Scritto di Geometria 1, A.A. 2001-2002, 30/1/2002 Vecchio ordinamento C.d.L. in Matematica, Università di Firenze

Notazioni. $M(m \times n, \mathbf{R})$ è lo spazio vettoriale delle matrici $m \times n$ a coefficienti in \mathbf{R} .

Esercizio 1. Sia $f: \mathbf{R}^4 \to \mathbf{R}^4$ data dalla seguente matrice

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

- 1) Calcolarne il determinante.
- 2) Per ciascun autovalore calcolare una base del relativo autospazio. Dire se f è diagonalizzabile.
- 3) Trovare una base di Ker(f) e una base di Im(f).
- 4) Esiste $g: \mathbf{R}^4 \to \mathbf{R}^4$ tale che Im(g) = Ker(g) = Ker(f)? Motivare la risposta.
- 5) Trovare $g: \mathbf{R}^4 \to \mathbf{R}^4$ tale che Im(g) = Ker(f) e Ker(f) = Im(g).

Esercizio 2. Sia $Q \in M(n \times n, \mathbf{R})$. Sia

$$S_Q = \{A \in M(n \times n, \mathbf{R}) | {}^tQAQ \ diagonale\}$$

- i) Dimostrare che S_Q è un sottospazio vettoriale di $M(n \times n, \mathbf{R})$.
- ii) Calcolarne la dimensione quando Q è una matrice diagonale con esattamente d elementi non nulli sulla diagonale.

Esercizio 3. Sia $A \in M(n \times n, \mathbf{R})$. Supponete che I, A, A^2, A^3 siano linearmente indipendenti nello spazio vettoriale $M(n \times n, \mathbf{R})$ e che A^4 possa essere scritto come combinazione lineare di I, A, A^2, A^3 . Dimostrate che la dimensione del sottospazio di $M(n \times n, \mathbf{R})$ generato dalle potenze della matrice A con esponente maggiore o uguale zero è 4.

Esercizio 4. Nel piano affine sia

$$C = \{(x, y) | x^2 - y^2 - 2x + 2y = 0\}$$

- i) Dire che tipo di conica è.
- ii) Sia $P = C \cap \{x = 1\}$. Trovare le affinità del piano che lasciano fisso ogni punto dell'asse delle x e della retta OP.

Scritto di Geometria 1, A.A. 2001-2002, 30/1/2002 Nuovo ordinamento C.d.L. in Matematica, Università di Firenze

Notazioni. $M(m \times n, \mathbf{R})$ è lo spazio vettoriale delle matrici $m \times n$ a coefficienti in \mathbf{R}

Esercizio 1. Sia $f: \mathbf{R}^4 \to \mathbf{R}^4$ data dalla seguente matrice

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

- 1) Calcolarne il determinante.
- 2) Per ciascun autovalore di f calcolare una base del relativo autospazio. Dire se f è diagonalizzabile.
- 3) Trovare una base di Ker(f) e una base di Im(f).
- 4) Esiste $g: \mathbf{R}^4 \to \mathbf{R}^4$ tale che Im(g) = Ker(g) = Ker(f)? Motivare la risposta.

Esercizio 2. Sia $Q \in M(n \times n, \mathbf{R})$. Sia

$$S_Q = \{A \in M(n \times n, \mathbf{R}) | {}^tQAQ \ diagonale\}$$

- i) Dimostrare che S_Q è un sottospazio vettoriale di $M(n \times n, \mathbf{R})$.
- ii) Calcolarne la dimensione quando Q è una matrice diagonale con esattamente d elementi non nulli sulla diagonale.

Esercizio 3. Sia $A \in M(n \times n, \mathbf{R})$. Supponete che I, A, A^2 , A^3 siano linearmente indipendenti nello spazio vettoriale $M(n \times n, \mathbf{R})$ e che A^4 possa essere scritto come combinazione lineare di I, A, A^2 , A^3 . Dimostrate che la dimensione del sottospazio di $M(n \times n, \mathbf{R})$ generato dalle potenze della matrice A con esponente maggiore o uguale zero è 4.

Esercizio 4. i) Trovate una base del seguente sottospazio di R⁴:

$$S = \{(x, y, z, w) | w + z = 0, x + 2y = 0, 2x + 4y + 3z + 3w = 0\}$$

- ii) Sia $T = \langle e_1 \rangle^{\perp}$. Calcolare una forma parametrica di $S \cap T$.
- iii) Come sono fatte le matrici associate (nella base canonica) alle applicazioni lineari da \mathbb{R}^4 in \mathbb{R}^4 che mandano T in T?