In the notations of the last section of [Hor2] we have m; =a, my=f, mg=—a—p,

r=-vy.

Definition 6.1 A relation (=weighted parent) bundle Ea By is the cohomology of a monad
"Wy

O(=2) =B, 5 ~O(1)
where B, 8,y is a weighted lambda-three bundle.

Sometimes we use E for Ea,ﬁ,-y' It follows from the definition that the dual of a relation
bundle is again a relation bundle. Let B be a weighted lambda-three bundle coming as pullback over
CG\O. for 0<a< B only the relation bundles defined by sections of Ba,ﬂ,7(7) which are suitable linear
combination of o, v above come as pullback over CG\O. This family fibers over the family of
corresponding weighted lambda-three bundles coming as pullback over CG\O, with 1-dimensional fibers

(see the discussion after theorem 4.4).

This construction explains why we restricted the definitions of 6, N, B to the case
W=0(a)®0(B)®0(—a—p). In the general case where W=0(a)®0(B)®0(—46), suppose that
Na,ﬂ,-)'.é is the cohomology - bundle of a monad O(—7) - ¥ - O(7y) (see remark 4.11),
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Ba,ﬂ,-y,& = AzNa,ﬁ,-y,(S/o and € is the cohomology sheaf of a monad

O(=1) =B, 546 01
then c4(8)=(a+pB+6)(a—pB—6)(a—pB+6)(a+B—6) so that c,(8) is zero if and only if =a+ 8.

Example 6.2 The cohomology of relation bundles coming as pullback over CG\O is completely
determined by the cohomology of the parent bundle. Even in the simplest cases the cohomology table
of Ecx B,y is quite complicate. In the case a=0, f=1, y=2 we have cz(Eo'1'2)=8 and

1~y

Cla,b,c,d,e,f]
®HYE t)) = LRt b bt A ® Cla,b,c,d,e,f] =
t ( 0'1'2( 2 (ad+be+cf,(a,b,c)2,(d,e,f)2)( ) [ f

C[a2,b,c3,d2,e3,ﬂ

_ Cla,b,c,d,e,f]
(a%d?+be3 +c31,(a2,b,c3)2,(d2,63 1))

(2).

Th only nonzero values of hl(Eo'l_z(t)) are 1,6,19,42,70,92,98,86,63,38,18,6,1  corresponding

respectively to t=—2.—1,..,,10 . It is interesting to remark that in this case ho(E0'1V2(2))=2.

For the convenience of the reader we summarize in the following theorem the intermediate

cohomology of a relation bundle E, B, coming as pullback over C®\0. H® and H* can be found by

*
o, B,y
resolution (see corollary 6.8).

Serre duality because E is again a relation bundle. H® can be computed from the minimal

Theorem 6.3 Let E, B, be a relation bundle coming as pullback over C®\0. The following
hold

HYE, g, ()=2(= 10 A%e0(t—j7)®[0(-v)e%a T2 W (y)]}
J

HA(E, 5. (1)=2(—'hO{ A3~ 1))@ 0(t—27))
’ J

The display of the monad defining E gives the two exact sequences

0= Re By~ Baygy = 01 20 (6.1)
O_'O(—7)_'Raﬂ7—'Eaﬂ7-'0 (6.2)

Lemma 6.4 Let Rg} 8.y be a bundle appearing as a kernel in a sequence
0 0
0= Ro.p,y 7 Bayg,y > O1) =0
where Bz B, is a weighted lambda-three bundle coming as pullback over C®\0 and such that also
Rg B, comes as pullback over CG\O. Every small deformation of Rz B, appears again as a kernel in
a sequence as (6.1) where B, B,y is a weighted lambda-three bundle. Moreover the Kuranishi space of

0 . [s}
R is smooth at .
a’ﬁ77 mooth a RO’,,B,

Proof We use R, (resp. B,) for Ra,ﬁ,’y (resp. Ba,ﬁ,‘y)' We replace Ry by the dual bundle R§

that appears as a quotient in the sequence
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0-0(=y)=Bf =R~ 0

Let (T,ty) be the Kuranishi space for ﬁ3 and let (Y,yqy) be the Kuranishi space for ﬁ; Let ¥

be the universal family over YxP> and let Z be the component of Quot containing RS. As

F/YxP5/Y
in the proof of theorem 4.4 we have a natural map w:(Z,zg) - (T,t;) so that
dimy T>dimy Z—dimg 77} (tg) >h*(End By)+hO(By(7))—hO(End B )+h%( Ro®B%) , the last
inequality is a consequence of the exact sequence
0~ Ro®Bg ~ By @By + By(7) - 0,
the fact that ho(§0(7)) depends only on «a,8,7, and the theorem 5.6.
Again from the above sequence we have
dim T>h'(R,©E3)
(because hl(BS('y))z()).
Now consider the sequence
0 - Ro(—7) - ﬁo®§o - ﬁ(,@’l’:o* -0
The cohomology sequence associated to
0 - R(t—1) - R®B(t) -+ End R(t) — 0
gives
h'(R®B(t))=H*(End R(t))=0if t< 1
H°(End R) - HI(R(—]”) -0~ HY(R®B) - HY(End R) — 0 for t=0, and

H'(R)=WeW* - H}(R®B(1)) - H(End R(1)) = 0 for t=1
The mophisms in this last sequence are SL(W)-invariant. W@®W™* cannot contribute to Hl(ﬁo ®§o) in

the graded tensor product Hl(ﬁo ®§o):[?H1(R®B(t) Clab,cd el

)®¢ 77—+, and thesame reasoning
¢ (fl’f2’f3’f4’f5’f6)
holds for t>2. It follows

HY(R,®B,)=H(End &)

as we wanted.

Theorem 6.5 Let E° B,y be a relation bundle coming as pullback over CG\O. Every small

a’
deformation of Eg,ﬂ,y is a relation bundle Ea,ﬁ,-y‘ Moreover the Kuranishi space of E?x,ﬂ,’y is smooth
at E® .
a.8,y

Proof We use Eo for Eg’ B,y - Let ﬁo be corresponding to Eo’ that is the unique nonsplitting

extension

0= 0(~7)=2EF,-0

Consider the exact sequence

0-+E§®Ry » End Ry = Ky(y) = 0 (6.3)
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We begin to prove that the induced morphism
g I{I(Eo*®ﬁo) -~ H(End ﬁo) is surjective. We set
ge: HY(E*®R(t)) » HY(End R(t))

As tensor product is right exact we have that Coker g is the degree 0 summand in

. C[asb’cid’e’ﬂ
[QP Coker gt]®C m.

Consider the two exact sequences

0 -+ E*®R(t) ~ End R(t) » R(t+1) = 0

0 - E*(t—1) » ROE*(t) = End E(t) - 0
Coker gy =0 for t>1 and for t<—3 from the first sequence. It is easy to check Hl(End R(—-2))=0.
From the second sequence H!(End E)=H?( E*®R), from the first H}( E*®R)CH( End R) and the
last inclusion is the identity because H'(End E) surjects naturally over H(End R) (by the previous
lemma in the case a=3=0). In the case t=—1 we have that Coker g,ICHl(R)zHl(E)::WEBW* and
hence cannot contribute to the degree zero summand of the tensor product. Let us observe also that

from the second sequence it is easy to prove in the same way that hl(Eo*@&Eo):hl(End Eo).

Let (T,ty) be the Kuranishi space of Ey. As in the proof of theorem 4.4 we can check that
dimLOT_>_ ho(ﬁo(-y))——ho(End §0)+h0(’ﬁo*®ﬁo)+dim {Kuranishi space of ﬁo} =
= (by theor. 6.4) h%(R(7))~h°(End Ro)+h%(E*©K ) +h(End Ky)
where we used sequence (6.3) Again from sequence (6.3) and from the fact that g is surjective we have
dimtoTzhl(Eo*cgﬁo):hl(End Ey)

as we wanted.

Remark 6.6 In the case of pullback bundles EO,O,t there is a simpler proof of the above
theorem following the lines of [DS]. In fact in this case considering any finite morphism m:P® — P® of
degree d> we have HY(End Eololt)zHl(r*End E0'0'1)=H1(End Eg 0,1®740) and from the formulas
given in [DS] it follows
h(End Eq o )=h’(End B0'0'1)+[(dg5)—-6 ]hl(End EO'O'l(—-l))=27+[(dg'5)—6 ]eze(d'g5)—9
From the fact that the cohomology module Hz(Eo,o,1(*)) is concentrated in one degree it is easy to
prove as in [DS] that given two finite morphisms =, 7' as above and given a parent bundle E then
7*E~z'*E if and only if there exists o €Aut(P?) such that r=con' and o*E~E. It follows that the
family of bundles obtained pulling back a parent bundle by any finite morphism of degree d® has
dimension equal to {dimension variety of morphisms of degree ds}—{dimension symmetry group of the
parent bundle} = {G(d'gs)—l}—{S}:G(d;s)-—Q (same number as before!), and hence this family

fills up a smooth open subset of a irreducible component of the moduli space of stable bundles

containing EO,O,d' We will repeat these computations in the more general setting of theorem 7.1.
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Proof of theorem 1 From the proofs of 6.4, 6.5 and from lemma 5.3 it follows that any relation
bundle E determines a unique weighted quotient bundle Q. Then it is sufficient to show that when the
second Chern class 372+401ﬂ—4(01+ﬂ)2 is fixed one can find a, B, 7 satisfying a+8<+v such that
f(a,B,7):= ho(x(-y))—h°(J€®J€)+h°(/\2}G®JG(—~7))—h°(A33G®JG(—27)) is arbitrarily big.

Starting from an integral solution (ag,Bq,7o) of the equation 372+4aﬁ—4(a+ﬂ)2=t (it
exists by [Hor2], see also the proof of corollary 6.14) one can check with easy computations that
(an,Bn,7n) is a integral solution for every even n, where

an:ao

L T TR LIV IR TP

vn=(%ao+—3@ﬁo+%°>(2+4§)"+<—§a0—?ﬂw%‘)xz—ﬁ)"

In order to check that this solution is integer, we recall that
I3[(2+3)"=(2—43)")=0 (mod 6) YneN
(2+«]§)n+(2—\!§)”§0 (mod 4) for every even n

It is straightforward to verify that if n>>0 then an+Bn<7vn and ]i_l*r_l flan,Bn,vn) = +oo,
n—++o0o
q.ed.

N.Manolache kindly communicated to us the minimal resolution of a parent bundle E in terms
of SL(W)x|Z, representations. In the next theorem we show how to compute the minimal resolution of
E in terms of SL(W)-representations using [BaS]. This weaker statement will be sufficient for our

purposes (e.g. for the computation of h'(End E), see section 7).

Theorem 6.7 (Manolache)
Let Psz?(W@W*). The minimal SL(W)-invariant resolution of a parent bundle E on P? is
0-+L80(=7) = L;©0(~6) » L7:80(-5)®0(—-4) » L;; ®0(~4)®L;,®0(—3) -
=+ Lo ®(=3)®Lyr®0(=2) = E =0
where L,=T?*'w, Ly=[S*Wes*W*eT* 'werdlw*)
L21=[S3W@S3W*eB1‘3'1W®I‘3'1W*@F4'2\V@I‘2'1W], Ly, =[I"*'Wer*'w*er*'werw,
Li,=[WoW*], Ly, = I'*?W, Ly, =I>'w

Proof Let E be the cohomology of the monad
O(—1) > B = 0(1)

We have the following presentation of B:



Hy,®0(-1)
lu
0B 3 Hy ®0(1) ~ Hy,®0(2)
The 14x14 matrix of sou is (1.2). Computing its first syzygies with [BaS] and transposing we obtain

the matrix of t which is

b —d —f e
—f d b ¢
—c d —f e
—e d b ¢
—c d —e a
c —d —f a
—a d b ¢
c —b—e a
—c b —f a
—c a e f
—b a e f
¢ —b —f e
—b d —f a

We use now the fact that given w:C%\0 — C®\0 as in (0.1) then the pullback w*n* of the minimal

resolution of Ej o ; descends on P° to the minimal resolution of E, B,y In particular every summand
i L)

I‘a’bW'®(det Q)®t in the minimal resolution of Eg  ; becomes a summand 2P ®(det Q)®t in

the minimal luti fE .
e minimal resolution o @B,y

Replacing a,b.c,d,e,f by polynomials f), .., fg of degrees y—a, y—8, y+a+8, v+a, 7+ 8,
Y—a— 8 the degrees of the rows of the above matrix are 29+, 27v—a+B, 2y—a—F, 29—-2a—8,
Iy—a—-232y , 2y—a, 29-3, 29+a+B, 2y+a—0, 2y+2a+ 4, 27, 29+a+28, 294a while the
degrees of the columns are v—2a, y+2a, Yy Yroa+ B, y=B, v+2a+28, y+a, y—28, v, y—a—48,
T+8, v=2a-28, y—a, v+28. Let R be defined by

0-R~BA o1)=0
where h is given by the sum of the rows number 3 and 9 of the matrix (1.2). Then we have the

presentation

!
0- R~ [COCOSPWaS*W*]eo(1) & [WoW* oI W] 0(2) e 0(1)
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where the matrix of t' is obtained adding at the bottom of the matrix of t the row
(0,0,l,0,0,0,0,0,1,0,0,0,0,0). As in [DMS], the resolution of t! gives
0(-1)®0(-2)00(-3)2" a R+ 0
where the 14 x8 matrix of the composition

0(-2)% = 0(-1)00(~2)2®0(-3)?" -+ [COCoSWaSZW*|®0(1)

1
- §ace

4

—C82

ade —cef

O

| adf—cf?

— (l,abe——acf

b2e+bcf

abe+ %acf
%abf

be? —ade

bef—Ladr

bf2

—c2d

ae 2

0

ade— %cef

1.2
§C€

abe—a?d

%abe— %acf
ace
0
%bce+ %czf
—cde
Jbde—Lcdf

bdf

- ,l)bze-— %bcf

2b2d
—2af?

0
—bf?
bef—2adf
0
—abf
2a2d —2acf
0
2abd —bef
b2f
2bde—2ad?
bdf

0

—2bed
—2aef
0
—adf+cf?
—ade—cef
—2abf
a®d—acf
0
0
*f—acd
—abd —bef
—2cde
ad? —cdf

0

0
—2bef—2cf?
0
—bdf
—bde—2cdf
—2b2f
abd-2bcf
2acd —2¢2f
0
bed
—b2d
—2¢cd?
bd?

0

0
be? +cef
0
bde+Jcdf
%cde
b2%e—~abd
bce— %acd

c2e

In this matrix the degrees of the rows are 7—2¢, v+2a, 7, v+a+B, y—8, v+2a+28,

T+ta, 7=28, v, y—a—4, v+8, v—2a~28, y—a, v+2[ hence we can compute the degrees of the
columns which are —2y—qa+48, —2v—2a—3, —=27+a+28, =27y, =2y—a—28, =2y, —2y+a~4,

—2y+2a+pf, ie exactly the integers appearing in I‘2'1‘W®O(-—27) (and 2w is the only

representation I*'°W which gives I*°% with the required splitting). From the columns of the 14x27

matrix obtained by the composition

0(—3)%" » 0(-1)00(-2)2 0 0(-3)27 - [CoCoS*WaSZW*|e0(1)

we can find the degrees appearing in r*2w. Continuing in this way we can find all the resolution.
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Corollary 6.8 Let E, g,y be a relation bundle on P> coming as pullback over C®\0. Let
W=0(a)®0(8)®0(—a—pB). The minimal resolution of Ea,ﬂ,')’ i
0~ T2 W(=Ty) = [SPW@S2W* oI ' e T W*)(—67)

o [S3W@S3W*@r3-1w@r3'lw*@1‘4'2%’@1‘2'1%'](—-57)@0(—4‘7) -
~ (It wertlwrerd i wer® W) (—4y)o[W o W*|(~37) »
> T2 (=37)er ™ W (=29) = B, 5 =0

S

Theorem 6.9 Let E:Ea B,y be a relation bundle coming as pullback over C6\0. Then
h°(E(t))¢0 if and only if min{2y—a—28, 3y —-2¢—48}<t

Proof From corollary 6.8 it is easy to check that ho(E(t))#O if and only if
ho(I‘4'2‘W(—37+t)€9F2'1‘W(—27+t))-7£0. Now consider that the sum of the degrees in the Young
diagram, according to (0.2)

a+p la+p

—

is a+2f, while the sum of the degrees in

e+ |a+B |la+B |a+f

—Q —Q

is 2a+-45.

Corollary 6.10 Let E be a relation bundle coming as pullback over C\0. The following are
equivalent
1) E is stable
i) E is simple

i) 39 —=2a—48>0

Proof i) = ii) is well known

ii)=>1ii) if 39 —20—43 <0 then h°(E 0 and hO(E*
o, 8,7 o, B,y

iii) = i) if 3y—20—48>0 then hO(E =0 and h®(A2E
o, 8,y

)#0 from the theorem.

y=h(E* )=0 from the theorem.

a,B,y a,B,y

Corollary 6.11 Let E be a relation bundle coming as pullback over C6\0. The following are
equivalent
i) E is semistable

i) 3y—2a—48>0

Theorem 6.12 Let 3y—2a—48<0. Then any relation bundle Ea B,y is unstable.
1"~

Proof Let E be the cohomology of the monad
o, B,y 39



O(=7) =B, 5% O(7)

Let Ker T=Ra B,y 1t is sufficient to prove that HO(RQ #0 , or equivalently that the composition

) 51'9)7.
H(A%(=7)) = BB, 5 ) — HO(O(+))

is nonzero. The corresponding morphism /\33{;(—7) - O(v) is given by 20 homogeneous polynomials
g1 --8B20, 2nd up to permutations we may suppose that g; has degree —20—24 427 and g, has degree
—2B+2y. The map H(A3¥(—7)) - HOO(y)) is given by (fyr.ofz0)— fig; where deg
fi=2a+28—4, deg f,=28—17. If g;=g,=0 it is clear that the morphism is nonzero. Otherwise we
can take f1252a2a+4ﬂ_37v f2=_g1a20+4ﬁ—37 y fl3=...=f,5=0.

Remark 6.13 The proof of theorem 6.12 shows in the same way that if t<+y and
20+45~37+t<0 then any relation bundle Ea,ﬂ,'r satisfies ho(Ea,ﬂﬂ(t))#O. In particular
hO(EO.t—l,t("t))¢O for t>1, hence all the bundles EO,t-l,t are “strongly unstable”. On the other

side the pullback bundles Ej 0. satisfy hO(E0 0.t(t))=0, so they are "strongly stable”.

Corollary 6.14 Let t>0, t=0,3,8 or 11 (mod 12). There exists a semistable Ea B, such that
Wy

c2(E )=t.

a8,y
= 9 i =t.

Let t>0. t=3,8 or 11 (mod 12). There exists a stable Ea,ﬁ,‘y such that C2(Ea,ﬂ,7)

Proof Choosing a=n—3, f=n, y=2n—2 for n>3 we have

3v—-2a—-48=0

c;=372+4af—4(a+8)?=12(n—2)

Choosing a=n-2, B=n, y=2n—1 for n>2 we have
3v—2a—48=1
¢y=37?+4af —4(a+B)?=12(n—1)—1

Choosing a=n—1, f=n, y=2n for n>1 we have
3y—20—48=2
c;=372+4af—4(a+p)2=12n—4

Choosing a=3=n, y=2n+1 for n>0 we have
3y—20—48=3
c2=372+4aﬁ—-4(a+ﬁ)2=12n+3

Remark 6.15 For ¢;=24 do not exist any stable Ea B,y while for c,=12 the pullback with

a=[0=0, y=2 is stable. A computer checking of values of k such that there exists a stable Ea 8,7
1

with ¢, =12k shows that for k<100 the only gaps are k=2, 10, 14, 26, 34, 70.
Remark 6.16 There are no semistable Ea,ﬂ,y with ¢, =0.

Proof of Theorem 2 We will prove a little bit more, that is that the number of components
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goes to infinity even in the range where 6 is stable, that is we will prove that the number

N(t)::#{(a,ﬁ,'y)|37'2+4aﬂ—4(a+ﬂ)2:t, ¥>5a+50} satisfies limsup N(t)=+oco. Let ¢, xg be such

that 8e't2¢

<27 and x-ln(l-}-%)?_l—c for x>xq. It is sufficient to check that if x>x; then
#{(a,ﬂ,’y)[372+4aﬂ—4(a+ﬂ)2—1‘7xx(x+l)x, 7>5rx+5ﬁ}>5——2. For every integer a such that
§<a<§ we set Ai=(x+1)"x? B:=x""?(x+1)?, a= g=A B, y=A+B. These choices of a are at
least 6_2' Now we observe that in order to have a, nonnegatlve we need A>B which is equivalent
to (x41)%22>x*23 \which is satisfied because ag’é. We get

37° +4af—4(a+B)?2=3(A+B)?+(A—B)?—4(A—B)2=12AB=12(x+1)*x* as we wanted.

The inequality 5o +58 <y remains to be checked. It is equivalent to 2A <3B, that is
+ 1\x- +1
(<)
o (1A <H A7

It is sufficient to verify e_<_%(l +%)2a that is  In%E< aln(1+x)

.3
In(2e/3)
2n(1+1/x)
It is sufficient to check M and this is true by the choices of ¢ and x,.
3= 9ln 1+1/x) 0

7. The computation of h*(End Ea,ﬁ,‘)')

Theorem 7.1 Let Ec\',ﬁ,'y be a relation bundle coming as pullback over CG\O. Then
h'(End E_ By =
= Y(-Uh WA —y)0X(y)] + S {AK(—) o[ WeWeWe W oW oW ]}  +
(=PI 7) SISH (~ )8 W* (L 1) @I W (=)o T> W (— ) B(T2 19 (— )26
240 (—2y)@ T 90 (—2y) @ T W~ 2y) @ I3 (—29) O T W (—27) @
D229 (= 3y) @I ™29 (=37 eI *W(—47)])

We postpone to the end the proof of theorem 7.1.
For practical purposes, the following formula is more useful

Corollary 7.2 Let Ea,ﬁ,'y be a relation bundle coming as pullback over C®\0. Then

h'(End E_ By = hO(36(7))—h(EndW) — h%(O(4a+48—27))—h%(O(4a—27))—hO(O(45 —27)) —
h%(0(3a+B8—27))—h®(O(a+36-27)) —h°(O(3a+28—27)) —h®(O(2a +36—27)) +h(3a —29)) +
hO(O(38-27))+h%(O(8a+38—27)) +h°(O(4a+F—27)) +h°(O(a+48—27)) +hO(O(3F —a—27))+

h(O(40+38—27)) +b°(O(3a+46—27)) +h%(O(4a +48—37)) +h%(O(4a—37)) +hO(O(48~37)) +
ho(O(5e +28-37)) +b°(O(2a +56—37)) )+h%(O(50438—37))+h%(0(3a+58—37))—
h%(O(4a+28-37))—b’(O(2a+48—37)) +h%(O(e+48—37)) +h(O(4a+ f—37))+
h%(O(3a+68—57)+h%(O(6a+38—57)) +h%(O(4a+85—67)) +h%(O(8a +48—67))—

hO(O(So+3ﬂ—77))—h°(0(3&+86—77))—h0(0(8a+5ﬂ——77))—h°(0(5a+8ﬁ——77))
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Proof Substituting =W ®W* in the formula of the theorem 7.1 and applying the
Littlewood-Richardson ~ rule  (see  the lemma 7.5) we get hl(End Ea,ﬂ,’y)
= h%(3%(y))~h°(End W)+h°[(r4-1wear4-1w*@s3w@s3w*)(—27)]—h°[(s4wes4w*)(-27)]+
hO((S* W @S* W* @I 2w o > 290 *) (= 37) ]~ hO[ (I 290} (—37)]+
+hO(r® 2w (=57)) +hO(r®*w(—6v))— hO[(r® W &% W*)(=7+)]. Note that after the *principal
part”, which is ho(Jﬁ(y))——ho(End W), both the correction terms with —+v and —4+v vanish. If we
expand all the terms and simplify, we find that many summands are zero because of the inequality

a+f<y.

Corollary 7.3 The component of the moduli space of stable 3-bundles with Chern classes
€y =c3=0, c2=372—4aﬁ—4(a+ﬁ)2 containing a relation bundle Ea,ﬁ,-y is smooth at points
corresponding to bundles coming as pullback over CG\O; its dimension is
hO(36(1))~h°(End W)~ h°(O(da+48-27))—hO(O(46 —29))~hO(O(3a+ 26— 27)) —
h%(0(20+36~27)) +h°(O(3a+ 36— 29)) +hO(O(da + B —29)) +hO(O(a +45—27)) +
h0(0(4a+36—-27))+h°(0(3a+4ﬁ—27))+h°(0(4a+4ﬂ—-37))+h°(0(50/+3ﬂ—-37))+
h%(O(Ba+58—37))+ h(O(5a+28—37))+h°(O(2a+55—37))

Proof Apply theorem 6.5 and consider that 3v—2a—48>0 by corollary 6.10. Then many

summands in the formula of corollary 7.2 are zero.

Corollary 7.4 Let y>2a+23. Then the component of the moduli space of stable 3-bundles
with Chern classes ¢y =cy=0, c2=372—4a[3—4(a+ﬁ)2 containing a relation bundle Eaﬂ’y is
"~
smooth at points corresponding to bundles coming as pullback over C6\0 of dimension

hO(3(7))—~h°(End W)

In particular the fibres of the map {moduli space of E, 3 7} - {moduli space of B, 8 7}
) b b b
have dimension h%(S2W)+h°(S2W*) +1.

Before proving the theorem we need some lemmas. For the convenience of the reader we recall
first some formulas that are obtained as a straightforward application of the Littlewood-Richardson

rule.

Lemma 7.5 Let W be a 3-dimensional vector space. The following decompositions of SL(W)-
representations are true
S"Wew=5"" werly S"Wow*=r"t1"1wes™lw vn>1
I**WeW=r"+1 0w grabtiygralb-ly o0\ o
ra"’W®w*=ra+1'b+lwera'b'1weara'l"?w for 0<b<a
S'WeSPW=s""?War" ™ 'wer™w  s"wes2w*=r"+22wer'lwaes™2w Vn>1

*Wes?w=r*wss2werd2w
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r’*'wes*w=r"'wer*?wer?wes3w
r*'wer'w=r*?wer2'w)2es*wes*w*oC
r'wer*'w=r>?wes‘we((r*'w)2er* 'w*oS2w* e w
r?wer’'w=r*>wer**wer* ' wes*wes*w* e (r* 2w)2e r2'w
r'wer'w=r*?wesswer*'wers *wers2wer*wesw
r*?wer*'w=r"*wer®w*er* *w* e r*2wer*'w* e > *wes*wer*>'w

Lemma 7.6 The following decompositions of tensor products between Sp(6)-representations are

true

HV1®HI/1:H2V1$HU2®C HV1®HV2=H1/1+V2®HV1®HV3
HU1®HU3=Hy1+y3aHI/2 HV2®HV3=HV1+U2@HV2+U3®HV1
H

”1®HV1+V3=H2V1+V3€BHV2+V3@H”1+V2®H"3
Hl/2®HU2=H2U2@H2V1®HU1+V3@HV2@C
HV3®HV3:H21/3®H‘.21/2®H21/1

Proof [Lit]

Lemma 7.7 Let B a lambda-three bundle
HO(B(1))=H, ,=5*WeS’W*oCaC
H°(B(2)):HU1+U3: S*weswWrerr'werd'wrer>'wew2ew*?
H°(B(3))=H2,,1+V3=s4weas4w*@r“wear:*'lvv*ear“'lwer""lw*e(szvveszw*)3@(r4'2We
r*wy2ec?
where the right-hand sides are the restrictions to SL(W) of the Sp(6)-representations on the left.
Proof Bott theorem gives all the left equalities. A quick way to obtain the decompositions in terms of
SL(W )-representations is to start from HV1=W®W*, HV2=W®W*®1"2'1W,
H,,3=S2W69SQW*@C€BC and then apply the previous lemma, the Littlewood-Richardson rule for

SL(W )-representations and cancel the extra terms.

Lemma 7.8
Let B a lambda-three bundle.
H%(ad B(1))=0
HO(ad B(2))=H2U2eH2V3=[(SZW®S2W*)2691‘3'1W®1‘3'1W*eaI‘4'2W€BF2'1W63C}€B
[S*Wo5*W* @ (S?W 252W*) 2@ I 2W e €3]
Proof We have End B=0O@ad B where ad B=E2V2(—2)®E2V3(—2). Then argue as in

lemma 7.7.
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Lemma 7.9 Let E be a parent bundle.
H%(End E(2))=H°(0(2))=S?WeS?W*er2'wecC
HY(End E(2))= T**Wer*'wer*'w*er 'werd 'w* os2w o s2w*

Proof We consider the exact sequence
0 » R®B(2) = End B(2) » B(3) » 0 (7.1)

We have from lemmas 7.7 and 7.8
H(End B(2)) = H,, ©H,, ®H,, = [S’WeS*W*eT*'wec] @
(S*Wes?W*)2er* 'wer ' 'w*er**wer?'wec] @
[S*Was*W*e(S2Wes?W*)2e I *WeC3)
H°(End B(2))CHO(B(1))@HO(B(1))= Hy ®H,, = (by lemma 7.6) Hy, ©Hy, oHy, oC =
H°(End B(2))@C
HO(B(3)) = H,, tv, = |
stwes*wrer 'wer*'wrer* 'wer* w*e(s2wesw*)* o (r *wer2w)2e c?
The main point is that the restriction of the morphism Ho(End B(2)) - H%(B(3)) to the summand
F3‘1\\'€9F3'1\1\’* is an isomorphism, and then F3'1W®F3'1W* does not appear as summand in
HO(R©B(2)). We have Hy,®H,, = [S°WeS’W*aCaC)o[S’WeS?W*eCaC). The summand
3w appears in the above tensor product as a summand of 52W€B52W, indeed
S*WeS*W=S*WeTI ' WeS2W* (more precisely I>"'W=A2(S2W)). If Vi, Vo€ W then we have
(Vi®vo+v,®v,)€S2W, vi®v; €S?W and

(V1®Va+v &V )@ (v @V) — (v 8V, ® (v, BV, +v, 8V, ) ET ' WCWeWe Wo W

Looking at the matrix (1.2) we choose vy of degree a, v, of degree f. The morphism B(1) -
O(2) is given by the sum of the rows number 3 and 9.
Then (v, ®v, +v2®v1)EHO(B(1)) corresponds to the 4" row
(6d,0,0.— 32,0, 1ef, Jaf. —ac,ab,— Lcf,bd,de,1df,0)  and (v1®vo+v,®v,)eHO(B(1)) cHO(0(2))
correspond-s to t;le c;uadratic poly;lorr:ial ab. )
vi®vy EHO(B(I)) corresponds to the 279 row
(ad+be+cf,O,O,O,O,O,O.O,a2,ae,af,e2,ef,f2) and v,®v, EHO(B(I))CHO(O(2)) corresponds to the
quadraiic polynomial 22, Putting together
(Vi®Vo+v,®0v)® (v, ®vy)— (v, ®v1)®(v1®v2+v2®v1)€P3‘1WCH°(B(3)) corresponds to the row
ab(ad-:j—be+cf,O,O,O,O,O.O,O,az,ae,af,eQ,ef,fz)—az(bd,O,O,—%fz,o,%ef,%af,—ae,ab,—%cf,lbd,de,%df,0)¢0
It follows that HO(R(-}B(Q)) does not contain the summand I'*"'W and in the same way we can prove
that it does not contain the summand I'*'*W*. Then from the sequences (2.2), (2.3), (2.4) for t=2 we
get that H°(End R(2)}, HO(E* ©R(2)) and H(End E(2)) do not contain I *We& T *W* either. From
(7.1) it follows easily that H°(R®B(2)) does not contain the summand W@W?* and again from the
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sequences (2.2), (2.3), (2.4) for t=2, H%(End E(2)) does not contain W& W *either.

Now we tensor by E*(2) the minimal resolution of E of theorem 6.7 and we get

-+ L, ®E¥*(-2)®L,,®E*(—1) » Ly; ®E*(—1)®Lo, ®E* - End E(2) - 0

Set A:=Ker Ly ®E*(—1)®Lg,®E* — End E(2).
B:=Ker L); ®E*(—2)®L,,®E*(—1) = Ly; ®E*(~1)® Ly, ®E*
Then we have
HO(B)=H(B)=H3(B)=0, H*(B)=CoL,0L,
0—+L;, - HY(A)» COL;@L, = Ly; = H3(A) = 0 (7.2)
0 » H%(End E(2)) » HY(A) = Ly; ®Lgr ®(WOW*) —» H(End E(2)) » H2(A) = 0 (7.3)

From these two sequences we obtain HPEnd E(2))C Col;ely®L,;, =
CoS*WasS’W*er 'wer'wrer'wewew”.

Moreover HO(End E(2))DH%(0(2)) =S2(WoW*)=S2W &S2W* @ T> ' WaC. Since we proved
that H°(End E(2)) does not contain r*'wer’'w*ewew* it follows
Ho(End E(?.))=82WeS2W*@I‘2'1W®C. Finally Hl(End E(2)) can be found by the sequences (7.2)
and (7.3).

It is useful to recall the Riemann-Roch formula
x(End E(t)) = 2 (15 +151* +45¢3 ~ 135t 5661 —240) (7.4)

Lemma 7.10 Let E be a parent bundle.
H°(End E(3))=H%(0(3))®S?*W @ S2W*
HY(End E(3))=S3WeS3W*or  *wer 2w+

Proof From Beilinson theorem it follows as in [DMS] that any parent bundle is the cohomology of a

monad
o(=1)eA?Q* - Q*aA%Q* » 0°
Let K (resp. K') be the kernel bundle of the monad corresponding to E (resp. E*). In particular
we have the two exact sequences
0-0(-1)aA*Q*+K-E=0 (7.5)
0~ 0(-1)®AQ* 2K - E* =0 (7.6)
After easy computations we have:
hO(K(1))=h%(K'(1))=17, h%(X(2))=h°(K'(2)) =49
hY(K(1))=h(K'(1))=8, h}(K(2))=h}(K'(2))=0
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Tensoring (7.6) by E*(3) and (7.5) by K'(3) and using the Euler sequence
0— 0O(1) » 0(2) = A%Q*(3) » 0

we get

hO(End E@3)) = hOKeK/(3))—ho(K/(2))—h®(K'®A%Q*(3))—h(E(2))—h®(E® A*Q*(3)) =
hO(K®K'(3))—49—295—8—56

that is

h®(End E(3)) = h®(K®K'(3))—408 (1.7)

From the exact sequence
0-K=Q*0A2Q*~ 0%~ 0
and the minimal resolutions of Q* and A2Q* we get the exact sequence
05K =000 % o(1)80(1)°00°®
where the matrix of ¥ is given by (see [DMS]):

a b ¢ d e f
—f —e —d —c —b
—f —e —d —c a
—f —e —d b a
—f —e ¢ b a
—f d ¢ b a
e d ¢ b a
1 1
1 -1
1 1
1 1
1 -1
1 o 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

In the same way we have ;
0K - 08905 Y 0(1)90(1)%@0°®

where the matrix of ¥/ is given by:
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a b ¢ d e f
-1 —e —d —¢ —b
—f —e —d —c a
—f —e —d b a
—f —e ¢ b a
—f d-¢c b a
e d ¢ b a
-1 1
-1 -1
-1 1
1 1
1 -1
1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Tensoring we get the exact sequence
0~ KoK — 0441(M) (0126690(1)147)@2
Using [BaS] we can compute the syzygies of (y®id,id®%’) and we obtain
’ hO(K®K'(1))=0
hO(K®K'(2))=50
hWO(KQK/(3)) =476
hence by (7.7)
h%(End E(3))=476 —408=68
h®(ad E(3)) = 68—56 = 12
By (7.4) x(End E(3))=h°(End E(3))—h*(End E(3))=~36,
this implies
h!(End E(3))=104

Now we tensor by E¥(3) the minimal resolution of E in the theorem 6.7 and we set

C:=Ker Ly; ®E*®Ly, ®E*(1) » End E(3).
D:=Ker L;; ®E*(—1)®L,,®E* = Ly; ®E*® Ly, ®E*(1)
We get the following exact sequences:
0 - H(End E(3)) » HX(C) = [Lo; ®(WW*)|®[Ly, ®21W] — H(End E(3))~0
0-HY(3) » Ly; @L;1,@(WeW*) » HY(C) » HX(D) - 0
0~C4H1(‘3D)—0L4—0L21-+H2(€D)-00

Using lemma 7.5 we have
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Loy ®(WeW*)=I"*Wer>?w*er*wer*'w*ers 'werdw*
Lo ®T2 ' W=T"*Wes3was3W*a(r'w)2ec

It is easy to verify that I*?Wer*2W* does not appear in HI(C), then we obtain Hl(End
E(3)=T>*WeTI>*W*@J where dim J=h!(End E(3))—dimI>*WeTI ?W* = 104—84 = 20.
From the sequences above the only possibility is J=S3W@S3W*. The result for H%(End E(3)) follows

in the same way.

Remark 7.11 In principle it is possible to determine ho(End E(3)) computing syzygies with
[BaS] directly from the presentation obtained by the minimal resolution of E, that is
0 = EQE* - (0(2)%00(3)2)®2 & ..

This computation requires much more computer-memory than the one performed in lemma 7.10.

Remark 7.12 As in [Hor2] if E is a parent bundle on P(W®W®) which is SL(W)-invariant we
have EIP(W) ~ ad TP(W).

Lemma 7.13 H(End Elp(w))=C H!(End E|P(W))=S3W
HO(End E(1)|P(W))=w*es2w H(End E(t)lp(yy)) =0 for t21
HO(End E(2)|P(W)):82W*®r3'1W69S4W
HO(End E(3)|P(W))=S3W*€91‘4'2W€BI‘5'1W
H%(End E(4)|P(W)):84“'*@F5'3W@F6'2v\/

Proof Tensoring the exact sequence
0= 0(=3)»W'®(—=2) » WROU(—1) = O — 0|P(W) -0
by End E(t) and using Bott theorem over P(W)

Lemma 7.14 The only summand I*'°W of HY(End E(4)) with a>5 is 3w

Proof Tensoring by E*(4) the minimal resolution of E and cutting into short exact sequences

one obtains:
(set ¥:= Ker [I**WSE*(1)@T*'WQE*(2) - End E(4)] )
0~ H%($) ~ Ly, @WSW*BLy = Ly, @(WOW*) &L, ®T>*W = HY($) = 0
HY($) = Lo, ®T>'W ~ H1(End E(4)) - 0

The only summands r*bw of L01®F2’1W with a>5 are F6'3W, FS'IW, I“S'IW*. From the
first sequence one sees that FS'IW, FS'IW* appear both in Hl(tf) while T®3W does not appear in
H(¥) and then it must be a summand of H(End E(4)).

In order to exclude the summand I'°''W we consider the exact sequence (see remark 7.12 and

lemma 7.13)

0 — End E(1) —» End E(2)®W* = End E(3)®W — End E(4) — End E(@)lpwy =0
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From lemmas 7.11 and 7.5 we find that I°'>W does not appear in H!(End E(3))®W, hence does not

appear in H}(End I‘i(4)®5p(w)
H*(End E(4)®3
(Bnd B @5, )
it follows that H'(End E(4)) does not contain the summand r’ 'W, as we claimed. The same
(

PS) either. Consider the exact sequence (see lemma 7.13)

ps) = H(End E(4))-.s4wear *wort?w

argument, restricting to P(W*), shows that H(End E(4)) does not contain the summand

> 'W¥either.
Proof of theorem 1.1
We will apply the formula

1/p5
thH (PS5, End E, 5

Cla,b,c,d,e,f]
15.83,84.f5,16)

(t)) =~ e;ZHI(PS End Eg01(t))®¢ T

and then we need the module structure of GBZH (P°,End Eg 0,1(t)) in terms of SL(W)-representations.
te
We denote by E a parent bundle.

In the lemma 2.2 we already computed H!(End E(t)) for t<0. In the same way one can show
HYEnd E(1))=$*Wes*w*er’'wer>'w*e(r*!'w)2eWeW*, H%(End E(1))=0. From the
minimal resolution of the theorem 6.7 one can check that H(End E(t))=0 for t>5. The necessary

computations of hl(End E(t)) for t=2,3,4 are done respectively in lemmas 7.9, 7.10 and 7.14.

Appendix

of

In the following table 1 we collect some numerical informations on the components Ma B,
Wy
the moduli space of stable 3-bundles on P> containing a relation bundle E B, with second Chern

) ’
class <50. In the table 2 we list some informations about the interesting case c¢; =c,=c3=0. All the

values are obtained by the formulas of theorems 6.9 and 7.2.



Table 1

. . 0
<y (a,8,7) dim M maximum t such that h”(E (t))=0
by for E coming as pullbgéegver co\o0
o,y
3 {0,0,1) 27 1
8 (0,1,2) 130 1
11 0,2,3) 471 0
12 (0,0,2) 117 3
15 (1,1,3) 427 2
20 (1,2,4) 1171 1
23 (0,1,3) 370 3
(1,3,5) 2814 0
24 _—
27 (0,0,3) 327 5
2,2,5) 2604 2
32 (0,2,4) 1047 3
36 (1,1,4) 981 4
39 (0,3.5) 2545 2
(3,3,7) 9700 2
44 {0,1,4) 832
(0,4,6) 5474
(3,4,8) 16,901 1
47 (0,5,7) 10,756 0
(1,2,5) 2343 4
(3,5,9) 28,382 0
48 {0,0,4) 747 7

c,=71 is the first value where there are four components: (a,8,7) is respectively (0,1,5), (1,6,9),
(2,3,7). (5,7,13) .
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Table 2 co=0

(,8,7) dimension of the base of the versal deformation max{t|h0(Ea’ﬁ (t))=0}
at Ea,ﬂ,'y pullback over C6\0 (for any ga,ﬂ,'y)

(1,22,26) 5,444,021 -13

(2,11,14) 297,555 -7

{(4,22,28) 7,076,165 -13

(11,26,38) 23,100,774 —13

(2,44,52) 148,201,315 —-25

(tile list is infinite)
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