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APPROXIMATION OF QUASICONVEX FUNCTIONS, AND
LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS

Paolo Marcellini

We study semicontinuity of multiple integrals fﬂf{xp,Du)dx,
where the vector-valued function u is defined for x e cR"
with values in RY. The function f(x,s,f) is assumed to be
Caratheodory and quasiconvex in Morrey's sense. We give con-
ditions on the growth of f that guarantee the sequential low-
er semicontinuity of the given integral in the weak topology
of the Sobolev space H11P(Q;IRN]. The proofs are based on some
approximation results for f. In particular we can approximate
f by a nondecreasing sequence of quasiconvex functions, each
of them being convex and independent of (x,s) for large val-
ues of & In the special polyconvex case, for example if n=N
and f(Du) is equal to a convex function of the Jacobian detDhuy,
then we obtain semicontinuity in the weak topology of H1p(9;
wrR") for low p, i.e. p>n?/(n+1), in particular for some p
lower than n.

1. Introduction

Let us consider a function f(x,s, £) defined for x in a bound-

n N nN :
ed open set @ of R, s €R and ¢ €R . We assume that f is a

Caratheodory function, i.e., it is measurable with respect to x and

continuous with respect to (s,&), and satisfies the growth condi-
tions

r t P
(1.1) -C,lgl -¢, sl - C,(x) <f(x,s,8) < glx,s)(1 + |g]*).

Here C,,C, >0; C, €L'(@); g >0 is a Caratheodory function (no
growth conditions are required for g). For the exponents we assume:

p21; 1<r<p (r =11if p=1) and 1<t <np/(n-p) (t>1 if p> n).



Moreover, if Cz # 0, we assume also that the boundary ap is

Lipschitz continuous. .
Finally we assume that f is quasiconver with respect to £ in

Morrey's sense ([25]; [26], section 4.4):

(1.2) 5 f(x,s,¢ + Do(y))dy > lalf(x,5,6) ¥ ocH Pig;RY).

In section 4 we prove the following result:

THEOREM 1.1 - Let f(x,s, £) be a Caratheodory funection, quasiconvex

with respect to &, and satisfying the growth conditions (1.1). Then the

integral
(1.3) J'Q f(x,u(x),Du(x)) dx

18 sequentially lower semicontinuous in the weak topology of Hlp(n;]RN ).

Theorem 1.1 improves the analogous results by Morrey [25],
[26] and by Meyers [24], who assume a type of uniform continuity
of f with respect to its arguments, and a recent result by Acerbi
and Fusco [2], obtained assuming slightly more restrictive growth
conditions.

We recall that either if N = 1 or n = 1, then f is quasicon-
vex if and only if f is convex; while, if both n and N are greater
than one, then quasiconvexity is a more general condition than
convexity (for properties of quasiconvex functions we refer to [26],
[51,[81,[20]; see also our section 5). Therefore it seems not pos-
sible to reduce theorem 1.1 to the semicontinuity results known in
convex case (see, i.e., Serrin [31], De Giorgi [10], and more re-
cently Ekeland and Temam [15], chap. 8, theo. 2.1, and Eisen[13]).

The proof of theorem 1.1, different from that of [25], [24],
[2 ], but similarly to other classical semicontinuity results, is

based on the possibility to approximate f by a nondecreasing se-



quence of functions fk , each of them being easier to handle. To
quote the main approximation theorem, proved in section 3, we as-
sume also that p > 1 and that f satisfies the coercivity condition

(C, 5 0}

(1.4) Colglpif(x,s,g)f_g(x,s)(l + 1elP)

THEOREM 1.2 —Let f(x,s,£) be a Caratheodory function, quasiconvex

with respect to ¢, and satisfying the growth condition (1.4) withp >1.
Then there exists a sequence fk(x,s-, £) of Caratheodory functions, quasi-

convex with respect to £, and such that:

(1.5, lelP<f (x,5,0) <k(1 + 1elP) ;
(1.6) £ (x,5,8) = ClelP, either for |s|> k or |g]| > k;
(1.7) fki fk+1 , Ssup fk =f .

k

It is clear that this approximation result is usefull to prove
theorem 1.1; in fact in the zone where |Dul > k, that is critical

for the integral (1.3), f reduces to a convex function, independ-

k
ent of x and s. One of the difficulties in the proof of theorem
1.2 is that the definition of quasiconvexity involves an integral
inequality, instead that a pointwise inequality, like convexity. In
our proof we follow a procedure introduced in a similar context
by Marcellini and Sbordone [22] . and we use a representation
formula by Dacorogna [7 ], a variational principle by Ekeland
(14 ], and a regularity result by Giaquinta and Giusti (171
In section 2 we prove a semicontinuity result for f = f(g), in-

dependent of x and s. The proof is particularly simple and self

contained. Although this is a special case, it is a crucial step



to obtain theorem 1.1.

In sections 3 and 4 we prove respectively theorems 1.2 and
I.1.

In section 5 we specialize (1.2). On assuming that f is poly-
convex in Ball's sense [5] (an example is given by (6.8)), we can
prove a semicontinuity result that, with respect to theorem 1.1,
roughly speaking, allow us to consider semicontinuity in the weak
topology of Hlp, for p strictly (but slightly) smaller than in
theorem 1.1. Let us mention that, in the same context of polyconvex
integrals, Acerbi, Buttazzo and Fusco [1 ] proved a semicontinuity
theorem in the strong topology of L*, while they have shown a
counterexample to semicontinuity in the strong topology of LP, if
p is finite.

In section 6 we give some contraexamples to the semiconti-
nuity theorems 1.1 and 5.5, when some of the assumptions are not

satisfied.

2. The case f = f(g)

THEOREM 2.1 -rLet f = f(g) be a quasiconvex function such that

(2.1 0 <f(g) <C,(1+ |g|P),
for C>0and p >1 . Then the integral
(2.2) 7, FDulx)) dx
N

18 sequentially lower semicontimuous in the weak topology of Hlp(g 3 i F

We divide the proof of this theorem into 3 steps:



Step 1 - We assume first that u is affine, 1i.e

g for some g€ IRnN.

., Du = £ 1in

1 N
Let uh be a sequence in H 4 (@ ;IR ) that converges to u in

the weak topology. If u, had the same boundary value as u, then

the semicontinuity result would trivially follow from quasiconvexity

of f. To change the boundary datum of u we use a method in-

h!
troduced by De Giorgi [11], and well known 1in the context of

r-convergence theory (see, i.e. Sbordone [30] and Dal Maso - Mo-

dica [ 9], theorem 6.1).

Let @, be a fixed open set compactly contained in @, let
R = 1/2 dist (Eo, 30 ), let v be a positive integer, and for i =
= 1,2,...,v let us define
(2.3) Qiz{xeﬂ: dist (x,9°)<——i-R}.
Let us choose smooth functions ¢i€ gl ni) such that
0 <¢i< 1y ¢i = 1 on gi—l’ ¢i = 0 out of szi;
(B4
|D¢ .| < (v+1)/R
Let us define Vi = ouoH ¢i(uh—u). The support of Vi; 1S

contained in Q; thus by quasiconvexity of f we have

I, f(Du)dx = flg)|el < s f(Dv, . )dx

(2.5)
= f f(Du)dx + f f(Dv, .)dx +7s f(Du, )dx
aNe. 2N Q hi Q. h
i i 1-1 i-1
We sum up with respect to i = 1,2,...,v , and we divide by

v. We obtain



(2.6) 7 f(Du)dx < 5 f(Duldx +—~/ f(Dv. )dx + 5 £(Du. )dx
Y] hi 0 h

= ‘a\gq, v iy

Since Dvhi = (1- ¢1.)Du + ¢.1Duh + (uh—u)ani, we have

f'%f(Dvhi)dx < C.lal + C| {IQ[Dulpdx +

(2:7)

+ S |Du lpdx + (—ﬂ)p_f |u —u[pdx
Q h Q h

%

Let us go to the limit as h 4+ + o in (2.6), (2.7). The se-

quence Duh is bounded in LP(Q;IRnN), and u, ~ converges strongly
to u in LP(g ,]RN). Thus we have
\
CG
(2.8) [ f(Duddx < s _f(Du)dx + + lim inf s f(Du, )dx
o — TN, v h Q h

A& » = $& and Q 7 0 we obtain our result.
Step 2 - f is continuous in the following way:
p-1 p-1
(2.9) |£(g) —f(n)l < C (1 + |g] + Inl ) g-nl

(this step is similar to theorem 4.4.1 of Morrey [26]). The func-
tion ¢: R » R', defined through f(g) when only one component
(say gi) of ¢ vary, is convex. Thus it is definite almost every-

where the derivative ¢'(gi ), and we have

(2.10) o' (g) > (¢(g+h) - o(g))/h if h %< 0.

For h = + (|g|+1) we obtain



(2.11)
< ¢, + 1gP Y.

Of course this inequality implies (2.9).

Step 3 - We prove the semicontinuity result for general
1 N . : :
ue H P( ;R ). Let us consider a partition of @ into open cubes

2, (szif“l Qj = @ if ifj, Q- Uai) and let us define vectors Ei eR" N

by

(2.12) g
i

For every e >0 we can choose the partition of 2 in such a way

that
{2.13) ISy |Du - Eilp dx < e,
i i
lp N
Let u be a sequence that converges to u on w - H"(g;R ). For
every i, let us define in 2, the sequence vh{x) = uh(x) - ulx) +
; 1P

+ <£i,x > As h+4 =, v, converges to vix) = <Ei,x> in w-H (S?i;

]RN). Thus, by step 1, we have

(2.14)  lim inf z Jrnlf(Dvh)d:»c 2z fﬁ.f(ii)dx
h i i i i

By step 2, and by Hd&lder's inequality with exponents p/(p-1) and

P, we have

”9 f(Duh) dx - )2 Iﬂi f(Dvh)dx[ <



p-1 P-1,
(2.15) < C, iz Igi(l + 1Duh| + lehI ) Duh - Eildx
5. B-lp D 1/p 1/p
< Cg({} (1 + |Duh|+|Dvhl) dx) (Z. J'Q_lDu—Ei| I & Q,F
B

For the same reason

(2.16) |7 f(Du)dx - 5 f_f(g)axl <C,, /P,

1 1

Our semicontinuity result is a consequence of (2.14), (2.15), (2.16).

3. Approximation of quasiconvex functions

In this section we assume, like in (1.4), that f(x,s,£) is a
Caratheodory function, quasiconvex with respect to &, and satisfy-

ing the growth conditions
(3.1) C.lelP<fix,s, B <glx,s)(1 + [g|P),

where p >1, C, >0, and g Caratheodory function.
For every ihteger L, lét ¢i: R > R" be a continuous func-
tion such that ¢i(t) = 1 for 0 £t <i-1, and ¢1. (t) = 0 for t > i.

Let us define

(3.2) 8;(x,5,8) = ¢, (Isflx,s,8) + (1 - ¢.(]s])) c,[¢|P.

Let A be a subset of 2, with zero measure, such that g(x,s) is
continuous with respect to s for every x €8\ A. For 1i,j integers

(j 2C,), we define

(3.3) Aij = Ix €a\A: max {g(x,s) : |s| <i} <j1V,



A . is a measurable set. We define v, (x) = 1 if x€ A | ,and ¢ (x)=
ij 1] 1) 1]
=0 otherwise. We define also

(3.4) gij(x,s, £) = \pij(x)gi(x,s,i) + (1 - ‘Uij(X))ColElD-

LEMMA 3.1 - For every i,j ’gij 18 a Caratheodory function, quasiconvex

with respect to &, satisfying:
(3.5 ColelPcgy s, 0< i1+ [glP)
(3.6) g 65,0 = Colel® for sl >

(3.7) sup g..(x,s,&) = f(x,s,6) , V¥ x €q\A, Vs, V¥ €.

ij 1
Proof. gij is a Caratheodory function, since ¢i(|5|) is con-

tinuous and wij(x) is measurable. With respect to &, g, and g 5

are quasiconvex functions; in fact they are convex combination of

quasiconvex functions. If |s| >1i then gij - c, leP; 8 =
" CDIEIP also if x & Aij ; while, if |s| <i and x EAij we have
(3.8) gi]. <g < f ig(x,s)(l+lc|p) < 31 + |Elp).

Thus (3.5), (3.6) are proved. To obtain (3.7) we observe that gij

is nondecreasing with respect to i and j separately, since f >

> 8 Cclglp; moreover lim lim gij = 1.
1]
. _ : N nN
For every integer m > 1 let us define in 8\A xR x R :

gij(x,s,E) for [gl<m ,

(309) G]-JHI(X,S’E) =

Col E|P for [£]> m ;
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g.. (x,s.€) = sup {G(x,s,£): G is quasiconvex with
ijm
(3.10)

respect to ¢ and G <G,. }.
~ " ijm

LEMMA 3.2 - gijm 18 quasiconvex with respect to &£ and satisfies:
(3.11) C.lelP < g (x,s.8) < i1« [glP);
ijm

(3.12) gijm(x,s, E) = CC,I!-;Ip either for |g|> m or |[s| >i.

Proof. Since the supremum of a family of quasiconvex func-

tions is quasiconvex, in (3.10) we have a maximum and gijm is
: R . D
quasiconvex. Since the convex function G = C_,|g| 1is less than or

equal to G.., , we have C0|£ID< g.._ , and thus (3.12).
ijm — B

Fixed x € @\ A and s E]RN, we consider the infimum

: 1 | _ 1p, N
(3.13) inf {Iszl‘rnGijm(x’s’E + Doly))dy: ¢€ H,"(g; R )
LEMMA 3.3 - The infimun in (3.13) 71s a continuous function of (s,g).

Proof. Fixed x € @ \ A, the function Gijm is uniformly con-

tinuous for s e ]RN and |g| < m. Thus for every e3> 0 there exists
§ >0 such that, if |s-t[+|g-n[< 6§, we have (we decompose the in-
tegral over @ into two integrals, and we use inequality (2.9) for

the function |&| Py,

1 1
| E—IIQGijm(X.s,uDMy))dy —mfﬂGijm(x,t,mD o(y))dy |



Il

&

(o]

(3.14) < g +
- lal

l;Q(|g+D¢(y)|p—l n+D @(y)|p)dy|

| A

- < -1
€+ C“{|£1P + |nip +-|—Q—|IQ|D¢(y)!P dyis .

Since Gijmi Colglp, in the infimum (3.13) we can limit ourself to
1 !
consider test functions ¢ bounded in HOP(R:IRN), uniformly as ¢
vary in a bounded set of ]RnN. For all such functions ¢, if |s-t|+
+| &= nl < min {e, 8§}, we have
(3.15)  |-rf G De(y))dy - ——s G.. De(y))dy| < C
. T T . 19 S T - s Ly < .
la | Qi]mXSEJr hye ey Inl'rﬂ 1]th RSV Y 12€
Of course, this implies that the infimum in (3.13) 1is a continuous

function of (s, £).

REMARK 3.4 - The previous result does not hold if the function in-
side the integral does not satisfy some properties of structure,
such as, i.e., either coercivity with respect to £ or continuity on s
uniformly with respect to £ (as suggested by corollary 3.12 of
[21]). In fact, if we consider, like in [21], Gijm = (1+|£|)|5I "
then the infimum in (3.13) is equal to Gijm if |s| > 1, while is

equal to 1 if |s| < 1. Thus, in this case, the infimum is not con-

tinuous (neither lower semicontinuous) with respect to s.

LEMMA 3.5 (Dacorogna) - €im (x,s,8) Zs a Caratheodory function,

and is equal to the infimum in (3.13).

Proof. By lemma 3.3 the infimum in (3.13) is a continuous
function of EeRnN. It is necessary to use this fact as the first
step in the argument of Dacorogna ([7], theorem 5; or (8], pag.
87). Then, like in steps 2,3,4 of [7],; [.8] we obtain that gijm is
the infimum in (3.13). Again by lemma 3.3 gijm is continuous in

[sxE] s gijm is measurable in x, since it is infimum of a family of
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measurable functions.

LEMMA 3.6 (Ekeland)- There exists a sequence u_ that minimizes onm

HlP(Q;IRN) for every m the functionals

1 1
. v — S ) il I =
(3.16) ¢ 5l QGiJmfx,S,€+D¢(y))dy+ - Q|D¢(y) Dum(y)ldy :
and satisfies
(3.17) =7 G.. (x,s,e4Du (y)dy < (,5,8) &
: T’ Cijm XS 80U (y))dy < g0 (x0s,8) + —.

Proof. This lemma is a particular case of a variational
principle given by Ekeland [14] in the general setting of a com-
plete metric space V and a lower semicontinuous functional
F: Vo Rl {+«} (F#Z+w). HereV:Hll(leRN),andFis the in-
tegral of Gijm’ that is strongly lower semicontinuous in Hll(ﬂ;lRN),
by Fatou's lemma. In (3.17) we use the characterization of gij -
given in lemma 3.5.

The fact stated in (3.16), that u is a minimum function,
allows us to get a Meyers' type result [ 23], introduced in the con-
text of minimum problems for vector valued functions by Giaquinta
and Giusti [17] (see also [4 ] for the convex case and [ 18 ] for
quasi-minima). Like in lemma 3.2 of Marcellini and Sbordone [22],

from (3.16) we deduce:

LEMMA 3.7 - If p>1, there exists e >0 such that the sequence u 18
1, N

bounded in Hlop+€(9 'R ).

LEMMA 3.8 - If p >1, the nondecreasing sequence gijm converges, as

m ++e, to gi. .

]
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Proof. Let 92, be a fixed open set compactly contained in gq.

bprecg gy

o

The sequence u of the previous lemma is bounded in H
Thus, if we denote by Qm the set Rm ={ XEQO:IDumI?_ m} , we have

(3.18) 7. [Du Pax < (g 1/P* (7 |pu_ |P*ax)P/P*e,
Q m e m m

m

Q

o

Therefore the left side in (3.18) converges to zero, as m+ +=. From

(3.17) and (3.5) we obtain

1 1
— D
g. b Tl IQOGijm(x,s,F,+ Dum(y))dy

(3.19) B et g

1
ol Qu\ﬁm (X,S,E+Dum(y))dy

1]

L ] 12
|Qlf gij(x,s,g+Dum(y))dy ——mfﬂm(lﬂDum(yH )dy

>
-_— Qo

N), it has a subsequence that

Since u_~is bounded in H:p(n;]R
weakly converges. We still denote by u_ this subsequence, and we
denote by ué€ HlP(Q;IRN) the weak limit. Let m+ +«; we use (3.18),

(3.19), the semicontinuity result of section 2, and quasiconvexity

of gi}_:
1i > 1i 'f—LI (x,s,£+4Du_(y))d
im gijm— im in o] ﬂogij »$,€+Du_{y y
(3.20) > —*-l—f (x,s,e+Duly))d
. ZTa] Rogij »S,E+buly))dy
> g (x,5,8) - o0 (x,5,£4Duly))d
— gij b la | Q\QOgij XS utyridy
As Q,7 @, we obtain our result, since g.. < g...
ijm 1j

REMARK 3.9 - Several lemmas, from 3.4 to 3.8, are devoted to the
study of the convergence of gijm as m » +«. Let us show that this

study is much easier if we know that f is convexr with respect to £:
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for every m we can construct a function G(x,s, £), convex with
respect to &, that coincides with gi], for €] <m and grows linear-
ly at o (the supremum of all iperplanes supporting gij where
lel <m). Since G grows linearly, there exists m' > m such that
G=<C,lelP for |g| >m'. By the same definition (3.10), G< gi},m _<g1_j,
and thus €iim' gij for |&| < m. Note that, also in this simple
argument for the convex case, we need p>1.

Finally we obtain the approximation result stated in the in-

troduction:

Proof of theorem 1.2 - For every integer k (> 2 + C_) we de-

fine

= e} i i k
13.21) fk(x,s,E) max { gijm(x,s,g) t 1+ +m<k},

(1.5) is consequence of (3.11), while (1.6) follows from (3.12).

Finally the supremum of fk is f, by lemma 3.8 and formula (3.7).

REMARK 3.10 - Since each fk is convex for large values of £, we
can assume that it grows linearly at «. In fact it is enough to

-1
change f,» where |£l> k, with the function C.p KP™ g

4. Semicontinuity in the quasiconvex case

In this section we will prove theorem 1.1. It will be con-
sequence of the approximation theorem 1.2., by proving a semi-
continuity result for the functions fk as in theorem 1.2. In the fol-

lowing lemmas we assume k is fixed and fk satisfies (1.5), (1.6).

LEMMA 4.1 (Scorza-Dragoni) - For every positive ¢ there exists a

compact set C CQ, with |a9\Cl|<e , such that fk(x,s, E) 18 continuous in

C x ]RNX ]RnN.
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Proof. See i.e. lemma 1 of pag. 37 of [10], or [15], chap.
V11il, section 1.3.

LEMMA 4.2 - There exists a continuous bounded function w:R™ IRJ: with

N
w(0)=0, such that, forx,y €C, s,te R , z‘;e]RnN we have

(4:1) Ifk(x,s,g)—fk(y,t,gﬂiw(lx—yl + |s=t])

Proof. For |g| <k, by (1.5), we have

(4.2)  |f, (x,5,6)-f (y,t,€)] < 2(1 + kP

k
Inequality (4.2) holds also if [g| >k since the left side is zero.
The function fk is continuous in the compact set C x {|s| <k+l} x
x {lg] <k+1} . Thus (4.1) holds on this set with w equal to the
oscillation of fk. By (4.2) the function w is bounded, and we can
assume that w(r) = 2k(1+kP) for r > 1. By (1.6), formula (4.1)
holds also if either |g| >k or Is| and |[t| > k. It remains to con-

sider the case |s| < k, |t| > k+l and |t] < k. In this case w =

= 2k(1+kP), and thus (4.1) follows from (4.2).
LEMMA 4.3 - The integral

(4.3) IQ fk(x,u(x),Du(x))dx

. ; 1 N
is sequentially lower semicontinuous in the weak topology of H Pla;rY).

Proof. Let u GHIP(QHRN). Let us consider a partition of g into
open cubes g, with 2, N .Qj= ?. LiJﬁiz 2. Like in Morrey [25] we de-

fine the wvector wvalued funtions (constant in each gi):
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1
(4.4) xl = WIQ x d x u1 :WI91U(X)dX

By the dominate convergence theorem, for every e > 0 we can

choose the partition so that

(4.5) Io W(lX—X1-| + Iu(x)—ui(x}l)dx € B

Let u, be a sequence of HlP(n;}RN) that converges to u in the weak

topology. We have
fg fk(x,uh,Duh)dx :IQ\C{fk(X’uh’Duh] - fk(xi’ui’Duh)} dx

(4.6) + {fk(x,uh,Du )} dx

c }) - £ (%x,u,Du

h k h

s )
ke fc{fk(x,u,Duh) fk(xi’ui’Duh }dx+!ﬂfk(xi,ui,Du ydx

h

We use (4.2) , (4.1) and (4.5):

_ P |
fﬂ fk(x,uh,Duh)dx B 2k(1+k¥) |an C
(4.7)
-~ IC w(|uh—u|)dx — Ik El Inifk(xi,ul.,Duh) dx

As h ++ =, by the semicontinuity theorem 2.1, we have

(4.8) lim inf f f (x Du, Jdx > — Gy & +1of

h k !uhv h (Xi,ul,Du)dX

k

We obtain the proof as the sides of the cubes Qi and € go

to zero.

Proof of theorem 1.1 - Let us assume first that p > 1. Simi-

larly to Serrin [31], for € > 0 let us define
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(4.9) g (wemp) = flxsa) + Czislt + C,(x) + e|E|P+ CE
E

Since p >r, we can choose the constant C to obtain g (x,s,g) >
€ E e
> e/2 |E|P- Let f K be the sequence of quasiconvex functions that
- E
converges, as kK + +w, to g , according to theorem 1.2. If u weak-
E

N
ly converges to u in Hlp(s'z;]R ), by lemma 4.3. we have

.. ; L. £
lim inf J’n gs(x,uh,Duh)dxihm lim mf.rQ Ek(x,uh,Duh)dx
h k h
(4.10)
> lim fgfek(x,u.Du) dx = fggefx,u,Du) dx
k
1
Let C,, be an upper bound for the H P norm of u, - Since
N
uy converges to u in the strong topology of Lt(n;]R ) (here we wuse
the assumption that 8@ is smooth if C,# 0), we obtain
lim inf fgf(x,uh.Duh) dx > lim inf IR gE(x,uh,Duh)dx

h h

(4.11) - lim IQ{Czlu

Yy x)+Cy dx-£CP
h €

hl 9 14

E

> f f(x,u,Du)dx +
Y 2

J’Q |Du]pdx -*—Z— CR

We complete the proof of the case p>1 as e+ 0. If p = 1, the
proof is much simpler, since if u, ~converges to u in the weak
topology of Hll(n;lRN) then the integrals of lDuhl are equiabsolute-
ly continuous. We do not give the details; we can use the approxi-
mation lemma 3.1 and then the argument by Fusco [16], or the argu

ment of section 2 of [ 22 ].
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5. The polyconvex case

In this section we consider a particular case of quasiconvex
functions. Following Ball [5 ]» we say that a function f(x,¢) is
polyconver with respect to g if there exists a function g(x,n),

convex with respect to n e]Rm, such that
(5.1) f(x,g) = glx,g,det , det £,...} ,

where detig are subdeterminants (or adjoints) of the n x N matrix .

If ¢ = Du, then each determinant is a divergence. For example,

for n = N =2, if u = (u',u?)e C2(g;R2), we have
£5:2) det Du = u! uz - u! u?z = (u'uz ) - (Wuz )
X X X X X X X X

1 2 2 1 2 1 1 2

Using (5.2) (and in general (5.4)), we can verify by Jensen's ine-
quality that every polyconvex function is quasiconvex. By multiply-
ing (5.2) by a test function ¢€ C. (@) and by integrating by parts

we have

. = - 12 — 1 12 d
(5:3) fﬂ det Du ¢dx .rn{u uxzq)x1 u uxlqoxz‘f X

1
By continuity (5.3) holds for ueH12 (a;R2). If ueH p(ﬂ;]Rz) for

/2-p
o

p <2, then u€ sz (g;R2) and thus the product u u? is sum-
2
(@ ;IR2),

lo X

1
mable if 1/p + (2-p)/2p <1, i.e., p>4/3. Thus, if ueH 473
we can define by (5.3) the determinant of Du as a distribution.
Moreover for the same reasons the map u -+ det Du is continuous in

the following sense: if u, converges to u in Higc(n;]Rz) for p > 4/3

and if (5.3) holds for uy and u, then det Duh converges to det Du

in the sense of distributions. In fact in this case u;} strongly con-

verges to u in L*(Q) and we can go to the limit as h + +  in

(58}
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For general n = N >2 we can still write det Du as a diver-

gence (Morrey [26], pagg. 122-123)

X n n 5 n
(5.4) det Du= alul,...,u )z_ ¥ (_1}1_?_ (u? 3 (u?, yu )
ax
a(xls-..,x ) a=1 a B(xl,..,x o ¢ yee X )
% a=-1 o+l n
1.1

This formula holds if ueH '"(g;R™). Since if u e H'P (n-1 < p<n)
np/(n-p)

loc
, the right side of (5.4) is well defined in the sense of

then u'€ L
Lp/(n—l)

and the Jacobian of order n-1 ©belongs to

distributions if (n-1)/p+(n-p)/np < 1, i.e., p > n?/(n+l). Thus we
have proved, as in Ball [5] and Ball, Currie and Olver [ 6], the

following result:

LEMMA 5.1 ([5],(6]) -~ Let n =N>2 and ue HP (a:R"). f
P >n */(n+1) then det Du is defined by (5.4) as a distribution; while
if p >n, det Du <s defined as a Lioc - funetion and formula (5.4)

. . 1
holds. Moreover, if u,_ converges to u in the weak topology of ngc for

h
p>n?*/(n+l) , then det Duy converges to det Du  in the sense of

distributions.

To get a semicontinuity result for polyconvex functions, we

X . : n m ;
consider a function g(x,n) defined for x€@C R and ne R with
values in [0,+=] (see in next section the reason to assume g con-

tinuous in x and independent of s) satisfying:

(5.5) The set {(x,n) : g(x,n) < + ) 458 open (and not empty) in
Q x ]}{n, and g 1is continuous on this set.

(5.6) g(x,n) Zs convex and lower semicontinuous with respect to neR™.

REMARK 5.2 - We assume (5.5) to simplify the next lemma, but we
could consider also other cases. On assuming (5.5), (5.6) we have
in mind the situation described by Ball [5], of interest in nonlin-

ear elasticity (see also the paper by Antman [3]), where are con-



sidered functions f(x,Du) = g(x,det Du) that are finite if and only

if det Du >0, and go to +« if det Du=~+ 0.
Let us begin with two approximation lemmas.

LEMMA 5.3 (De Giorgi) - There exists a nondecreasing sequence of
real nonnegative functions 8y that converge, as k + +=, to g . For
every k,gk(x,n) 18 uniformly continuous in § x 'JRm, it grows linearly
with respect to n, it is convex with respect to n and it is equal to

zero if dist (x,3@) < 1/k.

Proof. Let 2, = {x €a: dist (x,3q) > 1/i}, and let 0 ECg(ﬂi)

be equal to one on Qi—l’ and ¢i_ > 0. For every x €9, the function
g is lower semicontinuous on IRm; thus it is the supremum of a
sequence of affine functions (aj (x),n) + bj (x). Like in pag. 3l
of De Giorgi [10] (the argument of [10] can be applied, since g

is finite in a neighbour of each supporting point), we can choose

aj(x) and bj(xl to be continuous in . Let us define a,, b, =0,
and
(Bal) " gk(x, n) = max { ¢1(X)[(aj(X)'n )+ bj(x)] (i+4j < k}

The sequence g has all the required properties.

LEMMA 5.4 - There exists a sequence h, (x, n of C% =functions
satisfying all the properties stated in the previous lemma (except the

fact that h, > -1).

k

¥

Proof. Let @« be a mollifier, i.e., a EC:(]Rn x R™, s « dxdy=1,

~{ntm) ek w7,

k

If ¢ is sufficiently small, hke is a nonnegative C%-function, and

a >0, Let us define h = h, *a , where ¢ (x,n) =¢
— ke € €
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is zero if dist (x,3q) <1/k+l. By the uniform continuity of g, as
e » 0 hk converges to g, uniformly in @ «R".Thus we can choose
E

e = e(k) such that

1
(5.8) lhk,e(k) - &l < waae

-1

For k> 2 let us define hk(x,n) (x,n) - (k-1). The

h
k-1, e(k-1)
sequence hk satisfies all the stated properties. For example, let us

verify that hk is increasing with respect to k:

s 1 1 1 1
k - 8k1 "t kT Tk S8 fakr TR
1 1 1
(5.9) < et YIGD: YR T R
1 1 1
B YT T ¢ P

Now we prove a semincontinuity result, that generalize an

analogous result of Reshetnyak [28].

THEOREM 5.5 - Let g: @ 2 = [0,+=] be a function satisfying (5.5),

(5.6) . Let Vi and v be functions of Ll‘oc(s}:]Rm) , and assume that

v, converges to v in the sense of distributions, Z.e.:

(5. 10 lim s

V. ,¢)dx = s (v,¢)dx , ¥V ¢ eCom(ﬂ;lRm).
h h Q

" (
Then we have

(5.11) lim inf J g(x,v (x))dx > s g(x,v(x)) dx
h Q h =

Proof. By wusing our approximation lemma 5.4 in the usual

way like in (4.10), it 1is enough to prove the theorem assuming
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o m 2
that g is C™(2 x R"), and that there exists an open set & compact
ly contained in @ such that g is equal to zero for x ?éﬂo. Let
o, be a mollifier and let V. = V ¥ o_. By the convexity of g,

€

similarly to Serrin [31], we have

(5.12) glx,v, ) > glx,v. ) + (D g(x,v ), v, -v_)

h

Since Dng(x,ve(x)) EC:ER;]Rm), by (5.10) we have

(5.13) li: inf fgg(x,vh)dx > fng(x,vs)dx+I9(Dng{x,vE),v—vE)dx .

We obtain the result for e + 0. In fact, in the first addendum of

the right side we can use Fatou's lemma, while in the second ad-
m

dendum we can use the fact that Dng is bounded in & x R in-

dependently of e.

By lemma 5.1 and theorem 5.5 we obtain two semicontinuity

results for integrals of the type:

(5.14) F(u) = ’q f(x,Du)dx = fﬁ g(x,Du,det, Du,det, Du,...)dx

Here f(x,E£) is a polyconvex function like in (5.1), and g(x,n) sat-

ifies (5.5); (5.6).

COROLLARY 5.6 - Let uy and u be functions of Higc(ﬂ:IRN), for p 2>

> min {n?/(n+1);N?/(N+1)}. Assume that the subdeterminants of the

Jacobians DLh and Du are defined as 'Llloc —-functions and formula
(5.4) holds for up and u. If u, converges to u in the weak topology
of HP (Q;IRN), then lim inf F(u ) > F(u).

loc % h

1 N
COROLLARY 5.7 - Let u, and u be functions of lec(g R), for T >

> min {n,Ny. If U, converges to u in the weak topology of H}SC(Q ;IRN)
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for p>min {n #¥(n+1); N2/(N+1)}then lim inf F(”h)i F(u).
h

6. Some examples and remarks

Here we discuss the necessity of some assumptions of the
semicontinuity theorems 1.1 and 5.5. Let us begin with theorem
5.5 and let us show that the result does not hold if gix, n) s
only measurable with respect to x, or if g = g(x,s,n) (with the
usual meaning of s). Of course, to exhibit contraexamples, we must
consider non coercive cases; in fact, if g(x.n)> cost In Ip for some
p >1, the semicontinuity theorem 5.5 reduces to the usual semi-

continuity theorem in the weak topology of LP.

EXAMPLE 6.1 - Let n = m = 1 and let g(x,n) = a(x) n?, with a(x)

nonnegative, bounded and measurable in (0,1). It has been proved

in theorem 5 of [19 ] that for every p€ [1,+ =] and for every uEle

. 12 :
there exists in H a sequence u, that converges to u in LP and

h
satisfies
(6.1) 1}ilm I:a(x) (u}‘l)zdx = I:b(x) (u')2dx ,
where
(6.2) b(x) = lim  2¢ [/7° a7 (y)dy]”

X—-€

+
e+ 0

If we consider a function a(x) # 0 a.e., non locally summable

a.e. in (0,1), then b(x) is zero a.e. Let us define % = u!:1 and
v = u'. Then, for every ¢ GCT, we have

1 1 1 1
(6.3) lim /J, Vi ¢dx = - lim J, u ¢'dx = - S ug'dx = vedx

h h
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Moreover vy and v are in L', but they do not satisfy (5.11), since,
if v is not identically zero,

1

(6.4) I}i]m Foalx) v2ix) dx = 0 « J‘:a(X)VZ(X)dX

h

EXAMPLE 6.2 - We can adapt the counterexample of Eisen [12] to

our situation. In fact Eisen showed that there exists a sequence

of Lipschitz continuous functions uy = (u};,uﬁ) defined in (0,1),
such that the product u}‘l(uﬁ)' = 0 a.e., and u, converges in L' to
the function u(x) =z (1,x). Let us define v, = (u;)', v = (u?2)'=1,
Wy o= u}l), w=u'= 1, Like in (6.3), v, converges to v in the
sense of distributions; vh and v are in L', but

1 1
(6.5) I, (whvh)zdx =0 , /s, (wv)2dx =1

This means that in general we cannot extend theorem 5.5 to in-
tegrals of the type Jf g(w(x),v(x))dx, where g(s,n) is continuous
in (s, n), and convex with respect to n, and the topology consider-
ed is the product of the L! norm topology for w, and the topology

of distributions for wv.

EXAMPLE 6.3 - In theorem 1.1 the assumption t < np/(n-p) if p< n

is necessary. We have a counterexample for f(x,s, &) = ]g|P

- cost]sinp/(n_P), by choosing a sequence w, that weakly con-

verges in Hlp, but does not converge in the norm topology of
an/(n«—p)

EXAMPLE 6.4 - If n and N are greater than or equal to 2, the as-

sumption r <p in theorem 1.1 1is necessary. In fact there is a
counterexample by Murat and Tartar (see the counterexample in
section 4.1 of [27]), for n = N = p = r = 2, where it is shown

that the integral
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(6.6) L a(x) det Du dx ,

is not continuous in the weak topology of le (@;R2), even if a is
a nonzero constant. It is a consequence of theorem 1.1, but it is also
well known (see [29], [5], [6]; and for more general functionals
[16], [22]), that, if a € L®(a), the integral in (6.6) is weakly
D2 (g2, for

sequentially continuous in the weak topology of H

every positive ¢.

EXAMPLE 6.5 - To discuss the necessity of the upper bound in (1.1)

let us summarize our results in the special case n = N 32 for the
integral
(6.7) I g(x,u(x))|det Du(x)|® dx ;

we distinguish two cases: «q > 1 or o < 0; in the second case we
define [n|% = +o if q < 0. If g is a nonnegative Caratheodory
function and o > 1, then the integral (6.7) is sequentially lower
semicontinuous in the weak topology of Hln(Q;]Rn). This follows from
theorem 1.1 in the general case (if o >1 we can approximate |n|u
with a nondecreasing sequence of convex functions on R, each of
them growing linearly at «), and from corollary 5.7, if g is in-
dependent of s and continuous. If g = g(x) is a nonnegative con-
tinuous function, and either o >1 or o« < 0, then from corollary 5.7
it follows also that, if p > n #/(n+1):

{6.8) If uy and u are smooth (say u, ,u eHln(s‘z;]Rn)) and u weakly

‘CL

h

. 1 S
converges to u in H P(n;an) , then 11mh1nf ,rng(x)ldet Du dx >

h
> s og(x)|det Dul *dx

Let us mention explicitely that we have not proved that (6.8)
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is true if 1 <p<n?/(n+l). Let us mention also that Acerbi, Buttaz-

zo and Fusco [1] proved that (6.8) is not true if we replace the
1 .

weak convergence in H P(Q;]Rn) with the strong convergence in

Lp(n;]Rn), whatever is p € [1,+ «).

REMARK 6.6 - In (6.8) we make a distinction in between the space

where the functional 1is well defined, and the space where the
sequence u, weakly converges. This is a natural point of view and
it isnot new.In this context of polyconvex functions we refer to
theorem 9.2.1. by Morrey [26], énd to [1]. We refer also to the
well known semicontinuity theorems by Serrin [31] (see also [26],
section 4.1), where the considered functions u ~are required to be
in the space H“, but the convergence is in the space L'. We refer

also to the theory of De Giorgi [11], related to this subject.
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7. Appendice

Traggo spunto dallo Step 2 di pag. 6 per fare due
semplici osservazioni sulla Lipschitzianiti delle funzio-
ni quasi convesse.

Questa appendice separata, che non intendo pubbli-
care su una rivista matematica come il resto del lavoro,
ma che diffondo in modo informale, & destinata soprattutto
a quanti si interessano di problemi di [-convergenza e
di omogeneizzazione, e che quindi ben conoscono 1'inte-—
resse delle condizioni di Lipschitzianitd espresse nelle
proposizioni 1 e 2 che seguono. Circa la proposizione y
faccio anche riferimento allo Step 2 di pag. 6, al para-
grafo 4.4 del libro di Morrey, e al lemma 1.2 di Fusco
(On the convergence of integral functionals depending on
vector-valued functions, in corso di stampa su Ricerche

di Mat.).

PROFOSIZIONE 7.1 - Sia £ = f£(¥) una funzione convessa
rispetto ad ogni componente del vettore ¥ (in partico-

lare sia f convessa o quasi convessa), tale che
(7.1) [£(5)] € o (1+ 1517,

con c, > 0 [ P2 1. Allora esiste una costante
positiva Chpo» dipendente solo da c, e p ma non da
£ , tale che

(7.2) () - (] < o, (1 + 5P+ 1215 -7].
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PROPOSIZIONE 7.2 - Sia £ = £(¥) una funzione convessa

rispetto ad ogni componente del vettore §, e tale che
(7.3) (1 +15%) € £8(5) < P
T3 - |§l A §) S Cl(l +,§{ ) ’

con cl.; c, > C e P>1. Allora esiste una costante

positiva ¢ dipendente solo da c¢., c¢ e p, ma non

37 ° 1

da £, tale che

(7.4) ]fl/p(g)—fl/p(nﬂ N C, l§—”L| .

La dimostrazione della Proposizione 7.1 & come nello
Step 2 di pag. 6. Per dimostrare la Proposizione 7.2 valu—

tiamo la derivata

d  L1/p
Mo
JE,

-p)/p

1 ’ £(1-P)/p
P

g—;[c (1 +pg )]

5

Utilizzando 1la (2.11), =i vede che il secondo membro della
disuguaglianza sopra scritta & limitato indipendentemente

da § . Da cid si ottiene 1la tesi (7.4).

Notiamo che, se dal punto di vista del Calcolo delle
Variazioni si pud esprimere 1'ipotesi di coercitivitl in
(7.3) in modo equivalente richiedendo soltanto che f(g)
> coLﬂp (sommando ad f wuna costante, non si cambiano 1le
funzioni di minimo), cid non & ammesso nella proposizione
7.2; per avere un controesempio, basta infatti considerare

una funzione £(§) uguale a |§[ per ¥ vicino a zero.

f

i



