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1 The Sylvester algorithm for complex binary forms

In these lectures we will be particularly interested in the two cases K = R,C. If it is
not specified otherwise, we will tacitly assume that K = C.

The first source about tensor decomposition is probably the Babylonian technique
to “completing the square” in order to solve the equation of second degree, like

x2 + 10xy + 21y2 = (x+ 5y)2 − 4y2

In undergraduate mathematics this leads to decompose every homogeneous poly-
nomial of degree 2 as a sum of squares of linear forms (on the real numbers some minus
signs can be needed, obtaining the concept of signature). This decomposition is pos-
sible as well for many variables, and it is well known that a homogeneous polynomial
of rank 2 corresponds to a symmetric matrix, and the minimum number of summands
in the decomposition as a sum of squares is exactly the rank of the matrix.

In the above example

x2 + 10xy + 21y2 =
(
x y

)( 1 5
5 21

)(
x
y

)

and

(
1 5
5 21

)
has rank 2. The decomposition as a sum of squares is never unique,

unless the original polynomial is a square, which means that the matrix has rank 1.
Sylvester studied the analogous problem to decompose a homogeneous polynomial

F (x, y) of degree d as a sum of d-th powers of linear forms. He solved completely the
problem, obtaining the nice result that the decomposition is unique for general polyno-
mials of odd degree. Sylvester algorithm became the prototype of more general tensor
decompositions. In the case of polynomials (symmetric tensors), the decomposition as
sum of powers is known as the Waring problem for polynomials. In this section we
discuss the Sylvester algorithm.

Let F (x, y) be a complex homogeneous polynomial of degree d.
The Sylvester algorithm finds a decomposition

F =
r∑
i=1

ldi
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where li are homogeneous polynomials of degree 1 and where r is minimal. Such
minimal r is called the rank of F .

The elegant solution of this problem uses the dual ring of differential operators,
that we introduce in more generality.

Let U be a vector space over K. We consider the polynomial ring S = ⊕iSymi(U).
If x0, . . . , xn denote a basis of U , then S is the ring of polynomials in x0, . . . , xn with
indeterminates in K. The dual basis of U∨ can be denoted ∂0 = ∂

∂x0
, . . . , ∂n = ∂

∂xn
.

Its dual ring is T = ⊕iSymi(U∨). S and T are dual of each other, so that ∂i is an
operator acting on xj , as well xi is an operator acting on ∂j .

There are linear maps

Symp(U)⊗ Symq(U∨)→ Symp−q(U) for p ≥ q

or

Symp(U)⊗ Symq(U∨)→ Symq−p(U∨) for p ≤ q

Both maps can be defined for any p, q, with the convention that Symi is zero for
negative i.

From now on we set dimU = 2. For any l = αx0 + βx1 ∈ U we denote l⊥ =
−β∂0 + α∂1.

Note that
l⊥(ld) = 0 (1)

so that l⊥ is well defined (without referring to coordinates) up to scalar multiples.
Let e be an integer Any f ∈ SdU defines A(f)e,d−e : Syme(U∨)→ Symd−eU
Also
(l⊥1 ◦ . . . ◦ l⊥e ) : SdU → Sd−eU

Proposition 1.1 Let li be distinct for i = 1, . . . , e. There are ci ∈ K such that
f =

∑e
i=1 ci(li)

d if and only if (l⊥1 ◦ . . . ◦ l⊥e )f = 0

Proof: The implication =⇒ is immediate from (1). It can be summarized by the inclu-
sion < (l1)

d, . . . , (le)
d >⊆ ker(l⊥1 ◦ . . . ◦ l⊥e ). The other inclusion follows by dimensional

reasons, because both spaces have dimension e. This proves the implication ⇐=.

The following corollary is a dual reformulation. Both formulations are useful.

Corollary 1.2 Let li be distinct for i = 1, . . . , e. Let r ≤ d − e. There are ci ∈ K
such that f =

∑e
i=1 ci(li)

d if and only if Im A(f)r,d−r ⊆< (l1)
d−r, . . . (le)

d−r >.

Proof: Considering A(f)e,d−e : Syme(U∨) → Symd−e(U), the proposition Prop. 1.1
says that there are ci ∈ K such that f =

∑e
i=1 ci(li)

d if and only if (l⊥1 ◦ . . . ◦ l⊥e ) ∈
kerA(f)e,d−e.

The transpose of A(f)e,d−e isA(f)d−e,e and the thesis follows from the two equalities
(Im A(f)e,d−e)

⊥ = kerA(f)d−e,e and< l⊥1 ◦. . .◦l⊥e ◦Sd−r−e >=< (l1)
d−r, . . . , (le)

d−r >⊥.
For the last one, the inclusion ⊆ is trivial, and the equality holds because both spaces
have the same dimension d− r − e+ 1.
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The Prop. 1.1 is the core of the Sylvester algorithm, because the differential oper-
ators killing f allow to define the decomposition of f , as we see in the next algorithm.

Theorem 1.3 Let k ≤ e ≤ d
2

f ∈ σk(Cd)⇔ rank A(f)e,d−e ≤ k

The (k + 1)-minors of A(f)e,d−e define scheme theoretically σk(Cd) (i.e. the minors
cut σk(Cd) transversally).

Proof: If f = vd ∈ Cd then Im A(f)e,d−e =< vd−e >, hence rk A(f)e,d−e = 1. It

follows that if f =
∑k

i=1 v
d
i has rank k, then

rk A(f)e,d−e = rk

k∑
i=1

A(vdi )e,d−e ≤
k∑
i=1

rk A(vdi )e,d−e =

k∑
i=1

1 = k

This proves the implication ⇒. Conversely, let assume e = k and let the general
case to the exercises. Iif rank A(f)k,d−k ≤ k consider the kernel of A(f)k,d−k. It is
generated by a polynomial of degree k in the dual ring. If it factors with d distinct
linear forms, then rk f = k by the Prop. 1.1. Otherwise it is easy to check that there
is a sequence fn → φ where the kernel of A(fn)k,d−k contains a polynomial consisting
of k distinct linear forms. Indeed let < l⊥1 ◦ . . . ◦ l⊥k >= kerA(f)k,d−k. Consider that
φ ∈ ker(l⊥1 ◦ . . . ◦ l⊥k ) For any n we may choose distinct ln,i such that ln,i → li. Note
that ker(l⊥n,1 ◦ . . . ◦ l⊥n,k) has always the same affine dimension k for every n. Hence we

may choose fn → f such that φn ∈ ker(l⊥n,1 ◦ . . . ◦ l⊥n,k) and we have done.
This proves the set-theoretic version. We will prove that the minors define σk(Cd)

scheme-theoretically, as a consequence of a more general result about degeneracy loci.

Remark The (k+ 1)-minors of Aφ even generate the ideal of σk(Cd). A reference
is [Iarrobino-Kanev, LNM 1721].

Theorem 1.4 (i) For odd d = 2k+ 1, the general f ∈ Symd(C2) has a unique decom-
position as a sum of k + 1 d-th powers of linear forms.

(ii) For even d = 2k, the general f ∈ Symd(C2) has infinitely many decompositions
as a sum of k + 1 d-th powers of linear forms.

Proof: In the case d = 2k + 1, for general f the kernel of A(f)k+1,k is one dimen-
sional and it is generated by a polynomial with distinct factors. In the case d = 2k
the kernel of A(f)k+1,k−1 has dimension two.

It is interesting that for several values of m we get different contraction operators,
and their minors define the same variety. Let us visualize the situation in the case
d = 6.

For m = 1 the matrix of Aφ, where φ =
∑6

i=0

(
6
i

)
aix

iy6−i, is[
a0 a1 a2 a3 a4 a5
a1 a2 a3 a4 a5 a6

]
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and its 2-minors define σ1(C6) = C6.
For m = 2 the matrix of Aφ is a0 a1 a2 a3 a4

a1 a2 a3 a4 a5
a2 a3 a4 a5 a6


and again its 2-minors define C6 but also its 3-minors define σ2(C6).

For m = 3 the matrix of Aφ is
a0 a1 a2 a3
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6


and again its 2-minors define σ1(C5) = C5 , its 3-minors define σ2(C5), but also its
determinant define σ4(C5).

For m = 4 the matrix of Aφ is the transpose of the one constructed for m = 2 and
so on.

Sylvester algorithm for general f Compute the decomposition of a general
f ∈ SdU

Pick a generator g of kerAf . Decompose g as product of linear factors, g =
(l⊥1 ◦ . . . ◦ l⊥r ) Solve the system f =

∑r
i=1 ci(li)

d in the unknowns ci.
Sylvester algorithm to compute the rank Comas and Seiguer prove that if

the border rank of φ is r (r ≥ 2), then there are only two possibilities, the rank of φ is r
or the rank of φ is d− r+ 2. The first case corresponds to the case when the generator
of A(φ)r,d−r has distinct roots, the second case when there are multiple roots.

Remark In higher dimension the possibilities for the rank are much more compli-
cated, see recent work by Landsberg, Teitler, Bernardi, Ida’, Gimigliano.

Remark In space of linear maps, the rank is a lower semicontinuous function, that
is the locus where the rank is ≤ k is closed. In general, the rank is neither lower nor
upper semicontinuous.

Exercise Prove that in S3C3 the rank is neither lower nor upper semicontinuous,
by finding a sequence of tensors of rank 2 which has limit a tensor of rank 3, and
another sequence of tensors of rank 2 which has limit a tensor of rank 1.

Geometric solution of the equation of third degree (with complex coeffi-
cients) If f = a0x

3 + 3a1x
2y + 3a2a2xy

2 + a3y
3 consider[

a0 a1 a2
a1 a2 a3

]
The kernel is given by∣∣∣∣ a1 a2

a2 a3

∣∣∣∣ ∂0 − ∣∣∣∣ a0 a2
a1 a3

∣∣∣∣ ∂1 +

∣∣∣∣ a0 a1
a1 a2

∣∣∣∣ ∂2
4



Decompose it as
(−β1∂x + α1∂y)(−β2∂x + α2∂y)

The condition that this decomposition has two distinct factors is

∆ 6= 0

where

∆ :=

[
a0 a2
a1 a3

]2
− 4

[
a1 a2
a2 a3

]
·
[
a0 a1
a1 a2

]
Then (by putting ci inside the linear forms we get f = (α1x+β1y)3 + (α2x+β2y)3

so that the solution of the equation f = 0 are given by
[
α1x+β1y
α2x+β2y)3

]3
= −1 Let εj =

exp (1 + 2j)π
√
−1 for j = 0, 1, 2 be the three cubic roots of −1, then the solutions are

given by the solution of the three linear equations

(α1x+ β1y) + εj(α2x+ β2y) = 0 for j = 0, 1, 2

Geometrically, the line through (α1x + β1y)3 and (α2x + β2y)3 is the unique line
through f which is secant to the twisted cubic.

Exercises

1. Decompose x3 + 3xy2 as a sum of two cubes

2. Decompose x3 − 3xy2 as a sum of two cubes

3. Modify the solution of the equation of third degree, in order to cover the case
∆ = 0

4. Decompose (with the help of a computer), a general homogeneous polynomial
F (x, y)of degree 5.

5. What is the dual variety of the hypersurface of forms of rank ≤ d in P(S2dU) ?
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2 Determinantal Varieties in Spaces of Linear Maps

Let V , W be K-vector spaces, with dimV = n+ 1, dimW = m+ 1.
Consider the space of linear maps V ⊗W = Hom(V ∨,W ).
The rank of f ∈ Hom(V ∨,W ) is by definition dim Im f . The linear maps of rank

≤ r are defined by minors of size r + 1. Let

Dr = {f ∈ V ⊗W |rk f ≤ r}

Proposition 2.1 Let K = R or K = C. The singular locus of Dr coincides with Dr−1,
that is Dr \Dr−1 is a smooth variety. The codimension of Dr is (n+1−r)(m+1−r).

Proof: Dr \Dr−1 is an orbit under the action of GL(V )×GL(W ). After a choice of
basis, a representant for this orbit is given by the block matrix[

Ir 0

0 0

]
where Ir is the identity matrix of size r. In order to compute the codimension, consider
that, in a neighborhood of the previous matrix, the local equations of Dr are given by
the vanishing of all minors obtained adding one row and column to the North-West
r × r block. In this way the entries of the (n+ 1− r)× (m+ 1− r) South-East block
are determined (on Dr) by the other ones.

Parametric description of Dr For any pairs (vi, wi) ∈ V ×W consider
∑r

i=1 vi⊗
wi ∈ Dr. In this way we get all of Dr. Note that the parameters involved are more
than the dimension of Dr, so that they are superabundant. The description is better
understood in terms of projective geometry, because all Dr are cones. The projec-
tivization of D1 in P(V ⊗W ) is isomorphic to the Segre variety P(V )×P(W ), which
is defined.

In other terms, the Segre variety P(V ) × P(W ) consists of all the decomposable
tensors.

This allows to define the rank in a second way. IfX ⊆ PN is a projective variety, the
rank of p ∈ PN with respect to X is the minimum r such that there exists x1 . . . xr ∈ X
such that p ∈< x1, . . . , xr >. By abuse of notations, we identify the points in the
projective space with their suitable affine representative and we write p =

∑r
i=1 xi. So

the rank can be considered as the minimum length of an additive decomposition of p
in terms of X. Note that the rank is 1 if and only if p ∈ X.

Exercise The rank of f ∈ P(V ⊗W ) as linear map and the rank of f with respect
to P(V )×P(W ) coincide.

Cartesian description of Dr Dr is the variety given by the vanishing of all
(r + 1)-minors. This is the reason why Dr is called a determinantal variety. These
are homogeneous equations, then define also the projectivizations. Note that D1 '
P(V )×P(W ) is given by the vanishing of all 2-minors, which are quadratic equations.

It is known even more, that the ideal of Dr is generated by all the (r + 1)-minors,
they are homogeneous polynomials of degree r + 1.
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2.1 Symmetric case

The symmetric product S2V consists of all symmetric matrices of size (n+1)×(n+1).
It can be identified with homogeneous quadratic polynomials in n+ 1 variables.

Let
DSr = {f ∈ S2V |rk f ≤ r}

Again the singular locus of DSr coincides with DSr−1, that is DSr \ DSr−1 is a
smooth variety.

If dimV = n+ 1, the codimension of DSr is
(
n+2−r

2

)
.

Parametric description of DSr For any vi ∈ V consider
∑r

i=1 v
2
i ∈ SDr. In this

way we get all of DSr. Again the variables involved are more than the dimension of
DSr, with the exception r = 1.

Cartesian description of DSr DSr is the variety given by the vanishing of all
(r + 1)-minors.

It is known even more, that the ideal of DSr is generated by all the (r+ 1)-minors,
they are homogeneous polynomials of degree r + 1.

Exercise In the real case, note that the quadratic Veronese embedding gives just
one component of the affine variety DS1 of symmetric maps of rank 1, namely the
positive semidefinite one. Modify the parametrization of DSr, which has now several
connected components, according to the signature. For example the projectivization
of DS2consists of two semialgebraic varieties, in one the zero locus is a pair of real
hyperplanes, in the other one is a pait of imaginary conjugate hyperplanes.

2.2 Skew-symmetric case

The alternating product ∧2V consists of all skew-symmetric matrices of size (n+ 1)×
(n+1). It can be identified with homogeneous quadratic polynomials in n+1 variables.

Let
DAr = {f ∈ ∧2V |rk f ≤ r}

Since the rank of skew-symmetric matrices is always even, we may assume that r
is even. Again the singular locus of DAr coincides with DAr−2, that is DAr \DAr−2
is a smooth variety.

If dimV = n+ 1, the codimension of DAr is
(
n+1−r

2

)
.

Parametric description of DAr For any pairs (vi, v
′
i) ∈ V ×V consider

∑r
i=1 vi∧

v′i ∈ DAr. In this way we get all of DAr. Again the variables involved are more than
the dimension of DAr.

Cartesian description of DAr DAr is the variety given by the vanishing of all
(r + 2)-subpfaffians.

It is known even more, that the ideal of DAr is generated by all the (r + 2)-
subfaffians, they are homogeneous polynomials of degree r+2

2 .
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2.3 k-secant varieties

Let X ⊆ PN . We remind that the r-secant variety σr(X) is defined as the Zariski
closure of all the points of rank r. It contains all points of rank ≤ r, but it may contain
also points of higher rank (the easiest example is when X is the twisted cubic).

Over R it is better defined as the Euclidean closure
The expected dimension of σr(X) is r dimX + (r − 1), unless it fills the ambient

space, so it is better written as min{r dimX + (r − 1), N}.
The three basic varieties X we are interested in these lectures are

1. ) the Veronese variety vd(P(V )), which corresponds to the decomposable tensors
in Sd(V ).

2. ) the Segre variety P(V1)× . . .×P(Vk), which corresponds to the decomposable
tensors in V1 ⊗ . . . ⊗ Vk (called the space of k-way tensors). The “hypercubic”
case when all Vi are equal to V is particularly important. The Veronese case is
the symmetrization of this one.

3. ) the Grassmann variety Gr(Pk,P(V )), which corresponds to the decompos-
able tensors in ∧k+1(V ). The Grasmannian parametrizes all vector subspaces of
dimension k + 1 of V .

In terms of secant varieties, Dr = σr(D1). In particular Dr can be found by vector
space operations by knowing just D1. Note that D1 = Pn × Pm corresponds to the
subcase k = 2 of the 2.) above. Since that case has been understood with minors of
matrices, this explains why the research for equations of σk(P(V1) × . . . × P(Vk)) is
understood as “generalized minors” (of hypermatrices).

In the same vein, DS1 = v2(P(V ) corresponds to the subcase d = 2 of 1.) above.
Hence the research for equations of σk(vd(P(V )) is understood as “generalized minors”
of symmetric hypermatrices.

Finally, DA1 = Gr(P1,P(V )) corresponds to the subcase k = 1 of 3.) above.
Hence the research for equations of σs(Gr(P

k,P(V ))) is understood as a look for
“hyperpfaffians”.

In all the cases 1.), 2.), 3.), a parametric description is natural, but a cartesian
description is still missing, and the main topic of these lectures is how to overcome
this problem.

The degrees of the determinantal varieties in space of linear maps were computed
in the XIX century (Schubert, Segre, Giambelli,...) and they are interesting

degDr = deg (σr(P
n ×Pm)) =

n−k∏
i=0

(m+ i+ 1)!i!

(r + i)!(m− k + i+ 1)!

In particular degD1 = deg (Pn ×Pm) =
(
m+n
n

)
and in the case n ≤ m degDn =

deg (σn(Pn ×Pm)) =
(
m+1
n

)
.

degDSr = deg (σr(v2P
n)) =

n−r∏
i=0

(
n+i+1
n−r−i+1

)(
2i+1
i

)
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In particular degDS1 = deg (v2P
n) = 2n and degDSn = n+1 (it is a determinant).

degDAr = deg
(
σr(Gr(P

1,Pn)
)

=
1

2n−r

n−r−1∏
i=0

(
n+i+1
n−r−i

)(
2i+1
i

)
In particular degDA1 = deg(Gr(P1,Pn) = 1

n

(
2n−2
n−1

)
(Catalan number) and in the

case n odd degDAn−1 = n+1
2 (it is a pfaffian) and in the case n even degDAn−2 =

1
4

(
n+2
3

)
.

2.4 The tangent and the normal spaces

To understand better a variety, it is very useful to know its tangent (and normal)
space. They are linear objects that describe the infinitesimal behaviour.

Parametric description of tangent space at Dr

Proposition 2.2 The tangent space of D1 at v ⊗ w is given by

v ⊗W + V ⊗ w = {v ⊗ w′ + v′ ⊗ w,∀v′ ∈ V,w′ ∈W}

Proof: Consider any curve v(t)⊗ w(t) ∈ D1 such that v(0) = v, w(0) = w.
The derivative for t = 0 is given by v′(0) ⊗ w + v ⊗ w′(0). As v′(0) and w′(0) are

arbitrary vectors, the thesis follows.

The previous proposition is the case r = 1 of the following more general

Proposition 2.3 The tangent space of Dr at
∑r

i=1 vi ⊗ wi ∈ Dr is given by

r∑
i=1

vi ⊗W + V ⊗ wi

The proof is exactly the same. This can be seen also as the first display of the basic
Terracini lemma.

If f =
∑r

i=1 vi ⊗ wi with minimal r, we get that both vi and wi are independent,
otherwise we can express f as a sum of fewer r. For higher way tensors this is no more
possible.

Cartesian description of tangent space at Dr

Theorem 2.4 Let f ∈ Dr ⊆ Hom(V ∨,W ). The tangent space to Dr at f is given by
{g ∈ Hom(V ∨,W )|g(ker f) ⊆ Im f}

There are several proofs of this theorem, we propose the following one which is natural in

the setting of tensor decomposition.

Proof: By assumption there are vi ∈ V and wi ∈ W such that f =
∑r

i=1 vi ⊗ wi
Note that ker f =< v1, . . . , vr >

⊥ and Im f =< w1, . . . wr >
If g ∈

∑r
i=1 vi⊗W +V ⊗wi then g(ker f) ⊆ Im f . This proves one inclusion. The

second inclusion follows by a dimensional count.
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Corollary 2.5 The normal space at f ∈ Dr is given by

Hom (ker f,W/Im f)

The conormal space (it is the dual of the normal space) at f ∈ Dr is given by

(ker f)⊗ (Im f)⊥ ⊆ V ∨ ⊗W∨

The conormal space is quite useful because it coincides with T⊥f , the orthogonal of
the tangent space.

Exercise For f ∈ Hom (V ∨,W ) denote by f t ∈ Hom (W∨, V ) the transpose of f ,
defined by f t(w)(v) = f(v)(w) for any w ∈W∨, v ∈ V ∨. Prove that (ker f)⊥ = Im f t.
Let V = W ,prove that f is symmetric if and only if f = f t, f is skew-symmetric if
and only if f = −f t

Corollary 2.6 Symmetric case In the symmetric case (V = W and f ∈ S2V ) we have
that (ker f)⊥ = Im f and the conormal space to DSr at f is given by

S2(ker f) ⊆ S2(V ∨)

Corollary 2.7 Skew-ymmetric case In the skew-symmetric case (V = W and f ∈
∧2V ) we have again that (ker f)⊥ = Im f and the conormal space to DAr at f is
given by

∧2(ker f) ⊆ ∧2(V ∨)

In practice, the rank of any f ∈ V ⊗W can be computed efficiently by Gaussian
elimination. Theoretically, Gaussian elimination consists in rewriting

∑r
i=1 vi ⊗ wi in

such a way that both vi and wj are independent. Then the rank is the minimum
number of summands. This method does not work for higher format tensor.

Exercises Prove that a matrix of rank r is sum of r matrices of rank one. Is the
decomposition unique ? Prove that a symmetric matrix of rank r is sum of r symmetric
matrices of rank one. Is the decomposition unique ?

Exercises on the pfaffian
Let ω = [ωij ] be a skew-symmetric matrix 2n× 2n with entries in K = R or C.
Let {e1, . . . , e2n} be the standard basis of V = K2n. The matrix ω corresponds to

the 2-form
ω̃ =

∑
i<j

ωijei ∧ ej ∈ ∧2V

We set
ω̃∧n = (n!)Pf(ω)e1 ∧ . . . ∧ e2n

where Pf(ω) ∈ K is called the pfaffian of ω.
The pfaffian is defined up to the choice of an isomorphism ∧2nV ' K.
For example

Pf

[
0 a
−a 0

]
= a
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Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = af − be+ cd

• 1) Prove that if g ∈ GL(2n) we have Pf(gtωg) = det g · Pf(ω).

• 2) Prove that rk ω ≥ 2k if and only if ω̃∧k 6= 0.

• 3) Deduce that rk ω ≥ 2k if and only if there exists a nonsingular principal
submatrix of size 2k × 2k. Is the analogous statement for symmetric matrices
true ?

• 4) Let Jr be the skew-symmetric matrix of size 2n × 2n which has the first r

diagonal blocks equal to

[
0 1
−1 0

]
. Prove that Pf(Jn) = 1 and that there exists

g ∈ GL(2n) such that gtωg = Jr for some r. Deduce that rk ω is even. (Hint:
we may assume that ω12 6= 0. There exists g ∈ GL(2n) such that (gtωg)1i = 0
for i ≥ 3 . . .)

• 5) Deduce by 1) and 4) that Pf2(ω) = det(ω).

Let ω be a skew-symmetric matrix of size (2n+ 1)× (2n+ 1).

• 6) Let adω be the adjoint matrix of ω. Prove that rk (adω) ≤ 1 and moreover
rk (adω) = 1 if and only if rk (ω) = 2n.

• 7) Let Ci be the i-th principal subpfaffian obtained by deleting by ω the i-th
row and the i-th column. If Mij is the submatrix of ω obtained by deleting by ω
the i-th row and the j-th column, prove that det(Mij) = CiCj .

Gaussian elimination rephrased Let Ai be the rows (resp. Aj be the columns
of a n×m matrix. Then A =

∑n
i=1 ei⊗Ai =

∑m
j=1A

j ⊗ ej . Prove that if B1, . . . Br is
a basis of the row space, then there exist vi ∈ Kn such that A =

∑r
i=1 vi ⊗Bi. Prove

that if B1, . . . Br is a basis of the column space, then there exist wi ∈ Km such that
A =

∑r
i=1B

i ⊗ wi.
Exercises Find the tangent space of Dr ⊆ Hom (Kn+1,Km+1) at the following

matrices of rank r

1. i)  1

 where 1 is at place (i, j)
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2. i) 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


Answer ai,j = xi + yj

3. i) 
1 1 1 1 1
2 1 1 1 1
1 1 1 1 1
1 1 1 1 1


4. i) 

2
1

1


Find the tangent space of DSr (as subspace of symmetric matrices) at the following
symmetric matrices of rank r

1. i) 
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Answer ai,j = xi + xj

2. i) 
2

1
1


Find the tangent space of Dr (as subspace of skew-symmetric matrices) at the

following skew-symmetric matrices of rank r

1. i) 
1

−1


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2. i) 
0 2
−2

3
−3


Compute the intersection of the two tangent spaces of Dr (as subspace of symmetric

matrices) at the following two symmetric matrices of rank r
2


 1


Let A be the tensor of format a× b× c such that Ai,j,k = ti+j+k for a fixed t ∈ K.

Compute the rank of A and the decomposition of A.
Answer If t = 0 the rank is zero. If t 6= 0 the rank is one, indeed A = (t, . . . , ta)⊗

(t, . . . , tb)⊗ (t, . . . , tc).
It is well known that Vandermonde matrices appear in polynomial interpolation in

one variable. The generalized Vandermonde matrices appear in polynomial interpola-
tion in more variable.

2.5 The Terracini Lemma

Lemma 2.8 (First Terracini lemma) Let p1, . . . pk ∈ Y be general points and
z ∈< p1, . . . , pk > a general point. Then

Tzσk(Y ) =< Tp1Y, . . . , TpkY > .

Proof. Let Y (τ) = Y (τ1, . . . , τn) be a local parametrization of Y . We denote by
Yj(τ) the partial derivative with respect to τj . Let pi be the point corresponding to
τ i = (τ i1, . . . , τ

i
n). The space < Tp1Y, . . . , TpkY > is spanned by the k(n + 1) rows of

the following matrix
...

Y (τ i)
Y1(τ

i)
...

Yn(τ i)
...

(here we write only the i-th block of rows, i = 1, . . . , k).
We write also the local parametrization of σk(Y ) given by

Φ(τ1, . . . , τk, λ1, . . . , λk−1) =
k−1∑
i=1

λiY (τ i) + Y (τk)
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depending on kn parameters τ ij and k − 1 parameters λi. The matrix whose rows are
given by Φ and its kn+ k − 1 partial derivatives computed at z is∑k−1

i=1 λiY (τ i) + Y (τk)
...

λiY1(τ
i)

...
λiYn(τ i)

...
Y1(τ

k)
...

Yn(τk)
Y (τ1)

...
Y (τk−1)

and its rows span Tzσk(Y ). It is elementary to check that the two above matrices are
obtained one from the other by performing elementary operations on rows, hence they
have the same row space and the same rank.
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3 The symmetric flattening (catalecticant)

Clebsch noticed in the XIX century that σ5(v4(P
2)) has not the expected dimension

and it gives an interesting defective example.
Clebsch main insight was to write a quartics as a“quadric of quadrics”, in the

following way

f = a00x
4+4a10x

3y+4a01x
3z+6a20x

2y2+12a11x
2yz+6a02x

2z2+4a30xy
3+12a21xy

2z+12a12xyz
2+

4a03xz
3 + a40y

4 + 4a31y
3z + 6a22y

2z2 + 4a13yz
3 + a04z

4 = W t · Cf ·W

where W t = (x2, 2xy, 2xz, y2, 2yz, z2) and

Cf =



a00 a10 a01 a20 a11 a02
a10 a20 a11 a30 a21 a12
a01 a11 a02 a21 a12 a03
a20 a30 a21 a40 a31 a22
a11 a21 a12 a31 a22 a13
a02 a12 a03 a22 a13 a04


The basic property is that if f = l4 is the 4-th power of a linear form, then Cf

has rank 1 (as we will see in a while with the concept of apolarity). It follows that if
f =

∑5
i=1 l

4
i is the sum of five 4-th powers of linear forms, then

rk Cf = rk
5∑
i=1

Cl4i
≤

5∑
i=1

rk Cl4i
=

5∑
i=1

1 = 5

Hence σ5(v4(P
2)) ⊆ P(S4K3) = P14 is contained in the degree 6 hypersurface given

by detCf = 0, This is surprising, because the expected dimension of σ5(v4(P
2)) is 5 ∗

2+4 = 14. Clebsch main result was that σ5(v4(P
2)) coincides with the “catalecticant”

hypersurface with equation detCf = 0, which has degree 6 and dimension 13.
Exercise Show that there are infinitely many symmetric matrices Cf such that

f = W t · Cf ·W .
Exercise Prove that xz(xz + y2) is not the sum of five 4-th powers.
Exercise What is the dual variety of catalecticant variety of plane quartics ?
A convenient way to implement the construction of the matrices of Aφon a computer

is the following. Let Di be a basis of homogeneous differential operators of degree m.
Let Tj be a basis of homogeneous differential operators of degree d − m. Then the
(i, j) entry of Aφ is given by DiTjφ. With Macaulay, the above construction can be
implemented with the command “diff”.

If dim V = 3, the degrees of σk(vd(P
2)) has been computed by Ellingsrud and

Stromme. This is useful in order to check some cases with the computer.

15



3.1 Interlude: Young diagrams and SL(n)-representations

For any filling λ of a Young diagram with d boxes, we want to define the Schur
projection cλ : ⊗d V → ⊗dV .

Let Σd be the symmetric group of permutations over d elements. Due to the filling,
we can consider the elements of Σd as permuting the boxes. Let Rλ ⊆ Σd be the
subgroup of permutations preserving each row.

Let Cλ ⊆ Σd be the subgroup of permutations preserving each column.
For any p ∈ Σd, with abuse of notation, we call p also the induced p ∈ End(V ⊗d.
Let

cλ =
∑
σ∈Rλ

∑
τ∈Cλ

ε(τ)στ ∈ End(V ⊗d

Theorem 3.1 The image of cλ is a irreducible GL(V )-module, that we denote by
SλV , which is nonzero iff the number of rows is smaller or equal than dimV . The
isomorphism class does not depend on the filling, and we can write SλV just for a
Young diagram λ.

An irreducible GL(V )-module is isomorphic to SλV ⊗ (detV )a, for some Young
diagram λ and some a ∈ Z.

Any GL(V )-modules is a sum of irreducible ones.

A irreducible SL(V )-modules is isomorphic to SλV , where the number of rows of
λ is ≤ dimV − 1. See Landsberg book or Fulton-Harris book for more details.

3.2 Inheritance

For this section, see JM lectures.
Inheritance plus the equations for σ2(vd(P

1)), gives the equations for σ2(vd(P
n)).

Proposition 3.2 Let Pn = P(V ) and k ≤ n. Then for any φ ∈ SdV the condition

rank
[
Aφ : V ∨ → Sd−1(V )

]
≤ k

defines the “subspace variety” consisting of hypersurfaces which are cones, with vertex
a linear subspace of dimension n− k.

Proof We can consider a base of V ∨ given by ∂
∂xi

for i = 0, . . . n. Then Aφ
∂
∂xi

= ∂φ
∂xi

.

If the image of Aφ has equations
∑

i aij
∂φ
∂xi

for j = 1, . . . n − k then the points with
coordinates (a0j , . . . anj) span the vertex of the cone φ = 0.

Corollary 3.3 Let Pn = P(V ). Then for any φ ∈ SdV the condition

rank
[
Aφ : V ∨ → Sd−1(V )

]
≤ 1

defines vd(P
n).

The above description is enough to get the equations of σ2 in higher dimension.
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Theorem 3.4 Let Pn = P(V ). The variety σ2(vd(P
n)) is defined scheme-theoretically

by the conditions

rank
[
Aφ : V ∨ → Sd−1(V )

]
≤ 2

rank
[
A′φ : S2V ∨ → Sd−2(V )

]
≤ 2

Proof The first condition ensures that φ defines a cone with vertex a codimension two
subspace, so φ can be defined by two homogeneous coordinates. At this point it is
enough to apply the theorem for the rational normal curve vd(P

1).

3.3 Apolarity

For f ∈ SdV , we define A(f)e,d−e : SeV ∨ → Sd−eV . Note that the transpose is
A(f)d−e,e.

In the classical literature g ∈ SeV ∨ is said to be apolar to f if g · f = 0, that is if
g ∈ kerA(f)e,d−e.

The application to the decomposition on sum of powers relies on a simple principle
and generalizes what we have seen for binary forms to higher dimensional Veronese
varieties.

Proposition 3.5 Let Z = {l1, . . . , lk} ⊆ P(V ∨) and assume they impose independent
conditions to hypersurfaces of degree d. Then < ld1, . . . , l

d
k >
⊥= H0(IZ(d))

Proof: If g is apolynomial of degree d, then g contracted with ldi coincides with the
value of f at li. Then the inclusion H0(IZ(d)) ⊆< ld1, . . . , l

d
k >

⊥ is obvious and the
equality follows because, by the assumption, both spaces have the same dimension.

Proposition 3.6 Let f =
∑k

i=1(li)
d and let Z = {l1, . . . , lk} ⊆ P(V ∨). We have

H0(IZ(e)) ⊆ kerAf Im Af ⊆< ld−e1 , . . . , ld−ek >.
Moreover, if one of the previous inclusions hold, we get that there exist ci ∈ K such

that f =
∑k

i=1 ci(li)
d

Proof: The inclusion statement about the Image is obvious.
The statement about the kernel is the dual one because of Prop. 3.5, applied to the

transpose map. Conversely, if H0(IZ(e)) ⊆ kerAe,d−e then there is a decomposition of
f in terms of Z that it is better written as f =

∑
zi∈Z λizi for λi ∈ K.

Indeed the apolar space of polynomials of degree d which are apolar to any g ∈ IZ(e)
it is spanned by the duals Zdi , since f is in this space, it is a combination of Zdi .

Let’s see an example. Let φ =
∑5

i=1 l
3
i ∈ S3C4, as usual denote by Z = {l1, . . . , l5}

the set of 5 points in the dual space and consider the catalecticant morphism

A(φ)2,1 : S2C4∨ → S1C4

The kernel of A(φ)2,1 is a linear system of dimension 6 of quadrics, containing the
5-dimensional system of quadrics passing through the five points giving Z.
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Lemma 3.7 (Lasker) Let f ∈ V , so that fd ∈ SdV . The conormal space
(
T[fd]vd(P

(V ))
)⊥
⊆

P(SdV ∨) consists of all the hypersurfaces singular at [f ]. More precisely, if we denote
by C(V d,n) the affine cone over V d,n, then the following holds(

T[fd]vd(P
(V ))

)⊥
=
(
m2

[f ]

)
d
⊆ SdV ∨

Proof. Let e0, . . . en be a basis of V and x0, . . . , xn its dual basis. Due to the GL(V )-
action it is enough to check the statement for f = e0. Then m[f ] = (x1, . . . , xn),

m2
[f ] = (x21, x1x2, . . . , x

2
n), so that

(
m2

[f ]

)
d

is generated by all monomials of degree d

with the exception of xd0, x
d−1
0 x1, . . . , x

d−1
0 xn.

Since Ted0
C(vd(P

(V ))) =< ed0, e
d−1
0 e1, . . . , e

d−1
0 en > the thesis follows.

Lasker Lemma and Terracini Lemma imply together

Theorem 3.8 Let f =
∑k

i=1(li)
d and let Z = {l1, . . . , le} ⊆ P(V ∨). Then the conor-

mal space is given by the space H0(IZ2(d)) of polynomials of degree d which are singular
at Z.

Proof: The orthogonal of Tl1 + . . .+ Tle is given by ∩ei=1T
⊥
li

.

Theorem 3.9 Criterion for the catalecticant
Let f =

∑k
i=1(li)

d and let Z = {l1, . . . , lk} ⊆ P(V ∨). If the map

H0(IZ(e))⊗H0(IZ(d− e))→ H0(IZ2(d))

is surjective then the k + 1-minors of the catalecticant cut locally σk(vd(P
n)) at f as

scheme. If there exists a Z such that the above map is surjective, then σk(vd(P
n)) is

one irreducible component of the variety given by the k+ 1-minors of the catalecticant
Ae,d−e.

Proof: Since the catalecticant matrix has rank one on points of (vd(P
n), it has rank

≤ k on points of σk(vd(P
n)). It follows that the variety defined by the k + 1-minors

of the catalecticant contains σk(vd(P
n)). So it is enough to see that the two conormal

space coincide.
The conormal space at the variety cutted by the k + 1-minors contains the image

of
H0(IZ(e))⊗H0(IZ(d− e))→ H0(IZ2(d))

(by Cor. 2.5 and Prop. 3.6).
Since the target space is the conormal space at f of σk(vd(P

n)) by Thm. 3.7, the
thesis follows.

The first application is the promised proof that the minors of the catalecticant cut
vd(P

1) transversally.
End of proof of Thm. 1.3 Let Z ⊂ P1 be a finite set of points. Then H0(IZ(e))

consists of the polynomials of degree e whose roots contain Z. If Z = (α1, β1), . . . (αk, βk),
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then the polynomials in H0(IZ(e)) have the form
∏k
i=1(xβi − yαi)ge−k where ge−k

is any polynomial of degree e − k. The polynomials in H0(IZ2(d)) have the form∏k
i=1(xβi − yαi)

2gd−2k where gd−2k is any polynomial of degree d − 2k. Then the
surjectivity of

H0(IZ(e))⊗H0(IZ(d− e))→ H0(IZ2(d))

is obvious.

Theorem 3.10 [Iarrobino-Kanev Theorem 4.10A] In the case d = 2m, in the range
k ≤

(
m+n−1

n

)
, the k + 1-minors of the catalecticant A(φ)m,m define a variety which

contains σk(vd(P
n)) as irreducible component.

Proof: Let Z = {u1, . . . , uk} ⊆ Pn. By the Thm. 3.9, it is enough to show that

H0(IZ(m))⊗H0(IZ(m))
g−→H0(IZ2O(2m))

is surjective. Thanks to the Theorem in [LO], we may assume that k =
(
m+n−1

n

)
.

This case can be proved by degenerating Z to the set of vertices of m+ n− 1 general
hyperplanes, every vertex being the intersection of n hyperplanes.

In order to prove this particular case, note that h0(IZ(m)) =
(
m+n
m

)
−
(
m+n−1
m−1

)
=(

m+n−1
m

)
and a basis of H0(IZ(m)) is given by all the polynomials obtained as product

of m distinct hyperplanes among the m+n−1 hyperplanes. Indeed every such product
forgets exactly n− 1 hyperplanes, and then vanishes on every vertex. Moreover these
monomials are independent, because for any I such that |I| = n − 1, the monomial∏
i/∈I xi is the only one which do not vanish on the line {xi = 0, for i ∈ I}, hence it

cannot be a linear combination of the others. For m = 1 (any n) or n = 1 (any m) the
surjectivity of g is obvious. Let us prove it, in general, by double induction on m and
n. Fix one hyperplane H1, according to it decompose Z = Z1 ∪ Z2 where Z1 consists
of the

(
m+n−2
n−1

)
points on H1 and Z2 consists of the

(
m+n−2

n

)
points outside H1. We

have the following exact sequence

0−→H0(IZ2
2∪Z1

(2m− 1))
g−→H0(IZ2(2m))−→H0(IZ2

1 ,H1
(2m))

where g is the multiplication by the equation of H1. From this sequence it follows by
induction that h0(IZ2(2m)) has the expected dimension

(
2m+n
n

)
− (n+ 1)

(
m+n−1
m−1

)
, so

that the sequence is exact also on the right. By the inductive assumption H0(IZ2(m−
1))⊗H0(IZ2(m−1)) surjects over H0(IZ2

2
(2m−2)), hence H0(IZ(m))⊗H0(IZ2(m−1))

surjects over H0(IZ2
2∪Z1

(2m− 1)). Consider the commutative diagram

H0(IZ(m))⊗H0(IZ2(m− 1)) −→ H0(IZ(m))⊗H0(IZ(m)) −→ H0(IZ1,H1(m))⊗H0(IZ1,H1(m)) −→ 0yh1

yh2 yh3

0 −→ H0(IZ2
2∪Z1

(2m− 1))
g−→ H0(IZ2(2m)) −→ H0(IZ2

1 ,H1
(2m))

We have seen that h1 is surjective, by the inductive assumption we have also that
h3 is surjective. A diagram chase shows that h2 is surjective as we wanted.
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Remark Iarrobino and Kanev prove a similar statement for odd degree. In the
last sections we will see that with the Young flattening it is possible to improve this
bound.

Remark There are cases covered by Thm. 3.10 where the minors of catalecticant
cut several irreducible components, only one of them is the secant variety. The first
case is described in example 7.11 of [Iarrobino-Kanev] and corresponds to 11-minors
of A(f)4,4 for f ∈ S8(C3), which define at least two components, one of them being
σ10(v8(P

2)).
Exercise Find an example where

H0(IZ(e))⊗H0(IZ(d− e))→ H0(IZ2(d))

is not surjective. Hint: Take Z be given by 3 general points in P2 and d = 3, any e.
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4 The apolar ring and the Iarrobino-Kanev conditions

The subspace of ⊕eSeV ∨ of operators g such that g(φ) = 0 is an ideal Iφ. Note that
when e ≥ deg φ then the graded part of Iφ coincides with SeV ∨.

The quotient ring Rφ = (⊕eSeV ∨) /Iφ is an Artinian graded ring, which is called
the apolar ring of φ.

Theorem 4.1 Macaulay Lemma
Rφ ' Rφ′ ⇐⇒ φ = cφ′ for some c ∈ K∗.

Proof: Let Riφ be the graded summand of degree i of Rφ. Note that Rdφ has
dimension 1 and it can be identified with K, up to the choice of a scalar. Then the
multiplication Sd(R1

φ) → Rdφ ' K defines a polynomial which can be identified with
φ.

The Macaulay lemma says that the apolar rings contains all the necessary informa-
tions on the polynomial φ. For more details see [Ranestad-Schreyer], where a syzygy
approach is used to compute the Waring decomposition. The dimension of the graded
summands of the apolar ring, can be computed by the ranks of the several catalecticant
matrices.

On P2, the theorem of Buchsbaum-Eisenbud describes correspondingly all the pos-
sible sequences for the ranks of catalecticant matrices.

Each sequences of ranks corresponds to several skew-symmetric resolutions. Among
these resolutions, there is a minimal one.

Let see some examples
For general φ ∈ σ6(v6(P2)) we have the resolution

O(−9)−→O(−6)4 ⊕O(−4)3−→O(−5)3 ⊕O(−3)4−→Iφ−→0

For general φ ∈ σ7(v6(P2)) we have the resolution

O(−9)−→O(−6)3 ⊕O(−5)⊕O(−4)−→O(−5)⊕O(−4)⊕O(−3)3−→Iφ−→0

For general φ ∈ σ8(v6(P2)) we have the resolution

O(−9)−→O(−6)2 ⊕O(−5)3−→O(−4)3 ⊕O(−3)2−→Iφ−→0

For general φ ∈ σ9(v6(P2)) we have the resolution

O(−9)−→O(−6)⊕O(−5)6−→O(−4)6 ⊕O(−3)−→Iφ−→0

For general φ ∈ σ10(v6(P2)) = P27 we have the resolution

O(−9)−→O(−5)9−→O(−4)9−→Iφ−→0

Often important informations can be achieved by the sequence of ranks of the
several catalecticants, of different size.
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Indeed, the polynomials such that their sequence of ranks of the several catalec-
ticants is fixed, make a irreducible variety. This makes a description with open and
closed conditions.

This applies in particular to σk(vd(P
n)), which have an open part which can be

described exactly by asking, for 2e ≤ d that rk A(f)e,d−e = min
(
k,
(
n+e
e

))
Example This example is due to S. Diesel, see also Iarrobino-Kanev , example

7.11.
The sequence of ranks of rk A(f)e,8−e for general f ∈ σ10(v8(P

2)) is (for e =
0, 1, . . .) 1, 3, 6, 10, 10, 10, 6, 3, 1.

There is another irreducible component, containing x3y3z2 such that the sequence
of ranks is 1, 3, 6, 9, 10, 9, 6, 3, 1.

The general element of this second component has border rank bigger than 10.
The Conca-Valla formula describes the dimension of these components
Let H = (h0, h1, . . . ...) be the finite sequence of the ranks of the catalecticants.

This is the Hilbert function of the apolar ring. Let pi = hi − 3hi−1 + 3hi−2 − hi−3 the
third difference sequence.

Let Gor(H) be the variety of polynomials φ ∈ P(Sd(C3)) such that the apolar ring
of φ has Hilbert function H.

Theorem 4.2 Iarrobino-Diesel
Gor(H) is an irreducible quasi-projective variety

Theorem 4.3 Conca-Valla
if d = 2t is even, dimGor(H) =

(
ht + 3ht−1 −

∑j
i=0 hipi

)
/2

while if d = 2t+ 1 is odd, dimGor(H) =
(

3ht + ht−1 −
∑j

i=0 hipi

)
/2

Remark By analizing possible Hilbert functions occurring, we have found in
[Landsberg-Ottaviani] the equations for several σk(vd(P

2)) for k ≤ 6.
Let f be a hypersurface of degree dand let z be a point. Let’s recall that the polar

Pz(f) is the degree d− 1 hypersurface
∑
zi

∂f
∂xi

(this does not depend on the choice of
coordinates).

Consider, for a cubic f , the locus of x such that the polar Px(f) is singular. This
coincides with the Hessian of f .

4.1 De Paolis algorithm

Let C be a general cubic curve defined by F ∈ S3(V ). Given a general line l0 ⊂ P2

there are three uniquely defined lines li for i = 1, . . . 3 (that we identify with their
equations) such that (with suitably chosen constants defining the equations)

F =
3∑
i=0

l3i

The three lines can be found in the following way. If l0 ∩H(C) = {P1, P2, P3}, denote
by Qi the singular point of the conic PPiC. Then li =< Pi, Qj > with any j 6= i.
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Proof. Assume F =
∑3

i=0 l
3
i and let P1 = l0∩l1. Then PP1C has equation l32+l33 = 0

and it is singular on l2 ∩ l3 which we denoted Q1. In particular P1 belongs to H(C).
The same argument works for P2 and P3, so that the points Qi are uniquely determined
by the points Pi, which in turn are the intersection points of l0 with H(C).

4.2 Sylvester Pentahedral Theorem

Theorem 4.4 Let f ∈ S3C4 be general. There is a unique decomposition f =
∑5

i=1 l
3
i

where the 10 vertices points of the 5 planes li coincide with the 10 points such that
rk Px(f) ≤ 2}.

Proof: Let’s prove the uniqueness, which is an extension of De paolis algorithm.
Assume we have one decomposition f =

∑5
i=1 l

3
i . Consider {x ∈ P3|rk Px(f) ≤ 2}.

It is given by the intersection of a linear P3 with the variety DS2 ⊆ P9 which has
codimension 3 and degree 10. Hence the intersection it is given by 10 points. But
the 10 points are already obtained by {li = lj = lk = 0}. Indeed in these 10 points,
3 among the 5 summands are killed and we are left with a quadric of rank 2. Hence
there are no other points. Conversely these 10 points determine li.

In the following subsections we see some examples on how we can use of the equa-
tions of secant varieties in order to find the tensor decomposition.

4.3 The example of 3× 3× 5 tensors

We report on a work of ten Berge.
Jos M. F. ten Berge Partial uniqueness in CANDECOMP/PARAFAC Journal of

Chemometrics (2004) Volume 18 Issue 1, Pages 12 - 16
This example is very interesting. Let φ ∈ A ⊗ B ⊗ C where dimA = dimB = 3,

dimC = 5. Let X = P2 × P2 × P4, note that σ5(X) fills the ambient space (over
the complex numbers) and that a general φ ∈ A ⊗ B ⊗ C has rank 5 and has finitely
decompositions as sum of five decomposable tensors. We wonder how to find these
decompositions. Again the equations of the secant varieties, coming from the minors
of Hom(A∨ ⊗B∨, C), are useful.

Consider the contraction morphism A∨ ⊗B∨ → C
For general φ, the kernel has codimension 5, dually the cokernel has codimension 4

and meets the Segre variety in 6 points, because 6 = degP 2×P 2. It turns out that, on
the complex numbers, six different decompositions hold, any two of them share four
summands! Indeed the cokernel , which has codimension 4 and projective dimension
4, i t is spanned by any 5 of the six intersection points. ten Berge says that in this
case we have “partial uniqueness”.

ten Berge proves that the only typical ranks over the real numbers are 5 and 6.
We can state the result in a dual formulation with the image that is we consider
C5∨ → C3 ⊗ C3

and the image meets the Segre varietyin six points.
Exercise Generalize to the case 3 × a × (2a − 1), a ≥ 2. It is the first balanced

case.
Prove that a general φ ∈ C2a−1 ⊗ C3 ⊗ Ca has rank 2a− 1 and there are exactly
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(
a(a+ 1)/2

2a− 1

)
possible decompositions. For a = 4 they are

(
10
3

)
= 120, each of them choosen among

10.

Moreover s
Exercise Generalize the previous exercise to the case a× b× [(a− 1)(b− 1) + 1].

(it is the border case of balanced, see next sections)
In particular prove that uniqueness holds in cases
2x2x2 (generic rank is 2),
3x3x2 (generic rank is 3)
n×n×2 (generic rank is n, related to Kronecker normal form in Weyman’s lectures)

4.4 Symultaneous decompositions

Theorem 4.5 Richmond, Roberts (i) Given general f ∈ S3C2, g ∈ S4C2 there exist
a unique symultaneous decomposition with three summands f =

∑3
r=1 li(x, y)3, g =∑3

r=1 li(x, y)4.
(ii) Given general f ∈ S2C3, g ∈ S3C3 there exist a unique symultaneous decom-

position with four summands f =
∑4

r=1 li(x, y, z)
2, g =

∑4
r=1 li(x, y, z)

3.

Proof: In case (i) there is a unique apolar cubic, with three zeroes.
In case (ii) there is a pencil of apolar conics, which has four base points.

Theorem 4.6 Given general f, g ∈ S3C3, it does not exist a symultaneous decoposi-
tion with five summands f =

∑5
r=1 li(x, y, z)

3, g =
∑5

r=1 li(x, y, z)
3.
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5 The unbalanced case for the Segre varieties, the Alexander-
Hirschowitz Theorem

In this section, X = Pn1 × . . .×Pnk with k ≥ 3 and n1 ≤ . . . ≤ nk. We classify Segre
varieties, X, for which σr(X) is defective with r ≤ 6.

Following [BCS], the typical tensor rank of a format (n1, . . . , nk) is the smallest
integer s such that σs(P

n1 × . . . × Pnk) fills the ambient space, and it is denoted by
R(n1, . . . , nk). Equivalently, the generic tensor in V1 ⊗ . . .⊗ Vk where dimVi = ni + 1
is the sum of R(n1, . . . , nk) (and not less) tensors of rank one. Obviously we have⌈∏

(ni + 1)

1 +
∑
ni

⌉
≤ R(n1, . . . , nk)

and in particular ⌈
(n+ 1)k

nk + 1

⌉
≤ R(nk).

The following lemma is well-known (see [CGG1, Proposition 3.3]).

Lemma 5.1 Let X = Pn1 × · · · × Pnk , 1 ≤ n1 ≤ · · · ≤ nk. Suppose that

k−1∏
i=1

(ni + 1)−
k−1∑
i=1

ni < d < min

{
k−1∏
i=1

(ni + 1), nk + 1

}
.

Then X has a defective d-secant variety.

Proof: Pick d general points on X where d satisfies the conditions of the Lemma. Since
d < nk +1, there exists a subvariety V = Pn1×· · ·×Pnk−1×Pd−1 ⊆ X, which contains
these d points. Let N(d) = d

∏k−1
i=1 (ni+1)−1 and N =

∏k
i=1(ni+1)−1. The span of V

is PN(d) ⊆ PN . Thus, the linear subspace spanned by the tangent spaces of X at the d

points has dimension at most F (d)−1, where F (d) = d
[∏k−1

i=1 (ni + 1) + (nk + 1− d)
]
.

Then, by the assumption as given above, we have

d

(
k∑
i=1

ni + 1

)
− F (d) = d

(
k∑
i=1

ni + 1

)
− d

[
k−1∏
i=1

(ni + 1) + (nk + 1− d)

]

= d

[
k−1∑
i=1

ni −
k−1∏
i=1

(ni + 1) + d

]
> 0

and

k∏
i=1

(ni + 1)− F (d) = d2 − d

[
k−1∏
i=1

(ni + 1) + (nk + 1)

]
+

k∏
i=1

(ni + 1)

=

[
d−

k−1∏
i=1

(ni + 1)

]
[d− (nk + 1)] > 0.

So F (d) < min
{
d
(∑k

i=1 ni + 1
)
,
∏k
i=1(ni + 1)

}
. An application of Terracini’s lemma

shows that X has a defective d-secant variety.
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Definition 5.2 Suppose n = (n1, . . . , nk) with n1 ≤ · · · ≤ nk.

• n is called balanced if nk ≤
∏k−1
i=1 (ni + 1)−

∑k−1
i=1 ni.

• n is called unbalanced if nk − 1 ≥
∏k−1
i=1 (ni + 1)−

∑k−1
i=1 ni.

Thus Lemma 5.1 states that if n = (n1, . . . , nk) is unbalanced then Pn is defective.
The following proposition is often useful.

Proposition 5.3 Let n = (n1, . . . , nk) be balanced. If s ≤ nk then σs(Pn) has the
expected dimension (and does not fill the ambient space).

The following theorem sets completely the defective behaviour of higher secant
varieties in the unbalanced cases. This has also been observed as part of Theorem 2.4
in [CGG4].

Theorem 5.4 Let n = (n1, . . . , nk) be unbalanced.

(i) σs(Pn) has the expected dimension (and does not fill the ambient space) if and
only if s ≤

∏k−1
i=1 (ni + 1)−

∑k−1
i=1 ni.

(ii) R(n) = min{nk + 1,
∏k−1
i=1 (ni + 1)}

In particular unbalanced implies defective. The equations of σs(Pn) have always

degree s+1 and come from the flattening
(∏k−1

i=1 (ni + 1)
)
× (nk +1). See the Theorem

2.4 of [CGG] arXiv 0609054.

5.1 The classification of defective σr for r ≤ 6

Theorem 5.5 Let k ≥ 3.
σ2(P

n1 × . . .×Pnk) is never defective.
σ3(P

n1 × . . .×Pnk) is non-defective with the following exceptions:
(n1, n2, n3) = (1, 1, a) with a ≥ 3 (unbalanced)
and (n1, n2, n3, n4) = (1, 1, 1, 1).

Theorem 5.6 σ4(P
n1 × . . .×Pnk) is non-defective with the following exceptions:

(n1, n2, n3) = (1, 2, a) with a ≥ 4 (unbalanced)
and (n1, n2, n3) = (2, 2, 2).

Proposition 5.7 If X = P1 ×P1 ×Pn ×Pn then

(i) X has a defective 2n+ 1-secant variety.

(ii) The codimension of σ2n+1(X) is 2.

(iii) The codimension of σk(X) is the expected one for k 6= 2n+1, in particular σ2n+2

fills the ambient space.
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Proposition 5.8 dimσ5(P
2×P3×P3) = 43, while the expected dimension is 44. This

is proved by showing that through 5 general points there is a rational normal curve of
degree 8.

dimσk(P
2 × P3 × P3) has the expected dimension for all k 6= 5, in particular σ6

fills the ambient space.

Theorem 5.9 σ5(P
n1 × . . .×Pnk) is non-defective with the following exceptions:

(n1, n2, n3) = (2, 3, 3)
(n1, n2, n3) = (1, 2, a) with a ≥ 5 (unbalanced)
(n1, n2, n3) = (1, 3, a) with a ≥ 5 (unbalanced)
(n1, n2, n3, n4) = (1, 1, 2, 2)

Theorem 5.10 σ6(P
n1× . . .×Pnk) is non-defective with the following exceptions (all

unbalanced):
(n1, n2, n3) = (1, 3, a) with a ≥ 6
(n1, n2, n3) = (1, 4, a) with a ≥ 6
(n1, n2, n3) = (2, 2, a) with a ≥ 6
(n1, n2, n3, n4) = (1, 1, 1, a) with a ≥ 6

A nice example is the format 2 × 2 × (n + 1). Take up to size 4 minors of the
4× (n+ 1) matrix.

5.2 The results and the conjectures on the dimension

Theorem 5.11 (Alexander-Hirschowitz) Let X be a general collection of k double
points in Pn = P(V ) and let SdV ∨ be the space of homogeneous polynomials of degree
d. Let IX(d) ⊆ SdV ∨ be the subspace of polynomials through X, that is with all first
partial derivatives vanishing at the points of X. Then the subspace IX(d) has the

expected codimension min
(

(n+ 1)k,
(
n+d
n

))
except in the following cases

exp.codim codim equation

σk(P
n,O(2)) 2 ≤ k ≤ n max( (n+1)(n+2−2k)

2 , 0)
(
n−k+2

2

)
(k + 1)−minors

σ 1
2
n(n+3)(P

n,O(4)) n = 2, 3, 4 0 1 catalecticant inv.

σ7(P
4,O(3)) 0 1 invariant of degree 15

We remark that the case n = 1 is the only one where the assumption that X is gen-
eral is not necessary. The degree 15 invariant comes from the cube of the determinant
of a 45× 45 matrix.

Conjecture Let k ≥ 3. Other than (P2)3 and (P1)4, every Segre variety of the
form (Pn)k is nondefective.

Conjecture Let the number of factors k ≥ 3. All defective Segre varieties fall
into the following 4 classes:

1. X is unbalanced.

2. X = P2 ×Pn ×Pn with n even.
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3. X = P2 ×P3 ×P3.

4. X = P1 ×P1 ×Pn ×Pn.

σ2n+1(P
1×P1×Pn×Pn) has codimension 2 (the expected value is one) and there

are two equations of degree 2(n+ 1) defining it, which are the two determinants of the
two flattenings C2 ⊗ Cn+1 → C2 ⊗ Cn+1.

When X = P2 ×Pn ×Pn with n even, then σ 3n
2
+1(X) is a hypersurface of degree

3(n+ 1)2.
Regarding Grassmannians, there is the following conjecture proposed in [BDG]

(conj. 4.1)
Conjecture (Baur-Draisma-de Graaf) Let k ≥ 2. σs(Gr(k, n)) has the ex-

pected dimension with the only exceptions:

codim exp. codim

(1) σ3(Gr(2, 6)) 1 0

(2) σ3(Gr(3, 7)) 20 19

(2′) σ4(Gr(3, 7)) 6 2

(3) σ4(Gr(2, 8)) 10 8

The equation of σ3(Gr(2, 6)) is an invariant of degree 7, which is the cube of the
determinant of a 21× 21 matrix.

Theorem 5.12 If ω ∈ ∧3C7 consider the contraction operator

φω : ∧2 C7 → ∧5C7

The equation of σ3(Gr(P
2,P6)) is given by a SL(7)-invariant polynomial P7 of degree

seven such that
det(φω) = 2 [P7(ω)]3

There are geometric explanations for each of the exceptions listed in the Conjecture.
Another case of interest are the Segre-Veronese case, which is a mixture of the pre-

vious two. There is a particular interest in the case U ⊗S2V , which can be considered
as partially symmetric tensors. The “rank 1” variety is P(U)×P(V ) embedded with
O(1, 2).

After the work of several people, among them Catalisano, Geramita, Gimigliano,
Chipalkatti, Carlini Abo,Brambilla, the last two authors proposed a conjecture that
the list of defective σk(X) where X = Pn ×Pm is embedded by O(1, 2) is given by

the unbalanced cases
(n,m, k) = (2, 2s+ 1, 3s+ 2) for s ≥ 1
(n,m, k) = (4, 3, 6)
There are several positive results supporting this conjecture.
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5.3 Asymptotic result for Segre varieties

For three factor “hypercubic” Segre varieties, there is a precise result, due to Lickteig
and Strassen.

Theorem 5.13 Strassen-Lickteig σk((P
n)3) has always the expected dimension for

any n 6= 2.

Theorem 5.14 Let X = (Pn)k, k ≥ 3. Let sk and δk be defined by

sk =

⌊
(n+ 1)k

nk + 1

⌋
and δk ≡ sk mod (n+ 1) with δk ∈ {0, . . . , n}.

(i) If s ≤ sk − δk then σs(X) has the expected dimension.

(ii) If s ≥ sk − δk + n+ 1 then σs(X) fills the ambient space.

The case of format 2×2×. . .×2 (k times) has been completely solved by Catalisano,
Geramita, Gimigliano. It turns out that the only defective case is when k = 4.

There is also a general positive result in [AOP] that we mention here

Theorem 5.15 If n is odd then the Segre variety Pk × (Pn)k+1 is perfect.
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6 The real case

We begin with some results about zeroes of real polynomials in one variable. Equiva-
lently of homogeneous polynomials in two variables.

The discriminant of a polynomial F (x, y) =
∑d

i=0 aix
d−iyi = a0

∏r
i=1(x − αiy) is

the homogeneous polynomial of degree 2(d− 1).
This is the resultant of f and of its first derivative. More geometrically, it is the

resultant of Fx and Fy. So the discriminant does not vanish exactly when Fx and Fy
have no nonconstant common factor.

Geometrically, the discriminant is the equation of the variety of n − 2 osculating

spaces to the rational normal curve. We can express ∆ = a
2(d−1)
0

∏
i<j(αi − αj)2.

Outside ∆ = 0, the polynomials have distinct roots. The hypersurface ∆ = 0 leaves
a complement which has exactly bn2 c + 1 connected components (with respect to the
euclidean topology). Each component is labelled by the number of pairs of conjugate
roots, which goes from 0 to bn2 c. The case with zero pairs is particularly important,
in this case all the roots are real.

This components have a intricate structure.
The picture for n = 2 already reveals an interesting structure.
S1 is convex, S0 is not convex.
Namely:
there are lines such that all polynomials in the line have no real roots, so these

lines are contained in S0.
Every line meets S0, and even the interior of S0. There are no lines contained in

S1.
Question Does every hyperplane meet (the interior of) S0
Define pk =

∑d
i=0 α

k
i , power sums

Define the matrix P of size {0..x} such that Pij = pi+j . These coefficients can be
expressed as polynomial in ai by the Newton identities.

This is a symmetric (Hankel) matrix.

Theorem 6.1 Sylvester If P has signature (p, q) then F (x, y) has d− q real roots.
In particular P is semidefinite positive if and only if F has only real roots.

The condition of the theorem can be rephrased.

Theorem 6.2 Newton Let F (x, y) =
∑d

i=0 aix
d−iyi be a polynomial with all real

roots. Then

∣∣∣∣ ai ai+1

ai+1 ai+2

∣∣∣∣ ≤ 0 for every i = 0..d− 2.

If the roots of F are distinct, then the inequalities are strict.

Proof: If F has all real roots, the same is true for both Fx and Fy (Rolle theorem).

Then Fxd−i−2yi(x, y) = (d−i)!i!
2 aix

2 + 2ai+1xy + ai+2y
2 has only real roots.

Note how the projective approach has made possible the above simple proof.
The Newton conditions are necessary, but are sufficient only for n = 2.
Exercise
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1. Exhibit a real polynomial F of degree 3, where the Newton conditions are satis-
fied, but such that F has only one real root.

2. Show that the determinant of the Sylvester matrix P is equal to the discriminant.
item Draw a picture in the (a, b) plane of the regions where x4 + ax2 + b has 0,
2 or 4 real roots.

The real Sylvester algorithm proceeds exactly as in the complex case, but we have
to check if the polynomials in the kernel have all real roots.

Definition 6.3 A rank r is called typical it the locus {x|rk(x) = r} has non empty
interior.

Theorem 6.4 There are two typical ranks for real polynomials of degree 3, namely 2
and 3. Precisely, a real polynomial of degree 3

has rank 3 if and only if it has 3 real roots
has rank 2 if and only if it has 2 real roots

Theorem 6.5 There are two typical ranks for real polynomials of degree 4, namely 3
and 4. Precisely, a real polynomial of degree 4

has rank 4 if and only if it has 4 real roots
has rank 3 if and only if it has 0 or 2 real roots

Theorem 6.6 There are three typical ranks for real polynomials of degree 5, namely
3, 4 and 5.

Moreover a real polynomial of degree 5 has rank 5 if and only if it has 5 real roots
the typical rank 4 can appear in both cases with 0 or 2 real roots.
the typical rank 3 can appear in both cases with 0 or 2 real roots.

Theorem 6.7 Causa-Re Let d ≥ 3. The following are equivalent.
(i) All the roots of F are real.
(ii) For every (λ, µ) 6= (0, 0) all the roots of λFx + µFy are real.

As a consequence we have

Theorem 6.8 A general real polynomial of degree d has rank d if and only if it has
all real roots.

Exercises

1. Find a decomposition of x3 − 3xy2

2. Find a decomposition of x2y. Generalize to xny.

3. Let F (x, y) =
∑d

i=0

(
d
i

)
aix

d−iyi (d ≥ 3) and let G(b0, b1, b2, b3) :=

[
b0 b2
b1 b3

]2
−

4

[
b1 b2
b2 b3

]
·
[
b0 b1
b1 b2

]
Prove the following generalization of Newton criterion.

If F has real roots then G(ai, ai+1, ai+2, ai+3) ≤ 0 for i = 0 . . . (d− 3). If F has
distinct roots, the strict inequalities hold.
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7 Strassen equation and generalizations

Le teorie vanno e vengono, ma le formule restano. G.C. Rota 1991

7.1 The Aronhold invariant

Map S3V ⊆ Hom(EndV,EndV ) by the following construction. If φ = v3 is decompos-
able then M ∈ EndV goes to the map which takes w ∈W to (M(v)∧ v∧w)v and it is
extended by linearity. The map factorizes to S3V ⊆ Hom(ad V, ad V ) corresponding
to the picture

⊗ ∗ ∗ ∗ →

∗
∗

∗ '

where ad V ' S2,1V is the space of traceless endomorphisms.
Thus, when n = 2, φ ∈ S3V gives rise to an element of C9 ⊗ C9. In bases, if we

write

φ =φ000x
3
0 + φ111x

3
1 + φ222x

3
2 + 3φ001x

2
0x1 + 3φ011x0x

2
1 + 3φ002x

2
0x2

+ 3φ022x0x
2
2 + 3φ112x

2
1x2 + 3φ122x1x

2
2 + 6φ012x0x1x2,

the corresponding matrix is:



φ002 φ012 φ022 −φ010 −φ011 −φ012
φ012 φ112 φ122 −φ011 −φ111 −φ112
φ012 φ112 φ222 −φ012 −φ112 −φ122

−φ002 −φ012 −φ022 φ000 φ001 φ002
−φ012 −φ112 −φ122 φ001 φ011 φ012
−φ012 −φ112 −φ222 φ001 φ011 φ022
φ010 φ011 φ012 −φ000 −φ001 −φ002
φ011 φ111 φ112 −φ001 −φ011 −φ012
φ012 φ112 φ122 −φ001 −φ011 −φ022


.

Al the principal Pfaffians of size 8 of the this matrix coincide, up to scale, with the
classical Aronhold invariant.

The construction shows how the Aronhold invariant is analogous to the Strassen
invariant in S9(C3 ⊗ C3 ⊗ C3) that was discovered by Strassen.

An interpretation is the following. For φ such that the Aronhold invariant vanishes,
we have Aφ : S21V → S21V , which is skew-symmetric.

The following holds (lemma 2.2 in [Ot])

Lemma 7.1 Let φ = w3 with w ∈W . Then rkAφ = 2. More precisely

KerAw3 = {M ∈ ad W |w is an eigenvector of M}

Note the following
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Corollary 7.2 Let φ =
∑

i=1w
3
i with wi ∈ W independent vectors. Then the Aron-

hold invariant vanishes at φ and rkAφ = 6. More precisely

KerAφ = {M ∈ ad W |wi are eigenvectors of M}

Consider now the Euler sequence on P(V ).

0−→O−→O(1)⊗ V ∨−→TP(V )−→0

We get End(V )−→H0(TP(V )) and more precisely ad (V ) ' H0(TP(V )), where
ad (V ) is the space of traceless maps.

The map A ∈ ad (V ) goes to a section sA, whose zero locus consists of the eigen-
vectors of A.

Any φ ∈ S3(C3) induces a skew-symmetric morphism

Aφ : H0(TP(V ))→ H0(TP(V ))

which can be seen from the natural map ∧2H0(TP(V ))→ H0(∧2TP(V )) = H0(O(3))
Note that Pf (Aφ) is exactly the Aronhold invariant.
It follows the following algorithm to decompose a plane cubic which satisfies the

Aronhold invariant.

Theorem 7.3 Let φ ∈ S3(C3) such that Pf (Aφ) = 0 and assume that rk (Aφ) = 6.
Then every section in kerAφ has the same zero locus Z = {l1, l2, l3}. It follows that li
can be suitably represented in such a way that φ =

∑3
i=1 l

3
i

The previous theorem is another display of how the equations of the secant varieties
allow to decompose the tensors.

7.2 Young flattening and other examples

Example
Let E = Q(m) on X = P2, it is presented by

L1 = O(m)⊗ U p−→O(m+ 1)⊗ U∨ = L0

with p represented by the matrix 0 x2 −x1
−x2 0 x0
x1 −x0 0


Let now L = O(2m + 1), so that (E,L) is a skew-symmetric pair. For any

φ ∈ S2m+1U∨ = V , Aφ is the skew-symmetric morphism from H0(Q(m)) to its dual
H0(Q∨(m+ 1))∨ and H0(p)φ is represented by the matrix 0 Cm,m(φ2) −Cm,m(φ1)

−Cm,m(φ2) 0 Cm,m(φ0)
Cm,m(φ1) −Cm,m(φ0) 0


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Note that when φ = x2m+1
0 is the power of a linear form then the rank of the above

matrix is 2, which indeed is the rank of E = Q(m).
With the notations above, H0(L1) = SmU∨ ⊗ U = Sm+1,mU ⊕ Sm−1U∨ and

H0(E) = Sm+1,mU corresponds to the first summand.
The elements of SmU∨ ⊗ U = Hom(SmU,U) can be represented by matrices[

x0 x1 x2
f0 f1 f2

]
where xi is a basis of U∨ and fi ∈ SmU∨. According to this identification, the inclusion
i : Sm−1U∨ → SmU∨ ⊗ U is given by h 7→ (f0, f1, f2) = (hx0, hx1, hx2).

Then H0(E) = Sm+1,mU corresponds to equivalence classes of triples (f0, f1, f2)
with deg fi = m where (f0, f1, f2) ∼ (g0, g1, g2) if there is h such that fi − gi = hxi for
i = 0, . . . , 2.

The map H0(O(m))⊗U−→H0(Q(m)) corresponds to the map sending (f0, f1, f2)
to its equivalence class. The section vanishes when

(f0, f1, f2) ·

 0 x2 −x1
−x2 0 x0
x1 −x0 0

 = 0

The morphism Aφ induces a map B : ∧2 H0(Q(m)) = ∧2Sm+1,mU → S2m+1U∨ =
H0(O(2m+ 1)).

Lemma 7.4 B can be described in the following way, according to the above descrip-
tion. On the decomposable elements we have

(f0, f1, f2) ∧ (g0, g1, g2) 7→ det

 x0 x1 x2
f0 f1 f2
g0 g1 g2


Then B is extended by linearity.

Proof:

det

 x0 x1 x2
f0 f1 f2
g0 g1 g2

 = (f0, f1, f2) ·

 0 x2 −x1
−x2 0 x0
x1 −x0 0

 ·
g0g1
g2


Note that (f0, f1, f2) ∈ kerH0(p)φ if the three minors of[

x0 x1 x2
f0 f1 f2

]
applied to φ (as differential operators) all vanish.

In [Landsberg-Ottaviani] it is proved

Theorem 7.5 Let t ≤
(
m+2
2

)
and let φ =

∑t
i=1 l

2m+1
i . Then the subpfaffians of size

(2t+ 2) of Aφ define local equations for σk(v2m+1(P
2)) at φ.
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The previous result can be generalized to Pn.
In the even case P2a = P(U) we can consider E = ∧aQ(m).

Theorem 7.6 Let n = 2a and t ≤
(
m+n
n

)
and let φ =

∑t
i=1 l

2m+1
i . Then the subp-

faffians of size (
(
n
a

)
t + 2) of Aφ for odd a (resp. the minors of size (

(
n
a

)
t + 1) of Aφ

for even a) define local equations for σt(v2m+1(P
n)) at φ, in the sense that the zero

locus of such pfaffians contains σt(v2m+1(P
n)) as irreducible component . Note that

for a = 1 they give equations of degree t+ 1.

Theorem 7.7 Let n = 2a+1, let t ≤
(
m+n
n

)
and let φ =

∑t
i=1 l

2m+1
i . Then the minors

of size (
(
n
a

)
t+ 1) of Aφ define local equations for σt(v2m+1(P

n)) at φ, in the sense that
the zero locus of such minors contains σt(v2m+1(P

n)) as irreducible component .

7.3 Eigenvectors and sections of the tangent bundle

Consider the Euler sequence on P(V ).

0−→O−→O(1)⊗ V ∨−→TP(V )−→0

We get End(V )−→H0(TP(V )) and more precisely ad (V ) ' H0(TP(V )), where
ad (V ) is the space of traceless maps.

The map A ∈ ad (V ) goes to a section sA, whose zero locus consists of the eigen-
vectors of A.

This description can be generalized to generalized eigenvectors. Twisting the Euler
sequence we get

0−→O(m)−→O(m+ 1)⊗ V ∨−→TP(V )(m)−→0

We get Sm+1(V )⊗V ∨−→H0(TP(V )). Since Sm+1(V )⊗V ∨ = Sm(V )⊕Sm+2,1n−1

and more precisely we get Sm+2,1n−1 ' H0(TP(V )(m)).
A ∈ Sm+2,1n−1 corresponds to a map fA : Sm+1(V ∨)→ V ∨. A nonzero vector v ∈

V ∨ is called a generalized eigenvector if there exists λ ∈ K such that fa(v
m+1) = λv.

λ is a generalized eigenvalue. For m = 0 these are exactly the usual eigenvectors and
eigenvalues.

It turns out that fA goes to a section sA of TP(V )(m), whose zero locus consists
of the generalized eigenvectors of A.

In particular, since in the case dimV = 3 we have c2(TP(V )(1)) = 7, we get that
the general fA : Sm+1(V ∨)→ V ∨ has seven generalized eigenvectors.

Find Sturmfels-Cartwright formula for the number of generalized eigenvectors.
Example Every plane quintic φ defines a skew-symmetric morphismAφ : H0(Q(2))→

H0(Q(2))∨. For a general φ the kernel has dimension one and it is spanned by
s ∈ H0(Q(2)). The seven points where s vanishes correspond to the seven summands
of fifth powers that uniquely give φ. They are the seven generalized eigenvectors of
the kernel.

Cayley-Bacharach property says that giventhere exists a section of TP2(m) van-
ishing exactly on Z if and only if for any Z ′ ⊂ Z such that length(Z)′ = length(Z)− 1
we have that every curve of degree 2m passing through Z ′ contains Z.
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In particular, given Z consisting of 7 general points, there is always a section of
TP2(1) vanishing on Z.

Given Z consisting of 13 general points, there is a section of TP2(2) vanishing on
Z if and only if every quartic containing 12 of the points, contains also the last one.
This gives a condition on the 13-ples of points which can be obtained in this way.

Example [Cubic 3folds revisited]
Let E = Ω2(4) on X = P4, the pair (E,O(3)) is a symmetric pair presented by

L1 = O(1)⊗ ∧3U p−→O(2)⊗ ∧2U = L0

with p represented by the 10× 10 symmetric matrix

x4 −x3 x2
−x4 x3 −x1

x4 −x2 x1
−x3 x2 −x1

x4 −x3 x0
−x4 x2 −x0
x3 −x2 x0

x4 −x1 x0
−x3 x1 −x0
x2 −x1 x0


Let L = O(3), for any φ ∈ S3U∨ the map Aφ is the skew-symmetric morphism

from H0(Ω2(4)) to its dual H0(Ω3(5))∨ which have both dimension 45 and H0(p)φ is
represented by the 50× 50 block matrix where ±xi is replaced with ±C1,1(φi), which
are 5× 5 symmetric catalecticant matrices of the quadric φi.

In [] it is shown how a matrix representing Aφ can be obtained by the matrix
representing H0(p)φ by deleting five suitably chosen rows and columns.

Note that when φ = x30 is the power of a linear form then the rank of the above
matrix is 6, which is the rank of Ω2(3).

Here det(Aφ) is the cube of the degree 15 equation of σ7(v3(P
4)).
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