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1. Introduction

We propose a full self-contained proof of the interior regularity of weak solutions to a class of nonlinear 
elliptic partial differential equations and of local minimizers of some integrals of the calculus of variations. We 
focus on the growth conditions, since we deal with natural growth conditions, as well as with general growth 
conditions, for instance the so-called double phase integrals, which are a special case of the p, q−growth, 
considered in details in this paper. The simplest nonlinear model under natural growth conditions is the 
p−Dirichlet integral, or the non-degenerate p−Dirichlet integral, respectively given by∫

Ω

|Du (x)|p dx ,

∫
Ω

(
1 + |Du|2

) p
2
dx , (1.1)

where Ω is an open set in Rn for some n ≥ 2, u = u (x) is a map from Ω ⊂ Rn to R and Du is its gradient. 
Any local minimizer to the p−Dirichlet integral in (1.1) is a weak solution for x ∈ Ω to the p−Laplace 
equation, or respectively to the non-degenerate p−Laplace equation

n∑
i=1

∂

∂xi

{
|Du|p−2

uxi

}
= 0 ;

n∑
i=1

∂

∂xi

{(
1 + |Du|2

) p−2
2

uxi

}
= 0 . (1.2)

These equations enter in the regularity theory presented here, but more general cases are considered, some 
examples being described in Section 3. For instance we consider weak solutions to a class of variational 
elliptic equations of the form

n∑
i=1

∂

∂xi
ai (x,Du (x)) = b (x) , x ∈ Ω , (1.3)

where the vector field 
(
ai (x, ξ)

)
i=1,...,n is locally Lipschitz continuous in Ω ×Rn and it satisfies the so called 

p, q−growth conditions as in (1.10), (1.11) below. In this general context, i.e. under p, q−growth conditions 
with q �= p, we notice that even the existence of weak solutions to the elliptic equation (1.3) in general is 
an open problem; in particular in a naive way, in analogy when (1.3) is derived through the first variation 
of a minimization process, we could expect weak solutions to be in the Sobolev class W 1,p (Ω), however the 
pairing, i.e. the distributional weak form of the equation, is well defined only if u ∈ W 1,q

loc (Ω); see (4.2), (4.3)
for details.

One of our aims is to emphasize that, in the context of general growth conditions, there is a difference 
both in the proofs but also in the growth assumptions, between the regularity of minimizers of integral 
of the calculus of variations and the regularity of weak solutions to elliptic equations. This is clear if we 
compare the different growth assumptions (1.5), (1.17) respectively in the Theorems 1.1 and 1.4 below: we 
have qp < 1 + 2

n versus qp < 1 + 1
n . A second similar difference appears, in the minimization context, when 

we compare energy integrands explicitly depending on x or not; see condition (1.5) in Theorem 1.1 versus 
(1.9) of Theorem 1.2 with x dependence: again qp < 1 + 2

n versus qp < 1 + 1
n .

An other aim in this paper is to emphasize an aspect of the process/approach to regularity of weak 
solutions to nonlinear elliptic equations and systems under general growth conditions. This will be described 
more precisely in Section 2, where we divide this process of interior regularity into two steps: 1st− from 
either a minimizer, or a weak solution, u ∈ W 1,p to W 1,∞

loc ; 2nd− from a weak solution u ∈ W 1,p ∩W 1,∞
loc , 

under some smoothness of the data, to more regularity of the type C1,α, or Ck, or C∞.
As explained in Section 2, we concentrate here to the local boundedness of the gradient; i.e. to the local 

Lipschitz regularity of local minimizers and of weak solutions. We start to consider an energy integral of the 
type 

∫
Ω f(Du (x)) dx, where f : Rn → R is a convex function of class C2 (Rn) satisfying the p, q−growth 

conditions
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m |ξ|p−2 |λ|2 ≤
n∑

i,j=1

∂2f (ξ)
∂ξi∂ξj

λiλj ≤ M
(
1 + |ξ|2

) q−2
2 |λ|2 , (1.4)

for some exponents q ≥ p ≥ 2, some positive constants m, M and for every λ, ξ ∈ Rn. We denote by BR a 
generic ball of radius R compactly contained in Ω and by B� a ball of radius � < R concentric with BR.

Theorem 1.1 (Local minimizers). Let u be a local minimizer in W 1,p (Ω) of the energy integral 
∫
Ω f(Du (x)) dx

with f : Rn → R satisfying the p, q−growth conditions in (1.4) and

q

p
< 1 + 2

n
. (1.5)

Then u is of class W 1,∞
loc (Ω) and there exist constants c, c′, δ such that

‖Du (x)‖L∞(B�;Rn) ≤

⎛
⎝ c

(R− �)δ

∫
BR

(
1 + |Du|2

) p
2
dx

⎞
⎠

2
(n+2)p−nq

≤

⎛
⎝ c′

(R− �)δ

∫
BR

{1 + f (Du)} dx

⎞
⎠

2
(n+2)p−nq

, (1.6)

for all �, R with 0 < � < R ≤ � + 1. The constants c, c′, δ depend only on p, q, n.

Note that (n + 2) p −nq > 0 and thus the exponent in the right hand side of the above gradient estimates 
is well defined. Moreover, since 2

(n+2)p−nq ≥ 1
p , this exponent has the form ϑp , i.e. the right hand side can 

be compared with ‖Du (x)‖ϑLp(BR;Rn), where ϑ is greater than or equal to 1 and it is equal to 1 if and only 
if q = p. In the statement of Theorem 1.1 we mainly refer to the specific notation for the case n > 2; while 
details when n = 2 can be found below, see specifically the Remarks 4.2, 4.5 and 4.7. In particular for n = 2
the proper exponent in the right hand side of (1.6), derived from the application of Theorem 4.4, is αp with 
α given in (4.33) which is the correct exponent in any dimension n ≥ 2 and it reduces to 2

(n+2)p−nq when 
n > 2.

A similar gradient bound as in Theorem 1.1 can be proved for energy integral of the type
∫
Ω

{f(Du) + b (x)u} dx (1.7)

where f : Rn → R is a convex function of class C2 (Rn) satisfying the p, q−growth conditions (1.4). In fact, 
by mean of the Euler’s first variation, this case reduces to an example in the class of pde’s in divergence 
form as in (1.3). Then the growth conditions (1.10), (1.11) below are satisfied with ai (ξ) = ∂f(ξ)

∂ξi
, since the 

left hand side of (1.11) is identically equal to zero. With the same proof of Theorem 1.1 and Theorem 1.3
below we can obtain the gradient bound (1.6) for the energy integral (1.7), in the case b ∈ L∞

loc (Ω), with 
the p, q−growth conditions (1.4), q ≥ p ≥ 2 and qp < 1 + 2

n .
In this context we quote the recent article [5] by Beck-Mingione where, among other results, the authors 

extend Theorem 1.1 to functionals (1.7) with a forcing term b (x), under sharp assumptions on the regularity 
of b. Precisely, under the same bound q ≥ p ≥ 2 and qp < 1 + 2

n (and also for some cases with q ≥ p > 1; and for 
the vector-valued case with f (ξ) = g (|ξ|) too) Beck-Mingione [5, Theorem 1.2] considered sharp assumptions 
on the function b (x) of the type b ∈ L (n, 1) in dimension n > 2; i.e., 

∫ +∞
0 meas {x ∈ Ω : |b (x)| > λ}1/n

dλ <
+∞ (note that Ln+ε ⊂ L (n, 1) ⊂ Ln) or b ∈ L2 (logL)α for some α > 2 when n = 2.
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We can also consider more general energy integrands f = f (x, ξ) convex in ξ ∈ Rn, with fξξ (x, ξ), 
fξx (x, ξ) Carathéodory functions satisfying the p, q−growth conditions (1 < p ≤ q)

⎧⎪⎨
⎪⎩

m |ξ|p−2 |λ|2 ≤
∑

i,j fξiξj (x, ξ)λiλj ≤ M
(
1 + |ξ|2

) q−2
2 |λ|2

|fξx (x, ξ)| ≤ M
(
1 + |ξ|2

) q−1
2

(1.8)

for constants m, M > 0, for a.e. x ∈ Ω and for all λ, ξ ∈ Rn with |ξ| ≥ 1. The following is an a-priori 
estimate obtained in [44]; see also Theorem 3.4 in Section 3.2.

Theorem 1.2 (Local minimizers with x−dependence [44]). Under the condition (1.8) with exponents p, q
satisfying 1 < p ≤ q and

q

p
< 1 + 1

n
, (1.9)

any smooth local minimizer in W 1,p (Ω) of the energy integral 
∫
Ω f (x,Du (x)) dx is locally Lipschitz con-

tinuous in Ω and an estimate of the type (1.6) holds, with exponent 1
(n+1)p−nq in the right hand side.

We go back to the class of pde’s in divergence form as in (1.3). We assume that the vector field (
ai (x, ξ)

)
i=1,...,n is locally Lipschitz continuous in Ω × Rn with 

∣∣ai (x, 0)
∣∣ bounded in Ω, satisfying the 

so called p, q−growth conditions: for every λ, ξ ∈ Rn , x ∈ Ω and for some exponents p ≤ q and positive 
constants m, M

n∑
i,j=1

∂ai
∂ξj

λiλj ≥ m
(
1 + |ξ|2

) p−2
2 |λ|2 ,

n∑
i,j=1

∣∣∣∣∂ai∂ξj

∣∣∣∣ ≤ M
(
1 + |ξ|2

) q−2
2

, (1.10)

n∑
i,j=1

∣∣∣∣∂ai∂ξj
− ∂aj

∂ξi

∣∣∣∣ ≤ M
(
1 + |ξ|2

) p+q−4
4

,
n∑

i,s=1

∣∣∣∣ ∂ai∂xs

∣∣∣∣ ≤ M
(
1 + |ξ|2

) p+q−2
4

. (1.11)

Finally, for simplicity, we assume b ∈ L∞
loc (Ω)∩L

p
p−1 (Ω). We notice that the Lax-Milgram existence theory

does not apply when the exponents p, q are different each other. A weak solution to the elliptic equation 
(1.3) needs to be a function u in the class u ∈ W 1,q

loc (Ω); in fact, the p−ellipticity condition alone in general 
is not sufficient for the existence of weak solutions in the Sobolev class W 1,p (Ω). See the details in Section 4, 
in particular the weak form of the equation in (4.2).

Theorem 1.3 (Weak solutions with growth (1.10), (1.11)). Let Ω be an open and bounded set in Rn. Under 
the p, q−growth conditions (1.10), (1.11), if q ≥ p ≥ 2 and

q

p
< 1 + 2

n
, (1.12)

there exists a weak solution u ∈ W 1,p
u0

(Ω) ∩W 1,q
loc (Ω) to the Dirichlet problem

n∑
i=1

∂

∂xi
ai (x,Du (x)) = b (x) in Ω; u = u0 ∈ W 1, p q−1

p−1 on ∂Ω . (1.13)

Moreover u is of class W 1,∞
loc (Ω) and there exist positive constants c, δ such that, for every � and R such 

that 0 < ρ < R ≤ � + 1,
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‖Du (x)‖L∞(B�;Rn) ≤

⎛
⎝ c

(R− �)δ

∫
BR

(
1 + |Du (x)|2

) p
2
dx

⎞
⎠

2
(n+2)p−nq

. (1.14)

Less strict growth conditions than (1.11) can be requested; for instance

n∑
i,s=1

∣∣∣∣ ∂ai∂xs

∣∣∣∣ ≤ M
(
1 + |ξ|2

) q−1
2

, (1.15)

for every λ, ξ ∈ Rn , x ∈ Ω and for some positive constants m, M . We notice that automatically from (1.10)
we get

n∑
i,j=1

∣∣∣∣∂ai∂ξj
− ∂aj

∂ξi

∣∣∣∣ ≤ 2M
(
1 + |ξ|2

) q−2
2 ; (1.16)

therefore (1.10), (1.15) really are less strict than the growth conditions (1.10), (1.11).

Theorem 1.4 (Weak solutions with growth (1.10), (1.15)). Let Ω be open and bounded in Rn. Under the 
p, q−growth conditions (1.10), (1.15), if q ≥ p ≥ 2 and

q

p
< 1 + 1

n
, (1.17)

there exists a weak solution u ∈ W 1,p
u0

(Ω) ∩W 1,2q−p
loc (Ω) ⊂ W 1,p

u0
(Ω) ∩W 1,q

loc (Ω) to the Dirichlet problem

n∑
i=1

∂

∂xi
ai (x,Du (x)) = b (x) in Ω; u = u0 ∈ W 1, p 2q−p−1

p−1 on ∂Ω . (1.18)

Moreover u is of class W 1,∞
loc (Ω) and there exist positive constants c, δ such that, for every � and R such 

that 0 < ρ < R ≤ � + 1,

‖Du (x)‖L∞(B�;Rn) ≤

⎛
⎝ c

(R− �)δ

∫
BR

(
1 + |Du (x)|2

) p
2
dx

⎞
⎠

1
(n+1)p−nq

. (1.19)

We emphasize the interest to compare the growth conditions on the exponents p, q in (1.5), (1.12): 
q
p < 1 + 2

n and in (1.9), (1.17): qp < 1 + 1
n in the context of local Lipschitz continuity of f (x, ξ) and ai (x, ξ)

with respect to the x−variable, versus the growth conditions in (3.9): q
p < 1 + q

n for local boundedness, 
and in (3.10): qp < 1 + α

n , with α−Hölder continuity of f (x, ξ) and in (3.14): qp < 1 + 1
n − 1

r under Sobolev 
r−summability of the derivative fξx (x, ξ) for some r > n. See also the recent results by Bella-Schäffner 
[6], [7] and Remark 4.6 in Section 4.3.1. Finally, as in (3.6), we recall that for some energy integrals under 
p, q−growth conditions the regularity results hold under less restrictive conditions on the ratio qp , or even 

without restrictions such as for instance f(ξ) = |ξ|a+b sin(log log |ξ|), with a, b > 0 and a > 1 + b
√

2, which is 
a convex function satisfying the p, q−growth conditions with p = a − b and q = a + b and the Δ2-condition 
(see (2.10) in [58] and Remark 3.3 in [14]).

Theorems 1.1-1.4 give local Lipschitz continuity of local minimizers and of weak solutions. From u ∈
W 1,∞

loc (Ω) further regularity applies; see details in Section 2. Theorem 1.2 has been proved in [44]; see also 
Theorem 3.4 below. The proofs of Theorems 1.1, 1.3 and 1.4 are in Section 4.
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Of course these results are also valid when p = q, i.e. for interior Lipschitz continuity of weak solutions to 
the p−Laplace equation in (1.2). Since their proofs are presented in Section 4 in a complete form and are self 
contained, they could be used in a mini pde’s course, as already done by the author in a PhD mini-course 
held in Germany, at the Department Mathematik, Friedrich-Alexander Universität Erlangen-Nürnberg on 
December 2019. The author thanks Frank Duzaar for the invitation and for his warm hospitality at the 
Math. Dept.

2. The process/approach to regularity

We briefly describe some aspects of the process/approach to regularity of weak solutions to nonlinear 
elliptic equations and systems (in this section more generally we treat systems too). Let n ≥ 2, m ≥ 1, let 
Ω be an open set of Rn and let u : Ω ⊂ Rn → Rm be a weak solution of a nonlinear elliptic system of the 
form

divA (Du) =
n∑

i=1

∂

∂xi
aαi (Du) = 0, α = 1, 2 . . .m, (2.1)

where Du : Ω ⊂ Rn → Rm×n denotes the gradient of the map u, by components x = (xi)i=1,2,...,n, 
u = (uα)α=1,2,...,m and Du = (∂uα/∂xi) = (uα

xi
)α=1,2,...,m
i=1,2,...,n .

Then A (ξ) = (aαi (ξ))α=1,2,...,m
i=1,2,...,n is a given vector field A : Rm×n → Rm×n of class C1, satisfying the 

ellipticity condition

n∑
i,j=1

m∑
α,β=1

∂aαi (ξ)
∂ξβj

λα
i λ

β
j > 0, ∀ λ, ξ ∈ Rm×n : λ �= 0. (2.2)

In the general context of nonlinear elliptic systems the vector field A (ξ) is more general than in the specific 
context of the calculus of variations, where the vector field A (ξ) is the gradient of a function f (ξ); i.e., 
when there exists a function f : Rm×n → R of class C2 (Rm×n) such that A (ξ) = Dξf (ξ); in terms of 
components

aαi = ∂f

∂ξαi
= fξαi , ∀ α = 1, 2, . . . ,m; ∀ i = 1, 2, . . . , n.

Under this variational condition, the ellipticity condition (2.2) can be equivalently written in the form

∑
i,j,α,β

∂2f (ξ)
∂ξαi ∂ξ

β
j

λα
i λ

β
j > 0, ∀ λ, ξ ∈ Rm×n : λ �= 0. (2.3)

Thus the ellipticity condition of the system is equivalent to the positivity on Rm×n of the quadratic form 
D2

ξf (ξ); i.e., for every ξ ∈ Rm×n, 
(
D2

ξf (ξ)λ, λ
)

> 0, for all λ, ξ ∈ Rm×n, λ �= 0, which implies the 

(strict) convexity of the function f . In this case any weak solution (in a class of maps u to be defined) 
to the differential elliptic system is a minimizer (also here, we need to define that class of maps which 
compete with u in the minimization process) of the energy functional F (u) =

∫
Ω f(Du) dx and, in general, 

the vice-versa does not hold.
In the general vectorial setting of maps u : Ω ⊂ Rn → Rm which are weak solution of the nonlin-

ear elliptic system (2.1) it is well known that, in general, we can look for the so called partial regularity, 
since the pioneering work of Morrey and De Giorgi on this subject. If some additional structure conditions 
are assumed, then some studies can be found in the mathematical literature on the subject for every-
where regularity. For instance, the celebrated everywhere regularity results on minimizers of the p−Laplace
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energy-integral obtained by Uhlenbeck [67] in 1977 specifically with f(ξ) = |ξ|p and p ≥ 2; that is 
F (u) =

∫
Ω |Du (x)|p dx. The regularity problem for the previous elliptic system consists in asking if the 

solution u = u (x) = (uα (x))α=1,2,...,m, a-priori only measurable map in a given Sobolev class, in fact is 
continuous or more regular; i.e., if u is of class either C0,α, C1, C1,α, or Ck for some k, or even C∞, under 
suitable assumption of smoothness of the data. With the aim to explain the situation, we split the regularity 
process into two main parts (other points of view of smoothness are possible too), both relevant steps by 
themselves:

1st− from either a minimizer, or a weak solution, u ∈ W 1,p (Ω,Rm) (either in W 1,p or in some other Sobolev 
or Orlicz classes) to W 1,∞

loc (Ω,Rm);
2nd− from a weak solution u ∈ W 1,p (Ω,Rm)∩W 1,∞

loc (Ω,Rm), under some smoothness of the data, to more 
regularity of the type C1,α, or Ck, or C∞.

2.1. The second regularity step (2nd)

Let us start to briefly discussing the second regularity step: from u ∈ W 1,∞
loc (Ω,Rm) to C1,α (Ω,Rm)

and to C∞ (Ω,Rm). I.e., we consider the case when the weak solution u ∈ W 1,p (Ω,Rm) also belongs to 
W 1,∞

loc (Ω,Rm). Let us first treat equations; i.e. the scalar case m = 1, that is the case when the nonlinear 
system reduces to a nonlinear elliptic equation. Under (the so called “natural”) ellipticity and p−growth 
conditions (p ≥ 2) on the function f ∈ C2 (Rm×n), of the type

⎧⎪⎪⎨
⎪⎪⎩
(
D2

ξf (ξ)λ, λ
)

≥ m
(
1 + |ξ|2

) p−2
2 |λ|2∣∣∣D2

ξf (ξ)
∣∣∣ ≤ M

(
1 + |ξ|2

) p−2
2

, ∀ λ, ξ ∈ Rn ,

it is possible to see that u admits second derivatives in weak form, i.e., u ∈ W 2,2
loc (Ω) (see Section 4.1.1). Then, 

fixed k ∈ {1, 2, . . . , n}, we can take the k−derivative in both sides to the equation 
∑n

i=1
∂

∂xi
ai (Du) = 0 and 

we obtain

n∑
i=1

∂

∂xi

⎛
⎝ n∑

j=1

∂ai (Du (x))
∂ξj

(
uxj

)
xk

⎞
⎠ =

n∑
i,j=1

∂

∂xi

(
∂ai (Du (x))

∂ξj
(uxk

)xj

)
= 0 .

Therefore the partial derivative uxk
satisfies an elliptic differential equation

n∑
i,j=1

∂

∂xi

(
∂ai (Du (x))

∂ξj
(uxk

)xj

)
= 0 .

Recall that the map u is given (u is fixed); then we can “forget” the explicit dependence of ∂ai/∂ξj on 
Du (x). We define the element aij of an n × n matrix

aij (x) = ∂ai (Du (x))
∂ξj

= fξiξj (Du (x)) , i, j = 1, 2, . . . , n.

Recalling that

m
(
1 + |Du|2

) p−2
2 |λ|2 ≤

(
D2

ξf (Du)λ, λ
)
≤ M

(
1 + |Du|2

) p−2
2
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and since the gradient Du is locally bounded in Ω (u ∈ W 1,∞
loc (Ω)) then the n ×n square matrix (aij (x))n×n

is uniformly elliptic, with measurable locally bounded coefficients. Thus - as well known - we can apply 
the celebrated De Giorgi’s Hölder continuity result [37], dated 1957, for the linear elliptic equation with 
bounded measurable coefficients,

n∑
i,j=1

∂

∂xi

(
aij (x) ∂uxk

∂xj

)
= 0 ;

then, for every k ∈ {1, 2, . . . , n}, the partial derivative uxk
is Hölder continuous for some exponent α ∈ (0, 1). 

Thus u ∈ C1,α (Ω,Rm).
In the vector-valued case m ≥ 1 we need to assume a structure condition of the type f (ξ) = g (|ξ|) for 

all ξ ∈ Rm×n. Then, again it is possible to show (in some cases) that

u ∈ W 1,∞
loc (Ω,Rm) , A ∈ C1,γ for some γ ∈ (0, 1)

⇓
u ∈ C1,α for some γ ∈ (0, 1) .

See for instance the p−Laplace energy-integral, studied by Uhlenbeck [67], with f(ξ) = |ξ|p and p ≥ 2. 
Moreover under natural assumptions more regularity applies (although we also refer to some recent examples 
by Mooney-Savin [60] and Mooney [59] when further regularity of solutions may fail). In fact, if the function 
f is smooth, say f ∈ C2,γ (Rm×n), similarly to the scalar case, u admits second derivatives in weak form 
and, fixed k ∈ {1, 2, . . . , n}, we can take the k−derivative in the system

n∑
i=1

∂

∂xi
aαi (Du) = 0, α = 1, 2 . . .m.

Thus the partial derivative uxk
=

(
uβ
xk

)β=1,2,...,m satisfies (uxk
is a vector-valued map, a vector-valued 

partial derivative)

n∑
i=1

∂

∂xi

⎛
⎝ n∑

j=1

m∑
β=1

∂aαi (Du (x))
∂ξβj

(
uβ
xj

)
xk

⎞
⎠

=
∑
i,j,β

∂

∂xi

(
∂aαi (Du (x))

∂ξβj

(
uβ
xk

)
xj

)
= 0 , α = 1, 2 . . .m.

That is, for every k ∈ {1, 2, . . . , n}, the (vector-valued) map uxk
=
(
uβ
xk

)β=1,2,...,m is a weak solution to the 
elliptic differential system

∑
i,j,β

∂

∂xi

(
aαβij (x)

∂uβ
xk

∂xj

)
= 0 , α = 1, 2 . . .m,

where aαβij (x) :def= ∂aαi /∂ξ
β
j (Du (x)) = fξαi ξβj

(Du (x)) are now Hölder continuous coefficients, since u ∈ C1,α. 
Thus we can apply the classical regularity results in the literature for linear elliptic systems with smooth 
coefficients (see for instance Section 3 of Chapter 3 of the book by Giaquinta [46]) to infer

u ∈ C1,α, A ∈ Ck,γ =⇒ u ∈ Ck,α, ∀ k = 2, 3, . . .

In particular, if A ∈ C∞ (or equivalently f ∈ C∞) then u ∈ C∞ (Ω,Rm).
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2.2. The first regularity step (1st)

We discuss the process from u ∈ W 1,p (Ω,Rm) to u ∈ W 1,∞
loc (Ω,Rm). The problem to be considered is: 

under which conditions on the vector field A : Rm×n → Rm×n, A (ξ) = (aαi (ξ))α=1,2,...,m
i=1,2,...,n , the gradient Du

is in fact locally bounded? I.e., we look for sufficient conditions for u ∈ W 1,∞
loc (Ω,Rm).

Why the local boundedness of the gradient Du is a so relevant condition for regularity? Because the 
differential system heavily depends on Du in a nonlinear way, in particular through aαi (Du) and, if Du (x)
is bounded, then aαi (Du (x)) (here “p ≥ 2”) is bounded too and far away from zero. Thus the behavior of 
A (ξ) = (aαi (ξ)) for |ξ| → +∞ becomes irrelevant.

On the contrary, the local boundedness of the gradient is a property related to the behavior of A (ξ)
as |ξ| → +∞. Growth conditions play a relevant role in the W 1,∞

loc estimates. In the general context of 
p, q−growth conditions the first L∞−gradient estimates have been obtained in 1989-1991 in [50], [51], [52].

2.3. Conclusion: from W 1,p to C1,α or C∞

We summarize with a scheme the regularity process from W 1,p (Ω,Rm) to C1,α or C∞:

1st− from u ∈ W 1,p (Ω,Rm) to W 1,∞
loc (Ω,Rm); growth conditions, either of the vector field A (ξ) = (aαi (ξ))

or of the integrand f (ξ), play a central role;
2nd− from u ∈ W 1,∞

loc (Ω,Rm) to C1,α or C∞; essentially growth conditions are not needed; however, of 
course, in this step some uniform ellipticity must be considered too.

The C1,α and C∞ regularity is explicitly stated for instance in the Corollary 2.2 of [51]. The article 
[51], together with [50], was the first paper dealing with the interior Lipschitz regularity under p, q−growth 
conditions. The statement in the Corollary 2.2 is related to weak solutions a-priori in the class W 1,q

loc , to 
handle at the same time equations, as in Theorems 1.3 and 1.4, and minimizers as in Theorems 1.1 and 
1.2. But just following one of these quoted Theorems 1.1-1.4, or applying the interpolation Theorem 3.1 in 
[51], we see that in the non-degenerate case the C1,α or C∞ regularity can be stated also for weak solutions 
in the larger class W 1,p

loc , of course assuming the corresponding bound on the ratio qp in (1.5), (1.9), (1.12), 
(1.17).

3. Some examples with general growth

3.1. General p, q−growth

For some p > 1 and q > p let us mention some examples of energy-integrals with p, q and/or general 
growth conditions: ∫

Ω

|Du (x)|p(x)
dx , (3.1)

∫
Ω

|Du (x)|p log (1 + |Du (x)|) dx , (3.2)

∫
Ω

exp
(
a (x) |Du (x)|2

)
dx , (3.3)

∫
{a (x) |Du (x)|p + b (x) |Du (x)|q} dx . (3.4)
Ω
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The first example (3.1) enters in the p, q−growth context with p = inf {p (x) : x ∈ Ω}, q = sup {p (x) : x ∈ Ω}; 
more precisely, following the mathematical literature where the exponent p (x) is continuous in Ω, for the 
regularity purpose we can fix a ball BR ⊂ Ω of small radius R in such a way that p = inf {p (x) : x ∈ BR}, 
q = sup {p (x) : x ∈ BR} can be chosen arbitrarily close each other so that any bound of the type 
1 ≤ q

p < 1 + O
( 1
n

)
can be satisfied and the regularity results stated in Theorems 1.2, 1.3, 1.4 apply. 

Similarly the example (3.2), where we can fix q > p arbitrarily close to p. In the example (3.3) the integrand 
has exponential growth and we refer to [53], [58] and more recently to [38]. The last example in (3.4) is 
known - in the terminology introduced in 2015 by Colombo–Mingione - as a double phase energy integral, 
with possibly zero coefficients, by assuming however that the two exponents a (x) , b (x) are not equal to 
zero at the same time; i.e.,

a (x) , b (x) ≥ 0, a (x) + b (x) > 0, a.e. x ∈ Ω. (3.5)

The p, q−growth appear also with f independent of x, of the form f (ξ) = g (|ξ|) when g does not behave 
like a power when |ξ| → ∞; for instance

f (ξ) = g (|ξ|) = |ξ|a+b sin log log|ξ|
, g (t) = ta+b sin log log t , (3.6)

for |ξ| large, precisely for t ≥ e, and properly extended for t ∈ [0, e). In fact a computation shows that g is 
a convex function for t ≥ e and the function g (|ξ|) = |ξ|a+b sin log log|ξ|, a-priori defined for |ξ| ≥ e, can be 
extended to all ξ ∈ Rn as a convex function on Rn if a, b are positive real numbers with a > 1 + b

√
2. In 

this case our integrand satisfies the p, q−growth conditions

m |ξ|p ≤ f(ξ) ≤ M (1 + |ξ|q) , ∀ ξ ∈ Rn

with p = a − b > 1 and q = a + b. We notice that the “Δ2-condition” (well known in the mathematical 
literature; see for instance [20]) is considered to be a generalization of the uniformly elliptic case. The function 
f(ξ) in (3.6) satisfies the Δ2-condition; while we can construct (details by Bögelein-Duzaar-Marcellini-
Scheven [13], [14]; see also Chlebicka [20]) a convex function f (ξ) = g (|ξ|) satisfying the p, q−growth 
conditions with q > p and q arbitrarily close to p, which does not satisfy the Δ2-condition and which enters 
in the regularity theory presented here.

The class of energy functionals modelized by the example (3.4) enters in the context of general p, q−growth 
conditions; it is also named double phase integrals and has been recently (starting from 2015) explored 
in a series of interesting papers by M. Colombo-Mingione [23], [24], Baroni-M. Colombo-Mingione [2], 
[3], [4]. From different points of view Eleuteri-Marcellini-Mascolo [41], [42], [43], [44] and DeFilippis 
[33], DeFilippis-Ho [35]. For related recent references we also quote Duzgun-Marcellini-Vespri [39], [40], 
Rǎdulescu-Zhang [63], [64], Cencelja-Rădulescu-Repovš [19], Papageorgiou-Rădulescu-Repovš-Dušan [62], 
Ambrosio-Rădulescu [1], Ragusa-Tachikawa [65], Chlebicka [20], Chlebicka-DeFilippis [21], [22], Cupini-
Giannetti-Giova-Passarelli [25], Carozza-Giannetti-Leonetti-Passarelli [17], Carozza-Kristensen-Passarelli 
[18], Cupini-Marcellini-Mascolo [26–32], Harjulehto-Hästö-Toivanen [47], Hästö-Ok [48], Bousquet-Brasco 
[16], DeFilippis-Palatucci [36], Bildhauer-Fuchs [8], [9], TN Nguyen-MP Tran [61], Sin [66]. A special men-
tion to [34] by DeFilippis-Mingione with some interesting considerations about the so-called Lavrentiev 
phenomenon. General growth conditions even for the one-dimensional case n = 1 have been studied in [15], 
[45]. For the general case n > 1 and m > 1 under quasiconvexity conditions see [49] and the integral convexity 
condition [11] by Bögelein-Dacorogna-Duzaar-Marcellini-Scheven. Further references can be found in [38], 
[55], [56], [57]. We devote the next section to describe some results related to the class of energy integrals 
as in the example (3.4).
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3.2. Double phase integrals

In the terminology introduced by Colombo-Mingione [23], but already studied from the regularity point 
of view, in fact this is a particular case of the p, q-growth (see also the model examples in Section 1.3 of 
[12]), we consider the double phase integral (3.4)∫

Ω

{a (x) |Du (x)|p + b (x) |Du (x)|q} dx , (3.7)

with q > p > 1 and a (x),b (x) ≥ 0, a (x) + b (x) > 0 a.e. x ∈ Ω. Independently of the continuity of the 
coefficients a (x), b (x), we first state a local boundedness result for minimizers of the energy integral as 
in (3.4), obtained by Cupini-Marcellini-Mascolo [32] in the spirit of previous related results by Boccardo-
Marcellini-Sbordone [10].

Theorem 3.1 (Cupini-Marcellini-Mascolo). Let q ≥ p > 1, a−1 ∈ Lr
loc (Ω) and b ∈ Ls

loc (Ω) for some 

exponents r ∈
(

1
p−1 ,+∞

]
, s ∈ (1,+∞], with

1
pr

+ 1
qs

+ 1
p
− 1

q
<

1
n
. (3.8)

Then every local minimizer of the energy integral (3.7) is locally bounded in Ω.

Note that in the special relevant case r = s = +∞ the above condition reduces to 1
p − 1

q < 1
n , that is

q

p
< 1 + q

n
. (3.9)

More regularity of minimizers, in fact the local Hölder continuity of their gradients, has been proved by M. 
Colombo-Mingione [23], [24], Baroni-M. Colombo-Mingione [2], [3], [4]. For the local Lipschitz continuity 
without structure conditions see Eleuteri-Marcellini-Mascolo [41], [42], [43], [44]; see also De Filippis [33]. 
The following results have been obtained by M. Colombo-Mingione; of course in the first one we need a 
more strict assumption than either (3.8) or (3.9).

Theorem 3.2 (Colombo-Mingione). Let q ≥ p > 1, a−1 ∈ L∞
loc (Ω) and a, b ∈ Cα

loc (Ω) for some α ∈ (0, 1], 
with

q

p
< 1 + α

n
. (3.10)

Then every local minimizer of (3.7) is of class C1,β
loc (Ω) for some β ∈ (0, 1).

Theorem 3.3 (Colombo-Mingione). Let q ≥ p and 1 < p ≤ n, a−1 ∈ L∞
loc (Ω) and a, b ∈ Cα

loc (Ω) for some 
α ∈ (0, 1], with

q

p
< 1 + α

p
. (3.11)

Then any locally bounded minimizer of (3.7) is in C1,β
loc (Ω) for some β ∈ (0, 1).

The following is a related regularity result by Eleuteri-Marcellini-Mascolo [44], valid for a generalized 
class of double (or multi) phase energy integrands, whose prototype is given by
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f(x, ξ) = a (x) |ξ|p + b (x) |ξ|s + |ξn|q , (3.12)

ξn being the last (or any other) component of the vector ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn and s ≤ p+q
2 . Note however 

that we do not assume a structure representation of the integrand, for instance of the type (3.12), which 
is only a model example. In fact we can also consider more general energy integrands f = f(x, ξ) without 
a structure, i.e. not necessarily depending on the modulus of ξ. We assume that f : Ω × Rn → [0, +∞)
is a convex function with respect to the gradient variable ξ and it is strictly convex only at infinity; more 
precisely, fξξ, fξx are Carathéodory functions satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m |ξ|p−2 |λ|2 ≤
∑

i,j fξiξj (x, ξ)λiλj ≤ M
(
1 + |ξ|2

) q−2
2 |λ|2

either |fξx (x, ξ)| ≤ h(x)
(
1 + |ξ|2

) p+q−2
4

,

or, respectively |fξx (x, ξ)| ≤ h(x)
(
1 + |ξ|2

) q−1
2

(3.13)

for some constants m, M > 0, for almost every x ∈ Ω and for all λ, ξ ∈ Rn with |ξ| ≥ 1. Here 1 < p ≤ q and 
h ∈ Lr(Ω) for some r > n. The following a-priori estimate has been obtained in [44].

Theorem 3.4 (Eleuteri-Marcellini-Mascolo). Under the growth assumptions (3.13) with exponents p, q satis-
fying

q

p
< 1 + 2

(
1
n
− 1

r

)
or, respectively q

p
< 1 + 1

n
− 1

r
, (3.14)

any smooth local minimizer of the energy integral 
∫
Ω f (x,Du (x)) dx is locally Lipschitz continuous in Ω.

If we specialize the above theorem with integrand f(x, ξ) as in (3.12), with

a (x) = 1 , b (x) = |x|α ,

for some α ∈ (0, 1) and 0 ∈ Ω, then b ∈ C0,α ∩W 1,r with 1
r = 1−α

n . The function h belongs to Lr for the 
same r = n

1−α and the assumption on the exponents p, q can be written in terms of the parameter α in the 
equivalent form

q

p
< 1 + 2α

n
. (3.15)

Differently, if we take under consideration the double phase integral (3.7) with the same coefficients a (x) = 1
and b (x) = |x|α, then a computation gives qp < 1 + α

n , as in the Colombo-Mingione Theorem 3.2.

4. Proofs of Theorems 1.1, 1.2, 1.3, and 1.4

The proofs of Theorems 1.1, 1.3 and 1.4 have a unique roof and rely on the a-priori gradient estimate of 
Theorem 4.1. We divide the proofs of these results into several steps, which are detailed and self contained. 
As references, a reader can find related details in some of the author’s papers, in particular in [51] and [54].
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4.1. First step: a-priori estimates

Let us consider again the elliptic equation

n∑
i=1

∂

∂xi
ai (x,Du (x)) = b (x) , x ∈ Ω . (4.1)

Under p, q−growth conditions, with q ≥ p, as in (1.10), (1.11), a weak solution to (4.1) is a function 
u ∈ W 1,q

loc (Ω) such that, for every Ω′ ⊂⊂ Ω,

∫
Ω

n∑
i=1

ai (x,Du (x))︸ ︷︷ ︸
∈L

q
q−1
loc

ϕxi︸︷︷︸
∈Lq

dx +
∫
Ω

b (x)ϕdx = 0, ∀ϕ ∈ W 1,q
0 (Ω′) , (4.2)

where q
q−1 and q are conjugate exponents (i.e., the sum of the reciprocals is equal to 1). In fact by (1.10)

∣∣ai (x,Du (x)) − ai (x, 0)
∣∣ =

∣∣∣∣∣∣
1∫

0

d

dt
ai (x, tDu (x)) dt

∣∣∣∣∣∣ (4.3)

=

∣∣∣∣∣∣
1∫

0

n∑
j=1

aiξj (x, tDu (x))uxj
dt

∣∣∣∣∣∣ ≤ M
(
1 + |Du (x)|2

) q−2
2 |Du (x)|

≤ M
(
1 + |Du (x)|2

) q−1
2 ∈ L

q
q−1
loc if |Du (x)| ∈ Lq

loc .

Thus ai (x,Du) ∈ L
q

q−1
loc , as indicated in (4.2), if |Du (x)| ∈ Lq

loc and if 
∣∣ai (x, 0)

∣∣ has the right summability 

(i.e., 
∣∣ai (x, 0)

∣∣ ∈ L
q

q−1
loc ), in particular if it is locally bounded in Ω. The definition of weak solution is 

consistent if a-priori u ∈ W 1,q
loc (Ω) and in general (if q �= p) it is not sufficient u ∈ W 1,p

loc (Ω).

Theorem 4.1 (A-priori estimate). Under the p, q−growth conditions (1.10), (1.11), if q ≥ p ≥ 2 and

q

p
<

n

n− 2 (4.4)

(without restrictions on the exponents p, q if n = 2), then every weak solution u ∈ W 1,q
loc (Ω) to the pde (4.1)

is of class W 1,∞
loc (Ω); i.e., the gradient Du is locally bounded in Ω and the following estimate holds: there 

exist c, β > 0 and ϑ ≥ 1 such that, for every �, R (0 < ρ < R ≤ � + 1 with ratio R� bounded),

sup
x∈B�

(
1 + |Du (x)|2

) 1
2 ≤ c

(R− ρ)ϑβ

(∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
Lq(BR)

)ϑ

=
for n>2

c

⎛
⎝ 1
Rn

∫
BR

(
1 + |Du|2

) q
2
dx

⎞
⎠

2
np−(n−2)q

. (4.5)

The proof of Theorem 4.1 follows below; it is divided into several steps.

Remark 4.2. We emphasize that in the a-priori gradient bound (4.5) the exponents β in (4.21) and ϑ in 
(4.17) have explicit expression; in particular ϑ := (2∗−2)q

∗ which is equal to 2q when n ≥ 3. With 
2 p−2q np−(n−2)q
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abuse of notation sometime we denote with the same expression the value of ϑ also when n = 2; however, 
more precisely, for every n ≥ 2 in fact ϑ means ϑ := 2∗−2

2∗ p
q−2 , where 2∗ for n = 2 is equal to any fixed real 

number greater than 2q
p . We also observe for n = 2 that ϑ → q

p as 2∗ → +∞ so that ϑ can be any number 
close to (and greater than) qp . In any case ϑ ≥ 1; i.e. for every n ≥ 2 and every q ≥ p.

The exponent ϑ = 2∗−2
2∗ p

q−2 is equal to 1 if and only if q = p. Therefore in the classical case of the non-
degenerate p−Laplace equation (1.2) the a-priori estimate in Theorem 4.1 is a final result for the local 
Lipschitz continuity of the weak solutions. In fact if q = p then condition (4.4) holds; Theorem 4.1 applies 
to every weak solution u ∈ W 1,p

loc (Ω) and further steps are not needed. In this case with q = p then ϑ = 1
and (4.5) takes the form, for every �, R (0 < ρ < R ≤ � + 1),

sup
x∈B�

(
1 + |Du (x)|2

) 1
2 ≤

⎛
⎝ c

(R− ρ)n
∫
BR

(
1 + |Du|2

) p
2
dx

⎞
⎠

1
p

. (4.6)

4.1.1. Difference quotient
Fixed s ∈ {1, 2, . . . n} and h ∈ R, h �= 0, as usual the difference quotient is defined by Δhψ =

ψ(x+hes)−ψ(x)
h . Given g : R → R Lipschitz continuous, with 0 ≤ g′ ≤ L, we consider a test function of 

the form ϕ = Δ−h

(
η2g (Δhu)

)
, η ∈ C1

0 (Ω′), η ≥ 0, Ω′ ⊂⊂ Ω. We get

∫
Ω

{
n∑

i=1
Δha

i (x,Du (x))
(
η2g (Δhu)

)
xi

+ b (x)Δ−h

(
η2g (Δhu)

)}
dx = 0.

We compute 
(
η2g (Δhu)

)
xi

= 2ηηxi
g (Δhu) + η2g′ (Δhu) Δhuxi

and

Δha
i (x,Du (x)) = 1

h

1∫
0

d

dt
ai (x + thes, Du (x) + thΔhDu) dt ,

=
1∫

0

⎛
⎝aixs

+
n∑

j=1
aiξjΔhuxj

⎞
⎠ dt .

We obtain

0
1∫

0

dt

∫
Ω

η2g′ (Δhu)
n∑

i,j=1
aiξjΔhuxi

Δhuxj
dx

1 = −
1∫

0

dt

∫
Ω

η2g′ (Δhu)
n∑

i=1
aixs

Δhuxi
dx

2 + 3 −
1∫

0

dt

∫
Ω

2ηg (Δhu)
n∑

i=1

⎛
⎝aixs

+
n∑

j=1
aiξjΔhuxj

⎞
⎠ ηxi

dx

4 +
∫
Ω

b (x)Δ−h

(
η2g (Δhu)

)
dx .

We discuss all these terms, separately each other. Let us start with 0 :
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0
1∫

0

dt

∫
Ω

η2g′ (Δhu)
n∑

i,j=1
aiξjΔhuxi

Δhuxj
dx

≥ m

1∫
0

dt

∫
Ω

η2g′ ·
(
1 + |Du + thΔhu|2

) p−2
2 |ΔhDu|2 dx .

However we do not immediately apply this estimate; before we treat the other terms, since - also in the 
other terms - the quadratic form 

∑n
i,j=1 a

i
ξj

Δhuxi
Δhuxj

will appear. With 1 , since

aixs
= aixs

(Du + thΔhu) ∈ L
q

q−1
loc , aiξj = aiξj (Du + thΔhu) ∈ L

q
q−2
loc ,

as in Lemma 2.5 of [51] we obtain the estimate∣∣∣∣∣∣∣∣
1∫

0

dt

∫
Ω

η2g′ (Δhu)
n∑

i=1
aixs︸︷︷︸

q
q−1

Δhuxi︸ ︷︷ ︸
q

dx

∣∣∣∣∣∣∣∣
q−1
q + 1

q = 1

≤ c

1∫
0

dt

∫
Ω

η2g′ (Δhu)

⎛
⎜⎜⎝ n∑

i,j=1
aiξj︸︷︷︸
q

q−2

Δhuxi︸ ︷︷ ︸
q

Δhuxj︸ ︷︷ ︸
q

⎞
⎟⎟⎠

1
2

︸ ︷︷ ︸
∈L2

loc

(
1 + |Du + thΔhu|2

) q
4

︸ ︷︷ ︸
∈L2

loc

dx .

As a scruple, we also make a dimensional control of the previous estimates by separating the first and the 
second derivatives: ∣∣∣∣∣∣∣∣

1∫
0

dt

∫
Ω

η2g′ (Δhu)
n∑

i=1
aixs︸︷︷︸

q
q−1

Δhuxi︸ ︷︷ ︸
q

dx

∣∣∣∣∣∣∣∣
dimensional control |Du|q−1 · |ΔhDu|

≤ c

1∫
0

dt

∫
Ω

η2g′ (Δhu)

⎛
⎜⎜⎝ n∑

i,j=1
aiξj︸︷︷︸
q

q−2

Δhuxi︸ ︷︷ ︸
q

Δhuxj︸ ︷︷ ︸
q

⎞
⎟⎟⎠

1
2

︸ ︷︷ ︸
∈L2

loc

(
1 + |Du + thΔhu|2

) q
4

︸ ︷︷ ︸
∈L2

loc

dx .

dimensional control |Du|
q−2
2 · |ΔhDu| · |Du|

q
2 = |Du|q−1 · |ΔhDu| .

We estimate 2 by the assumption (1.11)∣∣∣∣∣∣∣∣
1∫

0

dt

∫
Ω

2ηg (Δhu)
n∑

i=1
aixs︸︷︷︸

|ξ|q−1

ηxi
dx

∣∣∣∣∣∣∣∣
≤ nM

1∫
0

dt

∫
Ω

2η |Dη| · |g (Δhu)|
(
1 + |Du + thΔhu|2

) q−1
2

︸ ︷︷ ︸
q−1

dx .
|ξ|
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With 3 as in (2.23) of [51] we have
∣∣∣∣∣∣∣∣

1∫
0

dt

∫
Ω

2η g (Δhu)︸ ︷︷ ︸
|ξ|

n∑
i=1

n∑
j=1

aiξj︸︷︷︸
|ξ|q−2

Δhuxj
ηxi

dx

∣∣∣∣∣∣∣∣ ≤

c

1∫
0

∫
Ω

⎛
⎝η2g′

n∑
i,j=1

aiξjΔhuxi
Δhuxj

⎞
⎠

1
2

︸ ︷︷ ︸
|ξ|

q−2
2

⎛
⎜⎜⎜⎝ g2

g′︸︷︷︸
|ξ|2

(
1 + |Du + thΔhu|2

) q−2
2 |Dη|2

⎞
⎟⎟⎟⎠

1
2

︸ ︷︷ ︸
|ξ|

q−2
2 +1

dtdx .

Finally for 4
∣∣∣∣∣∣
∫
Ω

b (x) Δ−h

(
η2g (Δhu)

)
dx

∣∣∣∣∣∣
≤ ‖b‖L∞(Ω′)

∫
Ω

{
2η |ηxs

| · |g (Δhu)| + η2g′ (Δhu) |Δhuxs
|
}
dx .

Being |Δhuxs
| ≤ ε |Δhuxs

|2 + 1
4ε , we estimate 4 with the quantity

≤ ‖b‖L∞(Ω′)

∫
Ω

{
2η |Dη| |g (Δhu)| + εη2g′ (Δhu) |Δhuxs

|2 + 1
4εη

2g′ (Δhu)
}
dx .

We obtain

1
c

1∫
0

dt

∫
Ω

η2g′ ·
(
1 + |Du + thΔhu|2

) p−2
2 |ΔhDu|2 dx (4.7)

≤
1∫

0

dt

∫
Ω

η2g′ (Δhu)
(
1 + |Du + thΔhu|2

) q
2
dx

+
1∫

0

dt

∫
Ω

η |Dη| · |g (Δhu)|
(
1 + |Du + thΔhu|2

) q−1
2

dx

+
1∫

0

dt

∫
Ω

g2

g′

(
1 + |Du + thΔhu|2

) q−2
2

︸ ︷︷ ︸
|ξ|q

|Dη|2 dx

At this stage, with g (t) = t, we get u ∈ W 2,2
loc (Ω) and we can pass to the limit as h → 0. See for instance 

Lemma 2.7 in [51]. Being Δhu = u(x+hes)−u(x)
h , in particular

Δhu → uxs
, g (Δhu) → g (uxs

) , ΔhDu = DΔhu → Duxs
, hΔhu → 0 .

We also get a bound of u in W 2,2
loc (Ω) in terms of the data.
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4.1.2. Weak solutions with second derivatives
For every β ≥ 0 we consider g (t) = t 

(
1 + t2

) β
2 and t = uxs

. We remark that in [51] we had a similar 
notation with the parameter α = β + 2. We can check the bound g2

g′ ≤ c 
(
1 + t2

) β+2
2 , for instance as in 

Lemma 2.6(ii) of [51]. In the limit as h → 0 from (4.7) we get

∫
Ω

η2
n∑

s=1

(
1 + |uxs

|2
) β+p−2

2 |Duxs
|2 dx

≤ c (β + 1)
∫
Ω

(
η2 + |Dη|2

) n∑
s=1

(
1 + |uxs

|2
) β+q

2
dx

(note that, for β = 0, β+p−2
2 = p−2

2 and similarly β+q
2 = q

2 ). Then

∣∣∣∣D
[
η
(
1 + |uxs

|2
) β+p

4
]∣∣∣∣

2

≤
(

β+p
2

)2
η2

(
1 + |uxs

|2
) β+p−2

2 |Duxs
|2 + 2 |Dη|2

(
1 + |uxs

|2
) β+p

2
,

which we use together with the Sobolev inequality, valid for every s = 1, 2, . . . , n,

⎛
⎝∫

Ω

[
η
(
1 + |uxs

|2
) β+p

4
]2∗

dx

⎞
⎠

2
2∗

≤ c

∫
Ω

∣∣∣∣D
[
η
(
1 + |uxs

|2
) β+p

4
]∣∣∣∣

2

dx . (4.8)

In a standard way we fix concentric balls BR and Bρ compactly contained in Ω and a test function η ∈
C1

0 (BR), η ≥ 0 in BR and η = 1 in Bρ, with |Dη| ≤ 2/ (R− ρ). We have obtained

⎛
⎜⎝∫
Bρ

n∑
s=1

(
1 + |uxs

|2
)2∗ β+p

4
dx

⎞
⎟⎠

2
2∗

≤ c (β + 2)3

(R− ρ)2
∫
BR

n∑
s=1

(
1 + |uxs

|2
) β+q

2
dx . (4.9)

We observe that, for β = 0, we get the summability of u to the power

2∗ β + p

2 = 2∗

2 p =
for n>2

2np
n− 2 ,

which should be compared with the summability of u to the power q. The estimate (4.9) is relevant if 
2np
n−2 > q. Therefore we gain in summability if qp < 2n

n−2 when n > 2. This in fact is satisfied since it is less 
strict than the assumption (4.4) q

p < n
n−2 in Theorem 4.1. At this stage there are not conditions on p, q if 

n = 2. In the sense that, when n = 2, we define 2∗ such that 2∗ > 2 q
p ; see also Remark 4.2.

4.1.3. Moser’s iteration scheme for the gradient
Starting from the estimate (4.9) we use the Moser’s iteration scheme for the gradient of the solution. 

Precisely, we define the sequence (βk)k∈N of real numbers

{
β1 = 0
βk+1 = 2∗

(βk + p) − q, k = 1, 2, . . .
. (4.10)
2
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Recall that now the assumption (4.4) on the exponents p, q is q
p < n

n−2 = 2∗

2 , which is equivalent to 
2∗

2 p − q > 0, and which implies βk+1 > 2∗

2 βk ≥ βk; i.e., the sequence βk is strictly increasing (and more! By 
a multiplicative factor 2∗

2 ). We can give a representation formula for the sequence βk defined by induction 
in (4.10)

βk+1 =
(

2∗

2 p− q

) k−1∑
i=0

(
2∗

2

)i

, ∀ k = 1, 2, . . . (4.11)

In fact, if k = 1 then β2 = 2∗

2 (β1 + p)− q = 2∗

2 p − q, which corresponds to the previous formula (4.11) when 
k = 1. For generic k = 2, 3, . . ., by the induction assumption (4.11), we obtain

βk+2 = 2∗

2 (βk+1 + p) − q

= 2∗

2

[(
2∗

2 p− q

) k−1∑
i=0

(
2∗

2

)i

+ p

]
− q =

(
2∗

2 p− q

) k−1∑
i=0

(
2∗

2

)i+1

+
(

2∗

2 p− q

)

=
(

2∗

2 p− q

) k∑
i=1

(
2∗

2

)i

+
(

2∗

2 p− q

)
=
(

2∗

2 p− q

) k∑
i=0

(
2∗

2

)i

,

which corresponds to the induction thesis, when in (4.11) we change k with k + 1. We use the well known 
sum of a geometrical series 

∑k−1
i=0 ri = rk−1

r−1 for r = 2∗

2 . We also obtain the further representation formula 
for βk, valid for k = 1, 2, . . .

βk+1 =
(

2∗

2 p− q

) k−1∑
i=0

(
2∗

2

)i

= 2∗p− 2q
2∗ − 2

((
2∗

2

)k

− 1
)
. (4.12)

Recall the previous estimate (4.9)

⎛
⎜⎝∫
Bρ

n∑
s=1

(
1 + |uxs

|2
)2∗ β+p

4
dx

⎞
⎟⎠

2
2∗

≤ c (β + 2)3

(R− ρ)2
∫
BR

n∑
s=1

(
1 + |uxs

|2
) β+q

2
dx

which we will now consider with β = βk. By the definition (4.10) βk+1 = 2∗

2 (βk + p)−q, we get β+q = βk+q

and 2∗ β+p
2 = 2∗ βk+p

2 = βk+1 + q. With the aim to have a full iteration we also consider radii ρ0 and R0
with 0 < ρ0 < R0 and

Rk = ρ0 + R0 − ρ0

2k−1 , ∀ k = 1, 2, . . .

For k = 1, 2, . . . we rewrite (4.9) with β = βk, ρ = Rk+1, R = Rk. Being R − ρ = Rk+1 − Rk = R0−ρ0
2k , we 

obtain

⎛
⎜⎝ ∫
BRk+1

n∑
s=1

(
1 + |uxs

|2
) βk+1+q

2
dx

⎞
⎟⎠

2
2∗

≤ c4k (βk + 2)3

(R0 − ρ0)2
∫

BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx . (4.13)

With the notation
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Ak =

⎛
⎜⎝ ∫
BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx

⎞
⎟⎠

1
βk+q

(4.14)

being 2
2∗ = βk+p

βk+1+q we finally get

Ak+1 ≤
(
c4k (βk + 2)3

(R0 − ρ0)2

) 1
βk+p

(Ak)
βk+q

βk+p . (4.15)

By iterating (4.15) we obtain

A3 ≤
(
c42 (β2 + 2)3

(R0 − ρ0)2

) 1
β2+p

(A2)
β2+q
β2+p

≤
(
c42 (β2 + 2)3

(R0 − ρ0)2

) 1
β2+p

⎛
⎝(

c4 (β1 + 2)3

(R0 − ρ0)2

) 1
β1+p

(A1)
β1+q
β1+p

⎞
⎠

β2+q
β2+p

,

A4 ≤
(
c43 (β3 + 2)3

(R0 − ρ0)2

) 1
β3+p 2∏

i=1

(
c4i (βi + 2)3

(R0 − ρ0)2

) 1
βi+p

3∏
i=2

βi+q
βi+p

· (A1)
3∏

i=1

βi+q
βi+p

,

and for generic k = 1, 2, . . .,

Ak+1 ≤
(
c4k (βk + 2)3

(R0 − ρ0)2

) 1
βk+p k−1∏

i=1

(
c4i (βi + 2)3

(R0 − ρ0)2

) 1
βi+p

k∏
i=2

βi+q
βi+p

· (A1)
k∏

i=1

βi+q
βi+p

. (4.16)

With the aim to go to the limit as k → +∞, by using the definition (4.10) βk+1 = 2∗

2 (βk + p) − q we first 
compute the following product for k ≥ 2

k∏
i=1

βi + q

βi + p
= β1 + q

β1 + p
· β2 + q

β2 + p
· . . . · βk + q

βk + p

= β1 + q

β1 + p
·

2∗

2 (β1 + p)
β2 + p

·
2∗

2 (β2 + p)
β3 + p

· . . . ·
2∗

2 (βk−1 + p)
βk + p

= q

βk + p

(
2∗

2

)k−1

and, by the expression βk = 2∗p−2q
2∗−2

((
2∗

2

)k−1
− 1

)
in (4.12) and β1 = 0

k∏
i=1

βi + q

βi + p
= q

βk + p

(
2∗

2

)k−1

=
q
(

2∗

2

)k−1

2∗p−2q
2∗−2

((2∗

2
)k−1 − 1

)
+ p

.

Since 2∗

2 > 1, in the limit as k → +∞ we obtain

∞∏
i=1

βi + q

βi + p
= q

2∗p−2q
2∗−2

= 2∗ − 2
2∗ p

q − 2 .

Recalling that 2∗
p − q > 0, the real number
2
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ϑ := 2∗ − 2
2∗ p

q − 2 (4.17)

is greater than or equal to 1, it is equal to 1 if and only if p = q, and it is one of the relevant exponents which 
will appear in the a-priori estimate. To simplify this expression, we observe that, for every i = 1, 2, . . .,

c4i (βi + 2)3

(R0 − ρ0)2
≥ c4i (βi + 2)3

(R0 − ρ0)2

∣∣∣∣∣
i=1

= c
4 · 23

(R0 − ρ0)2
≥ 1

and we can assume that the right hand side is greater than or equal to 1 by using a greater constant c if 
necessary. Moreover, since

k∏
i=1

βi + q

βi + p
= q

p

k∏
i=2

βi + q

βi + p
≥

k∏
i=2

βi + q

βi + p
,

from (4.16) we also deduce

Ak+1 ≤
(
c4k (βk + 2)3

(R0 − ρ0)2

) 1
βk+p k−1∏

i=1

(
c4i (βi + 2)3

(R0 − ρ0)2

) 1
βi+p

k∏
i=2

βi+q
βi+p

· (A1)
k∏

i=1

βi+q
βi+p (4.18)

≤
(
c4k (βk + 2)3

(R0 − ρ0)2

) 1
βk+p k−1∏

i=1

(
c4i (βi + 2)3

(R0 − ρ0)2

) 1
βi+pϑ

·Aϑ
1

≤
k∏

i=1

(
c4i (βi + 2)3

(R0 − ρ0)2

) ϑ
βi+p

·Aϑ
1 =

k∏
i=1

(
c4i (βi + 2)

) ϑ
βi+p

(R0 − ρ0)
2ϑ

k∑
i=1

1
βi+p

·Aϑ
1 .

Finally, since βi �
(

2∗

2

)i−1
as i → +∞, we have

k∏
i=1

(
c4i (βi + 2)

) ϑ
βi+p = exp

(
k∑

i=1

ϑ

βi + p
log c4i (βi + 2)

)

�k→+∞ exp
(

k∑
i=1

i( 2∗

2
)i−1

)
≤ exp

( ∞∑
i=1

i( 2∗

2
)i−1

)
:= c < +∞ (4.19)

and, by (4.12) being βi = 2∗p−2q
2∗−2

((
2∗

2

)i−1
− 1

)
for every i = 1, 2, . . ., we have

k∑
i=1

1
βi + p

= 2∗ − 2
2∗p− 2q

k∑
i=1

1( 2∗

2
)i−1 − 1 + p

≤ 2∗ − 2
2∗p− 2q

k∑
i=1

(
2
2∗

)i−1

≤ 2∗ − 2
2∗p− 2q · 1

1 − 2
2∗

= 2∗

2∗p− 2q . (4.20)

From (4.18), (4.19), (4.20), by the fact that R0 − ρ0 ≤ 1, we get

Ak+1 ≤
k∏(

c4i (βi + 2)
) ϑ

βi+p · (R0 − ρ0)
−2ϑ

k∑
i=1

1
βi+p ·Aϑ

1

i=1
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≤ c

(R0 − ρ0)2ϑ
2∗

2∗p−2q
·Aϑ

1 .

With the notation (valid in the right hand side when n > 2)

β := 2 2∗

2∗p− 2q =
for n>2

2n
np− (n− 2) q (4.21)

(again note that 2∗p − 2q > 0) we get

Ak+1 ≤ c

(
A1

(R0 − ρ0)β

)ϑ

. (4.22)

Recall the definition of Ak in (4.14); i.e.

Ak =

⎛
⎜⎝ ∫
BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx

⎞
⎟⎠

1
βk+q

, ∀ k = 1, 2, . . . , .

We go to the limit in (4.22) as k → +∞; since βk �
(

2∗

2

)k−1
→ +∞ and BR0 ⊃ BRk

⊃ Bρ0 , we obtain

∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
L∞

(
Bρ0

) ≤ c

(
1

(R0 − ρ0)β

∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
Lq

(
BR0

)
)ϑ

. (4.23)

By using the explicit expression of β in (4.21), ϑ in (4.17)

ϑ := 2∗ − 2
2∗ p

q − 2 =
for n>2

2q
np− (n− 2) q ,

and the fact that 2∗ − 2 = 2∗2
n when n > 2

βq = 2 2∗

2∗p− 2q q = 2∗ − 2
2∗ p

q − 2n = ϑn , (4.24)

we obtain the conclusion of the proof of Theorem 4.1

∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
L∞

(
Bρ0

) ≤ c

(R0 − ρ0)ϑβ

(∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
Lq

(
BR0

)
)ϑ

= c

⎛
⎜⎝ 1

(R0 − ρ0)βq

∫
BR0

(
1 + |Du|2

) q
2
dx

⎞
⎟⎠

ϑ
q

= c

⎛
⎜⎝ 1

(R0 − ρ0)ϑn

∫
BR0

(
1 + |Du|2

) q
2
dx

⎞
⎟⎠

2∗−2
2∗p−2q

=
for n>2

c

⎛
⎜⎝ 1

(R0 − ρ0)ϑn

∫ (
1 + |Du|2

) q
2
dx

⎞
⎟⎠

2
np−(n−2)q

.

BR0
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Remark 4.3. We make here a remark for the case n > 2. We can multiply by (Rk+1)2−n both sides of the 
inequality (4.13). Since (2 − n) 2∗

2 = −n and ρ0 ≤ Rk+1 ≤ Rk ≤ R0 and obtain

⎛
⎜⎝ 1

(Rk+1)n
∫

BRk+1

n∑
s=1

(
1 + |uxs

|2
) βk+1+q

2
dx

⎞
⎟⎠

2
2∗

≤ c4k (βk + 2)3 (Rk+1)2−n

(R0 − ρ0)2
∫

BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx

≤
c4k (βk + 2)3 (R0)2 (Rk)−n

(
Rk+1
Rk

)−n

(R0 − ρ0)2
∫

BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx

≤ c4k (βk + 2)3
(
R0

ρ0

)n

· 1
(Rk)n

∫
BRk

n∑
s=1

(
1 + |uxs

|2
) βk+q

2
dx . (4.25)

If we maintain bounded the quantity R0
ρ0

then the constant in the estimate (4.25) remains independent of 
the radius of the balls BRk

. Therefore with the previous analysis for n > 2 we obtain the more precise 
estimate, as stated in Theorem 4.1,

∥∥∥∥(1 + |Du|2
) 1

2
∥∥∥∥
L∞

(
Bρ0

) ≤
for n>2

c

⎛
⎜⎝ 1
Rn

0

∫
BR0

(
1 + |Du|2

) q
2
dx

⎞
⎟⎠

2
np−(n−2)q

.

4.2. Second step: interpolation

We first emphasize the idea of the interpolation, we make a precise statement below in Theorem 4.4 and 
then we give its proof.

4.2.1. Description and statement of the interpolation
We make use of the standard interpolation inequality (which, for v ≥ 0 in Ω, immediately follows from ∫

Ω vq dx =
∫
Ω vq−pvp dx ≤ ‖v‖q−p

L∞(Ω)
∫
Ω vp dx):

‖v‖Lq ≤ ‖v‖
p
q

Lp · ‖v‖1− p
q

L∞ . (4.26)

Then, with the notation v (x) =
(
1 + |Du (x)|2

) 1
2 , by the gradient estimate (4.5) we get

⎧⎨
⎩ ‖v‖Lq ≤ ‖v‖

p
q

Lp · ‖v‖1− p
q

L∞

‖v‖L∞(B�) ≤ c
(R−�)ϑβ ‖v‖ϑLq(BR)

⇓

‖v‖L∞(B�) ≤
c

(R− �)ϑβ
‖v‖ϑLq(BR) ≤

c

(R− �)ϑβ
‖v‖ϑ

p
q

Lp(BR) · ‖v‖
ϑ
(
1− p

q

)
L∞(BR) .

Therefore:
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‖v‖L∞(B�) ≤
c

(R− �)ϑβ
‖v‖ϑ

p
q

Lp(BR) · ‖v‖
ϑ
(
1− p

q

)
L∞(BR) . (4.27)

With abuse (not only of notations!) in the conclusion of Theorem 1.1 we “identify” � and R, and we do not 

consider the denominator (R− �)ϑβ !! Thus, formally, ‖v‖
1−ϑ

(
1− p

q

)
L∞ ≤ c ‖v‖ϑ

p
q

Lp . Here we get the condition

1 − ϑ

(
1 − p

q

)
> 0 . (4.28)

Therefore we need to use the precise expression of the exponent ϑ. By (4.17) we have ϑ := 2∗−2
2∗ p

q−2 . Note 

that ϑ = 1 if q = p. If n > 2 then we can represent ϑ also in terms of n in the form ϑ = 2q
np−(n−2)q and the 

condition (4.28) is equivalent to

q

p
<

n + 2
n

= 1 + 2
n
. (4.29)

This constraint (4.29) is exactly the condition on p, q for the validity of the following Interpolation Theo-
rem 4.4.

Theorem 4.4 (Interpolation). Under the p, q−growth conditions (1.10), (1.11), if q ≥ p ≥ 2 and qp < 1 + 2
n , 

then every weak solution u ∈ W 1,q
loc (Ω) to the pde (4.1) is of class W 1,∞

loc (Ω) and there exist c, α, β > 0 and 
ϑ ≥ 1 (ϑ as in (4.17)) such that, for every � and R such that 0 < ρ < R ≤ � + 1,

∥∥∥∥(1 + |Du (x)|2
) 1

2
∥∥∥∥
Lq(B�)

≤

⎛
⎝ c

(R− �)β
(

q
p−1

)
∥∥∥∥(1 + |Du (x)|2

) 1
2
∥∥∥∥

1
ϑ

Lp(BR)

⎞
⎠α

; (4.30)

∥∥∥∥(1 + |Du (x)|2
) 1

2
∥∥∥∥
L∞(B�)

≤
(

c

(R− �)
βq
ϑp

∥∥∥∥(1 + |Du (x)|2
) 1

2
∥∥∥∥
Lp(BR)

)α

=
for n>2

(
c

(R− �)
βq
ϑp

∥∥∥∥(1 + |Du (x)|2
) 1

2
∥∥∥∥
Lp(BR)

) 2p
(n+2)p−nq

. (4.31)

Remark 4.5. In the statement of Theorem 4.4 when n > 2 the exponents ϑ and α have the analytic expression 
in terms of the dimension n

ϑ := 2∗ − 2
2∗ p

q − 2 =
for n>2

2q
np− (n− 2) q , note that q

p
<

n

n− 2 ; (4.32)

α :=
ϑp

q

1 − ϑ
(
1 − p

q

) =
for n>2

2p
(n + 2) p− nq

, note that q

p
<

n + 2
n

. (4.33)

If n = 2 (the argument is specific for n = 2 but is valid for n > 2 too) the exponents α and ϑ above are well 
defined as real positive numbers if 2∗ p

q − 2 > 0 and 1 − ϑ 
(
1 − p

q

)
> 0. The first condition is satisfied also 

for n = 2 since 2∗ > 2q
p , see Remark 4.2. The second condition is equivalent to

1
1 − p

q

> ϑ := 2∗ − 2
2∗ p

q − 2 (if n ≥ 2)

and it is satisfied if
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q

p
< 2 − 2

2∗ (if n ≥ 2) =
for n≥3

1 + 2
n
. (4.34)

Since the assumption (4.29) requires for n = 2 that qp < 2, it is sufficient to fix 2∗ large enough, precisely 

2∗ > 2p
2p−q , so that (4.34) holds; in this case the gradient estimate (4.31), for some δ > 0 and ϑ := 2∗−2

2∗ p
q−2 , 

reads

sup
x∈B�

v ≤

⎛
⎝ c

(R− �)δ

∫
BR

vp dx

⎞
⎠

ϑ
q−ϑ(q−p)

, with v =
(
1 + |Du (x)|2

) 1
2
.

Finally, in both cases n ≥ 2 (see the formulas (4.32), (4.33) above when n ≥ 3 too), α = ϑ = 1 if and only 
if q = p.

A final remark: the exponent α := ϑ p
q

1−ϑ
(
1− p

q

) in the estimate (4.31) is the same as the exponent formally 

deduced in (4.27) by the interpolation inequality

‖v‖
1−ϑ

(
1− p

q

)
L∞ ≤ c ‖v‖ϑ

p
q

Lp , with v =
(
1 + |Du (x)|2

) 1
2
.

4.2.2. Proof of the interpolation Theorem 4.4

We make use at the same time of the interpolation inequality (4.26) for v (x) =
(
1 + |Du (x)|2

) 1
2 and of 

the a-priory estimate (4.5) in Theorem 4.1

{
‖v‖Lq ≤ ‖v‖

p
q

Lp · ‖v‖1− p
q

L∞

‖v‖L∞(B�) ≤ c
(R−�)ϑβ ‖v‖ϑLq(BR)

.

We consider here only the case when q is strictly greater than p and we obtain

‖v‖Lq(B�) ≤ ‖v‖
p
q

Lp(B�) · ‖v‖
1− p

q

L∞(B�) ≤ ‖v‖
p
q

Lp(B�) ·
(

c

(R− �)ϑβ
‖v‖ϑLq(BR)

)1− p
q

≤ c1−
p
q ‖v‖

p
q

Lp(B�) ·
(

1
(R− �)β

‖v‖Lq(BR)

)ϑ
(
1− p

q

)
.

Therefore

‖v‖Lq(B�) ≤ c1−
p
q ‖v‖

p
q

Lp(B�) ·
(

1
(R− �)β

‖v‖Lq(BR)

)γ

(4.35)

under the notation γ := ϑ 
(
1 − p

q

)
. Recall that 1 − ϑ 

(
1 − p

q

)
> 0; i.e., 0 < γ < 1. Given �0 and R0, with 

0 < �0 < R0 ≤ �0 + 1, we define a decreasing sequence �k by �k = R0 − R0−�0
2k , k = 0, 1, 2, . . . In (4.35) we 

pose � = �k and R = �k+1. Since R− � = �k+1 − �k = R0−�0
2k+1 , we obtain

‖v‖Lq
(
B�k

) ≤ c1−
p
q ‖v‖

p
q

Lp
(
BR0

) ·
(

2β(k+1)

(R0 − �0)β
‖v‖

Lq
(
B�k+1

)
)γ

,

which, under the notation Bk = ‖v‖ q
( ) for k = 0, 1, 2, . . ., is equivalent to
L B�k
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Bk ≤ c1−
p
q ‖v‖

p
q

Lp
(
BR0

) · 2βγ(k+1)

(R0 − �0)βγ
Bγ

k+1 .

We start to iterate with k = 0, 1, 2, . . .

B0 ≤ c1−
p
q ‖v‖

p
q

Lp
(
BR0

) · 2βγ

(R0 − �0)βγ
Bγ

1

≤ c1−
p
q ‖v‖

p
q

Lp
(
BR0

) · 2βγ

(R0 − �0)βγ

(
c1−

p
q ‖v‖

p
q

Lp
(
BR0

) · 2βγ·2

(R0 − �0)βγ
Bγ

2

)γ

and for general k = 1, 2, 3, . . . we have

B0 ≤

⎛
⎜⎝c1−

p
q ‖v‖

p
q

Lp
(
BR0

)
(R0 − �0)βγ

⎞
⎟⎠

k−1∑
i=0

γi (
2β
) k∑
i=1

iγi

(Bk)γ
k

.

Since 0 < γ < 1, the two numerical series above are finite; in particular 
k−1∑
i=0

γi = 1−γk

1−γ . Moreover the in-

creasing sequence Bk = ‖v‖Lq
(
B�k

) is bounded by ‖v‖Lq
(
BR0

) for k = 0, 1, 2, . . . Thus (Bk)γ
k

= ‖v‖γ
k

Lq
(
B�k

) ≤
‖v‖γ

k

Lq
(
BR0

) and the right hand side converges to 1 as k → +∞. Therefore, in the limit as k → +∞, there 
exists a constant c1 such that

B0 ≤ c1

⎛
⎜⎝ ‖v‖

p
q

Lp
(
BR0

)
(R0 − �0)βγ

⎞
⎟⎠

1
1−γ

. (4.36)

Recalling that α :=
p
q ϑ

1−ϑ
(
1− p

q

) and γ := ϑ 
(
1 − p

q

)
, it remains to compute

p

q
· 1
1 − γ

= p

q
· 1
1 − ϑ

(
1 − p

q

) = α

ϑ
;

γ

1 − γ
=

ϑ
(
1 − p

q

)
1 − ϑ

(
1 − p

q

) =
p
qϑ

1 − ϑ
(
1 − p

q

) q

p

(
1 − p

q

)

= α
q

p

(
1 − p

q

)
= α

(
q

p
− 1

)
.

Since B0 = ‖v‖Lq
(
B�0

), from (4.36) we get the conclusion (4.30), which can be also equivalently written in 
the form

∥∥∥∥(1 + |Du (x)|2
) 1

2
∥∥∥∥
Lq(B�)

≤

⎛
⎝ c

(R− �)β
(

q
p−1

)
∥∥∥∥(1 + |Du (x)|2

) 1
2
∥∥∥∥

1
ϑ

Lp(BR)

⎞
⎠α

. (4.37)

The other a-priori estimate can be proved similarly, or can be deduced from the previous one. In fact, to 
obtain (4.31) we consider � = R+�

2 and, by combining the original a-priori estimate (4.5) and (4.37), under 

the usual notation v (x) =
(
1 + |Du (x)|2

) 1
2 , since R− � = �− � and (see α in (4.33)) 1 + q − 1 = q ,
α p ϑp
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‖v‖L∞(B�) ≤
c

(�− �)ϑβ

⎛
⎜⎝∫
B�

vq dx

⎞
⎟⎠

ϑ
q

≤ c

(
1

(�− �)β
‖v‖Lq(B�)

)ϑ

≤ c

⎛
⎝ 1

(�− �)β

⎛
⎝ c

(R− �)β
(

q
p−1

) ‖v‖
1
ϑ

Lp(BR)

⎞
⎠α⎞⎠

ϑ

≤ c

⎛
⎝ c

(R− �)
β
α+β

(
q
p−1

) ‖v‖
1
ϑ

Lp(BR)

⎞
⎠αϑ

≤ c1

(
1

(R− �)
βq
ϑp

‖v‖Lp(BR)

)α

.

The conclusion (4.31) holds. When n > 2 we observe that βqϑ = n.

4.3. Third step: approximation

The proofs of Theorems 1.1, 1.3 and 1.4 follow from the a-priori estimate of Theorem 4.1. We consider 
these proofs separately.

4.3.1. Proof of Theorem 1.1
For every ε ∈ (0, 1] we consider the energy integral

∫
Ω

{
ε |Du (x)|2 + f(Du (x))

}
dx , (4.38)

where f : Rn → R is a convex function of class C2 (Rn), satisfying the p, q−growth conditions (1.4) for 
some exponents p, q with q ≥ p ≥ 2. We fix a ball BR compactly contained in Ω and we denote by 
fε (ξ) = ε |ξ|2 + f(ξ) and by uε ∈ W 1,2 (BR) a minimizer of the energy integral (4.38) restricted to BR, 
under some smooth boundary conditions on ∂BR related to a local minimizer of the original energy integral ∫
Ω f(Du (x)) dx (see some details in [54]). Then fε (ξ) satisfies the p, q−growth conditions

(
2ε + m |ξ|p−2

)
|λ|2 ≤

n∑
i,j=1

∂2fε (ξ)
∂ξi∂ξj

λiλj ≤ 2M
(
1 + |ξ|2

) q−2
2 |λ|2 . (4.39)

The growth conditions (1.11), (1.15) are satisfied with ai (ξ) = ∂fε(ξ)
∂ξi

, since the left hand side of these 
inequalities is identically equal to zero. Also the first growth condition (1.10) holds under the form (4.39)
and this is sufficient to conclude the analysis of the a-priori estimate in Section 4.1, since the right hand 
side b in the Euler’s equation (4.1) in this case is also identically to zero. The term with ε > 0 in the left 
hand side of (4.39) is used to prove that uε ∈ W 2,2

loc (Ω) as in (4.7), but the term ε does not enter in the 
computations, so that the constants in the a-priori estimates remain independent of ε.

Under the assumption q
p < 1 + 2

n in (1.5) we can apply Theorem 4.4 and obtain the bound for the 
L∞ (B�)−norm of the modulus of the gradient |Duε| (for simplicity of notation we use the representation 
of the exponent when n > 2)

∥∥∥∥(1 + |Duε|2
) 1

2
∥∥∥∥
L∞(B�)

≤

⎛
⎝ c

(R− �)
βq
ϑp

∫ (
1 + |Duε|2

) p
2
dx

⎞
⎠

2
(n+2)p−nq

. (4.40)

BR
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It is possible to bound the W 1,p−norm of uε uniformly with respect to ε ∈ (0, 1). We can proceed as in [54]
and obtain, as ε → 0, that the limit of uε in the weak∗ topology of W 1,∞

loc (BR) is the minimizer u of the 
energy integral 

∫
Ω f(Du (x)) dx and the bound (1.6) is satisfied, in particular

‖Du (x)‖L∞(B�;Rn) ≤

⎛
⎝ c

(R− �)
βq
ϑp

∫
BR

(
1 + |Du|2

) p
2
dx

⎞
⎠

2
(n+2)p−nq

. (4.41)

More details can be found in [54]. We now consider the real function ϕ : R → [0,+∞) defined by ϕ (t) =
f (t ξ) for t ∈ R and with fixed ξ ∈ Rn. Then ϕ ∈ C2 (R) and its first and second derivatives respectively 
hold ϕ′ (t) = (Dξf (t ξ) , ξ), ϕ′′ (t) =

∑n
i,j=1 fξiξj (t ξ) ξiξj . By integrating by parts (this is the Taylor’s 

formula in integral form!) and by the left hand side of the ellipticity condition (1.4) we get

f (ξ) − f (0) = ϕ (1) − ϕ (0) =
1∫

0

ϕ′ (s) ds = [(s− 1)ϕ′ (s)]s=1
s=0 +

1∫
0

(1 − s)ϕ′′ (s) ds

= ϕ′ (0) +
1∫

0

(1 − s)
n∑

i,j=1
fξiξj (s ξ) ξiξj ds ≥ ϕ′ (0) + m |ξ|p

1∫
0

(1 − s) sp−2 ds

= (Dξf (0) , ξ) + m |ξ|p
[
sp−1

p− 1 − sp

p

]s=1

s=0
≥ − |Dξf (0)| |ξ| + m

p (p− 1) |ξ|
p
.

Therefore there exists a constant c, depending only on |Dξf (0)|, f (0), m and p, such that

|ξ|p ≤ c (1 + f (ξ)) . (4.42)

By the gradient estimate (4.41) and the coercivity condition (4.42) we finally get

‖Du (x)‖L∞(B�;Rn) ≤

⎛
⎝ c′

(R− �)
βq
ϑp

∫
BR

{1 + f (Du)} dx

⎞
⎠

2
(n+2)p−nq

. (4.43)

We observe that for n = 2 the proper exponent in the right hand side of (4.43), derived from the application 
of Theorem 4.4, is αp with α given in (4.33) which is the correct exponent in any dimension n ≥ 2 and it 
reduces to 2

(n+2)p−nq when n > 2.

Remark 4.6 (The recent result by Peter Bella and Mathias Schäffner). Giuseppe Mingione pointed out to 
me the recent result [7] by Peter Bella and Mathias Schäffner, where the authors prove Theorem 1.1 under 
a weaker assumption on the ratio qp . Precisely, instead of qp < 1 + 2

n as in (1.5), Bella and Schäffner assume

q

p
< 1 + min

{
1; 2

n− 1

}
(4.44)

and they obtain the gradient bound (4.43), of course with a modified exponent: 2
(n+1)p−(n−1)q instead of 

2
(n+2)p−nq (see Remark 3 and formula (41) in [7]). If n ≥ 3 the growth condition q

p < 1 + 2
n−1 in (4.44)

is more general than the assumption q
p < 1 + 2

n in (1.5), although asymptotically equivalent as n grows 
to infinity. They apply the same method described above in this manuscript, but with a modification in 
the use of a smart version of the Sobolev inequality, a Sobolev inequality on spheres, i.e. surfaces of balls, 
instead of balls (see Lemma 3 in [7]); thus they gain in the dimensional parameter, n − 1 instead of n.
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I thank Mingione for having pointed out to me this interesting result, which I did not know; however I 
was already aware of this intelligent use of the Sobolev inequality already applied by Bella and Schäffner in 
their previous paper [6] about the local boundedness of solutions in the same spirit of [32], since I acted as 
referee proposing the publication of the article [6] in the Communications on Pure and Applied Mathematics.

4.3.2. Proof of Theorem 1.2
The regularity result in Theorem 1.2 has been proved in [44]. We have here only to fix the parameter 

r = +∞ in the assumption (1.7) in [44]; precisely, there the summability h ∈ Lr (Ω) for some r > n can be 
replaced with h ∈ L∞ (Ω). Moreover the assumption there

|fξx (x, ξ)| ≤ h(x)
(
1 + |ξ|2

) p+q−2
4

can be reduced with the argument of Section 4.3.4 to the condition in (1.8)2; that is |fξx (x, ξ)| ≤

M
(
1 + |ξ|2

) q−1
2 . We have to change the bound q

p < 1 + 2
n with the more strict condition q

p < 1 + 1
n

on the exponents p, q, as stated in (1.9), following the method of Section 4.3.4 below (see also Section 5 in 
[51]).

4.3.3. Proof of Theorem 1.3
We consider the Dirichlet problem (1.13) under the p, q−growth conditions (1.10), (1.11). For every 

ε ∈ (0, 1] we denote by uε the weak solution to the associated Dirichlet problem

⎧⎨
⎩
∑n

i=1
∂

∂xi

{
ai (x,Du) + ε

(
1 + |Du|2

) q−2
2

uxi

}
= b (x) , x ∈ Ω,

u = u0 on ∂Ω .

(4.45)

Note that u0 ∈ W 1, p q−1
p−1 ⊂ W 1, q since p q−1

p−1 ≥ q. For every ε > 0 the differential operator in the left 
hand side of (4.45)1 is monotone and satisfies the so-called natural growth conditions of order q; i.e. it 
satisfies q, q−growth conditions. By the theory of monotone operators the weak solution uε ∈ u0 +W 1, q

0 (Ω)
to the Dirichlet problem (4.45) exists and is unique. Of course the differential operator satisfies also the 
original p, q−growth conditions (1.10), (1.11) with constants m, 2M independent of ε ∈ (0, 1]. Thus for uε

the gradient bound (4.31) holds (for simplicity of notation we use the representation of the exponent when 
n > 2)

∥∥∥∥(1 + |Duε|2
) 1

2
∥∥∥∥
L∞(B�)

≤

⎛
⎝ c

(R− �)
βq
ϑp

∫
BR

(
1 + |Duε|2

) p
2
dx

⎞
⎠

2
(n+2)p−nq

. (4.46)

It is also possible to see (Lemma 4.5 in [51]) that uε is equibounded in W 1,p (Ω); thus the right hand side 
in (4.46) is bounded with a constant independent of ε and the same holds for the left hand side. We can go 
to the limit as ε → 0: up to a subsequence, uε converges in the weak and, respectively, weak∗ topologies of 
u0 +W 1, p

0 (Ω) and W 1,∞
loc (Ω), to a function u ∈ u0 +W 1, p

0 (Ω)∩W 1,∞
loc (Ω) which satisfies the bound (1.14)

in Theorem 1.3. By (4.7) uε is also bounded in W 2,2
loc (Ω) uniformly with respect to ε. Thus by compactness 

we can infer the convergence of the gradient Duε (x) to the gradient Du (x) a.e. in Ω. This allows us to 
go to the limit in the weak/integral form of the equation and we obtain that u is a weak solution to the 
Dirichlet problem (1.13). Going to the limit as ε → 0+ in (4.46) we see that u satisfies the gradient bound 
(1.14). Some other details can be found in Section 4 of [51].
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4.3.4. Proof of Theorem 1.4
In the previous Section 4.3.3 we studied the elliptic equation (4.1) under the p, q−growth conditions 

(1.10), (1.11) and (1.12). Here we introduce the notation

r = p + q

2 (4.47)

and we introduce the p, r−growth conditions

n∑
i,j=1

∂ai
∂ξj

λiλj ≥ m
(
1 + |ξ|2

) p−2
2 |λ|2 ,

n∑
i,j=1

∣∣∣∣∂ai∂ξj

∣∣∣∣ ≤ M
(
1 + |ξ|2

) r−2
2

, (4.48)

n∑
i,j=1

∣∣∣∣∂ai∂ξj
− ∂aj

∂ξi

∣∣∣∣ ≤ M
(
1 + |ξ|2

) r−2
2

,
n∑

i,s=1

∣∣∣∣ ∂ai∂xs

∣∣∣∣ ≤ M
(
1 + |ξ|2

) r−1
2

, (4.49)

for every λ, ξ ∈ Rn, x ∈ Ω and for some positive constants m, M . Since r ≤ q, the p, r−growth conditions 
are more strict than the p, q−growth ones; in fact,

n∑
i,j=1

∣∣∣∣∂ai∂ξj

∣∣∣∣ ≤ M
(
1 + |ξ|2

) r−2
2 ≤ M

(
1 + |ξ|2

) q−2
2

,

and by (4.47) the growth conditions (4.49) coincide with the growth in (1.11). Therefore the assumptions 
of Theorem 1.3, with p, q exponents, are satisfied and we obtain a weak solution to the Dirichlet problem 
(1.13)

n∑
i=1

∂

∂xi
ai (x,Du (x)) = b (x) , in Ω; u = u0 ∈ W 1, p q−1

p−1 on ∂Ω , (4.50)

when p, q are related each other by the condition (1.12) on p, q which, being q = 2r − p, in terms of p, r
means qp = 2r−p

p = 2 r
p − 1 < 1 + 2

n , that is

r

p
< 1 + 1

n
. (4.51)

Finally we observe that the solution a-priori belongs to the Sobolev class W 1,p
u0

(Ω)∩W 1,2r−p
loc (Ω) and, being 

2r − p ≥ r, u ∈ W 1,p
u0

(Ω) ∩ W 1,r
loc (Ω) too. The proof of Theorem 1.4 is complete when in the statement 

of Theorem 1.4 we change the notation according to the p, r−growth in (4.48), (4.49). In particular the 
exponent in the right hand side of (1.14), with the position q = 2r − p, when n > 2 changes into

2
(n + 2) p− nq

= 1
(n + 1) p− nr

and the gradient bound (1.14) transforms into (1.19).

Remark 4.7. If n = 2 it can be of interest to see how to change the exponent α in the estimate (1.19) of 
Theorem 4.4 under the transformation q = 2r − p. Being α := ϑ p

q

1−ϑ
(
1− p

q

) and ϑ := 2∗−2
2∗ p

q−2 we get

α :=
ϑp

q

1 − ϑ
(
1 − p

) =
(2∗ − 2) p

q(
2∗ p − 2

)
− (2∗ − 2)

(
1 − p

) . (4.52)

q q q
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=
(2∗ − 2) p

q

(2∗ − 1) 2p
q − 2∗

.

The exponent α is well defined as a real positive number if (2∗ − 1) 2p
q − 2∗ > 0. This is equivalent to 

q
p < 2 − 2

2∗ , in accord with (4.34). If we apply the transformation q = 2r − p we obtain the condition 
2r−p

p < 2 − 2
2∗ , which gives

r

p
<

3
2 − 1

2∗ . (4.53)

Since the assumption (4.51) requires for n = 2 that qp < 3
2 , it is sufficient to fix 2∗ large enough, precisely 

2∗ > 2p
3p−2r , so that (4.53) holds.

In conclusion, going back to the notation p, q with qp < 1 + 1
n , taking into account the constraints 2∗ > 2q

p

of Remark 4.2 and 2∗ > 2p
2p−q of Remark 4.5, all the procedure for regularity holds also for n = 2 and, in the 

Theorem 1.4 with the assumption qp < 1 + 1
n = 3

2 , it requires to fix 2∗ large enough, precisely 2∗ > 2p
3p−2q .
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