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Abstract

We prove local Lipschitz-continuity and, as a consequence, Ckand C∞ regularity of weak
solutions u for a class of nonlinear elliptic differential systems of the form

∑n
i=1

�
�xi

a�
i
(Du)=

0, �=1, 2, . . . , m. The growth conditions on the dependence of functions a�
i
(·) on the gradient

Du are so mild to allow us to embrace growths between the linear and the exponential cases,
and they are more general than those known in the literature.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let n�2, m�1, let � be an open set of Rn and let u : � ⊂ Rn → Rm be a weak
solution of a nonlinear elliptic system of PDE’s of the form

n∑
i=1

�
�xi

a�
i (Du) = 0, � = 1, 2, . . . , m, (1.1)
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where Du : � ⊂ Rn → Rm×n denotes the gradient of the map u, by components
x = (xi)i=1,2,...,n, u = (u�)�=1,2,...,m and Du = (�u�/�xi) = (u�

xi
)
�=1,2,...,m
i=1,2,...,n . By using

the notation � = (��
i )

�=1,2,...,m
i=1,2,...,n , A (�) = (a�

i (�))
�=1,2,...,m
i=1,2,...,n is a given vector field A :

Rm×n → Rm×n of class C1, satisfying the ellipticity condition

n∑
i,j=1

m∑
�,�=1

�a�
i (�)

���
j

��
i �

�
j > 0, ∀�, � ∈ Rm×n: � �= 0, (1.2)

as well as the variational condition that the vector field A (�) is the gradient of a
function f (�), i.e., that there exists a function f : Rm×n → R such that

a�
i = �f

���
i

= f��
i
, ∀� = 1, 2, . . . , m; i = 1, 2, . . . , n. (1.3)

Under the variational condition (1.3), the ellipticity condition (1.2) implies the (strict)
convexity of the function f. Finally, we assume that f (�) = g (|�|) is a function g of
the modulus |�| (with g′ (0) = 0, to respect the condition that the function f is of class
C1
(
Rm×n

)
).

The regularity problem for the elliptic system (1.1) consists in asking if the solution
u = u (x) = (

u� (x)
)�=1,2,...,m, a priori only a measurable function in the Sobolev

class W 1,1, in fact is of class C∞ (or C0,�, C1, C1,�, or Ck for some k), under the
assumption that the data are smooth.

With the aim to explain the situation, let us assume, for the moment, that the solution
u ∈ W 1,1 in fact is also in W

1,∞
loc , i.e., that the gradient Du is locally bounded in

�. Then, under the ellipticity condition (1.2) and the variational condition (1.3) with
f (�) = g (|�|), it is possible to show that

u ∈ W
1,∞
loc , A ∈ C1 	⇒ u ∈ C

1,�
loc

(see for instance [23]; for simplicity of notations, we write A ∈ C1 instead of, more
precisely, A ∈ C1,� for some � ∈ (0, 1)). Moreover, it is possible to see (cf. [3,16–18])
that u admits second derivatives in weak form and that, for every k ∈ {1, 2, . . . , n}, the

partial derivative uxk
=
(
u

�
xk

)�=1,2,...,m

satisfies the elliptic differential linear system

∑
i,j,�

�a�
i (Du (x))

���
j

(
uxk

)�
xj

= 0, � = 1, 2, . . . , m

(see (4.4) and note that �a�
i /���

j = f
��

i �
�
j

). The coefficients �a�
i /���

j (Du (x)) are locally

Hölder-continuous, since u ∈ C
1,�
loc ; thus we can apply the regularity results in the
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literature for linear elliptic systems with smooth coefficients (see for instance Section
3 of Chapter 3 of [9]) to infer

u ∈ C
1,�
loc , A ∈ Ck 	⇒ u ∈ C

k,�
loc , ∀k = 2, 3, . . . .

In particular, u ∈ C∞
loc if A ∈ C∞.

Therefore the problem which remains to be solved is under which conditions on
A (�) is it possible to show that the gradient Du is in fact locally bounded, i.e.,
u ∈ W

1,∞
loc . Why the local boundedness of the gradient Du is a so relevant condition

for regularity?
Because the differential system (1.1) heavily depends on Du in a nonlinear way, in

particular through a�
i (Du) and, if Du (x) is bounded, then a�

i (Du (x)) is bounded too
and far away from zero. Thus the behavior of A (�) = (a�

i (�)
)

for |�| → +∞ becomes
irrelevant.

On the contrary, the local boundedness of the gradient is a property related to the
behavior of A (�) as |�| → +∞. This problem has been extensively studied in the
literature and a detailed story is presented in the next section. Precisely, in the next
section we point out in detail the assumptions made in the earlier mathematical literature
on the subject, as well as the results presented in this paper.

We emphasize that the mathematical literature on the subject is large: some references
are given in the next section and a good survey, as well as some new interesting
regularity results, are given in the recent book by Bildhauer [2]. Our assumptions, in
the context of basic elliptic systems of type (1.1) with A (�) = D�f (�) and f (�) =
g (|�|), are more general than those in the literature, and they allow us to consider
at the same time variational problems with functions f (�) having linear growth as
|�| → +∞, as well as functions f (�) with either polynomial or exponential growth
at infinity.

2. Description of the problem and statement of the main results

Let � be an open set of Rn for some n�2 and let u : � → Rm (m�1) be a vector
valued local minimizer of an integral of the calculus of variations of the type

F =
∫
�

f (Du) dx, (2.1)

related to some convex integrand f : Rm×n → R. Here Du : � ⊂ Rn → Rm×n denotes
the gradient of the map u. By a local minimizer of the integral (2.1) we mean a function
u ∈ W

1,1
loc (�; Rm) with the property that F(u)�F(u + �) for every � ∈ C1

0(�; Rm);
in the context of this paper this definition is consistent.

It is well known that in general we cannot expect that u, either a priori minimizer
of integral (2.1) or weak solution of the differential system (1.1) in a Sobolev class
of functions W 1,p(�; Rm), is in fact a smooth function, say of class C∞

loc, or even of
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class C1
loc or C

0,�
loc for some � ∈ (0, 1). In the vector-valued case m > 2 examples

of nonsmooth minimizers and of nonsmooth weak solutions have been given by De
Giorgi [6], Giusti-Miranda [12] and by Necas [21]. A recent counterexample in three-
dimensional case in the context of smooth strongly convex functionals has been also
given by Sverak-Yan [22].

Even in the scalar case m = 1 it is possible to give examples of local minimizers u ∈
W

1,p

loc (�; R) for some p > 1 (this phenomenon is related to the p, q-growth condition
described below, with q larger than p), which do not even belong to L∞

loc(�; R); see
[10,15–17].

As already mentioned, regularity of solutions is often related to the growth of f (�)

as |�| → +∞. More precisely, the so-called natural growth conditions state that there
exists a growth exponent p > 1 and positive constants m, M such that

m|�|p �f (�)�M(1 + |�|p), ∀� ∈ Rm×n, (2.2)

as well as the ellipticity conditions on the matrix D2f of the second derivatives of f,
of the type

m
(

1 + |�|p−2
)

|�|2 �
(
D2f (�)�, �

)
�M(1 + |�|p−2)|�|2, ∀�, � ∈ Rm×n. (2.3)

It was pointed out by Marcellini [16,17] that the above natural growth conditions,
sufficient for regularity, can be weakened into anisotropic growth conditions, or into
p, q-growth conditions, i.e., with an exponent q �p in the right-hand side of (2.2), (2.3),
or into more general growth conditions. In particular, ellipticity p, q-growth conditions
of the type

m
(
1 + |�|p−2)|�|2 �

(
D2f (�)�, �

)
�M

(
1 + |�|q−2)|�|2, ∀�, � ∈ Rm×n, (2.4)

with exponents q �p > 1 such that q
p

< n
n−2 if n > 2.

In the general vectorial setting only few contributions are available for general
growth: we like to refer to the papers by Giusti [11], Giusti-Miranda [13], Acerbi-
Fusco [1] and by Esposito et al. [7]. A recent book by Bildhauer [2] gives a complete
overview and a detailed list of references. If some additional structure conditions are
assumed then several results can be found in the mathematical literature on the subject.
For instance, as a generalization of the “p-growth’’ case considered by Uhlenbeck [23],
Marcellini proposed in [19] an approach to the regularity of minimizers of the integral

F(u) =
∫
�

g(|Du|) dx, (2.5)

i.e. with the integrand in (2.1) of the form f (�) = g(|�|), where g : [0, +∞) →
[0, +∞) is an increasing convex function, without growth assumption on g(t) as t →
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+∞. For example, the regularity result can be applied to the exponential growth, such
as any finite composition of the type

f (�) = (exp(. . . (exp(exp |�|2)p1)p2) . . .)pk (2.6)

with pi �1, ∀i = 1, 2, . . . , k. However, some other restrictions ware imposed in [19],
such as, for instance, the fact that t ∈ (0, +∞) → g′(t)

t
is assumed to be an increasing

function. To exemplify, the model case g(t) = tp gives the restriction p�2. After-
wards, in [14] Leonetti–Mascolo–Siepe consider the case of subquadratic p, q-growth
conditions, i.e. in (2.4) they assume 1 < p < q < 2. Their result includes energy
densities f of the type f (�) = |�|p log�(1 + |�|) with p < 2. In [8] Fuchs–Mingione
concentrate on the case of nearly linear growth, for which (2.4) fails to be true. Typical
examples are the logarithmic case f (�) = |�| log(1 + |�|) and its iterated version{

fk(�) = |�|Lk(|�|),
Ls+1(t) = log(1 + Ls(t)), L1(t) = log(1 + t)

(2.7)

for k ∈ arbitrary. Bildhauer [2] considers linear behaviors for functional (2.5); he gives
conditions that can keep �-elliptic linear growth with � < 1 + 2

n
. Examples of �-elliptic

linear integrands are given by

g�(t) =
∫ t

0

∫ s

0
(1 + z2)−

�
2 dz ds, ∀t �0. (2.8)

For � = 1, g�(t) behaves like t log(1 + t) and in the limit case � = 3, g�(t) becomes
(1 + t2)1/2. Hence the functions g�(t) provide a one parameter family connecting
logarithmic examples with the minimal surface integrand. As further reference see
also [4].

In this paper we attempt to find conditions which include different kinds of growths.
At this purpose we give a general condition on function g embracing growths moving
between linear and exponential functions. The condition is the following:

Let t0, H > 0 and � ∈
(

1
n
, 2

n

)
. For every � ∈

(
1, n

n−1

]
there exists K = K (�) such

that

Ht−2�

[(
g′(t)

t

) n−2
n + g′(t)

t

]
�g

′′
(t)�K

[
g′(t)

t
+
(

g′(t)
t

)�]
, ∀t � t0. (2.9)

The exponent � in the right-hand side is a parameter to play, i.e., to use to test more
functions g. The condition in the left-hand side of (2.9) permits to achieve functions,
for instance, with second derivative going to zero as a power t−�, (i.e. � -elliptic),
where � is not too large and is related to the dimension n, i.e. � < 1 + 2

n
. As well as

functions in (2.8), other examples in the linear case include

g(t) = 1 + t − √
t, ∀t �1, n < 4,
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or more in general, for r ∈ (0, 1),

gr(t) = h(t) − t r , ∀t �1, n <
2

1 − r
,

and also

gr(t) = h(t) + (1 − t r )
1
r , ∀t �1, n <

2

r
,

where h(t) is a convex function such that, for suitable constants C1, C2,

C1(1 + t)�h(t)�C2(1 + t).

We observe that the functions gk(t) = (1 + tk)
1
k , related to minimal surfaces, are convex

if k�1, and g
′′
k (t) = (k − 1) tk−2(1 + tk)

1
k
−2 = O

(
1

tk+1

)
when t → +∞, so that they

do not satisfy left-hand side of condition (2.9).
As far as p, q-growth is concerned, we like to remark that condition (2.9) is satisfied

without assuming any restriction on p and q. For example, fixed 1 < p < q, consider
the function (cf. [5])

g(t) =
{

tp if t ��0,

t
p+q

2 + q−p
2 sin log log log t if t > �0,

(2.10)

where �0 is such that sin log log log �0 = −1. First of all we observe that function g os-
cillates between the function tp, to which it is tangent in �n such that sin log log log �n =
−1, and the function tq , to which it is tangent in �n such that sin log log log �n = 1. By
a direct computation it is possible to see that one can choose �0 and t0 large enough
such that g is convex and satisfies (2.9). We observe that the left-hand side of (2.9)
implies g

′′
(t) > 0 for t � t0. For this reason the function in (2.10), with p = 1, does

not satisfy condition (2.9); in fact if p = 1 we have g
′′
(�n) = 0.

Also high growths like that in (2.6) are included in condition (2.9). In other words,
our results unify and generalize those obtained in the literature for integral (2.5), in-
cluding in particular the linear case treated in [2], the non-standard p, q-growth, the
exponential growth considered in [19] and also the new example of oscillating func-
tion in (2.10). Part of the techniques of this paper have been introduced by Marcellini
[19]. The starting point is the second variational weak equation for which we need
the supplementary assumption that g

′′
(t) and g′(t)

t
are bounded by constants N and M

for all t > 0. In this case we give a priori estimates for sup |D(u)| by using only the
properties of function g, so that the constants in the a priori bounds do not depend
on M and N. Successively we remove this assumption by approximating the original
problem with regular variational ones. This is possible because the constants N and M
do not enter in the a priori bounds for the L∞-norm of the gradient.
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In this paper we prove in particular the following two results, the first one valid
under general growth conditions, the second one specific for the linear case.

Theorem A (General growth). Let g : [0, +∞) → [0, +∞) be a convex function of
class W

2,∞
loc with g(0) = g′(0) = 0, satisfying the general growth condition (2.9) with

� ∈
(

1
n
, 2

n

)
as before. Let u ∈ W

1,1
loc (�; Rm) be a local minimizer of integral (2.5). Then

u ∈ W
1,∞
loc (�; Rm). Moreover, the following estimate holds: for every 	 > 0 and R >


 > 0 there exists a constant C (depending on 	, n, 
, R, H, K and sup0� t � t0
g

′′
(t))

such that

‖Du‖2−�n

L∞(B
;Rm×n)
�C

{∫
BR

(1 + g(|Du|)) dx

} 1
1−� +	

. (2.11)

Theorem B (Linear growth). Let g : [0, +∞) → [0, +∞) be a convex function of
class W

2,∞
loc with g(0) = g′(0) = 0. Let us assume that g has the linear behavior at

infinity

lim
t→+∞

g(t)

t
= l ∈ (0, +∞) (2.12)

and that its second derivative satisfies the inequalities

H
1

t�
�g

′′
(t)�K

1

t
, ∀t � t0, (2.13)

for some positive constants H, K, t0 and for some � ∈
[
1, 1 + 2

n

)
. Then every local

minimizer u of integral (2.5) is of class W
1,∞
loc (�; Rm) and, for every R > 
 > 0, the

following estimate is satisfied:

‖Du‖2−�n

L∞(B
;Rm×n)
�C

∫
BR

(1 + g(|Du|)) dx, (2.14)

where � = �
2 − n−2

2n
and the constant C depends on n, 
, R, l, H, K and sup0� t � t0

g
′′
(t).

Note that 2 − �n ∈ (0, 1] since � ∈ [1, 1 + 2
n

)
. Note also that estimate (2.14) in

Theorem B is sharper than estimate (2.11) of Theorem A, when we reduce the general
assumption (2.9) of Theorem A to linear growth, since in the second case the proof
is more direct, as explained at the end of this paper. Therefore, Theorem B cannot be
considered a particular case of Theorem A.

The plan of the paper is the following. In Section 2 we discuss some consequences
of assumption (2.9) and we prove for g some estimates that will be used in Section 3,
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where we get a priori bounds for the gradient of local minimizers of functional (2.5).
In Section 4 we define the approximating regular variational problems and we obtain
a priori bounds for the gradient of their minimizers. Finally in Section 5 we go to the
limit and we obtain the regularity Theorems A and B.

3. Ellipticity estimates and their consequences

With the aim to study integrals of the Calculus of Variations of the type (2.5), we
consider f (�) = g(|�|), for � ∈ Rm×n, (� = (��

i ), i = 1, 2, . . . , n, � = 1, 2, . . . , m),
where

g : [0, +∞) → [0, +∞)
is a convex function of class
W 2,∞[0, T ], ∀T > 0, g(0) = g′(0) = 0.

(3.1)

By the representation f (�) = g(|�|), we have

f��
i

= g′(|�|) ��
i

|�| , f
��

i �
�
j

=
(

g
′′
(|�|)

|�|2 − g′(|�|)
|�|3

)
· ��

i �
�
j + g′(|�|)

|�| �
��

i �
�
j

. (3.2)

Since

∑
i,j,�,�

��
i �

�
j ��

i �
�
j =

⎛
⎝∑

i,�

��
i �

�
i

⎞
⎠

2

�(|�||�|)2, ∀�, � ∈ Rm×n

(and the equality holds when � is proportional to �), we easily obtain the following
ellipticity estimates:

min

{
g

′′
(|�|), g′(|�|)

|�|
}

�

∑
i,j,�,� f

��
i �

�
j

��
i �

�
j

|�|2

� max

{
g

′′
(|�|), g′(|�|)

|�|
}

, ∀�, � ∈ Rm×n. (3.3)

Let us define

H(t) = max

{
g

′′
(t),

g′(t)
t

, ∀t > 0

}
. (3.4)

We observe that, since g′(t) = ∫ t

0 g
′′
(s) ds�MT t, ∀t �T , the function g′(t)

t
(and con-

sequently H(t)) is bounded on (0, T ], ∀T > 0. We observe that in (3.1) we do not
assume g′(0) > 0 but, more generally, we allow g′(t) and g(t) to be equal to zero in
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(0, t̄], with t̄ > 0. The sequel of this section is devoted to derive some useful estimates
on the function g, starting by the general assumption (2.9). With this aim we begin with
the following lemma (where by 2∗ we denote the Sobolev’s exponent, i.e 2∗ = 2n

n−2 if
n�3, while 2∗ is any fixed number greater than 2 if n = 2).

Lemma 3.1. Let g be as in (3.1). Let �, H be positive constants such that 1
n

< � < 2
n

.

Let us assume that for every � ∈
(

1, n
n−1

]
there exists a constant K (depending on �)

such that

Ht−2�

[(
g′(t)

t

) 2
2∗

+ g′(t)
t

]
�g

′′
(t)�K

[
g′(t)

t
+
(

g′(t)
t

)�]
, ∀t � t0. (3.5)

Then for every � with 2�
2−� ���2∗ and for every ��0 there exists a constant C such

that

1 +
∫ t

0
s�
√

g
′′
(s) ds�C

⎡
⎣1 +

(
t�+1−�

� + 1

)�

H(t)

⎤
⎦

1
�

, ∀t �0. (3.6)

Proof. In order to simplify this proof, up to a rescaling, we will assume, without loss
of generality, that t0 = 1 and g(t0) > 0. We observe that

⎡
⎣1 +

(
t�+1−�

� + 1

)�

H(t)

⎤
⎦

1
�

�
[

1 +
(

t�+1−�

� + 1

)
H(t)

1
�

]
, ∀t > 0, ∀��0. (3.7)

Now, let us call

F1(t, �) = 1 +
∫ t

0
s�
√

g
′′
(s) ds, (3.8)

G1(t, �) = 1 +
(

t�+1−�

� + 1

)
H(t)

1
� , (3.9)

and let us define the quotient

Q1(t, �) = F1(t, �)

G1(t, �)
. (3.10)

It is easy to see that Q1(t, �) is lower bounded in the strip (t, �) ∈ [0, t0] × [0, +∞]
(we remember that t0 = 1) by the constant C1 =

(
1 + max0<t �1 [ g′(t)

t
+ g

′′
(t)]

1
�
)−1

.
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From this (3.6) follows for 0� t � t0. Now let t � t0. By definition (3.4) of function
H(t) we get

H(t)� g′(t)
t

+ g
′′
(t)

and by the right-hand side of (3.5) we can write

H(t)�(K + 1)

[
g′(t)

t
+
(

g′(t)
t

)�]
. (3.11)

From this, instead proving (3.6) we can prove the following:

1 +
∫ t

0
s�
√

g
′′
(s) ds�C

⎡
⎣1 + t�+1−�

� + 1

[
g′(t)

t
+
(

g′(t)
t

)�] 1
�

⎤
⎦ , ∀t � t0, (3.12)

where we still denote by C the new constant. At this end it is sufficient to show the
inequality between the derivatives side to side with respect to t of (3.12)

√
g

′′
(t) � C1 t−�

[(
g′(t)

t

) 1
� +

(
g′(t)

t

) �
� +

(
g′(t)

t

) 1
� −1

g
′′
(t)

+
(

g′(t)
t

) �
� −1

g
′′
(t)

]
, (3.13)

or, since � > 1,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
g

′′
(t)�2C1 t−�

[(
g′(t)

t

) 1
� +

(
g′(t)

t

) 1
� −1

g
′′
(t)

]
if g′(t)

t
�1

√
g

′′
(t)�2C1 t−�

[(
g′(t)

t

) �
� +

(
g′(t)

t

) �
� −1

g
′′
(t)

]
if g′(t)

t
�1.

If g′(t)
t

�1, by the left-hand side of (3.5) we get, since 1
� � 1

2∗ ,

√
g

′′
(t)�

√
H t−�

(
g′(t)

t

) 1
2∗

�
√

H t−�
(

g′(t)
t

) 1
�

(3.14)

and also, by the right-hand side of (3.5)

g
′′
(t)

(
g′(t)

t

)−1

�2K.
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As a result we have

√
g

′′
(t)�

√
H

2K
t−�
(

g′(t)
t

) 1
�

2K �
√

H

2K
t−�
(

g′(t)
t

) 1
� −1

g
′′
(t). (3.15)

Adding (3.14) to (3.15) we get, if g′(t)
t

�1,

√
g

′′
(t)�

√
H

4K
t−�

[(
g′(t)

t

) 1
� +

(
g′(t)

t

) 1
� −1

g
′′
(t)

]
. (3.16)

If g′(t)
t

�1, with similar arguments we have

√
g

′′
(t)�

√
H t−�

(
g′(t)

t

) 1
2

, (3.17)

and since �� 2�
2−� > 2�, i.e. �

� < 1
2 , we get

√
g

′′
(t)�

√
H t−�

(
g′(t)

t

) �
�

. (3.18)

Moreover, by the right-hand side of (3.5) we get

√
g

′′
(t)�

√
2K

(
g′(t)

t

) �
2

,

equivalently

g
′′
(t)�

√
2K

(
g′(t)

t

) �
2
√

g
′′
(t)

and, since t � t0 = 1, we can also write

√
g

′′
(t)� 1√

2K

(
g′(t)

t

)− �
2

g
′′
(t)�

(
1√
2K

)
t−�
(

g′(t)
t

)− �
2

g
′′
(t).

Since �� 2�
2−� , i.e. �

� � 2−�
2 , we have �

� − 1� − �
2 ; hence

√
g

′′
(t)�

(
1√
2K

)
t−�
(

g′(t)
t

) �
� −1

g
′′
(t). (3.19)
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Therefore, in the case g′(t)
t

�1, from (3.18) and (3.19) we obtain

√
g

′′
(t)�min

{√
H

2
,

1

2
√

2K

}
t−�

[(
g′(t)

t

) �
� +

(
g′(t)

t

) �
� −1

g
′′
(t)

]
. (3.20)

Therefore (3.13) holds for t � t0 too, as a consequence of (3.16) and (3.20). �

Lemma 3.2. Let g be as in (3.1). Suppose that g satisfies the right-hand side of
condition (3.5). Then there exists a constant C, depending on K, g′(t0), t0, �, such that

g′(t)t �C(1 + g(t))
1

2−� , ∀t �0. (3.21)

Proof. Let t � t0 = 1. A multiplication for t and an integration side to side in the
right-hand side of (3.5) give

∫ t

t0

sg
′′
(s) ds�K

∫ t

t0

g′(s) ds + K

∫ t

t0

s

(
g′(s)

s

)�

ds.

An integration by parts of the left-hand side in the previous inequality gives

g′(t)t �g′(t0)t0 + (K + 1)

∫ t

t0

g′(s) ds + K

∫ t

t0

s2−2�g′(s)
(
g′(s)s

)�−1
ds.

Since g(t0)�0 and t � t0 we have

g′(t)t �g′(t0)t0 + (K + 1)g(t) + Kt0
2−2� (g′(t)t

)�−1
g(t).

By dividing both sides for
(
g′(t)t

)�−1 we obtain

(
g′(t)t

)2−� �
(
g′(t0)t0

)2−� +
(

K + 1

(g′(t0)t0)�−1
+ Kt0

2−2�
)

g(t).

Let C1
2−� = max{(g′(t0)t0

)2−�
, K+1

(g′(t0)t0)�−1 + Kt0
2−2�}. Then we have for all t � t0

g′(t)t �C1(1 + g(t))
1

2−� .

Finally (3.21) follows with C�C1 because g′(t)t �g′(t0)t0, for all t � t0. �
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Lemma 3.3. Let g be as in (3.1) and let H be the function defined in (3.4). Suppose
that g satisfies the right-hand side of condition (3.5). Then there exists a constant C
such that for any �, 1 < �� 3n

3n−4 ,

1 + H(t)t2 �C(1 + g(t))�, ∀t �0, (3.22)

where � = �(�) = �
2−� and the constant C depends on K, sup0� t � t0

g
′′
(t), �.

Proof. Since H(t) = max
{

g′(t)
t

, g
′′
(t)
}

we have that H(t)t2 �g′(t)t + g
′′
(t)t2 ∀t �0.

Let t � t0 �1. By the right-hand side of (3.5) and by 3.2 we obtain

g
′′
(t)t2 �KC(1 + g(t))

1
2−� + KC�(1 + g(t))

�
2−� t−2�+2.

Let C1 = max{KC, KC� t0
−2�+2}. Then we have that for all t � t0

g
′′
(t)t2 �2C1(1 + g(t))

�
2−� . (3.23)

On the other hand, if t � t0, we have

g
′′
(t)t2 � sup

0� t � t0

g
′′
(t)t2 � t0

2 sup
0� t � t0

g
′′
(t)�Ct0 , (3.24)

By putting together (3.23), (3.24) and Lemma 3.2, from the definition of H(t), we
obtain the result. �

4. A priori estimates

In this section we consider the integral of the Calculus of Variations

F(u) =
∫
�

f (Du) dx, (4.1)

with f (Du) = g(|Du|), where g satisfies (3.1). We make the following assumption:

Assumption 4.1. There exist two positive constants N and M such that

N |�|2 �
∑

i,j,�,�

f
��

i �
�
j

(�)��
i �

�
j �M|�|2, ∀�, � ∈ Rm×n, f (�) = g(|�|). (4.2)

This is equivalent to say that both g′(t)
t

and g
′′
(t) are bounded by constants N, M, ∀t >

0. This assumption allows us to consider u as a function of class W
1,∞
loc

(
�, Rm

) ∩
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W
2,2
loc

(
�, Rm

)
. Similarly in [19], assumption (4.2) will be successively removed. The

reason that will make this removal possible relies on the fact that the constants N and
M do not enter in the a priori bound obtained for the L∞-norm of the gradient. We
will denote by B
 and BR balls of radii, respectively, 
 and R (
 < R) contained in
� and with the same center.

Lemma 4.1. Let g be as in (3.1), satisfying (4.2) and (3.6). Let u ∈ W
1,1
loc (�; Rm) be

a minimizer of integral (4.1). Then there exists a constant C, which does not depend
on N and M, such that (the function H is defined in (3.4))

‖Du‖2−�n

L∞(B
;Rm×n)
� C

(R − 
)n

∫
BR

(
1 + |Du|2H(|Du|)

)
dx.

Proof. Let u be a local minimizer of (4.1). By the left-hand side of (4.2), u ∈
W 1,2(�; Rm) and by the right-hand side of (4.2) it satisfies the weak Euler first varia-
tion:

∫
�

∑
i,�

f��
i
(Du)
�

xi
dx = 0, ∀
 = (
�) ∈ W

1,2
0 (�, Rm). (4.3)

Using some known techniques (see for example [3,9,16–18]) we can prove that u admits
second-order weak partial derivatives, precisely that u ∈ W

2,2
loc (�; Rm) and it satisfies

the second variation∫
�

∑
i,j,�,�

f
��

i �
�
j

(Du)u
�
xj xk


�
xi

dx = 0, ∀k = 1, 2, . . . , n,

∀
 = (
�) ∈ W
1,2
0 (�, Rm). (4.4)

For k ∈ {1, 2, . . . , n} we consider 
 ∈ W
1,2
0 (�, Rm) (we do not denote explicitly the

dependence on k) defined by


 := �2uxk
�(|Du|),

where � ∈ C1
0(�) and � : [0, +∞) → [0, +∞) is an increasing bounded Lipschitz

continuous function. We plug 
 in (4.4) and, since


�
xi

= 2��xi
u�

xk
�(|Du|) + �2u�

xixk
�(|Du|) + �2u�

xk
�′(|Du|)(|Du|)xi

we obtain ∫
�

2��
∑

i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xk

�xi
dx
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+
∫
�

�2�
∑

i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xixk

dx

+
∫
�

�2�′ ∑
i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xk

(|Du|)xi
dx = 0. (4.5)

Defining

Ak =
∫
�

2��
∑

i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xk

�xi
dx, (4.6)

Bk =
∫
�

�2�
∑

i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xixk

dx, (4.7)

Ck =
∫
�

�2�′ ∑
i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xk

(|Du|)xi
dx, (4.8)

Eq. (4.5) takes the concise form of

Ak + Bk + Ck = 0. (4.9)

We start estimating the first addendum Ak in (4.9) with the inequality 2ab� 1
2a2 + 2b2

|Ak| �
∫
�

2�

⎡
⎣�2

∑
i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xixk

⎤
⎦

1
2

×
⎡
⎣ ∑

i,j,�,�

f
��

i �
�
j

�xi
u�

xk
�xj

u
�
xk

⎤
⎦

1
2

dx

�
∫
�

�

⎡
⎣�2

2

∑
i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xixk

+ 2
∑

i,j,�,�

f
��

i �
�
j

�xi
u�

xk
�xj

u
�
xk

⎤
⎦ dx. (4.10)

From (4.9) and (4.10) we obtain

1

2
Bk + Ck � 2

∫
�

�(|Du|)
∑

i,j,�,�

f
��

i �
�
j

(Du)�xi
u�

xk
�xj

u
�
xk

dx. (4.11)
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We use the expression of the second derivatives of f in (3.2) to estimate Ck in the
left-hand side. Since

(|Du|)xi
= 1

|Du|
∑
�,k

u�
xixk

u�
xk

(4.12)

we obtain

∑
k

∑
i,j,�,�

f
��

i �
�
j

u
�
xj xk

u�
xk

(|Du|)xi

=
(

g
′′

|Du|2 − g′

|Du|3
) ∑

k,i,j,�,�

u�
xi

u
�
xj

u
�
xj xk

u�
xk

(|Du|)xi

+ g′

|Du|
∑
k,i,�

u�
xixk

u�
xk

(|Du|)xi

=
(

g
′′

|Du| − g′

|Du|2
)∑

k,i,�

u�
xi

(|Du|)xi
u�

xk
(|u|)xk

+ g′ ∑
i

(|Du|)2
xi

=
(

g
′′

|Du| − g′

|Du|2
)∑

�

[∑
i

u�
xi

(|Du|)xi

]2

+ g′|D(|Du|)|2. (4.13)

Now we recall definition (4.8) for Ck . The previous equality shows that

∑
k

Ck =
∫
�

�2�′(|Du|)
⎧⎨
⎩
(

g
′′
(|Du|)
|Du| − g′(|Du|)

|Du|2
)

·
∑
�

[∑
i

u�
xi

(|Du|)xi

]2

+ g′(|Du|)|D(|Du|)|2
⎫⎬
⎭ dx (4.14)

Now we consider the first term 1
2 Bk in inequality (4.11). From (3.2) we get

∑
i,j,�,�

f
��

i �
�
j

(Du)u
�
xj xk

u�
xixk

=
(

g
′′
(|Du|)

|Du|2 − g′(|Du|)
|Du|3

)⎛⎝∑
i,�

u�
xixk

u�
xi

⎞
⎠

2

+g′(|Du|)
|Du|

∑
i,�

(u�
xixk

)2.
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By (4.12), summing with respect to k,

∑
k

∑
i,j,�,�

f
��

i �
�
j

(Du)u
�
xj xk

u�
xixk

=
(

g
′′
(|Du|) − g′(|Du|)

|Du|
)

|D(|Du|)|2

+g′(|Du|)
|Du| |D2u|2.

By definition (4.7) we can write

∑
k

Bk =
∫
�

�2�(|Du|)
((

g
′′
(|Du|) − g′(|Du|)

|Du|
)

|D(|Du|)|2

+g′(|Du|)
|Du| |D2u|2

)
dx. (4.15)

By (4.12) and applying the Cauchy–Schwarz inequality we have

|D(|Du|)|2 =
∑

i

(|Du|)2
xi

= 1

|Du|2
∑

i

⎛
⎝∑

�,k

u�
xixk

u�
xk

⎞
⎠

2

�
∑
i,�,k

(u�
xixk

)2 = |D2u|2,

from which we deduce that

∑
k

Bk �
∫
�

�2�(|Du|)g′′
(|Du|)|D(|Du|)|2 dx. (4.16)

Now, we consider
∑

k Ck in formula (4.14). We can write that

∑
k

Ck =
∫
�

�2�′(|Du|)
⎛
⎝g

′′
(|Du|)
|Du|

∑
�

(∑
i

u�
xi

(|Du|)xi

)2

+ g′(|Du|)|D(|Du|)|2

− g′(|Du|)
|Du|2

∑
�

(∑
i

u�
xi

(|Du|)xi

)2
⎞
⎠ dx.

Since, by Cauchy–Schwarz inequality, we get

∑
�

(∑
i

u�
xi

(|Du|)xi

)2

�
∑
i,�

(u�
xi

)2
∑

i

(|Du|)2
xi

� |Du|2|D(|Du|)|2,
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then we can conclude that

∑
k

Ck �
∫
�

�2�′(|Du|)g
′′
(|Du|)
|Du|

∑
�

(∑
i

u�
xi

(|Du|)xi

)2

dx�0. (4.17)

By using the inequalities obtained for
∑

k Bk and
∑

k Ck in (4.16) and (4.17) we obtain
from formula (4.11) where we sum on k

1

2

∫
�

�2�(|Du|)g′′
(|Du|)|D(|Du|)|2 dx

� 1

2

∑
k

Bk � 1

2

∑
k

Bk +
∑

k

Ck

�2
∫
�

�(|Du|)
∑

i,j,�,�,k

f
��

i �
�
j

(Du)�xi
u�

xk
�xj

u
�
xk

dx. (4.18)

By the right-hand side in (3.3), finally we obtain∫
�

�2�(|Du|)g′′
(|Du|)|D(|Du|)|2 dx�4

∫
�

�(|Du|)H(|Du|)|D�|2|Du|2 dx (4.19)

for every � : [0, +∞) → [0, +∞), increasing, local Lipschitz continuous function with
� and �′ bounded on [0, +∞). If we consider a more general � not bounded, with
derivative �′ not bounded too, then we can approximate it by a sequence of functions
�r , each of them being equal to � in the interval [0, r], and then extended to [r, +∞)

with the constant value �(r). We insert �(r) in (4.19) and we go to the limit as
r → +∞ by the monotone convergence theorem. So we obtain that (4.19) is true for
every � positive, increasing, local Lipschitz continuous function in [0, +∞). Let us
define

G(t) = 1 +
∫ t

0

√
�(s)g

′′
(s) ds, ∀t �0. (4.20)

By Hölder inequality, since function � is increasing and g′(0) = 0, we get

[G(t)]2 =
(

1 +
∫ t

0

√
�(s)g

′′
(s)

)2

�2 + 2�(t)t

∫ t

0
g

′′
(s) ds

= 2 + 2�(t)tg′(t)�2 + 2�(t)H(t)t2.

Then we can write the following estimate for the gradient of function �G(|Du|):

|D(�G(|Du|))|2 = |(D�)G(|Du|) + �G′(|Du|)D(|Du|)|2
� 2|D�|2|G(|Du|)|2 + 2�2|G′(|Du|)|2 · |D(|Du|)|2
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� 4|D�|2
(

1 + �(|Du|)H(|Du|)|Du|2
)

+ 2�2�(|Du|)g′′
(|Du|)|D(|Du|)|2.

By integrating over � the previous inequality we obtain∫
�

|D(�G(|Du|))|2 dx

�4
∫
�

|D�|2
(

1 + �(|Du|)H(|Du|)|Du|2
)

dx

+ 2
∫
�

�2�(|Du|)g′′
(|Du|)|D(|Du|) dx.

Now we use inequality (4.19) and we get∫
�

|D(�G(|Du|))|2 dx�4
∫
�

|D�|2
(

1 + 3�(|Du|)H(|Du|)|Du|2
)

dx. (4.21)

As a consequence of (4.2), Du is locally bounded; hence we can apply Sobolev’s
inequality: there exists a constant C1 such that

{∫
�

[
�G(|Du|)]2∗

dx

} 2
2∗

�C1

∫
�

|D(�G(|Du|))|2 dx. (4.22)

Let us define �(t) = t2�, with ��0 (so that � is increasing). Since g satisfies (3.6) we
can choose � = 2∗ and combining (4.22) and (4.21) we have that there exist constants
C3, C4 and same �, 0�� < 2

n
such that∫

�
|D�|2

(
1 + 3�(|Du|)H(|Du|)|Du|2

)
dx� 1

4

∫
�

|D(�G(|Du|))|2 dx

�C3

{∫
�

[
�G(|Du|)]2∗

dx

} 2
2∗

� C4

(� + 1)2

{∫
�

�2∗ (
1 + |Du|(�+1−�)2∗H(|Du|)

)
dx

} 2
2∗

. (4.23)

Substituting in the left-hand side of inequality (4.23) the expression of function � we
get that there exist a constant C5 and same numbers �, 0�� < 2

n
such that for every

��0

{∫
�

�2∗ (
1 + |Du|(�+1−�)2∗H(|Du|)

)
dx

} 2
2∗

�C5(� + 1)2
∫
�

|D�|2
(

1 + |Du|2�H(|Du|)|Du|2
)

dx.
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Let the test function � be equal to 1 in B
, with support contained in BR and such
that |D�|� 2

(R−
)
. Let us denote by � = 2(� + 1) (note that, since ��0, then ��2).

We have

{∫
B


(
1 + |Du|(�−2�) 2∗

2 H(|Du|)
)

dx

} 2
2∗

�C5

(
�

R − 


)2 ∫
BR

(
1 + |Du|�H(|Du|)

)
dx. (4.24)

Fixed R and 
, with R > 
 we define the decreasing sequence of radii {
i}i �0


i = 
 + R − 


2i
, ∀i�0.

We observe that 
0 = R > 
i > 
i+1 > 
. We define also the increasing sequence of
exponents {�i}i �0, �0 = 2, �i+1 = (�i − 2�) 2∗

2 , i�0, and we rewrite the (4.24) with
R = 
i , 
 = 
i+1 and � = �i . Then we obtain for every i�0,

{∫
B
i+1

(
1 + |Du|�i+1H(|Du|)

)
dx

} 2
2∗

�C5

(
�i2i+1

R − 


)2 ∫
B
i

(
1 + |Du|�i H(|Du|)

)
dx. (4.25)

By iterating (4.25) we get

{∫
B
i+1

(
1 + |Du|(2−�n)( 2∗

2 )i+1+�nH(|Du|)
)

dx

}( 2
2∗ )i+1

�C6

∫
BR

(
1 + |Du|2H(|Du|)

)
dx, (4.26)

where the exponent in the first integral is given by computing

�i+1 = 2

(
2∗

2

)i+1

− 2�
i+1∑
k=1

(
2∗

2

)k

= (2 − �n)

(
2∗

2

)i+1

+ �n
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and

C6 �
+∞∏
k=0

[
C58

(R − 
)2
(2∗)2k

]( 2
2∗ )k

=
((

C58

(R − 
)2

)∑+∞
k=0 ( 2

2∗ )k
)

(2∗)
∑+∞

k=0 k( 2
2∗ )k

=
(

C58

(R − 
)2

) n
2 · (2∗)

n(n−2)
2 = C7

(R − 
)n
,

for every n�3; otherwise, if n = 2, then for every 	 > 0 we can choose 2∗ so that
C6 = C7

(R−
)2+	 for some constant C7. Now, we observe that the function 1+t�H(t)�1+
t�−1g′(t), since H(t)� g′(t)

t
for every t > 0. Now, if t �1 , since g′(t) is increasing

we have 1+ t�−1g′(t)� t�−1g′(1) and, if t �1 we have 1+ t�−1g′(t)�1� t�−1. Hence,
we can write

{∫
B


|Du|
(2−�n+ �n−1

( 2∗
2 )i+1

)( 2∗
2 )i+1

dx

}( 2
2∗ )i+1

� C7

(R − 
)n

∫
BR

(
1 + |Du|2H(|Du|)

)
dx. (4.27)

Finally we go to the limit as i → +∞ and we obtain

sup
{
|Du(x)|2−�n : x ∈ B


}

= lim
i→+∞

{∫
B


|Du|
(2−�n+ �n−1

( 2∗
2 )i+1

)( 2∗
2 )i+1

dx

}( 2
2∗ )i+1

� C7

(R − 
)n

∫
BR

(
1 + |Du|2H(|Du|)

)
dx. �

Lemma 4.2. Let g be as in (3.1). Let us assume that g satisfies (4.2) and (3.5). Let
u ∈ W

1,1
loc (�; Rm) be a minimizer of integral (4.1). Then, for every 	 > 0 and for every


, R (0 < 
 < R), there exists a constant C = C(n, 	, 
, R) such that

∫
B


(
1 + |Du|2H(Du)

)
dx�C

{∫
BR

(1 + g|Du|) dx

} 1
1−� +	

,

the constant C depends also on g(t0), g′(t0), K, H, sup0� t � t0
g

′′
(t), inf0� t � t0 g

′′
(t),

but it does not depend on the constants N and M in (4.2).
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Proof. In Lemma 3.1 we considered parameters � and � such that � ∈
(

1, n
n−1

]
and

��0. Here we restrict ourselves to the case 1 < �� 2n
2n−1 = 1 + 1

2n−1 and � = 0.

Then (3.6) holds for any � ∈
[

2�
2−� , 2∗

]
. We define � = 2∗

� , so that � ∈
[
1, 2∗ 2−�

2�

]
.

The condition � < 2
n

is equivalent to 1 < (1 − �) 2∗
2 ; therefore it is possible to limit �

(and �) to satisfy the conditions 1 < � < (1 − �) 2∗
2 too. Finally, since � > 1

n
we have

�� 2n
2n−1 < 2

2−� and this implies 1 − � < 2−�
� . Thus

� ∈
[

1, (1 − �)
2∗

2

]
	⇒ � ∈

[
1, 2∗ 2 − �

2�

]
⇔ � ∈

[
2�

2 − �
, 2∗
]

so that the parameter � satisfies the condition of Lemma 3.1. Therefore there exists a
constant C1 (we still denote by C1, C2, etc.. the constants in this proof) such that

(G(t))2∗ =
⎡
⎣(1 +

∫ t

0

√
g

′′
(s) ds

) 2∗
�

⎤
⎦

�

�C2

[
1 + t (1−�) 2∗

� H(t)
]�

.

Under the notations of the previous Lemma 4.1, let us consider again estimates (4.23)
with � identically equal to 1 (or, equivalently, with � = 0); we have

{∫
�

(�G(|Du|))2∗
dx

} 2
2∗

�4C2

∫
�

|D�|2
(

1 + 3H(|Du|)|Du|2
)

dx

and thus {∫
�

�2∗ [
1 + |Du|(1−�) 2∗

� H(|Du|)
]�

dx

} 2
2∗

�C3

∫
�

|D�|2
(

1 + H(|Du|)|Du|2
)

dx. (4.28)

Since � < (1 − �) 2∗
2 , we have (1 − �) 2∗

� > 2. Under the notation V = V (x) =
1 + |Du|2H(|Du|) (4.28) becomes

{∫
�

�2∗
V � dx

} 2
2∗

�C3

∫
�

|D�|2V dx. (4.29)

As in the previous Lemma 4.1 we consider a test function � equal to 1 on B
 with
support contained in BR and such that |D�|� 2

R−
 , we obtain

{∫
B


V � dx

} 2
2∗

� 4C4

(R − 
)2

∫
BR

V dx. (4.30)
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Let � > 2∗
2 . By the Holder inequality we have

{∫
B


V � dx

} 2
2∗

� 4C4

(R − 
)2

∫
BR

V
�
� V

1− �
� dx

� 4C4

(R − 
)2

{∫
BR

V � dx

} 1
�
{∫

BR

V
�−�
�−1 dx

} �−1
�

. (4.31)

Let R0 and 
0 be fixed. For any i ∈ N we consider (4.31) with R = 
i and 
 = 
i−1,

where 
i = R0 − R0−
0
2i . By iterating (4.31), since R − 
 = R0−
0

2i , similar to the
computation in [19, p. 19], we can write

∫
B
0

V � dx �
{∫

B
i

V � dx

}( 2∗
2� )

i

C5

{
1

(R0 − 
0)
2

}( 2∗�
2�−2

)i

×
{∫

B
0

V
�−�
�−1 dx

} 2∗(�−1)

2�−2∗
. (4.32)

Since �−�
�−1 < 1 we can apply Lemma (3.3) with � = �−1

�−� and we obtain

∫
B


V � dx �
{∫

B
i

V � dx

}( 2∗
2�

)i

C5

{
1

(R0 − 
0)
2

} 2∗�
2�−2∗

×
{∫

B
0

[1 + g(|Du|)] dx

} 2∗(�−1)

2�−2∗
.

In the limit as i → +∞ we get

∫
B
0

V � dx�C6

{
1

(R0 − 
0)
2

} 2∗�
2�−2∗

{∫
BR0

[1 + g(|Du|)] dx

} 2∗(�−1)

2�−2∗
.

Finally

∫
B
0

V dx � meas
{
B
0

}1− 1
�

{∫
B
0

V � dx

} 1
�

� C7

{
1

(R0 − 
0)
2

} 2∗�
(2�−2∗)�

{∫
BR0

[1 + g(|Du|)] dx

} 2∗(�−1)

(2�−2∗)�

. (4.33)
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As � → (1 − �) 2∗
2 and � → +∞ the two exponents in (4.33) converge to 1

1−� and we
have the result. �

By combining together Lemmas 3.1, 4.1 and 4.2 we proved the following theorem.

Theorem 4.1. Let g be as in (3.1). Suppose that g satisfies (4.2) and (3.5). Let u ∈
W

1,1
loc (�; Rm) be a minimizer of integral (4.1). Then u ∈ W

1,∞
loc (�; Rm) and for every

	 > 0 and for every 
, R (0 < 
 < R), there exists a constant C = C(n, 	, 
, R) such
that

‖Du‖2−�n

L∞(B
;Rm×n)
�C

{∫
BR

(1 + g(|Du|)) dx

} 1
1−� +	

,

the constant C depends also on H, K, sup0� t � t0
g

′′
(t), but does not depend on the

constants N and M in (4.2).

5. The approximating regular problems

Let us consider a function g with the properties described in (3.1). Now we consider
the function g′(t)

t
. It is possible to have one and only one of the following three cases:

(i) There exists a sequence {tn}, limn→+∞ tn = +∞ such that g′(tn)
tn

= 1.

(ii) There exists T such that for all t �T it follows that g′(t)
t

> 1.

(iii) There exists T such that for all t �T it follows that g′(t)
t

< 1.

Let t̄ = inf{t > 0 : g′(t)
t

> 0}; up to a rescaling we can assume that 0� t̄ < 1� t0.
We consider a sequence 	n, limn→+∞ 	n = 0, in the following way. In case (i) we put
	n = 1

tn
, in case (ii) or (iii) we consider any sequence 	n → 0, with 1

	n
�T . It is obvious

that we can choose n sufficiently large such that t̄ + 	n < 1 and 1
	n

� max{T , t̄ + 	n}.
Now we define the function

g′
	n(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g′(t̄ + 	n)

t̄ + 	n
t, 0� t � t̄ + 	n,

g′(t), t̄ + 	n < t � 1

	n
,

min
{
	ng′

(
1
	n

)
t, g′(t) + 	nt − 1

}
, t >

1

	n
.

(5.1)

Then obviously we can define

g	n(t) =
∫ t

0
g′
	n(s) ds. (5.2)
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The function g	n(t) results to be a convex function of class C1([0, +∞)), satisfying
(3.1) and (4.2) with suitable constants N(	n) and M(	n).

Lemma 5.1. Let g be as in (3.1) satisfying the left-hand side of (3.5). Let g	n(t) be
defined in (5.2). Then there exists a constant H1 > 0 such that we have

H1t
−2�

⎡
⎣(g′

	n(t)

t

) 2
2∗

+ g′
	n(t)

t

⎤
⎦ �g

′′
	n(t), ∀t � t0. (5.3)

Proof. Let t̄ + 	n < 1� t0 and t � t0.
(1) If t̄ + 	n < t � 1

	n
, then (5.3) holds because g′

	n(t) = g′(t) and g
′′
	n(t) = g

′′
(t).

(2) Let t > 1
	n

.

(2a) If g′
	n(t) = 	ng′

(
1
	n

)
t , then g

′′
	n(t) = 	ng′

(
1
	n

)
and we have

t−2�
(

	ng
′
(

1

	n

)) 2
2∗

+ t−2�	ng
′
(

1

	n

)
� 	n

2�+ 2
2∗

⎡
⎣g′

(
1
	n

)
g′(t0)

⎤
⎦

2
2∗

(g′(t0))
2

2∗

+	ng
′
(

1

	n

)
.

Since 2� + 2
2∗ > 1 and 	n �1 we have 	n

2�+ 2
2∗ �	n; moreover, from the monotonicity

of function g′(t) we get
g′( 1

	n
)

g′(t0) �1. As a consequence we can write

t−2�

⎡
⎣(g′

	n(t)

t

) 2
2∗

+ g′
	n(t)

t

⎤
⎦ �

(
(g′(t0))

2
2∗ −1 + 1

)
	ng

′
(

1

	n

)

=
(
(g′(t0))

2
2∗ −1 + 1

)
g

′′
	n(t),

i.e. (5.3) holds with H1 �
(
(g′(t0))

2
2∗ −1 + 1

)−1
.

(2b) Let g′
	n(t) = g′(t) + 	nt − 1. Then

g′(t)
t

� g′(t)
t

+ 	n − 1

t
= g′

	n(t)

t
�	ng

′
(

1

	n

)
.
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If we are in case (i) or (iii), then we have as a consequence g′(t)
t

�1. Hence by the
left-hand side of (3.5) we can write

t−2�

⎡
⎣(g′

	n(t)

t

) 2
2∗

+ g′
	n(t)

t

⎤
⎦ � 2t−2�

(
g′
	n(t)

t

) 2
2∗

= 2t−2�
(

g′(t)
t

+ 	n − 1

t

) 2
2∗

� 2t−2�
(

g′(t)
t

) 2
2∗

+ 2t−2�	
2

2∗
n

� 2

H
g

′′
(t) + 2	

2
2∗ +2�
n . (5.4)

Since the exponent 2
2∗ + 2� > 1 and 	n < 1, then

2

H
g

′′
(t) + 2	

2
2∗ +2�
n <

2

H
g

′′
(t) + 2	n <

(
2 + 2

H

)
(g

′′
(t) + 	n)

=
(

2 + 2

H

)
g

′′
	n(t). (5.5)

By (5.4) and (5.5) we have the estimate in (5.3) with H1 �
(

2 + 2
H

)−1
.

If we are in case (ii) then g′(t)
t

> 1 and again by the left-hand side of (3.5) we
obtain

t−2�

⎡
⎣(g′

	n(t)

t

) 2
2∗

+ g′
	n(t)

t

⎤
⎦ � 2t−2� g′

	n(t)

t
= 2t−2�

(
g′
	n(t)

t
+ 	n − 1

t

)

� 2

(
t−2� g′(t)

t
+ 	n

)
�
(

2 + 2

H

)
(g

′′
(t) + 	n).

This last inequality completes the proof. �

Lemma 5.2. Let g be as in (3.1) satisfying the right-hand side of (3.5). Let g	n(t) be
defined in (5.2). Then there exists a constant K1 > 0 such that for any � > 1 we have

g
′′
	n(t)�K1

[
g′
	n(t)

t
+
(

g′
	n(t)

t

)�]
, ∀t � t0. (5.6)

Proof. Let t̄ + 	n < 1� t0 and t � t0.

(1) If t̄ + 	n < t � 1
	n

, then (5.6) holds because g′
	n(t) = g′(t) and g

′′
	n(t) = g

′′
(t).

(2) Let t > 1
	n

.
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(2a) If g′
	n(t) = 	ng′

(
1
	n

)
t , then g

′′
	n(t) = 	ng′

(
1
	n

)
and (5.6) is obviously satisfied.

(2b) Let g′
	n(t) = g′(t) + 	nt − 1. Then g

′′
	n(t) = g

′′
(t) + 	n and

g′(t)
t

� g′(t)
t

+ 	n − 1

t
�	ng

′
(

1

	n

)
.

If we are in case (i) or (iii), then we have as a consequence g′(t)
t

�1. By the right-hand
side of (3.5) we can write

g
′′
	n(t) = g

′′
(t) + 	n �2K

g′(t)
t

+ 	n �2K

(
g′(t)

t
+ 	n

)
. (5.7)

Since g′(t) is an increasing function, we have

g
′′
	n(t) � 2K

(
g′(t)

t
+ 	n +

(
1 + g′(t0)

g′(t0)

)
g′(t)

t
− 1

t

)

� 4K

(
1 + g′(t0)

g′(t0)

)(
g′(t)

t
+ 	n − 1

t

)
= 4K

(
1 + g′(t0)

g′(t0)

)
g′
	n(t)

t
(5.8)

i.e. (5.6) with K1 �4K
(

1+g′(t0)
g′(t0)

)
.

If case (ii) is realized, then g′(t)
t

> 1 and we can write

(
g′
	n(t)

t

)�

=
(

g′(t)
t

+ 	n − 1

t

)�

� 1

2�

(
g′(t)

t
+ 	n

)�

= 1

2�

(
g′(t)

t

)�
(

1 + 	n
g′(t)

t

)�

.

Since

(
1 + 	n

g′(t)
t

)�

�1 + �
	n

g′(t)
t

we can write

(
g′
	n(t)

t

)�

� 1

2�

[(
g′(t)

t

)�

+ 	n

]
� 1

2�+1K

(
g

′′
(t) + 	n

)
= 1

2�K
g

′′
	n(t), (5.9)

i.e. (5.6) with K1 �K2�+1. Combining (5.8) and (5.9) we obtain the result. �
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Lemma 5.3. Let g be as in (3.1). Let g	n(t) be defined in (5.2). Then there exists a
constant C such that

g	n(t)�C (1 + g(t)) + 	nt
2, ∀t �0. (5.10)

Proof. Let t̄ + 	n < 1 and 0� t � t̄ + 	n. We have

g	n(t) = g′(t̄ + 	n)

t̄ + 	n

t2

2
� 1

2

g′(1)

t̄
. (5.11)

If t̄ + 	n < t � 1
	n

, we have

g	n(t) = g(t) − g(t̄ + 	n) + g′(t̄ + 	n)(t̄ + 	n)

2
�g(t) + 1

2
g′(1). (5.12)

If t > 1
	n

, we have g′
	n(t)�g′(t) + 	nt from which

g	n(t) � g(t0) +
∫ t

t0

(
g′(s) + 	ns

)
ds

� g(t0) +
∫ t

0

(
g′(s) + 	ns

)
ds = g(t0) + g(t) + 	nt2

2
. (5.13)

By (5.11), (5.12) and (5.13) we obtain the result with the constant

C� max

{
1

2
g′(1), g(t0),

1

2

g′(1)

t̄

}
. �

6. Passage to the limit

Let us consider for every 	n (	n is the sequence defined in the previous Section 5)
the sequence of integral functionals

F	n(v) =
∫
�

g	n (|Dv|) dx, (6.1)

where g	n(t) is defined through its derivative g′
	n(t) by (5.1) and (5.2). Let u ∈

W
1,1
loc (�; Rm) be a local minimizer of integral (4.1), i.e. g(|Du|) ∈ L1

loc(�) and
F(u)�F(u + �) for every � ∈ C1

0(�; Rm). Let BR be a ball of radius R such that
B2R ⊂⊂ � and let 0 < � < min{1, R}. We indicate by u� a sequence of smooth func-
tions defined from u by means of standard mollifiers. Then u� ∈ W 1,2(BR; Rm). Let
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u	n,� be a minimizer of the integral F	n(v) in (6.1) that satisfies the Dirichlet condition
u	n,� = u� on the boundary �BR , i.e., since F	n has a quadratic growth,

∫
BR

g	n
(|Du	n,�|) dx�

∫
BR

g	n (|Dv|) dx, ∀v ∈ W
1,2
0 (BR; Rm) + u�. (6.2)

By results of previous Section 5, for every 	n, g	n satisfies conditions (3.1), (4.2) (with
suitable constants N(	n) and M(	n)) and (3.5) with constants H and K not depending
on 	n. Therefore we can apply to g	n the a priori estimate obtained in Theorem 4.1
obtaining that for every 	n and for every ball B
 of radius 
 < R there exists a constant
C1 (independent on N, M, 	n, �) such that, for some constants �, 1

n
< � < 2

n
, we have

‖Du	n,�‖2−�n

L∞(B
;Rm×n)
�C1

{∫
BR

(
1 + g	n

(|Du	n,�|)) dx

} 1
1−� +	

. (6.3)

By the minimality of u	n,� we can write that

∫
BR

g	n
(|Du	n,�|) dx�

∫
BR

g	n (|Du�|) dx, (6.4)

and by (5.10) and the properties of mollifiers we obtain

∫
BR

g	n (|Du�|) dx � C2

{∫
BR

(1 + g (|Du�|)) dx + 	n

∫
BR

|Du�|2 dx

}

� C2

{∫
BR+�

(1 + g(|Du|)) dx + 	n

∫
BR

|Du�|2 dx

}

� C3(�). (6.5)

From this chain of inequalities and (6.3) we obtain as a consequence

‖Du	n,�‖2−�n

L∞(B
;Rm×n)
� C4

{∫
BR+�

(1 + g (|Du|)) dx + 	n

∫
BR

|Du�|2 dx

} 1
1−� +	

� C5(�). (6.6)

Then for every fixed �, |Du	n,�| is equibounded with respect to 	n. Hence, up to a
subsequence, u	n,� converges in the weak∗ topology of W 1,∞(B
; Rm×n) to a function
w� for some w�. Going to the limit for 	n → 0 in (6.6) we obtain

‖Dw�‖2−�n

L∞(B
,Rm×n)
�C4

{∫
BR+�

(1 + g (|Du|)) dx

} 1
1−� +	

. (6.7)
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Hence, we also have that |Dw�| is equibounded in L∞(B
, Rm×n) and it is still possible
to take a subsequence which converges in the weak∗ topology of L∞(B
, Rm×n) to a
function Dw for some w.

We will prove that w = u. Let us consider 	n sufficiently small in dependence on �;

more precisely, fixed �, we consider 	n �	n(�), with 	n(�) such that 1
	n(�)

> [C5(�)]
1

2−�n

where C5(�) is the constant obtained in estimate (6.6). Then we have by (6.6) that
|Du	n,�| < 1

	n
. By the definition of g	n(t) we can calculate

g	n(t) =
{

g′(t̄+	n)

t̄+	n
t2

2 if 0� t � t̄ + 	n,

g(t) − g(t̄ + 	n) + g′(t̄+	n)(t̄+	n)
2 if t̄ + 	n < t � 1

	n
,

(6.8)

and hence we can write that

g(t)�g(t̄ + 	n) + g	n(t) , t̄ + 	n � t � 1

	n
. (6.9)

By lower semicontinuity and (6.9) we obtain

∫
B


g (|Dw�|) dx � lim inf
	n→0

∫
BR

g
(|Du	n,�|) dx

� lim inf
	n→0

∫
BR

g	n
(|Du	n,�|) dx.

From (6.4) and (5.10) we can deduce that g	n
(|Du	n,�|) is bounded with respect to 	n

and then we can apply in (6.4) the dominant convergence theorem obtaining

lim inf
	n→0

∫
BR

g	n
(|Du	n,�|) dx�

∫
BR

g (|Du�|) dx�
∫

BR+�

g (|Du|) dx.

By resuming we have, for every 
 < R,

∫
B


g (|Dw�|) dx�
∫

BR+�

g (|Du|) dx. (6.10)

Again by lower semicontinuity and by (6.10) we have

∫
BR

g (|Dw|) dx� lim inf
�→0

∫
BR

g (|Dw�|) dx�
∫

BR

g (|Du|) dx.

Now, our assumptions on g do not guarantee uniqueness of the minimizer for the
Dirichlet problem. However g(|�|) is locally strictly convex for |�| > 1, then we can
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conclude as in [19] that w = u. Going to the limit for � → 0 in (6.7) we get

‖Dw‖2−�n

L∞(B
;Rm×n)
�C4

{∫
BR

(1 + g(|Du|)) dx

} 1
1−� +	

. (6.11)

Hence estimate (6.11) holds also for Du. Therefore we completed the proof of Theorem
A.

Theorem B follows by Theorem A with some simplifications; below we give an
outline of its proof.

Outline of the proof of Theorem B. We first observe that assumption (2.12) implies
that limt→+∞ g′(t) = l ∈ (0, +∞) and hence there exist t0 such that g′(t)

t
< 1 for

every t � t0. Thus, condition (2.13) can be rewritten as

H

(
g′(t)

t

) 2
2∗

t−2� �g
′′
(t)�K

g′(t)
t

, ∀t � t0,

where � = �
2 − 1

2∗ . Since the case � = 1, corresponding to the assumption H 1
t
�g

′′
(t)

�K 1
t
, is easier to be treated, we limit ourselves to consider here � > 1; in this case

we have � = �
2 − 1

2∗ > 1
n

and we are in the conditions of Theorem A. Moreover, the
function g′(t) has the �2-property. This make immediate Lemma 4.2 and that is why
in the right-hand side of final estimate (2.14) there does not appear the exponent �
(see also Remarks 1.2 and 5.1 in [19]).
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