II Compito di Geometria 2 (Nuovo Corso di Laurea), A.A. 2001-2002, 20/5/2002 C.d.L. in Matematica, Università di Firenze

Esercizio 1.

a) Calcolare la segnatura della forma bilineare $b: \mathbf{R}^3 \times \mathbf{R}^3 \longrightarrow \mathbf{R}$ espressa nella base canonica dalla matrice

 $\left(\begin{array}{ccc}
8 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right)$

b) Dire se esiste un vettore $v \in \mathbf{R}^3$ non nullo tale che b(v, v) = 0 (motivare la risposta).

Esercizio 2.

a) Si dia la classificazione affine al variare di $t \in \mathbf{R}$ della conica C_t di equazione

$$x^2 - 6xy + ty^2 + x - (t^2 + 1) = 0$$

b) Per t=10 si trovi l'area della regione limitata di piano racchiusa dalla conica C_{10} .

Esercizio 3.

a) Trovare tutte le affinita' del piano che mandano il segmento

$$\{(x,y)|1 \le x \le 2 \ y = 0\}$$

in se' (motivare la risposta)

b) Si trovi una affinitá che porta il triangolo di vertici $P_i=(i,i^3)$ per i=1,2,3 nel triangolo di vertici $(0,0),\ (1,0),\ (0,1)$.

c) Sia Q l'intersezione tra l'asse delle ascisse e la retta per P_2 e P_3 . Calcolare il rapporto semplice (P_2P_3Q) .

d) Sia f una similitudine del piano diversa dall'identitá tale che $f^2 = 1_{A^2}$. Provare che f é una simmetria assiale o centrale.

Esercizio 4.

Sia r la retta in P^2 per i punti A = (0, 1, 0) e B = (1, 3, 5) e sia s la retta per i punti C = (0, 1, 2) e D = (2, 1, 0).

a) Si trovi il punto E di intersezione tra $r \in s$.

b) Sia F = (1, 1, 1) e $\pi_F : r \to s$ la proiezione dal punto F. Calcolare $\pi_F(A)$ e $\pi_F(B)$.

c) Esiste una proiettivitá f del piano tale che $f(A)=C,\,f(B)=D,\,f(E)=F$? (motivare la risposta)