8 GIUGNO 2000

SCRITTO DI GEOMETRIA 1

LAUREA E DIPLOMA IN MATEMATICA - A.A.1999/2000

Esercizio 1. Sia A_t la matrice

$$\left[
\begin{array}{cccc}
1 & 2t & t \\
0 & t & 1 \\
2 & 1 & 1-t
\end{array}
\right]$$

- a) Studiare al variare di $t \in \mathbf{R}$ il rango di A_t .
- b) Detta $B = A_1$, si calcoli det B e si trovino tutte le soluzioni del sistema

$$B \cdot \left[\begin{array}{c} x \\ y \\ z \end{array} \right] = \det B \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right]$$

Esercizio 2. In ${\bf R}^3$ si considerino il piano π : x+y-z+1=0 e, al variare di $\alpha\in{\bf R}$ le rette r_α di equazioni parametriche:

$$\begin{cases} x = 1+t \\ y = 1-\alpha t \\ z = 2+t \end{cases}$$

- a) Studiare, al variare di $\alpha \in \mathbf{R}$, l'intersezione di π con r_{α} .
- b) Detto P_{α} il punto di intersezione fra π ed r_{α} (quando esiste), dimostrare che tutti i punti P_{α} appartengono ad una stessa retta e trovarne delle equazioni parametriche e cartesiane.
- c) Si calcoli l'inviluppo convesso in \mathbf{R}^3 dell'insieme $\bigcup_{\alpha \in \mathbf{R}} r_\alpha$

Esercizio 3. In \mathbb{R}^2 si considerino le coniche C_t di equazioni $x^2 + 2txy + 2t = 0$ con $t \in \mathbb{R}$.

- a) Determinare, quando esiste, il centro delle C_t .
- b) Al variare di $t \in \mathbf{R}$ fornire la classificazione affine delle C_t e scrivere delle trasformazioni affini che mutano le C_t nelle loro forme canoniche.

Esercizio 4. Sia V un qualsiasi spazio vettoriale di dimensione 2 e sia $F:V\to V$ un endomorfismo tale che $F\neq 0$ e $F^2=0$. Dimostrare che

- a) F non è iniettivo e KerF ha dimensione 1;
- b) esiste una base B di V rispetto alla quale F ha matrice associata $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- c) F non è diagonalizzabile.