Scritto di Geometria 1, a.a. 2003-2004, 11 febbraio 2004 C.d.L. in Matematica, Università di Firenze

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare così definita:

$$f(x, y, z) = (z, 2y + z, 2z)$$

- i) Sia \mathcal{E} la base canonica di \mathbf{R}^3 e siano \mathcal{P} la base $\{e_1, e_2 + e_1, e_3 + e_1\}$ e \mathcal{A} la base $\{e_1 e_2, e_2 + e_1, e_3 + 2e_1\}$. Trovare $M_{\mathcal{E},\mathcal{E}}(f)$ e $M_{\mathcal{A},\mathcal{P}}(f)$.
- ii) Trovare una base di Ker(f), dire se $Ker(f) \cap \{(x, y, z) | y = x^2\}$ è un sottospazio (motivando la risposta) ed eventualmente dire di che dimensione.
- iii) Dire se \bar{f} è diagonalizzabile.
- iv) Trovare base di Im(f) e, se esiste, un'applicazione lineare $g: \mathbf{R}^3 \to \mathbf{R}^3$ tale che $g \circ f$ sia diagonalizzabile e di rango 2.

Esercizio 2. Sia a un numero reale e n un numero naturale ≥ 1 .

i) Sia M_a la matrice $n \times n$ tale che

$$(M_a)_{i,j} = a^{i+j-2}$$

Calcolare rango e determinante al variare dei parametri a e n.

- ii) Calcolare il rango e il determinante di $S_a = \begin{pmatrix} a^2 & a & 1 \\ a & a^2 & a \\ 1 & a & a^2 \end{pmatrix}$ al variare del parametro
- iii) Trovare una base di $Im(f_{S_a}) \cap \{(x, y, z) \in \mathbf{R}^3 | x = z\}$ al variare del parametro a.
- iv) Trovare un autovalore non nullo di S_a al variare del parametro a.

Esercizio 3. i) Sia W un sottospazio di \mathbb{R}^n . Dire se

$$\{A \in M(n \times n, \mathbf{R}) | Ker A = W\}$$

è un sottospazio.

Siano $A \in B$ due matrici $n \times n$.

- ii) Dimostrare che $Ker\ A=Ker\ B$ se e solo se esistono due matrici $G,C\in GL(n)$ tale che GA+CB=0.
- iii) Se $Ker\ A = Ker\ B$ e A è nilpotente allora B deve essere necessariamente nilpotente? (motivare accuratamente la risposta).

Scritto di Geometria 2, a.a. 2003-2004, 11 febbraio 2004 C.d.L. in Matematica, Università di Firenze

Esercizio 1. Nello spazio euclideo, con riferimento cartesiano ortogonale Oxyz, si consideri la retta $r = \{(2, 1 + t, 0) | t \in \mathbf{R}\}.$

- i) Trovare un'espressione cartesiana del piano contenente la retta r e perpendicolare al piano x+y=0
- ii) Trovare le equazioni cartesiane delle proiezioni ortogonali di r sui piani $x=0,\ y=0$ e x-y=0.
- iii) Calcolare la distanza di r dall'origine e dal punto (1, 2, 4)

Esercizio 2.

Sia data nel piano euclideo, con riferimento cartesiano ortogonale Oxy, la conica C_b di equazione $x^2 + \frac{y^2}{b} - 1 = 0$ e si consideri il punto $P_t = (t, 1)$ al variare del parametro reale $t \in \mathbf{R}$.

- i) Sia b = 9. Se P_t è esterno a C_9 , esistono esattamente due punti $A_t, B_t \in C$ in cui una retta per P_t è tangente a C_9 . Dare le condizioni su t affinché questo accada e trovare le equazioni delle due rette.
- ii) Siano F_1 , F_2 i fuochi di C_9 . Trovare, se esiste, un punto P_t con t > 0 tale che l'area del triangolo $F_1F_2P_t$ é uguale all'area interna a C.
- iii) Trovare una affinitá f tale che $f(C_9) = C_1$ e calcolare le immagini dei due fuochi F_1 e F_2 tramite f.

Esercizio 3.

Il tetraedro é il solido regolare che ha come facce quattro triangoli equilateri.

Sia a la lunghezza di uno spigolo di un tetraedro S.

Calcolare in funzione di a:

- i) il raggio della sfera inscritta e circoscritta a S.
- ii) l'angolo tra due facce adiacenti di S.
- iii) il rapporto in cui il baricentro divide in due parti l'altezza
- iv) se f è una similitudine con fattore di scala 10, ripetere i punti i), ii), iii) per il tetraedro f(S).