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Algebraic geometry studies the solutions of polynomial systems, which are called
varieties. The first goal is to attach to a variety some numerical invariants, like the
dimension and the degree, which describe some of its features.

The Hilbert polynomial of X ⊂ Pn encodes the more important numerical invari-
ants of X. It is worth to remark that today many computer algebra systems allow
to compute the Hilbert polynomial but, due to the big dimension of the employed
memory, the range of the problems which are solvable with the help of a computer is
still quite limited. The Hilbert polynomial can be easily computed from a resolution
of the ideal sheaf of the variety.

The varieties which arise from the applications have often some additional structure
or some symmetry. We will see the examples of scrolls, blow-up and conic bundles.

One cultural aspect we want to underline is that the study of varieties mixes two
different roots of the mathematical thinking. One is the symbolic manipulation of
numbers and polynomials, which goes back (in the Mediterranean world) to Arabs.
The other is the geometric insight into drawings, which goes back to Greeks.

Most of the material of this note comes from [Ot].

1 The twisted cubic and complete intersections

Projective varieties of codimension one are given by the zero locus of one homogeneous
polynomial. Two independent polynomial define in general a codimension two variety,
but the converse is not true. The basic and classical example about this phenomenon
is the following.

Example 1.1 The twisted cubic The twisted cubic is the curve C ⊂ P3 given by
f : P1 → P3

f(s, t) = (s3, s2t, st2, t3)

Hence if (x0, x1, x2, x3) ∈ C ∃ (s, t) 6= (0, 0) such that
x0 = s3

x1 = s2t
x2 = st2

x3 = t3
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Cutting C with a plane we find an equation of degree 3 in s, t, then deg C = 3.
Let q1 := −(x0x3 − x1x2), q2 := x0x2 − x21. It is easy to check that C ⊂ {q1 = q2 =
0} but the right side contains also the line L := {x0 = x1 = 0}, exactly we have
{x0x3 − x1x2 = x0x2 − x21 = 0} = C ∪ L. L is residual, or better C and L are linked
(the french term liaison is often used). This is in agreement with Bezout theorem: the
(transverse) intersection of two quadrics has degree 2 · 2 = 4. We have to add the third
equation q0 := x1x3 − x22 = 0 in order to get C, namely C is defined by the condition

rank

[
x0 x1 x2
x1 x2 x3

]
≤ 1 (1)

Exercise 1.2 (i) Prove that the three quadrics q0, q1, q2 which are the minors of (1)
cut transversely, that is for every point of C the intersection among the three tangent
planes coincides with the tangent line of C.

(ii) Prove that the two first quadrics cut transversely for every point of C with only
one exception (which point?)

(iii) Prove that L is tangent to C.

Definition 1.3 A smooth variety X ⊂ Pn of codimension c is called a complete inter-
section if it is the transverse intersection of c hypersurfaces F1, . . . , Fc. If deg Fi = di
this is equivalent to say that the morphism ⊕O(−di)

F1,...,Fc−→ IX is surjective.

Exercise 1.4 Prove that, as a set, the twisted cubic C is given by the equations∣∣∣∣x0 x1
x1 x2

∣∣∣∣ = 0

∣∣∣∣∣∣
x0 x1 x2
x1 x2 x3
x2 x3 0

∣∣∣∣∣∣ = 0

Prove that the intersection is not transverse. In the language of schemes, the previous
two equations define a double structure on C.

Exercise 1.5 Prove that a curve in P3 of prime degree and not contained in a plane
is not a complete intersection.

Theorem 1.6 (Canonical bundle of Pn)

KPn = O(−n− 1)

Theorem 1.7 Let C be a curve of genus g. Then

degKC = 2g − 2

Theorem 1.8 (Adjunction formula for hypersurfaces of Pn) Let X ⊂ Pn be a
hypersurface of degree d. Then

KX = O(−n− 1 + d)
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Corollary 1.9 Let X ⊂ Pn be the complete intersection of c hypersurfaces of degree
d1, . . . , dc. Then KX = OPn(−n− 1 +

∑
di)

Proof Iterate adjunction formula.

Definition 1.10 A variety X ⊂ Pn is called subcanonical if KX = OPn(a)|X for some
a ∈ Z.

By Cor. 1.9 complete intersection varieties are subcanonical.
Remark We remark that the twisted cubic is not subcanonical, indeed deg KC =

−2 while deg OP3(a)|C = 3a. Hence Cor. 1.9 gives another property that forbids C to
be a complete intersection.

Remark The transverse intersection of two quadrics in P3 has K = O, then it is
an elliptic curve.

2 Degeneracy loci and the Koszul complex

Let E,F be vector bundle on the variety X and let E
φ−→F be a morphism.

Definition 2.1
Dk(φ) := {x ∈ X|rk(φx) ≤ k}

is called the k-th degeneracy locus of φ.

We remark that ∀x ∈ X φx is a vector space morphism, hence φ can be understood
as a family of vector space morphisms. Dk(φ) is defined by the ideal generated by the
(k + 1)× (k + 1) minors of X.

If k = min{rank E, rank F} − 1 we speak about maximal degeneracy loci.
The ”universal” degeneracy locus is the following. Let

M := Cmn = vector space of m× n matrices

Mk := {m ∈M |rk(m) ≤ k}

Let V , W be two vector spaces of dimension respectively n, m, let V,W be the
trivial vector spaces on the base Hom(V,W ). Consider the morphism V

ψ−→W which
at every x ∈ Hom(V,W ) takes v in x(v), it follows that Mk = Dk(ψ).

We have a filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mmin(m,n) = M

Theorem 2.2 Mk is an algebraic irreducible subvariety of M of codimension (m− k)(n− k).
Moreover SingMk = Mk−1

Proof
The equations of Mk in M are given by the (k + 1)× (k + 1) minors. From Gauss

elimination algorithm it follows that Mk \Mk−1 are the orbits for the natural action
of GL(m)×GL(n) su M . Hence SingMk−1 ⊂ Mk−1 and Mk is irreducible since it is

3



the closure of an irreducible orbit. The dimension of Mk can be computed in a point
where the first k × k minor is 6= 0. Then a local computation shows that Mk is given
locally by (m− k)(n− k) independent equations.

The last step is the check that at a point of Mk−1 one of the partial derivatives of
all (k+1)× (k+1) minors vanish (Laplace development along a line), hence the points
of Mk−1 are singular points for Mk.

Mk is a cone, by abuse of notation we call with the same name the projectivization
Mk ⊂ P(M) = Pmn−1. M1 is isomorphic to the Segre variety Pn−1 × Pm−1, M2 is
the secant variety of M1. In the same way Mk is the closure of the union of the linear
spaces spanned by k-ples of points of M1. It is classically known

deg Mk =
n−k−1∏
i=0

(m+ i)!i!

(k + i)!(m− k + i)!
(2)

In particular

degM1 =

(
m+ n− 2

n− 1

)
Lemma 2.3 Let E, F be vector bundles on a variety X such that rkE = m, rkF = n.
Let φ:E−→F be a morphism X. Then codimXDk(φ) ≤ (m− k)(n− k).

Proof Denote by V (E∗ ⊗ F ) the variety associated to the bundle E∗ ⊗ F , equipped
with the projection V (E∗ ⊗ F )

π−→X, such that each fiber Cmn contains a subvariety
isomorphic to Mk. This subvariety is well defined, it does not depend on the local
coordinates. We get a global subvariety Σk ⊂ V (E∗⊗F ) of codimension (m− k)(n− k)
whose fibers over X are isomorphic to Mk. φ defines a section of E∗ ⊗ F , hence a
subvariety X ′ di V (E∗ ⊗ F ) isomorphic to X. We have Dk(φ) ' Σk ∩X ′, hence the
thesis follows.

Definition 2.4 If codimXDk(φ) = (m− k)(n− k) we say that Dk(φ) has the expected
codimension.

Definition 2.5 A vector bundle is called spanned (by global sections) if the natural
evaluation map

O ⊗H0(E)−→E
is surjective

For example O(n) is spanned if and only if n ≥ 0. The quotient of a spanned
bundle is still spanned. In particular TPn(m) is spanned if and only if m ≥ −1 and
Ω1(m) is spanned if and only if m ≥ 2.

Theorem 2.6 (Bertini type) Let E, F be vector bundles on a variety X such that
rkE = m, rkF = n. Let E∗ ⊗ F be spanned by global sections. If φ:E−→F is a
generic morphism, then one of the following holds

(i) Dk(φ) is empty
(ii) Dk(φ) has the expected codimension (m− k)(n− k) and Sing Dk(φ) ⊂ Dk−1(φ).
In particular if dim X < (m− k + 1)(n− k + 1) then Dk(φ) is empty or smooth

when φ is generic.
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Proof By assumption we have the exact sequence

H0(E∗ ⊗ F )⊗O−→E∗ ⊗ F−→0

which induces the projection

X ×H0(E∗ ⊗ F )
p−→V (E∗ ⊗ F ) ⊃ Σk

which has maxinal rank everywhere.
We have

Z := p−1(Σk)
q−→H0(E∗ ⊗ F )

We remark that Z = {(x, φ)|rk(φx) ≤ k − 1} then q−1(φ0) = {(x, φ0)|rk((φ0)x) ≤
k − 1} ' Dk(φ0) Observe that Sing Z = p−1(Sing Σk) and consider

Z \ Sing Z p−→H0(E∗ ⊗ F )

We get
p−1|Z\Sing Z(φ) ' Dk(φ) \Dk−1(φ)

There are two cases:
1) If p|Z\Sing Z has dense image then Dk(φ) is smooth by generic smoothness the-

orem [Hart] cor. III 10.7, hence Sing Dk(φ) ⊂ Dk−1(φ)
2) If p|Z\Sing Z has dense image then Dk(φ) is empty for generic φ .
Remark Bertini proved the previous theorem in the case E = O and F is a

spanned line bundle (put k = 0). The zero loci of s ∈ H0(E) were called ”elements of
the linear system”.

Remark The inclusion of Thm. 2.6 can be strengthened to Sing Dk(φ) = Dk−1(φ)([Ban]
4.1), by using that Mk are Cohen-Macaulay varieties.

Corollary 2.7 Let E be spanned of rank r, then
(i) the zero locus of a generic section of E is empty or smooth of codimension r.
(ii) if dim X ≤ 5 then the degeneracy locus of r − 1generic sections of E is empty

or smooth of codimension 2.
(iii) if dim X ≤ 7 then the degeneracy locus of r− 2generic sections of E is empty

or smooth of codimension 3.

Exercise 2.8 Compute the number of singular points of the 4-fold in P6 which is the
degeneracy locus of a generic morphism O2−→O(1)3.

Let E be a bundle of rank r on X and let Z ⊂ X be a (irreducible) subvariety of
codimension r which is the zero locus of s ∈ H0(E). We may construct a resolution of
the sheaf OZ which is named Koszul complex

0−→det E∗−→∧r−1 E∗−→ . . .−→E∗−→O−→OZ−→0 (3)

The name ”complex” is due to the fact that the sequence exists as a complex even
when the codimension of Z is not the expected one, but with our assumptions the
Koszul complex is exact!
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Let K be a field. Let S = K[x0, . . . , xn] = ⊕qSq(V ), the resolution of K as
S-module is the ”universal” Koszul complex.

It is:

0−→∧n+1 V ⊗ S(−n− 1)−→∧n V ⊗ S(−n)−→ . . .−→V ⊗ S(−1)−→S−→K−→0

All the morphisms are defined by the natural maps

∧p(V )⊗ Sq(V )−→∧p−1 (V )⊗ Sq+1(V )

defined (in coordinates) by

(
zi1 ∧ zi2 ∧ . . . ∧ zip

)
⊗m 7→

p∑
j=1

(−1)j−1
(
zi1 ∧ . . . ∧ ẑij ∧ . . . ∧ zip

)
⊗ (zij ·m)

A proof of the exactness can be found in [Gre] or in [Ei].

Definition 2.9 If X ⊂ Pn is a subvariety, its ideal sheaf is defined as the kernel of
the restriction map, that is from the exact sequence

0−→IX−→OPn−→OX−→0

Proposition 2.10 Let F be a coherent sheaf on Pm. Let χ(F) =
∑m
i=0 h

i(F). Then
(i) χ is additive, that is if

0−→F−→G−→H−→0

is an exact sequence we have

χ(G) = χ(F) + χ(H)

(ii) χ(O(t)) =
(t+m
m

)
Exercise 2.11 Let X ⊂ P5 be the intersection of two quadrics. X is the zero locus of
a section of O(2)2. The resolution of the ideal sheaf IX is:

0−→O(−4)−→O(−2)2−→O−→IX−→0

hence we get the Hilbert polynomial

χ(OX(t)) =
1

3
(t+ 1)(2t2 + 4t+ 3)

Riemann-Roch theorem implies the following facts.
• If X is a curve in Pn then

χ(OX(t)) = dt+ (1− g)

where d is the degree and g is the genus.
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• If X is a surface in Pn then

χ(OX(t)) =
d

2
t2 + (1− g +

d

2
)t+ (1 + pa)

where d is the degree and g is the genus of a generic hyperplane section and pa is called
the arithmetic genus. Rational surfaces have pa = 0.
• If X has dimension m then

χ(OX(t)) =
d

m!
tm + . . .+ (1 + (−1)mpa)

A free resolution of a sheaf F on Pn is an exact sequence

0−→Lm−→ . . .−→L1−→L0−→F−→0

where each Li is a sum ofline bundles O(ai). For more on free resolutions we refer to
[Kunz] or to [Ei].

Exercise 2.12 Write a free resolution of OQ where Q is a point in P3.

Solution: Q is the intersection of three hyperplanes, hence it is the zero locus of a
section of O(1)3. Then the Koszul complex is

0−→O(−3)−→O(−2)3−→O(−1)3−→O−→OQ−→0

Exercise 2.13 Write a free resolution of OL where L is a line in P3.

Exercise 2.14 Let C be a smooth curve in Pn which is the zero locus of a section of
a bundle E of rank n− 1. Compute degree and genus of C in terms of ci := ci(E)

Answer: d = cn−1 g = 1 + 1
2(c1 − n+ 1)cn−1. In particular c1cn−1 ≡ 0 (mod 2)

if n is odd.

We will see more examples of computations of Hilbert polynomial in the next
section.

3 k-normality and examples of resolutions

Definition 3.1 X ⊂ Pn is called k-normal if one of the two following equivalent facts
holds

(i) H0(Pn,O(k))−→H0(X,O(k)) is surjective.
(ii) H1(IX(k)) = 0.
X is called projectively normal if it is k-normal ∀k ≥ 0.

The twisted cubic is projectively normal
Proof After the identification C ' P1 we have O(k)|C ' OP1(3k). We have to

show that if F is a homogeneous polynomial of degree 3k in s, t then there exists a
homogeneous polynomial G(x0, x1, x2, x3) of degree k such that

F (s, t) = G(s3, s2t, st2, t3)
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Let F = sit3k−i. Dividing by 3 we get:

i = 3p+ q 3k − i = 3p′ + q′with 0 ≤ q, q′ ≤ 2 q + q′ ≡ 0 (mod3)

then sit3k−i = (s3)p(t3)p
′
sqtq

′
as we wanted.

Exercise 3.2 The rational normal curve in Pn is the curve C given by f : P1 → Pn

f(s, t) = (sn, sn−1t, . . . , stn−1, tn)

Prove that C is projectively normal.

Resolution of the twisted cubic We claim that the resolution of the twisted
cubic is

0−→O2(−1)
φ−→O3 ψ−→IC(2)−→0 (4)

where ψ is given by the three quadrics q0, q1, q2 which are the minors of (1). Indeed
developing along the first line the following

det

x0 x1 x2
x0 x1 x2
x1 x2 x3

 = 0

we get
x0q0 + x1q1 + x2q2 = 0

and in the same way
x1q0 + x2q1 + x3q2 = 0

that is [
x0 x1 x2
x1 x2 x3

]
·

 q0q1
q2

 = 0

Hence if φ is defined by [
x0 x1 x2
x1 x2 x3

]
we get that (4) is a complex, and a dimension count shows the exactness.

Remark that the resolution of the twisted cubic is not a Koszul complex. From the
resolution it is easy to verify that

χ(OC(t)) = 3t+ 1

as we knew before.
We remark also that from Cor. 2.7 (ii) it follows that the curve obtained from a

resolution of the form (4) with generic φ is smooth, and it has degree 3 and g = 0 by
computing the Hilbert polynomial. It is not difficult to prove that it coincides with
the twisted cubic after a linear change of coordinates.

8



Example 3.3 Let C be the complete intersection of two quadrics in P3 . We have the
resolution

0−→O(−2)−→O2−→IC(2)−→0

It follows
χ(OC(t)) = 4t

P2 blown up in one point (Hirzebruch surface) We mimic the construction
of the twisted cubic.

In P4 we have

0−→O2(−1)
φ−→O3−→IX(2)−→0

where X is smooth if

φ =

[
φ11 φ12 φ13
φ21 φ22 φ23

]
is generic (φij are linear forms) by Cor. 2.7(ii). If x ∈ X then the two rows of φ are
dependent when computed at x, that is there are constants (λ1, λ2) 6= (0, 0) such that

λ1φ1(x) + λ2φ2(x) = 0

which give a morphism
X−→P1

x 7→ (λ1, λ2)

The fiber of such a morphism is given by

λ1φ1 + λ2φ2 = 0

which is the intersection of three hyperplanes, hence it is a line (it cannot be a plane
because by Cor. 2.7(ii) X is smooth).

X is called a scroll.

Definition 3.4 X ⊂ Pn is called a scroll if there exists a morphism f :X → Y and
an integer m such that f−1(y) = Pm ∀y ∈ Y .

In the same way we have a morphism

X−→P2

x 7→ (φ11(x), φ12(x), φ13(x))

which is well defined because when φ1 vanish we can use φ2. The fiber of such a
morphism over (µ1, µ2, µ3) is given by the condition

rank

 µ1 µ2 µ3
φ11 φ12 φ13
φ21 φ22 φ23

 = 1
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In particular the fiber is always a linear space, so it is generically a point and it is a line
in x points (these lines are called exceptional divisors). So the surface is isomorphic to
the plane blown up in x points. By the scroll structure it is easy to check that x = 1,
indeed the exceptional divisors must be different from the fibers of the scroll.

This surface is obtained as the image of the system of plane conics through a point.
If the point has coordinates (0, 1, 0) we get the rational(means that it is not everywhere
defined) morphism

P2 −− → P4

(x0, x1, x2) 7→ (y0, . . . , y4) := (x20, x0x1, x0x2, x1x2, x
2
2)

(note that x21 is missing) which fill the table

x0 x1 x2

x0 x20 x0x1 x0x2
x2 x0x2 x1x2 x22

Indeed the surface given by the equations

rank

[
y0 y1 y2
y2 y3 y4

]
= 1 (5)

is filled by the lines

λ1(y0, y1, y2) + λ2(y2, y3, y4) = 0

Exercise 3.5 Find the equation of the exceptional divisor of the surface (5)

We can verify from the resolution

χ(O(t)) =
3

2
t2 +

5

2
t+ 1

hence d = 3, g = pa = 0, indeed the hyperplane sections of X are twisted cubics!
In P5 the same resolution gives P1×P2. In Pn for n ≥ 6 we get singular varieties.

The Bordiga surface
Let S be the surface given by

0−→O(−4)3
φ−→O(−3)4−→IS−→0

where φ is generic. φ can be seen as a 3× 4× 5 hypermatrix. Again by Cor. 2.7(ii) S
is smooth.

Let φ0, φ1, φ2 be the three rows. We have S :=
{
x ∈ P4|rankφ(x) ≤ 2

}
. By

Thm. 2.6 we have that the expected codimension of D1(φ) is 6, hence the rank is
never 1 (for generic φ), then ∀x ∈ S the three rows of φ(x) are dependent and there
are λ0(x), λ1(x), λ2(x) such that λ0(x)φ0(x) +λ1(x)φ1(x) +λ2(x)φ2(x) = 0. Hence we
have a morphism S−→P2.
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Its fiber in (λ0, λ1, λ2) is given by the equation

λ0φ0 + λ1φ1 + λ2φ2 = 0 (6)

that it is the intersection of 4 hyperplanes in P4. Hence the fiber is always a linear
space, so that so it is generically a point and it is a line(exceptional divisor) in x points.
So the surface is isomorphic to the plane blown up in x points.

Now we need a more subtle argument in order to show that x = 10.
The system (6) can be seen as a 4× 5 matrix of linear polynomials in λi and when

the λi vary we get a projective plane immersed in the projective space of 4×5 matrices.
Hence the fiber is a line exactly for the values (λi) corresponding to the intersection of
the plane with the variety M3 of rank ≤ 3 matrices. By (2) we have deg M3 = 5!0!

3!2! = 10
as we wanted.

The minors of the 4 × 5 matrix give plane quartics, indeed it can be shown that
the surface is given by the system of quartics through the 10 points.

From the resolution we compute

χ(O(t)) = 3t2 + t+ 1

hence d = 6, g = 3, pa = 0. Note that g = 3 is, correctly, the genus of a plane
quartic. The fact that d = 6 gives another argument to show that x = 10. Indeed the
intersection of two hyperplane sections gives 6 points, and at the level of plane quartics
this gives the equation 42 − x = 6, hence x = 10.

Exercise 3.6 The Castelnuovo conic bundle
Let S ⊂ P4 be defined by the sequence

0−→O2 φ−→O(1)2 ⊕O(2)−→IS(4)−→0

with generic φ.
(i) prove that S is smooth.
(ii) check that χ(OS(t)) = 1

2(5t2 + 3t+ 2), hence d = deg S = 5, g = 2, pa = 0.
(iii) check that there is a morphism f :S → P1 such that the fibers are conics. S is

called a conic bundle.
It is possible to prove that there exactly 7 singular fibers.

Sections of Ω1(2)
Consider the last part of the Koszul complex on P(V )

O ⊗ ∧2V −→ O(1)⊗ V −→ O(2) −→ 0
↘ ↗

Ω1(2)

The fiber of Ω1 at the point x ∈ Pn can be identified with {v ∈ V |vxt = 0}. We
have the identification

H0(Ω1(2)) = ∧2V (7)
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accordingly the global sections of Ω1(2) can be identified with skew symmetric matrices
A, in such a way on the fiber at x we have the vector xA ∈ V (since xAxt = 0).

If A is generic the zero locus is empty if n is odd and consists of a single point if n
is even.

Remarks on the pfaffian Let A be a skew symmetric matrix of even order 2m.
If e1, . . . e2m is a basis of V , we identify A with the 2-form

∑
i<j aijei ∧ ej .

We recall that we have the formula

A ∧A ∧ . . . ∧A =
Pf(A)

m!
e1 ∧ . . . ∧ e2m

which defines Pf(A) which is called the pfaffian of A.

Theorem 3.7
Pf(BABt) = det(B)Pf(A)

Pf(A)2 = det(A)

Proposition 3.8 Let A be a skew symmetric matrix of odd order n. Let Aij be ob-
tained by deleting the i-th row and the j-th column. Let Ci = Pf(Aii). The following
holds

(i) det Aij = CiCj
(ii) If rank A is n − 1 (maximal rank) then all the solutions of the homogeneous

system A · x = 0 are proportional to the vector (C1, . . . , Cn).

Proof We may assume that rankA = n − 1 also to prove (i). Consider the homo-
geneous system AXt = 0. Deleting the i-th row we get a system (n − 1) × n, whose
solutions are all proportional to the maximal minors (detAi1,−detAi2,detAi3, . . .)

Hence the direction of the above vector does not depend on i. It follows that

(CiCj)
2 = detA2

ij

and the thesis follows by checking the sign of a distinguished monomial.

Example

Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = af − be+ cd

Veronese surface in P4 Let S ⊂ P4 be defined by

0−→O(−1)3
f−→Ω1(1)−→IS(2)−→0

with generic f .
We follow an argument of Castelnuovo [Ca]. By (7)f defines a subspace Span(A0, A1, A2) ⊂

∧2V , it has generically rank 3 and it has rank 2 at points x such that there exists
(λ0, λ1, λ2) 6= (0, 0, 0) with

(λ0A0 + λ1A1 + λ2A2)x = 0
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Hence by Prop. 3.8 (ii) the principal pfaffians of λ0A0 + λ1A1 + λ2A2 give a regular
parametrization of S in terms of (λ0, λ1, λ2). This shows that S is isomorphic to the
projective plane. The 3×3 minors of the 5×3 matrix (A0x|A1x|A2x) define equations
for S (they are 10 cubics, with three relations, indeed h0(IS(3)) = 7). Castelnuovo
(by using Plücker coordinates for lines) proves that the plane

πx := {y|(yt)A0x = 0, (yt)A1x = 0, (yt)A2x = 0}

meets the surface in x and in a conic. These ∞2 conics are the image of the lines in
P2.

From the resolution it follows H1(IS(1)) = H1(Ω1) = C 6= 0, that is S is not
1-normal. Indeed H0(P4,O(1)) = C5 while H0(S,O(1)) = C6. The geometric expla-
nation is that S is the projection from the celebrated Veronese surface in P5. This last
can be seen as the locus of rank 1 symmetric matrices in the space P5 = P(S2C3) of
3× 3 symmetric matrices.

Exercise 3.9 Consider C defined by

0−→O(−1)3−→Ω1(1)⊕O−→IC(2)−→0

Prove (from the Hilbert polynomial) that d = 4, g = 0. C is a quartic rational curve
in P3. The fact that H1(IC(1)) 6= 0 tells us that C is the projection from the quartic
rational normal curve in P4.

A sample of a classification result is the following

Theorem 3.10 (Lanteri-Aure, see [La]) Let S ⊂ P4 be a smooth scroll in P4.
Then S is the plane blown up in one point of Example 3.3 or it is the elliptic quintic
scroll.

For recent results and a survey about constructions of projective varietiese with
many examples we recommend [KMMNP].
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