1 dicembre 1998 1^a Prova di esonero di Geometria 1 Laurea e Diploma in Matematica – A.A.1998/99

1] Dato $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in \mathbf{R}_3[x]$, sia $f'(x) = a_1 + 2a_2 x + 3a_3 x^2$; si indichi poi $V_b := \{ f \in \mathbf{R}_3[x] | f'(b) = 0 \}$ al variare di $b \in \mathbf{R}$ e con $W := \{ f \in \mathbf{R}_3[x] | a_1 + a_2 = 0 \}$. Calcolare, al variare di $b \in \mathbf{R}$, la dimensione e una base di $V_b \cap W$.

2] Dati $h, k \in \mathbf{R}$ si consideri la matrice

$$A_{h,k} = \begin{bmatrix} 1 & 2h & 1 & 1\\ 1 & 2h & 1 & k\\ 1 & 1 & 1 & k\\ k & 2h & 2h & 2h \end{bmatrix}$$

- a) Determinare, se esistono, i valori $h, k \in \mathbf{R}$ tali che $\begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \in KerA_{h,k}$
- b) Determinare dimensione e base di $Ker A_{1,2}$ e di $Im A_{1,2}$.
- c) Trovare delle equazioni parametriche per $Ker A_{1,1}$ e delle equazioni cartesiane per $Im A_{1,1}$.
- d) Determinare $dim Ker A_{h,-1}$ al variare di h.
- **3**] Sia $M=(m_{i,j})$ una matrice $m\times n$ di rango 1. Provare che esistono delle funzioni $f:\{1,2,...,m\}\to \mathbf{R}$ $g:\{1,2,...,n\}\to \mathbf{R}$ tali che $m_{i,j}=f(i)g(j)$. f,g sono uniche?