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Abstract

In English: a characterization of the total variation TV (u,Ω) of the Jacobian determinant
detDu is obtained for some classes of functions u : Ω → Rn outside the traditional regularity space
W 1,n(Ω; Rn). In particular, explicit formulas are deduced for functions that are locally Lipschitz
continuous away from a given one point singularity x0 ∈ Ω. Relations between TV (u,Ω) and the
distributional determinant DetDu are established, and an integral representation is obtained for the
relaxed energy of certain polyconvex functionals at maps u ∈W 1,p(Ω; Rn) ∩W 1,∞(Ω \ {x0}; Rn).

In Italian: si ottiene una caratterizzazione della variazione totale TV (u,Ω) del determinante
Jacobiano detDu per alcune classi di applicazioni u : Ω → Rn che non fanno parte della tradizionale
classe di Sobolev W 1,n(Ω; Rn). In particolare, si forniscono formule esplicite per applicazioni
localmente Lipschitziane al di fuori di un punto isolato x0 ∈ Ω. Si stabiliscono anche alcune
relazioni fra TV (u,Ω) e il determinante distribuzionale DetDu. Inoltre si fornisce una rappre-
sentazione integrale per l’energia rilassata di certi integrali policonvessi relativi ad applicazioni
u ∈W 1,p(Ω; Rn) ∩W 1,∞(Ω \ {x0}; Rn).
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1 Introduction

In this paper we address the study of the Jacobian determinant detDu of fields u : Ω → Rn outside
the traditional regularity space W 1,n (Ω; Rn). This issue surfaces regularly in a wide range of contem-
porary research in solid physics and in materials sciences. Indeed, applications of high-temperature
superconducting magnetic materials have had a tremendous impact in the development of a whole
mathematical theory based on Ginzburg-Landau model, and where vorticity plays a very important
role (see [7], [16]). As pointed out by Jerrard and Soner in [43], the formation of vortices is ac-
companied by highly localized defectiveness at points or along rays, and the ability to extend and
interpret the mechanism of change of volume dictated by the Jacobian to the range p ∈ (n − 1, n)
may shed some light into this theory. Also, the formation of (radially symmetric) holes in rubber-like
(nonlinear) elastic materials is studied in the theory of cavitation, and its advance is heavily hinged
on the characterization of the distributional Jacobian determinant (see (1); see also (31) below) for
certain ranges of p < n. This problem has attracted the attention of several mathematical researchers
for the past twenty years, and although some progress has been made, pioneered by Ball [4], [5],
and followed by James and Spector [42], Müller and Spector [56], Sivaloganathan [60], Marcellini [49]
(the latter using an alternative, and closer to the point of view of the present paper, approach), and
many others, we believe that we have only scratched the surface of a very rich field in the Calculus
of Variations virtually unexplored until recently. In addition, the theoretical challenges presented by
the understanding of the behavior of weak notions of the Jacobian determinant are relevant to the
study of harmonic mappings with singularities (see [10]), and in the study of density results of smooth
functions in H1(B(0, 1);S2), where B(0, 1) ⊂ R3. Bethuel [6] showed that this density result holds for
u ∈ H1(B(0, 1);S2) if detDu = 0.

To fix the notation, we consider a vector-valued map u : Ω ⊂ Rn → Rn, defined on an open set Ω
of Rn, for some n ≥ 2. We denote by Du = Du (x) the gradient of u at x ≡ (x1, x2, . . . , xn) ∈ Ω, i.e.,
the n× n matrix (Jacobian matrix ) of the partial derivatives of u ≡

(
u1, u2, . . . , un

)
and by

detDu (x) :=
∂
(
u1, u2, . . . , un

)
∂ (x1, x2, . . . , xn)

its determinant (Jacobian determinant).
If u ∈ W 1,n (Ω; Rn), since |detDu (x)| ≤ n−n/2 |Du (x)|n, then the Jacobian determinant detDu

is a function of class L1 (Ω; Rn). In this case the set function

E ⊂ Ω −→ m (E) :=
∫

E
detDu (x) dx

is a measure in Ω, whose total variation |m| in Ω is given by

|m| (Ω) :=
∫

Ω
|detDu (x)| dx .
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When u /∈W 1,n (Ω; Rn) it may still be possible to consider the distributional Jacobian determinant

DetDu :=
n∑

i=1

(−1)i+1 ∂

∂xi

(
u1 ∂

(
u2, . . . , un

)
∂ (x1, . . . , xi−1, xi+1, . . . , xn)

)
(1)

(or any other permutation in the set
{
u1, u2, . . . , un

}
, with the sign of the permutation), which co-

incides almost everywhere with the pointwise Jacobian determinant detDu if u ∈ W 1,n (Ω; Rn), but
which may be different otherwise. The definition of the distributional Jacobian determinant DetDu
is based on integration by parts of the formal expression in (1), after multiplication by a test function.
To render the definition mathematically precise it is then necessary to make some assumptions on u.
We may assume that u1 (or, for symmetry reasons, also the full vector u) is bounded and the gradient
Du is of class Ln−1 (or, more generally, the (n− 1)× n matrix

(
Du2, . . . , Dun

)
is of class Ln−1), i.e.,

u ∈ L∞ (Ω; Rn) ∩W 1,n−1 (Ω; Rn). Another possibility is to require that u ∈ W 1,p (Ω; Rn) for some
p > n2/ (n+ 1) (the strict inequality is useful for compactness reasons); in fact, in this case by the
Sobolev Imbedding Theorem u ∈ Ln2

(Ω; Rn) and the products in (1) are well defined in L1 because
1/n2 + (n− 1) · (n+ 1) /n2 = 1. Local summability assumptions are also allowed. In this paper we
assume that u ∈ L∞loc (Ω; Rn)∩W 1,p (Ω; Rn) for some p > n− 1. An extensive study of DetDu defined
in (1) was carried out by Morrey [51], (see also Reshetnyak [59]). Later Ball pointed out in [4] some
relevant applications of the Jacobian determinant to nonlinear elasticity, and sharp weak continuity
properties of the Jacobian has been investigated in a series of papers by Müller, starting with [52].
More detailed description of the state of the art in this subject may be found in Section 4.

Several attempts have been made to establish relations between the distribution DetDu and the
“total variation” of the Jacobian determinant detDu (x). One possible definition is based on the
following limit formula. Given u ∈ L∞loc (Ω; Rn) ∩W 1,p (Ω; Rn) for some p > n− 1, the total variation
TV (u,Ω) of the Jacobian determinant is defined by

TV (u,Ω) = inf
{

lim inf
h→+∞

∫
Ω
|detDuh (x)| dx : (2)

uh ⇀ u weakly in W 1,p (Ω; Rn) , uh ∈W 1,n (Ω; Rn)
}
.

Although, a priori, definition (2) may depend on p, as it turns out that is not the case, and, moreover,
surprisingly it can be shown that, for certain classes of functions u, weak convergence in W 1,p (Ω; Rn)
may be equivalently replaced by strong convergence (see (22)). Similar definitions may be proposed
under other summability assumptions on u.

There is an extensive literature addressing the “relaxed” definition of the Jacobian determinant
via (2). We refer, in particular, to the work by Marcellini [48], Giaquinta, Modica and Souček [37],
[38], Fonseca and Marcellini [29], Bouchitté, Fonseca and Malý [9]. Marcellini [48] and Fonseca and
Marcellini [29] showed that the total variation of the Jacobian determinant may have a nonzero
singular part, and Bouchitté, Fonseca and Malý [9] proved that this singular part is a measure. Also,
Giaquinta, Modica and Souček [37], [38], showed that the lower limit in (2) may be different from the
total variation of the measure DetDu. On the same vein, Malý [44] and Giaquinta, Modica and Souček
[37] (see also Jerrard and Soner [43]) proved that, for some maps u ∈ L∞ (Ω; Rn) ∩W 1,p (Ω; Rn) with
p ∈ (n− 1, n), it may happen that the distribution DetDu is identically equal to zero while the total
variation of the Jacobian determinant is different from zero. When DetDu is a measure, it turns out
that, in general, the total variation of the Jacobian determinant detDu (x) is not the total variation
of the measure DetDu. Some precise (from a quantitative point of view) examples illustrating this
phenomenon are proposed in Section 10. More comments and references are given in Section 4.

In Section 9 we compute the total variation of a class of singular maps u : Ω → Sn−1 ⊂ Rn, playing
a central role in the analysis of Jerrard and Soner [43], defined by

u (x) :=
w (x)− w (0)
|w (x)− w (0)|

, (3)
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where w : Ω → Rn is a locally Lipschitz-continuous map, classically differentiable at x = 0 and such
that detDw (0) 6= 0. We find that the total variation of the Jacobian determinant of u in Ω (an open
set of Rn containing the origin) is equal to the measure ωn of the unit ball.

The aim of this paper is to give an explicit characterization of the total variation TV (u,Ω) of
the Jacobian determinant detDu (x), defined in (2), for some classes of functions u ∈ L∞loc (Ω; Rn) ∩
W 1,p (Ω; Rn) with p > n− 1, in particular for those u locally Lipschitz-continuous away from a given
point x0 ∈ Ω (and thus with the Jacobian determinant detDu possibly singular only at x0).

Statements of the main results are given in the following Section 2. In Section 3 we relate the
notion of total variation of the Jacobian determinant to the topological degree. A relevant geometrical
interpretation is given by Corollary 15 of Section 3. In particular, denoting by B1 the unit ball of
Rn and by Sn−1 := ∂B1 its boundary, we prove that, if v : Sn−1 → Sn−1 is a map of class C1 onto
Sn−1, locally invertible with local inverse of class C1 at any point of Sn−1, and if u : B1\ {0} → Sn−1

is defined by u (x) := v
(

x
|x|

)
, then the total variation TV (u,B1) of the Jacobian determinant of u

may be expressed in terms of the topological degree of the maps v and ṽ, where ṽ : B1 → B1 is any
Lipschitz-continuous extension of v to the unit ball B1. Precisely,

TV (u,B1) = ωn |deg v| = ωn |deg ṽ| . (4)

Note that formula (4) does not hold, in general, if the map v : Sn−1 → Rn takes values on a set
v
(
Sn−1

)
not diffeomorphic to Sn−1 (see Theorem 4 and the examples of Section 10). A generalization

of this resuly holds if we assume that u is in W 1,p
(
Ω; RN

)
for some p ∈ (1, N) and is locally Lypschitz

outside a finite number of points ai ∈ Ω, i = 1, . . . , k, provided that u satisfies in a neighborhood of
each ai the hypotheses of Theorem 1 for suitable functions vi. In this case the total variation of the
Jacobian of u is given by

TV (u,Ω) =
∫

Ω
|detDu(x)| dx+

k∑
i=1

π|deg vi| .

For possible extensions of this formula to more general spaces we refer to [12], [13].
Section 4 is dedicated to explaining how the study of the total variation TV (u,Ω) fits squarely

within the framework of relaxation problems with nonstandard growth conditions. In Section 5 we
present a thorough study of the 2−d case, which plays a very special role. In fact, in two dimensions
we are able to perform a deeper analysis and to find more general assumptions which allow us to
characterize fully the total variation TV (u,Ω). In particular, it is possible to identify TV (u,Ω) of
maps u : B1 ⊂ R2 → Γ, with values on a set Γ which is the boundary of a simply connected domain
D ⊂ R2, starshaped with respect to a point ξ in the interior of D (for example, when Γ = S1 is the
boundary of the unit ball B1). We emphasize Lemma 22, which we call “the umbrella lemma”, and
which plays a crucial role in our argument, as explained in Section 5. For the sake of completeness,
we include the statement, without proof, of some 2-dimensional results that have been presented in
[24].

In Section 8 we move on to the general n−dimensional framework, and in Section 8 we apply
the results thus obtained to the study of relaxation of polyconvex functionals. Indeed, we provide an
explicit representation formula for the related energy associated to the polyconvex integral functional

F (u,Ω) :=
∫

Ω
g (M (Du)) dx ,

where g : RN → [0,+∞) is a convex function, M (Du) is the map with values in RN , N =
∑n

j=1

(
n
j

)2,
defined by

M (Du) :=
(
Du, adj2Du, . . . , adjn−1Du,detDu

)
,
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and where adjjDu denotes, for every j = 2, . . . , n− 1, the matrix of all minors j × j of Du.
Finally, in Section 9 we study in detail TV (u,Ω) when u is as in (3). Additional 2−dimensional and

3−dimensional examples are proposed in Section 10. The special, but representative, case analyzed in
Section 6 concerns maps u : B1 ⊂ R2 → γ = γ+∪γ−, were γ is the “eight” curve, i.e., the union of the
two tangent circles γ± =

{
(x1, x2) ∈ R2 : (x1 ∓ 1)2 + (x2)2 = 1

}
in R2. In particular, we show (see

Theorem 4 and Section 10) that in general formula (4), which relates the total variation TV (u,Ω)
of the Jacobian determinant with the topological degree, does not hold if the map u : B1 ⊂ R2 → γ
takes values on the “eight” curve γ.

2 Statement of the main results

In this section we state several representation formulas for the total variation TV (u,Ω) of the Jacobian
determinant, defined in (2). We consider first the 2−d case in detail, where the assumptions needed
are more general than in the case n ≥ 2, and in the second part of this section we describe the general
n−dimensional case.

In order to fix the notation, here we consider x0 = 0 and Ω ⊂ R2 is an open set containing the
origin. With an obvious abuse of notation, we write u (x) = u (x1, x2) = u (%, ϑ), where (ρ, ϑ), % ≥ 0,
0 ≤ ϑ ≤ 2π, are the polar coordinates in R2. We also denote by Dτu the tangential derivative of u (in
the τ = (− sinϑ, cosϑ) direction), which is related to the (vector-valued) derivative uϑ by the formula

uϑ =:
∂u (% cosϑ, % sinϑ)

∂ϑ
= % [−ux1 sinϑ+ ux2 cosϑ] = %Dτu .

We denote by v : [0, 2π] → Γ ⊂ R2 a Lipschitz-continuous map, with v (0) = v (2π), with compo-
nents v (ϑ) =

(
v1 (ϑ) , v2 (ϑ)

)
, and with values on a curve Γ ⊇ v ([0, 2π]). We assume that Γ can be

parametrized in the following way

Γ = {ξ + r (ϑ) (cosϑ, sinϑ) : ϑ ∈ [0, 2π]} , (5)

where r (ϑ) is a piecewise C1-function such that r (0) = r (2π), and r (ϑ) ≥ r0 for every ϑ ∈ [0, 2π]
and for some r0 > 0. Condition (5) reduces to saying that Γ is the boundary of a domain

D := {ξ + % (cosϑ, sinϑ) : ϑ ∈ [0, 2π] , 0 ≤ % ≤ r (ϑ)} , (6)

starshaped with respect to a point ξ in the interior of D. The following theorem was proved in [24].

Theorem 1 (General result in 2−d) Let u be a function of class W 1,p
(
Ω; R2

)
∩W 1,∞

loc

(
Ω\ {0} ; R2

)
for some p ∈ (1, 2). Let v : [0, 2π] → Γ, v (ϑ) =

(
v1 (ϑ) , v2 (ϑ)

)
, ϑ ∈ [0, 2π], be a Lipschitz-continuous

map, with v (0) = v (2π) and Γ as in (5), and such that

lim
%→0

‖u (%, ·)− v (·)‖L∞((0,2π);R2) = 0 . (7)

If the tangential derivative Dτu of u satisfies the bound

sup
%>0

1
%2−p

∫
B%

|Dτu|p dx = sup
%>0

1
%2−p

∫ %

0
r1−p dr

∫ 2π

0
|uϑ (r, ϑ)|p dϑ ≤M0

for a positive constant M0, then the total variation of u is given by

TV (u,Ω) =
∫

Ω
|detDu (x)| dx+

1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ .
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Note that, by (7), there exists r > 0 such that Br ⊂ Ω and u ∈ L∞
(
Br; R2

)
. Therefore in the

statement of Theorem 1 we have in fact u ∈ L∞loc

(
Ω; R2

)
∩W 1,p

(
Ω; R2

)
∩W 1,∞

loc

(
Ω\ {0} ; R2

)
for some

p ∈ (1, 2). Moreover, the assumption of Lipschitz-continuity of v may be replaced by the weaker
assumption that v ∈W 1,p

(
(0, 2π) ; R2

)
.

Consider the particular case in which the map u = u (%, ϑ) does not depend on %, that is u = u (ϑ).
Then, as a function of ϑ, u = u (ϑ) : [0, 2π] → R2 is a Lipschitz-continuous map and u (0) = u (2π).
Looked upon as a function of two variables, i.e., u : Ω = B1 → R2 constant with respect to % ∈ (0, 1],
it turns out that u ∈ L∞

(
Ω; R2

)
∩W 1,p

(
Ω; R2

)
∩W 1,∞

loc

(
Ω\ {0} ; R2

)
for every p ∈ [1, 2), but u /∈

W 1,2
(
Ω; R2

)
unless u (ϑ) is constant.

From the previous result, with u = v, we immediately obtain the following consequence (see [24]).

Corollary 2 (Radially independent maps in 2−d) Let Γ be as in (5), and let u = v : [0, 2π] → Γ
be a Lipschitz-continuous map such that v (0) = v (2π). Then detDu (x) = 0 for almost every x ∈ R2

and the total variation of the Jacobian determinant is given by

TV (u,Ω) =
1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ . (8)

We observe that formula (8) has a relevant geometrical meaning because the right hand side
represents the “winding number” of the curve v =

(
v1, v2

)
. See Section 3 for a further discussion on

the geometric interpretation of (8).
With the aim to compare the previous result with the n−dimensional results given below, in

Section 5 we present the following equivalent formulation of Corollary 2.

Corollary 3 (Analytic interpretation in 2−d) Let Γ be as in (5), and let v : [0, 2π] → Γ be a
Lipschitz-continuous map such that v (0) = v (2π). Then the total variation TV (u,Ω) is given by

TV (u,Ω) =
∣∣∣∣∫

B1

detDũ (x) dx
∣∣∣∣ , (9)

where ũ : B1 → R2 is any Lipschitz-continuous extension of v to B1.

Note the surprising fact that the integral in the right hand side of (9) (and in (8) as well) appears
with the absolute value outside the integral sign, and not inside!

Another relevant 2−dimensional result is related to the “eight” curve in R2, i.e., to the union γ
of the two circles γ+, γ−, of radius 1 with centers at (1, 0) and at (−1, 0) respectively. Some explicit
examples related to the “eight” curve are given in Section 10. Below we present two estimates, proven
in [24], an upper bound and a lower bound, which will allow us to study these examples.

Theorem 4 (The “eight” curve) Let γ = γ+ ∪ γ− ⊂ R2 be the union of the two circles of radius
1 with centers at (1, 0) and at (−1, 0). Let v : [0, 2π] → γ be a Lipschitz-continuous curve, with
parametric representation v (ϑ) =

(
v1 (ϑ) , v2 (ϑ)

)
, ϑ ∈ [0, 2π], such that v (0) = v (2π). Let (Ij)j∈N be

a sequence of disjoint open intervals (possibly empty) of [0, 2π] such that the image v (Ij) is contained
either in γ+ or in γ−, and v (ϑ) = (0, 0) when ϑ /∈ ∪j∈NIj. Then, with u (x) := v (x/ |x|), the following
upper estimate holds

TV (u,B1) ≤ 1
2

∑
j∈N

∣∣∣∣∣
∫

Ij

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣∣ .
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For the lower estimate, we denote by I+
j , with the + sign, any previous interval Ij such that v (Ij) ⊂ γ+,

and by I−k any previous interval Ik such that v (Ik) ⊂ γ−. Then we also have

TV (u,B1) ≥ 1
2


∣∣∣∣∣∣
∑
j∈N

∫
I+
j

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣∣+

∣∣∣∣∣∑
k∈N

∫
I−k

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣
 .

Moving on to the n−dimensional case, we first establish in Theorem 5 a general inequality between
the total variation of the distributional determinant DetDu (see (1)), that we denote by |DetDu|(Ω),
and the total variation TV (u,Ω) if the Jacobian, defined in (2). Note that in the first half of the
statement of the next theorem we do not assume that u ∈ W 1,∞

loc (Ω\ {0} ; Rn), while in the second
half we require that u ∈W 1,n

loc (Ω\ {0} ; Rn).

Theorem 5 (Comparison between |DetDu|(Ω) and TV (u,Ω)) Let p > n − 1 and assume that
u ∈ L∞ (Ω; Rn) ∩ W 1,p (Ω; Rn). If TV (u,Ω) < +∞, then TV (u, ·) and DetDu are finite Radon
measures, detDu ∈ L1 (Ω), and

TV (u,A) =
∫

A
|detDu (x)| dx+ λs (A) , (10)

DetDu (A) =
∫

A
detDu (x) dx+ µs (A) , (11)

for every open set A ⊂ Ω, where λs, µs, are finite Radon measures, singular with respect to the
Lebesgue measure Ln, and |µs| ≤ λs, i.e., for every open set A ⊂ Ω,

|DetDu| (A) ≤ TV (u,A) . (12)

If, in addition, u ∈ W 1,n
loc (Ω\ {0} ; Rn), then λs = λδ0, µs = µδ0, for some constants λ ≥ 0, µ ∈ R,

with |µ| ≤ λ, where δ0 is the Dirac mass at the origin.

Examples given in Section 10 show that in general the equality between |DetDu| (A) and TV (u,A)
should not be expected. In particular, this equality fails for maps valued on the “eight” curve. The
proof of Theorem 5 is presented at the end of Section 4. We note that one of the main contributions
of this paper is the identification of the defect constants λ ≥ 0, µ ∈ R.

Let us denote by Br the ball in Rn, n ≥ 2, with center in 0 and radius r > 0. In particular, B1 is
the ball of radius r = 1 and ∂B1 = Sn−1 is its boundary.

We call the attention of the reader to the fact that, in dealing with the general n−dimensional
case, we denote by v a map from Sn−1 into Rn, while in 2−d v = v (ϑ) does not denote a map from
S1 into R2, but instead a periodic function from [0, 2π] into R2. Therefore, if v is the corresponding
map from S1 into R2, then we have v (ϑ) = v (cosϑ, sinϑ).

Let ω0 ∈ Sn−1 be fixed. For every j ∈ {1, 2, . . . , n− 1} let τj : Sn−1\ {ω0} → ∂B1 by a vector field
of class C1 such that, for every x ∈ Sn−1\ {ω0}, the set of vectors {τ1 (ω) , τ2 (ω) , . . . , τn−1 (ω)} is an
orthonormal basis for the tangent plane to the surface ∂B1 at the point ω.

The following theorem provides a general representation formula for the total variation of the
distributional determinant |DetDu| (Ω). Note that, under the assumption u ∈W 1,∞

loc (Ω\ {0} ; Rn), by
formula (15) we give a representation of the total variation of the singular measure µs in (10).

Theorem 6 (Total variation of the distributional determinant) Let n ≥ 2 and let Ω be an
open set containing the origin. Let u ∈ W 1,p (Ω; Rn) ∩W 1,∞

loc (Ω\ {0} ; Rn) for some p ∈ (n− 1, n).

7



Let v : ∂B1 = Sn−1 → Rn, v ∈ W 1,∞ (Sn−1; Rn
)
, v =

(
v1, v2, . . . , vn

)
, be a Lipschitz-continuous map

such that
lim

%→0+
max

{
|u (%ω)− v (ω)| : ω ∈ Sn−1

}
= 0 . (13)

Let us assume that
sup
%>0

1
%n−p

∫
B%

|Dτu|p dx ≤M0 (14)

for a positive constant M0. If detDu ∈ L1 (Ω) then DetDu is a Radon measure and its the total
variation |DetDu| is given by

|DetDu| (Ω) =
∫

Ω
|detDu (x)| dx

+
1
n

∣∣∣∣∣
∫

∂B1

n∑
i=1

(−1)i+1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1

∣∣∣∣∣ . (15)

Moreover, if we denote by ũ : B1 → Rn any Lipschitz-continuous extension of v to B1, then

|DetDu| (Ω) =
∫

Ω
|detDu (x)| dx +

∣∣∣∣∫
B1

detDũ (x) dx
∣∣∣∣ . (16)

By assumption (13) there exists r > 0 such that u ∈ L∞
(
Br; R2

)
. Thus, in the statement of

Theorem 6 (and in Theorem 9 below), we actually have that u is a function of class L∞loc (Ω; Rn) ∩
W 1,p (Ω; Rn) ∩W 1,∞

loc (Ω\ {0} ; Rn) for some p ∈ (n− 1, n).

Remark 7 A simple calculation shows that in 2−d the last term on the right hand side of (15) reduces
to

1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ ,
where v : [0, 2π] → R2 is the asymptotic limit map in (7). Indeed, denoting by v : S1 → R2 the map
related to v through the condition v (ϑ) := v (cosϑ, sinϑ), we have

dvi

dϑ
=
∂vi

∂x1
(− sinϑ) +

∂vi

∂x2
cosϑ , i = 1, 2,

and, since the unit tangent vector τ : [0, 2π] → ∂B1 can be represented by τ (θ) = (− sinϑ, cosϑ), we
obtain

dvi

dϑ
=
∂vi

∂τ
, i = 1, 2.

With the notation ω =
(

x1
|x| ,

x2
|x|

)
= (cosϑ, sinϑ) ∈ ∂B1 = S1, we finally have∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ =

∫ 2π

0

{
v1∂v

2

∂τ
− v2∂v

1

∂τ

}
dϑ

=
∫

∂B1

2∑
i=1

(−1)i+1 vi (ω)
dvi

dτ
(ω) dH1 .

Therefore (15) in 2−d becomes

|DetDu| (Ω) =
∫

Ω
|detDu (x)| dx+

1
2

∣∣∣∣∫ 2π

0

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣ ,
and the conclusion of Theorem 1 now can be restated in the form

TV (u,Ω) = |DetDu| (Ω) .
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Remark 8 In the case of the “eight” curve studied by Theorem 4, with v : [0, 2π] → γ = γ+∪γ− ⊂ R2

and u (x) = v (x/ |x|), we have

TV (u,B1) ≥ 1
2


∣∣∣∣∣∣
∑
j∈N

∫
I+
j

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣∣+

∣∣∣∣∣∑
k∈N

∫
I−k

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣


≥ 1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ = |DetDu| (B1) . (17)

Therefore, as in the general case (see Theorem 5 and (12) in particular), TV (u,B1) ≥ |DetDu| (B1).
Moreover, in view of the inequalities in (17), we can easily find an example such that the strict
inequality TV (u,B1) > |DetDu| (B1) holds. See Section 10.

Next we state the main result for the n−d case, analogous to Theorem 1. The proof of the theorem
may be found in Section 7.

Theorem 9 (General result in n−d) Let n ≥ 2 and let Ω be an open set containing the origin.
Let u ∈ W 1,p (Ω; Rn) ∩ W 1,∞

loc (Ω\ {0} ; Rn) for some p ∈ (n− 1, n) and let v ∈ W 1,∞ (Sn−1; Rn
)

satisfying (13) and (14). If detDu /∈ L1 (Ω) then TV (u,Ω) = +∞. If detDu ∈ L1 (Ω), then the total
variation of the distributional determinant |DetDu| (Ω) is given by (15) and TV (u,Ω) ≥ |DetDu| (Ω).
Moreover, if the quantity

n∑
i=1

(−1)i+1 vi∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(18)

has constant sign Hn−1−almost everywhere on ∂B1, then

TV (u,Ω) = |DetDu| (Ω) . (19)

In Section 9 we apply Theorem 9 to calculate explicitly the total variation of the singular map
u : Ω\ {0} → Rn, u (x) = w(x)−w(0)

|w(x)−w(0)| , where w is a map differentiable at x = 0, with detDw (0) 6= 0,
to obtain TV (u,Ω) = |B1| = ωn.

Remark 10 We conjecture that formula (19) holds independently of the sign condition (18) for a
certain of subclass of mappings u with asymptotic limit v at x = 0, in particular if v : Sn−1 → Rn

takes values on Sn−1. Theorem 1 above asserts that this conjecture is true in the 2−dimensional case,
and when v

(
S1
)

is the set Γ in (5), boundary of a starshaped set. With the Example 42 we propose a
3−d case where the conjecture is also true. However, if v

(
Sn−1

)
is not diffeomorphic to Sn−1, as in

the case of the “eight” curve considered in Theorem 4 (see also the examples of Section 10), then the
representation formula for TV (v,B1) should take into account the topology of v

(
Sn−1

)
.

As further applications of Theorem 9, now we consider radially independent maps u : Ω → Rn,
defined through a Lipschitz-continuous map v : Sn−1 → Rn by the position

u (x) := v

(
x

|x|

)
, ∀x ∈ B1\ {0} .

Clearly u ∈ W 1,p (Ω; Rn) ∩W 1,∞
loc (Ω\ {0} ; Rn) for every p ∈ [1, n), but u /∈ W 1,n (Ω; Rn) unless v is a

constant function. We obtain immediately from Theorem 9 the following result.
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Corollary 11 (Radially independent maps) Let v : ∂B1 = Sn−1 → Rn, v =
(
v1, v2, . . . , vn

)
,

be a Lipschitz-continuous map. For every open set Ω containing the origin we consider the map
u : Ω → Rn, defined by u (x) := v (x/ |x|) for x ∈ Ω\ {0}. For every p ∈ (n− 1, n) the total variation
of the Jacobian of u is given by

TV (u,Ω) =
1
n

∣∣∣∣∣
∫

∂B1

n∑
i=1

(−1)i+1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1

∣∣∣∣∣ , (20)

provided the quantity (18) has constant sign Hn−1−almost everywhere on ∂B1.

The following result is similarly to Corollary 3, valid in the 2−d case.

Corollary 12 (Analytic interpretation in n−d) Let v : Sn−1 → Rn be a Lipschitz-continuous
map, let Ω be an open set containing the origin, and let u : Ω → Rn be defined by u (x) := v (x/ |x|) for
x ∈ Ω\ {0}. Denote by ũ : B1 → Rn the Lipschitz-continuous extension of v to B1 given by ũ (0) = 0
and

ũ (x) := |x| · v
(
x

|x|

)
, ∀x ∈ B1\ {0} .

If the Jacobian detDũ (x) has constant sign Hn−1−almost everywhere on B1, then

TV (u,Ω) =
∣∣∣∣∫

B1

detDũ (x) dx
∣∣∣∣ . (21)

Remark 13 Let us assume that v : Sn−1 → Sn−1 is a map of class C1 onto Sn−1, locally invertible
with C1 local inverse at any point of Sn−1. If ũ is defined as before by ũ (x) = |x| · v (x/ |x|), then
also ũ : B1 → B1 is a map of class C1 and it is locally invertible with C1 local inverse at any
point of B1\ {0}. Then the assumption of Corollary 12 is satisfied. Indeed, detDũ (x) 6= 0 for every
x ∈ B1\ {0} and, by continuity, detDũ (x) has constant sign in B1\ {0}. We also notice that, by (65)
of Lemma 35, when η (t) = t we have

detDũ (x) =
n∑

i=1

(−1)i+1 vi

(
x

|x|

)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(
x

|x|

)
,

therefore the sign assumption in Corollary 12 is equivalent to the sign assumption of Theorem 9.

A final remark about the definition (2) of the total variation TV (u,Ω) of the Jacobian determinant
detDu (x): as before, consider u ∈ L∞ (Ω; Rn) ∩W 1,p (Ω; Rn) for some p > n − 1. The definition in
(2) of TV (u,Ω) is based on the convergence of a generic sequence {uh}h∈N ⊂ W 1,n (Ω; Rn) to u in
the weak topology of W 1,p (Ω; Rn). Instead, we could consider the strong norm topology and give the
following definition of TV s (u,Ω):

TV s (u,Ω) = inf
{

lim inf
h→+∞

∫
Ω
|detDuh (x)| dx :

uh → u strongly in W 1,p (Ω; Rn) , uh ∈W 1,n (Ω; Rn)
}
. (22)

Clearly we have

TV (u,Ω) ≤ TV s (u,Ω) , ∀u ∈ L∞ (Ω; Rn) ∩W 1,p (Ω; Rn) .
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However it is interesting, and somewhat surprising, to observe that Theorems 1, 4 and 9 (as well
as Corollaries 2 and 11) still hold if we replace TV (u,Ω) by TV s (u,Ω). In particular, under the
assumptions of Theorems 1 and 9 we have indeed

TV (u,Ω) = TV s (u,Ω) ,

for every open set Ω ⊂ Rn, and for every u ∈ L∞ (Ω; Rn) ∩W 1,p (Ω; Rn) with p > n− 1.

Using the argument of Lemma 32, for every u ∈ L∞
(
Ω; R2

)
∩W 1,p

(
Ω; R2

)
∩W 1,∞

loc

(
Ω\ {0} ; R2

)
with p > 1, it can be shown that admissible sequences for TV s (u,Ω) may be required to assume
prescribed boundary values, precisely

TV s (u,Ω) = inf
{

lim inf
h→+∞

∫
Ω
|detDuh (x)| dx :

uh → u strongly in W 1,p
(
Ω; R2

)
, uh ∈ u+W 1,∞

0

(
Ω; R2

)}
.

3 Geometrical interpretation

In this section we give a geometrical interpretation of the results stated in Section 2, by means of the
notion of topological degree of maps between manifolds.

We recall that if w : Ω → Rn is a Lipschitz-continuous map, then the topological degree of the map
w at a point y ∈ Rn is

deg (w,Ω, y) :=
∑

x∈w−1(y)∩A(w)

sign (detDw (x)) ,

where A (w) = {x ∈ Ω : w is differentiable at x}. The degree of the map w in the set Ω, denoted by
degw, is

degw :=
1

|w (Ω)|

∫
w(Ω)

∑
x∈w−1(y)∩A(w)

sign (detDw (x)) dy , (23)

=
1

|w (Ω)|

∫
w(Ω)

∑
x∈w−1(y)

sign (detDw (x)) dy

(above we used the fact that, since w is a Lipschitz-continuous map, then the measure of the sets
Ω\A (w) and of its image w (Ω\A (w)) are equal to zero). See the books by Giaquinta, Modica and
Souček [38] and by Fonseca and Gangbo [26] for more details.

It is well known that ∫
Ω

detDw (x) dx =
∫

w(Ω)
deg (w,Ω, y) dy ,

and thus

degw =
1

|w (Ω)|

∫
Ω

detDw (x) dx . (24)

Using of the symbol # to denote the cardinality of the set, we have∫
Ω
|detDw (x)| dx =

∫
w(Ω)

# {x ∈ Ω : w (x) = y} dy . (25)

For our purpose it is also useful to recall the definition of degree of a map v : Sn−1 → Sn−1, v onto
Sn−1. To this aim let us denote by Tω the tangential plane to Sn−1 at the point ω ∈ Sn−1. If v is
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Lipschitz-continuous, then for Hn−1−a.e. ω ∈ Sn−1 the differential dvω : Tω → Tv(ω) exists. Similarly
to the Euclidean case (23), the degree of v is defined by (see Chapter 5 of the book by Milnor [50])

deg v :=
1
nωn

∫
Sn−1

∑
ω∈v−1(σ)

sign (det dvω) dHn−1
σ ,

where, with an obvious abuse of notation, we denote by dvω also the (n− 1)× (n− 1) matrix repre-
senting the differential with respect to two fixed bases in Tω and Tv(ω). Using again the area formula
for maps between manifolds, as in (24) we get (see also [12], BN2)

deg v =
1
nωn

∫
Sn−1

det dvω dH
n−1
ω .

Fix ω0 ∈ ∂B1 and denote by τj : Sn−1\ {ω0} → Rn, for j ∈ {1, 2, . . . , n− 1}, a vector field of class C1

such that, for every x ∈ Sn−1\ {ω0}, the set of vectors {τ1 (x) , τ2 (x) , . . . , τn−1 (x)} is an orthonormal
basis for the tangent plane to the surface Sn−1 at the point x. The following representation formula
(26) for deg v holds.

Theorem 14 Let v : Sn−1 → Sn−1 be a Lipschitz-continuous map onto Sn−1. Then, for Hn−1−a.e.
ω ∈ Sn−1, we have

det dvω =
n∑

i=1

(−1)i+1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) . (26)

Theorem 14 is proved below in this section. We deduce from Theorem 14 and Corollary 11 the
following consequence.

Corollary 15 (Geometric interpretation) Let v : Sn−1 → Sn−1 be a map of class C1 and onto,
and let u : B1\ {0} → Sn−1 be defined by u (x) := v (x/ |x|). If dvω is not singular at any ω ∈ Sn−1,
i.e., if v is locally invertible with C1 local inverse at any point of Sn−1, then

TV (u,B1) = ωn |deg v| = ωn |deg ṽ| , (27)

where ṽ : B1 → Rn is any Lipschitz-continuous extension of v to B1.

Remark 16 In two dimensions the total variation TV (u,B1) can be expressed in terms of the degree
as in (27) under the sole assumption that v maps S1 into a simple curve enclosing a starshaped domain
(see Corollary 2). However, as shown in Section 10, this is not true anymore if v maps S1 into a
non-simple curve, such as the “eight” curve.

Proof of Theorem 14. Fix ω ∈ Sn−1 and denote by {τ1, τ2, . . . , τn−1}, {σ1, σ2, . . . , σn−1}, two
orthonormal bases for the tangent planes to Tω and Tv(ω), respectively. With respect to these two
bases the linear map dvω : Tω → Tv(ω) is represented by the (n− 1)× (n− 1) matrix with coefficients

(dvω)ij =
〈
σj ,

∂v

∂τi
(ω)
〉
.

Therefore the matrix dvω is the product of A and B, where A is the (n− 1) × n matrix whose rows
are ∂v

∂τi
and B is the n× (n− 1) matrix whose columns are σj . By (iii) of Lemma 37 we have

det dvω =
n∑

i=1

detX,i (A) · detXi, (B) ,
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where

detX,i (A) =
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) ,

and in view of (78)
detXi, (B) = (−1)i+1 νi (v (ω)) ,

where νi (v (ω)) is the i-th component of the outward unit normal Sn−1 at v (ω), i.e., νi (v (ω)) = vi (ω).
This concludes the proof of (26).

Proof of Corollary 15. From the previous theorem we deduce that, if dvω is not singular at
ω ∈ Sn−1, then det dvω 6= 0. Therefore, the right hand side of (26) is different from zero and has
constant sign, since by assumption the map v is of class C1. The first equality in (27) follows from
Theorem 14 and (20). The second equality is consequence of (21) and of (24).

We conclude by giving a geometrical interpretation of some of the estimates given in this paper.
In the following statement we use again of the symbol # to denote the cardinality of a set.

Theorem 17 Let v : Sn−1 → Sn−1 be a Lipschitz-continuous map and let u : B1\ {0} → Sn−1 be
defined by u (x) := v (x/ |x|). The total variation TV (u,B1) of the Jacobian of u can be estimated by

TV (u,B1) ≥ ωn |deg v| , (28)

TV (u,B1) ≤ 1
n

∫
∂B1

#
{
x ∈ Sn−1 : v (x) = ω

}
dHn−1

ω . (29)

Proof. Inequality (28) follows from inequality TV (u,B1) ≥ |DetDu| (B1), equality (15) of The-
orem 6 on the representation of |DetDu| (B1), and formula (26) of Theorem 14.

To prove (29), we apply the estimate (72) and formula (25). Precisely, we denote by ṽ : B1 → Rn

the extension of v defined by ṽ (0) = 0 and

ṽ (x) := |x| · v
(
x

|x|

)
, ∀x ∈ B1\ {0} .

Let %h → 0+ and define

uh (x) :=
{ 1

%h
ṽ (x) if x ∈ B%h

,

u (x) := v (x/ |x|) if x ∈ B1\B%h
.
.

Clearly uh ⇀ u in W 1,p (Ω; Rn) and, by (25),

TV (u,B1) ≤ lim inf
h→+∞

∫
B1

|detDuh (x)| dx = lim inf
h→+∞

∫
B%h

∣∣∣∣detD
1
%h
ṽ (x)

∣∣∣∣ dx
=
∫

B1

|detDṽ (x)| dx =
∫

ṽ(B1)
# {x ∈ B1 : ṽ (x) = y} dy ,

and, since ṽ (B1) ⊆ B1,

TV (u,B1) ≤
∫

B1

#
{
x ∈ Sn−1 : v (x) =

y

|y|

}
dy

=
∫ 1

0
%n−1 d%

∫
∂B1

#
{
x ∈ Sn−1 : v (x) = ω

}
dHn−1

ω =
1
n

∫
∂B1

#
{
x ∈ Sn−1 : v (x) = ω

}
dHn−1

ω .
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4 Det Du versus det Du

In this section we give a brief overview of relations between DetDu, detDu and TV (u,Ω). We recall
that the Jacobian detDu is given by

detDu (x) :=
∂
(
u1, u2, . . . , un

)
∂ (x1, x2, . . . , xn)

=
n∑

i=1

∂u1

∂xi
(adjDu)i

1 , (30)

where adjDu stands for the adjugate of Du, i.e., the transpose of the matrix of cofactors of Du. It is
clear that when u ∈W 1,n

loc (Ω; Rn) then detDu ∈ L1
loc (Ω). However, it is well known that, within some

ranges of lower regularity for u, it is still possible to introduce a new concept of determinant which
agrees with detDu when u ∈W 1,n

loc (Ω; Rn).
Consider the distributional Jacobian determinant, which, as usual, is denoted by DetDu capital-

ized, and is given by

DetDu :=
n∑

i=1

(−1)i+1 ∂

∂xi

(
u1 ∂

(
u2, . . . , un

)
∂ (x1, . . . , xi−1, xi+1, . . . , xn)

)
=

n∑
i=1

∂

∂xi

(
u1 (adjDu)i

1

)
. (31)

Note that DetDu is a distribution when u ∈ W 1,p (Ω; Rn), adjDu ∈ Lq(Ω; Rn×n), with 1/p + 1/q ≤
1 + 1/n (in particular, when u ∈ W 1,p

loc (Ω; Rn) for some p > n2/(n + 1)), or when u ∈ L∞loc (Ω; Rn) ∩
W 1,n−1

loc (Ω; Rn) (actually, it suffices to require that u1 ∈ L∞loc (Ω; Rn), and that the vector field of
derivatives

(
Du2, Du3, . . . , Dun

)
∈ Ln−1

loc

(
Ω; R(n−1)×n

)
). In the latter case, it is clear that the products

in (31) are in L1
loc(Ω). Also, if u ∈W 1,p (Ω; Rn) and adjDu ∈ Lq(Ω; Rn×n) with 1/p+ 1/q ≤ 1 + 1/n,

then this integrability property still holds by virtue of Hölder’s inequality together with the fact that
1/q + 1/(p∗) ≤ 1 and, due to the Sobolev Embedding Theorem, u ∈ Lp∗

loc (Ω; Rn).
For smooth functions the Jacobian determinant detDu (x) and the distributional Jacobian deter-

minant DetDu coincide. In fact, if u ∈W 1,n (Ω; Rn) then using the fact that the adjugate is divergence
free, it is easy to see that (30) reduces to (31). Also, Müller, Tang and Yan proved in [57] that if
u ∈W 1,n−1 (Ω; Rn) and if adjDu ∈ Ln/(n−1)(Ω; Rn×n) then DetDu = detDu and it belongs to L1(Ω).
This relation may fail if u is not sufficiently regular. As an example, consider (see [38])

u (x) := n

√
an + |x|n x

|x|
, Ω := B1 ,

where B1, as in the previous sections, stands for the open ball in Rn centered at zero and with radius
one. Then u ∈W 1,p(B1; Rn) for all p < n, detDu = 1 a.e. in B1, but

DetDu = LnbB1 + ωn a
n δ0,

where Ln denotes the Lebesgue measure in Rn and ωn is the volume of the unit ball B1. Similarly, as
shown in [29], if u(x) := x/|x| then detDu = 0 a.e. in B1 and DetDu = ωn δ0.

These examples suggest that, at least for some ranges of p, when DetDu is a Radon measure then
its absolutely continuous part with respect to the n−dimensional Lebesgue measure reduces to detDu.
Indeed, this holds when u ∈ W 1,p (Ω; Rn) and adjDu ∈ Lq(Ω; Rn×n) with 1/p + 1/q ≤ 1 + 1/n (see
[53]); see also Theorem 5.

The presence of singular measures in DetDu is in perfect agreement with recent experiments,
which suggest that, in addition to bulk energy, surface contributions and singular measures may also
be energetically relevant, thus disfavoring the creation of extremely small cavities (see [17], [32] and
[33]). These considerations have motivated the search for a characterization of the singular measures
which may appear in the description of the distributional Jacobian determinant. If we do not impose
any geometrical or analytical restrictions on the function u, then it is possible to attain Radon measures
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with support of arbitrary Hausdorff dimension. Precisely, it was proven by Müller [55] (see also [53])
that, given α ∈ (0, n), there exists a compact set K ⊂ B1 with Hausdorff dimension α, and there
exists u ∈W 1,p(B1; Rn) ∩ C0(B1) for all p < n, such that

DetDu = detDuLnbB1 + µs, (32)

where µs is a positive Radon measure, singular with respect to Ln, and such that suppµs = K. The
situation is dramatically different if u ∈Wn−1(Ω, Sn−1), as it can be shown that if DetDu is a finite,
signed, Radon measure then DetDu is a finite integer combination of Dirac masses (see Brezis and
Nirenberg [12], [13]). The use of BMO and Hardy spaces allows one to obtain higher integrability
results along the lines of Müller [52], [54], and Coifman, Lions, Meyers and Semmes [18]. As an
example, it can be shown that if u ∈ W 1,n (Ω; Rn) is such that detDu ≥ 0, then (see also Brezis,
Fusco and Sbordone [11] and Iwaniec and Sbordone [41]) detDu log(2 + detDu) ∈ L1

loc(Ω).
As mentioned before, in this paper we assume that u is a function of class

W 1,p (Ω; Rn) ∩W 1,∞
loc (Ω\ {0} ; Rn)

for some p ∈ (n− 1, n) and for an open set Ω ⊂ Rn containing the origin. The definition of the total
variation TV (u,Ω) introduced in (2) follows the approach commonly used for variational problems
with non-standard growth and coercivity conditions (see [1], [2], [9], [15], [27], [29], [46], [38], [48],
[49]). The aim of this paper is to characterize TV (u,Ω). In [29] Fonseca and Marcellini accomplished
this for u (x) = x/ |x|. Fonseca and Malý [27], and Bouchitté, Fonseca and Malý [9] set up the problem
into a broader context. Precisely, if f : Ω× Rn×n → R is a Carathéodory function, then the effective
(or relaxed) energy is defined as

Fp,q(u,Ω) := inf
{

lim inf
h→∞

∫
Ω
f(x,Duh) dx : uh ∈W 1,q

loc , uh ⇀ u in W 1,p

}
. (33)

In the case, where f(x, ξ) := g (det ξ) and g :→ [0,+∞) is a convex function, then (see [15], [22], [27])

Fp,n(u,Ω) ≥
∫

Ω
g (detDu (x)) dx if p ≥ n− 1,

and if p > n− 1 then (see [9])

Fp,n(u,Ω) =
∫

Ω
g (detDu (x)) dx+ µs(Ω) ,

for some Radon measure µs, singular with respect to the Lebesgue measure Ln. For a general integrand
f , and under the growth condition 0 ≤ f(x, ξ) ≤ C(1 + |ξ|q), with p > n−1

n q, we have

Fp,q(u,Ω) = hu LnbΩ + λs, (34)

where (see [1]) hu ≤ Qf(x,Du), and λs is a singular measure. If f = f(ξ) then it can be shown that
(see [9], [27])

hu = Qf(Du) , (35)

where Qf stands for the quasiconvexification of f , precisely (see [19], [51])

Qf(ξ) := inf

{∫
(0,1)n

f(ξ +Dϕ(x)) dx : ϕ ∈ C1
0 (Ω; Rn)

}
.

This may no longer be true when f depends also on x and p < q (although it is still valid if f(x, ·)
is convex, see [1]). Indeed, Gangbo [31] constructed an example where f(x, ξ) = χK(x) |det ξ| , and
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hu = f if and only if LN (∂K) = 0. Hence, in general, (35) fails and f∗∗(x,∇u) ≤ hu is the only known
lower bound (see also [1], [9], [27], [29], [46], [47]).

Further understanding of the total variation TV (u,Ω) asks for mastery of weak convergence of
minors for p < n. Works by Ball [4], Dacorogna and Murat [21], Giaquinta, Modica and Souček [38],
and Reshetnyak [59], established that

uh ⇀ u in W 1,n (Ω; Rn) =⇒ detDu ⇀ detDu

in the sense of measures, where we recall that a sequence {µh} of Radon measures is said to converge
in the sense of measures to a Radon measure µ in Ω if for every ϕ ∈ Cc (Ω; R) we have∫

Ω
ϕdµh →

∫
Ω
ϕdµ .

Müller [52] has shown that, if in addition detDuh ≥ 0, then detDuh ⇀ detDu weakly in L1 (Ω).
Moreover, if uh ⇀ u in W 1,p (Ω; Rn) and {adjDuh} is bounded in Lq

(
Ω; Rd×n

)
with p ≥ n − 1,

q ≥ n/(n− 1), one of these two inequalities being strict, then

detDuh ⇀ detDu in the sense of measures.

Also, if uh ∈W 1,n (Ω; Rn), uh ⇀ u in W 1,p (Ω; Rn) and p > n− 1, then

adjDuh ⇀ adjDu in Lp/(n−1) ∀ p > n− 1. (36)

A complete characterization of weak convergence of the determinant has been obtained by Fonseca,
Leoni and Malý in [28], where it was shown that, if the sequence {uh} ⊂W 1,n (Ω; Rn) converges to a
function u in L1 (Ω; Rn), if {uh} is bounded in W 1,n−1 (Ω; Rn), and if detDuh ⇀ µ for some Radon
measure µ, then

dµ

dLn
= detDu, a.e. x ∈ Ω. (37)

For related works we refer to [2], [4], [15], [19], [20], [22], [30], [31], [34], [38], [45], [51], [52], [57].
What can we then say about the singular measure µs in (32), its significance and interpretation,

and what are the relations, if any, between the total variation of DetDu, i.e. |DetDu|(Ω), and
TV (u,Ω)? An answer is given by Theorem 5, which contemplates a general framework where only
integrability assumptions are considered, and no structural properties of the function u are prescribed.
Next we present the proof of this result.

Proof of Theorem 5. Since TV (u,Ω) < +∞, by (34) and (35) TV (u, ·) is a finite Radon
measure, and it admits the Radon-Nikodym decomposition (10). In particular, it follows that detDu ∈
L1 (Ω).

Let δ > 0 be fixed and consider a sequence {uh}h∈N ⊂ C1 (Ω; Rn) such that uh ⇀ u in W 1,p (Ω; Rn),
with p > n− 1, and

TV (u,Ω) + δ ≥ lim
h→+∞

∫
Ω
|detDuh| dx . (38)

We first observe that, without loss of generality, we may assume that the sequence of the first compo-
nents

{
u1

h

}
h∈N is bounded in L∞ (Ω). Indeed, under the notation M :=

∥∥u1
∥∥
∞, it suffices to consider

the truncation

w1
h (x) :=


−M if uj

h (x) ≤ −M,

uj
h (x) if −M ≤ uj

h (x) ≤M,

M if uj
h (x) ≥M,

and to set wh :=
(
w1

h, u
2
h, . . . , u

n
h

)
, for every h ∈ N. It is easy to verify that, as h→ +∞, wh converges

to u in the weak topology of W 1,p (Ω; Rn) and, since |detDwh| ≤ |detDuh|, for almost every x ∈ Ω,
inequality (38) still holds with {uh}h∈N replaced by {wh}h∈N.
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Since TV (u,Ω) < +∞, by (38) the sequence {detDuh}h∈N is bounded in L1 (Ω), therefore, up to
a subsequence (not relabeled) detDuh ⇀

∗ µ̃ as h→ +∞, where µ̃ is a finite Radon measure. By (37)
we have

dµ̃

dLn
= detDu, a.e. x ∈ Ω . (39)

Next we prove that the distribution DetDu coincides with µ̃ on C1
0 (Ω) and hence, by regularization

and density, on C0
0 (Ω). To prove this, for fixed ϕ ∈ C1

0 (Ω) we have

〈DetDu,ϕ〉 = −
∫

Ω

n∑
i=1

u1(adjDu)i
1

∂ϕ

∂xi
dx

= − lim
h→∞

∫
Ω

n∑
i=1

u1
h (adjDuh)i

1

∂ϕ

∂xi
dx = lim

h→∞

∫
Ω

detDuh ϕdx = 〈µ̃, ϕ〉 .

Here we have used the facts that, since uh ⇀ u in W 1,p (Ω; Rn) for p > n − 1, then adjDuh weakly
converge to adjDu in Lp/(n−1), and since the sequence

{
u1

h

}
h∈N is bounded in L∞ (Ω) and converges

as h → +∞ to u1 in Lp (Ω), it also converges to u1 in Lq (Ω), for every q < +∞, in particular for
q = p

p−(n−1) , the conjugate exponent of p
n−1 . Therefore, in view of (39), we deduce the Radon-Nikodym

decomposition for DetDu as asserted in (11).
Let A be an open subset of Ω and let ϕ ∈ C1

0 (A; R) be such that ‖ϕ‖∞ ≤ 1. By (38), a similar
argument yields

|〈DetDu,ϕ〉| =

∣∣∣∣∣
∫

A

n∑
i=1

u1(adjDu)i
1

∂ϕ

∂xi
dx

∣∣∣∣∣ = lim
h→∞

∣∣∣∣∣
∫

A

n∑
i=1

u1
h (adjDuh)i

1

∂ϕ

∂xi
dx

∣∣∣∣∣
= lim

h→∞

∣∣∣∣∫
A

detDuh ϕdx

∣∣∣∣ ≤ lim sup
k→∞

‖ϕ‖∞
∫

A
|detDuh| dx ≤ TV (u,A) + δ .

It suffices to let δ → 0+, and to take the supremum over all such functions ϕ, to conclude (12), i.e.,
|DetDu| (A) ≤ TV (u,A).

Suppose now, in addition, that u ∈ W 1,n
loc (Ω\ {0} ; Rn). Let A be an open subset of Ω such that

0 /∈ A. We recall that for every sequence uh which converges to u in the weak topology of W 1,p (A; Rn)
for some p > n− 1, with u, uh ∈W 1,n

loc (A; Rn) for every h ∈ N, we have (see [20])

lim inf
h→+∞

∫
A
|detDuh| dx ≥

∫
A
|detDu| dx .

Hence
TV (u,A) =

∫
A
|detDu| dx ,

whenever A is an open subset of Ω and 0 /∈ A. Therefore we conclude that suppλs ⊂ {0}, and thus
λs = λδ0 for some constant λ ≥ 0, where δ0 is the Dirac measure at the origin.

On the other hand, in view of the inequality |DetDu| (A) ≤ TV (u,A) in (12), it follows that
suppµs ⊂ suppλs ⊂ {0}, therefore µs = µδ0, for some constant µ ∈ R, with |µ| ≤ λ, where we have
used (12).once more.

Remark 18 The result stated in Theorem 5 holds also under the assumption that u ∈ W 1,p (Ω; Rn)
for some p > n2/(n + 1). Indeed, in this case, instead of truncating the sequence

{
u1

h

}
h∈N we use

the fact that, by Kondrachov’s Compact Embedding Theorem, uh → u strongly in Ln2
, with n2 being

the conjugate exponent of n2/(n2 − 1). Again, {Duh}h∈N weakly converges in Lp (Ω; Rn×n) and the
sequence {adjDuh}h∈N weakly converges in Ln2/(n2−1).
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5 The 2−dimensional case

Let n = 2. For every ξ =
(
ξ1, ξ2

)
∈ R2, ξ 6= 0, we denote by Arg ξ the unique angle in [−π, π) such

that

cos Arg ξ =
ξ1

|ξ|
, sin Arg ξ =

ξ2

|ξ|
.

As before, we denote by Br the circle in R2 with center in 0 and radius r > 0. Then B1 is the circle
of radius r = 1 and ∂B1 = S1 is its boundary. If α, β ∈ [0, 2π], α < β, then S (α, β) stands for the
polar sector given by

S (α, β) :=
{
ξ = % (cosϑ, sinϑ) ∈ R2 : % ≤ 1, ϑ ∈ [α, β]

}
.

In the sequel v : [0, 2π] → R2 is a Lipschitz-continuous closed curve, i.e., v (0) = v (2π), that we
represent as v =

(
v1, v2

)
=
(
v1 (ϑ) , v2 (ϑ)

)
, with ϑ ∈ [0, 2π]. We shall denote by vϑ :=

(
v1
ϑ, v

2
ϑ

)
the

gradient of v, which exists for almost every ϑ ∈ [0, 2π]. If v (ϑ) 6= 0 for every ϑ ∈ [0, 2π], then we
denote by Av (ϑ) the quantity

Av (ϑ) := Arg v (0) +
∫ ϑ

0

v1 (t) v2
ϑ (t)− v2 (t) v1

ϑ (t)
|v (t)|2

dt .

There exists a simple relation between Av and Arg v, which is inferred from the next lemma.

Lemma 19 If v : [0, 2π] → R2 is a Lipschitz-continuous curve such that v (ϑ) 6= 0 for every ϑ ∈ [0, 2π],
then, for every α, β ∈ [0, 2π] with α < β, there exists k ∈ Z such that

Av (β)−Av (α) = Arg v (β)−Arg v (α) + 2kπ . (40)

Proof. Assume first that v ∈ C1
(
[0, 2π] ; R2

)
and that there exist at most a finite number of angles

ϑi ∈ [0, 2π) such that either v1 (ϑi) = 0 or v2 (ϑi) = 0. Then, for every ϑ 6= ϑi (since v1 (ϑi) 6= 0) we
have

d

dϑ
Arg v (ϑ) =

d

dϑ
arctan

v2 (ϑ)
v1 (ϑ)

=
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

|v (ϑ)|2
.

The result then follows by integrating this equality and recalling that, each time that v (ϑ) crosses
the half line

{
(x, y) ∈ R2 : x < 0, y = 0

}
, and this may happen at most a finite number of times

(necessarily for ϑ equal to some ϑi, where v2 (ϑi) = 0), the function Arg v (ϑ) has a jump of ±2π.
In the general case, we approximate v by a sequence {vj}j∈N of curves of class C1

(
[0, 2π] ; R2

)
such

that {vj}j∈N uniformly converges to v and {dvj/dϑ}j∈N converges to dv/dϑ in Lp ([0, 2π]) for every
p ∈ [1,+∞). We may construct the curves vj so that vj (ϑ) 6= 0 for all ϑ ∈ [0, 2π] and either v1 (ϑi) = 0
or v2 (ϑi) = 0 only for finitely many i. Moreover, if Arg v (ϑ) 6= −π, then Arg vj (ϑ) → Arg v (ϑ), while,
if Arg v (ϑ) = −π, then, up to a subsequence, Arg vj (ϑ) → Arg v (ϑ) = −π or Arg vj (ϑ) → π. Finally,
the quantity

Avj (β)−Avj (α) =
∫ β

α

v1
j v

2
j,ϑ − v2

j v
1
j,ϑ

|vj |2
dt

converges, as j → +∞, to Av (β)−Av (α). From the relation

Avj (β)−Avj (α) = Arg vj (β)−Arg vj (α) + 2kjπ ,

valid for every j ∈ N and for some kj ∈ Z, we see that the sequence kj is bounded, since Arg vj (β)
,Arg vj (α) ∈ [−π, π). Then, up to a subsequence, we obtain the conclusion (40) as j → +∞.

As in Section 2, we denote by Γ a curve in R2 parametrized in the following way

Γ := {ξ + r (ϑ) (cosϑ, sinϑ) : ϑ ∈ [0, 2π]} , (41)
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where r (ϑ) is a piecewise C1 function such that r (0) = r (2π), and r (ϑ) ≥ r0 for every ϑ ∈ [0, 2π] and
for some r0 > 0. Condition (41) means that Γ is the Lipschitz-continuous boundary of a domain

D := {ξ + % (cosϑ, sinϑ) : ϑ ∈ [0, 2π] , 0 ≤ % ≤ r (ϑ)} ,

starshaped with respect to a point ξ in the interior of D. In the sequel it is understood that the
function r (ϑ) is extended to R by periodicity.

Lemma 20 Let Γ be as in (41) and let v : [0, 2π] → Γ be a Lipschitz-continuous map such that
Arg (v (0)− ξ) = 0. Then the curve v may be represented in the form

v (ϑ) = ξ + r (Av−ξ (ϑ)) (cosAv−ξ (ϑ) , sinAv−ξ (ϑ)) (42)

for all ϑ ∈ [0, 2π].

The proof of this lemma may be found in [24].

Remark 21 Under the assumptions of Lemma 20, from the representation formula (42) for v (ϑ) it
follows that, if Av−ξ (α) = Av−ξ (β), then v (α) = v (β). Conversely, if v (α) = v (β) then there exists
k ∈ Z such that Av−ξ (α) = Av−ξ (β) + 2kπ. However, notice that if Γ is the boundary of a simply
connected domain which is not starshaped with respect to ξ, then the conclusion of Lemma 20 may not
be true. In particular, the condition Av−ξ (α) = Av−ξ (β) may not imply that v (α) = v (β).

The next Lemma 22, found in [24], plays a central role in the study of the 2-dimensional case. For
the convenience of the reader, we include its proof below.

Lemma 22 (The “umbrella” lemma) Let Γ = {ξ + r (ϑ) (cosϑ, sinϑ)} and let v : [0, 2π] → Γ be a
Lipschitz-continuous map. If α, β ∈ [0, 2π], α < β, are such that Av−ξ (α) = Av−ξ (β), then for every
ε > 0 there exists a Lipschitz-continuous map w : S (α, β) → R2 satisfying the boundary conditions{

w (1, ϑ) = v (ϑ) ∀ϑ ∈ [α, β] ,
w (%, α) = w (%, β) = ξ + % (v (α)− ξ) ∀ % ∈ [0, 1] ,

(43)

and such that ∫
S(α,β)

|detDw (x)| dx < ε . (44)

Proof. Without loss of generality we can assume that Arg (v (0)− ξ) = 0. Fix h ∈ N and set

wh (%, ϑ) := ξ + %r (ϕh (%, ϑ)) (cosϕh (%, ϑ) , sinϕh (%, ϑ)) , (45)

where, for every % ∈ [0, 1] and for every ϑ ∈ [α, β],

ϕh (%, ϑ) := %hAv−ξ (ϑ) +
(

1− %h
)
Av−ξ (α) .

Since ϕh (1, ϑ) = Av−ξ (ϑ), ϕh (%, α) = ϕh (%, β) = Av−ξ (α), by the representation formula (42) of
Lemma 20 we obtain the validity of the boundary conditions (43).

Now we evaluate the left hand side in (44). We observe that, if u (x) =
(
u1 (%, ϑ) , u2 (%, ϑ)

)
, and

using the notation ∂ui

∂% = ui
%, ∂ui

∂ϑ = ui
ϑ (i = 1, 2), we have

detDu (x) =
1
%

∣∣∣∣ u1
% (%, ϑ) u1

ϑ (%, ϑ)
u2

% (%, ϑ) u2
ϑ (%, ϑ)

∣∣∣∣ . (46)
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For the function wh we obtain∫
S(α,β)

|detDwh (x)| dx =
∫ 1

0
d%

∫ β

α

∣∣∣∣∣∂
(
w1

h, w
2
h

)
∂ (%, ϑ)

∣∣∣∣∣ dϑ .
Now the Jacobian determinant of wh is

∂
(
w1

h, w
2
h

)
∂ (%, ϑ)

= %r2 (ϕh)
∂ϕh

∂ϑ
= %h+1r2 (ϕh)A′v−ξ (ϑ) ,

and we conclude that∫
S(α,β)

|detDwh (x)| dx =
∫ 1

0
%h+1 d%

∫ β

α
r2 (ϕh)

∣∣A′v−ξ (ϑ)
∣∣ dϑ =

c

h+ 2
,

where we denote by c a suitable constant. The conclusion follows by choosing h ∈ N sufficiently large.

Remark 23 We call Lemma 22 the “the umbrella lemma”due to the fact that the geometric represen-
tation of the graph of the map w : R2 → R2 considered in Lemma 22 is some sort of “umbrella” (under
some mathematical tolerance and human imagination!). In fact, let us consider for simplicity the case
where the image Γ of the map v is the unit circle [0, 2π] ⊂ R2 centered around ξ = 0. Then the graph
of w is a subset of S1: it “starts” from the center ξ = 0 (the starting point of the “umbrella-stick”, in
correspondence to % = 0) and it “ends” for % = 1, at the surface {w (1, ϑ) = v (ϑ) : ϑ ∈ [α, β]} ⊂ S1,
which can be interpreted as the upper surface of the open umbrella, to protect one from the rain. More-
over, by (44), like an umbrella, the total volume of the image of w is small (large upper surface, small
volume! In our 2−d case, we have a 2−dimensional “picture” of an umbrella, with large upper length
and small area).

We refer to Figures 1, 2 and 3, where we represented the image of the map wh (%, ϑ) in (45) under
three particular choices of the parameters. Precisely, for fixed h ∈ N we considered wh : S (α, β) → B1

(i.e., r (ϕh (%, ϑ)) in (45) identically equal to 1 and ξ = 0) given by{
wh (%, ϑ) = % (cosϕh (%, ϑ) , sinϕh (%, ϑ))
ϕh (%, ϑ) = %hAv (ϑ) +

(
1− %h

)
Av (α)

, (47)

where Av : [α, β] → R is a function such that Av (α) = Av (β). The common value of Av at ϑ = α
and ϑ = β is the asymptotic value of the angle ϕh (%, ϑ) as % → 0+ and it represents the angle which
the umbrella-stick forms with the x−axis. At % = 1 the angle ϕh (1, ϑ) holds Av (ϑ); therefore the
maximum M and the minimum m of Av (ϑ) represent the bounds for the angle ϕh (1, ϑ) of the image
w (1, ϑ) at the surface S1 of the ball B1. These pictures has been made by Emanuele Paolini, starting
from the analytic expression of w in (47). We thank him for the beautiful job.

Figure 1: A 2− d image of the map w defined in (47), with h = 4, for a particular (piecewise linear)
function Au (ϑ). The angle which the umbrella-stick forms with the x−axis is given by Au (α) =
Au (β) = π/2. The maximun M and the minimum m of Au (ϑ) = ϕ (1, ϑ), which give the bounds for
the angles of the image w (1, ϑ) at the surface S1 of the ball B1, in this case are equal to m = π/6,
M = 5π/6, respectively. Note that the map is radially linear when ϑ = α and ϑ = β, where the angle
of the image is equal to π/2.

An abbreviated proof of the result below may be found in [24].
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Figure 2: Another 2 − d image of the map w defined in (47), with h = 4, for a different choise
of the piecewise linear function Au (ϑ). In this case we obtain an asymmetric umbrella. Again
Au (α) = Au (β) = π/2, while in this case m = −π/6, M = 5π/6. The map is not one-to-one: only
the image points with angles −π/6 and 5π/6 may be assumed once; all the other points are hit at
least twice; the points with angle π/2 are hit at least three times.

Figure 3: Map w : S (α, β) → B1 in (47). Here we fixed h = 3, while the angle which the umbrella-
stick forms with the x−axis is equal to Au (α) = Au (β) = 0. The bounds for the angle of the image
w (1, ϑ), at the surface S1 of the unit ball B1, in this case are equal to m = 0, M = 2π + π/2. The
map is radially linear when the angle Au (ϑ) of the image is 0 (and this happens only if ϑ = α = β,
when ϕ (1, ϑ) = Au (ϑ) = 0). The map w is not one-to-one: due to the overlaping phenomenon, some
points with % close to 1 and 0 ≤ ϕ < π/2 are assumed at least four times.

Lemma 24 Let v : [0, 2π] → Γ be a Lipschitz-continuous map. Let α, β ∈ [0, 2π], α < β, be such
that Av−ξ (α) = Av−ξ (β). If Av−ξ (ϑ) is piecewise strictly monotone in [α, β] (with a finite number of
monotonicity intervals) then∫ β

α

{(
v1 (ϑ)− ξ1

)
v2
ϑ (ϑ)−

(
v2 (ϑ)− ξ2

)
v1
ϑ (ϑ)

}
dϑ = 0 .

Proof. Without loss of generality we assume that ξ = (0, 0). Since Av (ϑ) is piecewise strictly
monotone in [α, β] and Av (α) = Av (β), there exists a partition of the interval [α, β], α = ϑ0 < ϑ1 <
. . . < ϑN = β, N ≥ 2, such that, for every i = 1, 2, . . . N , the real function Av (ϑ) is strictly increasing
in [ϑi−1, ϑi] and is strictly decreasing in [ϑi, ϑi+1] (or viceversa). We will prove the lemma by an
induction argument based on the number N of these maximal intervals of monotonicity.

Let us first assume that N = 2. Hence there exists ϑ1 ∈ (α, β) such that Av (ϑ) is strictly
increasing in [α, ϑ1] and is strictly decreasing in [ϑ1, β], or conversely. To fix the ideas, let us assume
that Av (ϑ) is strictly increasing in [α, ϑ1]. For every (%, ϑ) ∈ S (α, β) let us define ṽ (%, ϑ) := % v (ϑ) .
If Av (ϑ1) − Av (α) ≤ 2π, then ṽ restricted to the interior of S (α, ϑ1) and S (ϑ1, β) is one-to-one.
Moreover the images ṽ (S (α, ϑ1)) and ṽ (S (ϑ1, β)) are equal. Therefore, by the area formula,∫

S(α,ϑ1)
|detDṽ (x)| dx = area (ṽ (S (α, ϑ1))) = area (ṽ (S (ϑ1, β))) =

∫
S(ϑ1,β)

|detDṽ (x)| dx .

Since detDṽ ≥ 0 in S (α, ϑ1) and detDṽ ≤ 0 in S (ϑ1, β), we obtain∫
S(α,ϑ1)

detDṽ (x) dx = area (ṽ (S (α, ϑ1))) = area (ṽ (S (ϑ1, β))) = −
∫

S(ϑ1,β)
detDṽ (x) dx .

By using again (46), we have

detDṽ (%, ϑ) =
1
%

∣∣∣∣ v1 (ϑ) %v1
ϑ (ϑ)

v2 (ϑ) %v2
ϑ (ϑ)

∣∣∣∣ = v1 (ϑ) v2
ϑ (ϑ)− v2 (ϑ) v1

ϑ (ϑ) = Av (ϑ) |v (ϑ)|2 .

Therefore, as claimed,

0 =
∫

S(α,β)
detDṽ (x) dx =

∫ 1

0
% d%

∫ β

α

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

=
1
2

∫ β

α

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ .
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If 2kπ < Av (ϑ1) − Av (α) ≤ 2π (k + 1) for some k ≥ 1, then we denote by ϑ′ ∈ (α, ϑ1), ϑ′′ ∈ (ϑ1, β)
the points such that Av (ϑ′) = Av (ϑ′′) = 2kπ. Again, using the area formula, we have∫

S(α,ϑ1)
|detDṽ (x)| dx =

∫
S(α,ϑ′)

|detDṽ (x)| dx+
∫

S(ϑ′,ϑ1)
|detDṽ (x)| dx = k areaD + areaE ,

where D is the domain in (6) enclosed by Γ and E is the domain represented in polar coordinates by

E =
{
% (cosAv (ϑ) , sinAv (ϑ)) : ϑ ∈

[
ϑ′, ϑ1

]
, 0 ≤ % ≤ r (ϑ)

}
=
{
% (cosAv (ϑ) , sinAv (ϑ)) : ϑ ∈

[
ϑ1, ϑ

′′] , 0 ≤ % ≤ r (ϑ)
}
.

Therefore, we also have∫
S(ϑ1,β)

|detDṽ (x)| dx =
∫

S(ϑ1,ϑ′′)
|detDṽ (x)| dx+

∫
S(ϑ′′,β)

|detDṽ (x)| dx = areaE + k areaD .

Arguing as before we get the thesis (with N = 2)

1
2

∫ β

α

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ =

∫
S(α,β)

detDṽ (x) dx

=
∫

S(α,ϑ1)
|detDṽ (x)| dx−

∫
S(ϑ1,β)

|detDṽ (x)| dx = 0.

By induction, we assume that the result is true if there are N−1 maximal intervals of monotonicity
for the function Av (ϑ). Then we consider the case where there are N of such intervals, with endpoints
α = ϑ0 < ϑ1 < . . . < ϑN = β. Without loss of generality, we can assume that Av (ϑ) is strictly
increasing in [α, ϑ1] and is strictly decreasing in [ϑ1, ϑ2]. If Av (α) > Av (ϑ2), then there exists
γ ∈ (ϑ1, ϑ2) such that Av (γ) = Av (α); since the thesis holds for the case of two intervals [α, ϑ1],
[ϑ1, γ], we obtain ∫ γ

α

{
v1v2

ϑ − v2v1
ϑ

}
dϑ = 0. (48)

The thesis also holds for the N − 1 intervals [γ, ϑ2] , [ϑ2, ϑ3] , . . . , [ϑN−1, β], and so we have∫ β

γ

{
v1v2

ϑ − v2v1
ϑ

}
dϑ = 0 ,

which, together with (48), yields the conclusion if Av (α) > Av (ϑ2).
If Av (α) = Av (ϑ2), then the same argument works with γ = ϑ2. If Av (α) < Av (ϑ2) then there

exists δ ∈ (α, ϑ1) such that Av (δ) = Av (ϑ2) and, as before, by considering the two intervals [δ, ϑ1],
[ϑ1, ϑ2], we have ∫ ϑ2

δ

{
v1v2

ϑ − v2v1
ϑ

}
dϑ = 0 . (49)

Then we “modify” the function v (ϑ) by “cutting out” the interval (δ, ϑ2) from [α, β]. Precisely, we
define in the interval [α+ [ϑ2 − δ] , β]

w (ϑ) :=
{
v (ϑ− [ϑ2 − δ]) if α+ [ϑ2 − δ] ≤ ϑ ≤ ϑ2,
v (ϑ) if ϑ2 ≤ ϑ ≤ β.

Then Aw (ϑ) is piecewise strictly monotone in [α+ [ϑ2 − δ] , β], with N −1 monotonicity intervals. By
the induction assumption we have

0 =
∫ β

α+[ϑ2−δ]

{
w1w2

ϑ − w2w1
ϑ

}
dϑ =

∫ δ

α

{
v1v2

ϑ − v2v1
ϑ

}
dϑ+

∫ β

ϑ2

{
v1v2

ϑ − v2v1
ϑ

}
dϑ ,

which, together with (49), yields the conclusion.

The lemma below is proven in [24].
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Lemma 25 Let v : [0, 2π] → Γ be a Lipschitz-continuous map. Let Av−ξ (ϑ) be piecewise strictly
monotone in [a, b] (with a finite number of monotonicity intervals). For every ε > 0 there exists a
Lipschitz-continuous map w : B1 → R2 such that w (1, ϑ) = v (ϑ) for every ϑ ∈ [0, 2π], and∫

B1

|detDw (x)| dx < ε+
1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ .
Next we consider maps u = u (%, ϑ) depending explicitly on % as well. We assume first that u is a

smooth map in the unit ball B1 ⊂ R2.

Lemma 26 (The integral of the Jacobian for smooth maps) Let u ∈ W 1,∞ (B1; R2
)
. For ev-

ery r ∈ (0, 1] we have∫
Br

detDu (x) dx =
1
2

∫ 2π

0

{
u1 (r, ϑ)

∂u2

∂ϑ
(r, ϑ)− u2 (r, ϑ)

∂u1

∂ϑ
(r, ϑ)

}
dϑ . (50)

Proof. If first u ∈ C2
(
B1; R2

)
, then by the divergence theorem, we have for every r ∈ (0, 1)∫

Br

detDu (x) dx =
∫

Br

div
(
u1∂u

2

∂x2
,−u1∂u

2

∂x1

)
dx =

∫
∂Br

{
u1∂u

2

∂x2
ν1 − u1∂u

2

∂x1
ν2

}
dH1 , (51)

where ν =
(
ν1, ν2

)
is the exterior normal to ∂Br and dH1 = ds = rdϑ is the element of archlenght.

A standard approximation argument yields formula (51) for every u ∈ W 1,∞ (B1; R2
)

and for every
r ∈ (0, 1) (since u ∈W 1,∞ (∂Br; R2

)
for every r ∈ (0, 1) too).

With an obvious abuse of notation, we write u in polar coordinates (%, ϑ), i.e., u (x1, x2) = u (%, ϑ).
We have

∂u

∂x1
=
∂u

∂ρ

∂%

∂x1
+
∂u

∂ϑ

∂ϑ

∂x1
=
∂u

∂ρ
cosϑ− ∂u

∂ϑ

sinϑ
%

,

∂u

∂x2
=
∂u

∂ρ

∂%

∂x2
+
∂u

∂ϑ

∂ϑ

∂x2
=
∂u

∂ρ
sinϑ+

∂u

∂ϑ

cosϑ
%

.

Since on ∂Br the exterior normal reduces to ν =
(
ν1, ν2

)
= (cosϑ, sinϑ), from (51) we obtain

∂u2

∂x2
ν1 − ∂u2

∂x1
ν2 =

(
∂u2

∂ρ
sinϑ+

∂u2

∂ϑ

cosϑ
%

)
cosϑ−

(
∂u2

∂ρ
cosϑ− ∂u2

∂ϑ

sinϑ
%

)
sinϑ

=
∂u2

∂ρ
sinϑ cosϑ+

1
%

∂u2

∂ϑ
cos2 ϑ− ∂u2

∂ρ
sinϑ cosϑ+

1
%

∂u2

∂ϑ
sin2 ϑ =

1
%

∂u2

∂ϑ
.

Thus on ∂Br, since dH1 = rdϑ, we get∫
Br

detDu (x) dx =
∫

∂Br

{
u1∂u

2

∂x2
ν1 − u1∂u

2

∂x1
ν2

}
dH1 =

∫ 2π

0
u1∂u

2

∂ϑ
dϑ .

For symmetric reasons, starting now from detDu (x) = −
(
u2 · u1

x2

)
x1

+
(
u2 · u1

x1

)
x2

, we also obtain∫
Br

detDu (x) dx =
∫ 2π

0
−u2∂u

1

∂ϑ
dϑ ,

and thus, for every value of a real parameter λ,∫
Br

detDu (x) dx = λ

∫ 2π

0
u1∂u

2

∂ϑ
dϑ+ (1− λ)

∫ 2π

0
−u2∂u

1

∂ϑ
dϑ

and, in particular, for λ = 1/2 we reach the conclusion in (50).
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6 The “eight” curve

Let us denote by γ the image of the “eight” curve, i.e., the union of the two circles γ+ and γ− of radius
1, respectively of center at (1, 0) and at (−1, 0). Below we will use some elementary representation
formulas for γ+ and γ−. Precisely, for γ+ we will use the representation formulas

γ+ :=
{

(ξ1, ξ2) ∈ R2 : ξ21 + ξ22 − 2ξ1 = 0
}
,

ξ ∈ γ+\ (0, 0) ⇐⇒
{
ξ1 = 2 cos2 Arg ξ
ξ2 = 2 cos Arg ξ · sin Arg ξ

. (52)

With the aim to prove Theorem 4, we start with some preliminary results concerning a map w with
values in the circle γ+.

Lemma 27 Let w : [0, 2π] → γ+ be a Lipschitz-continuous curve such that w (0) = (2, 0). The real
function R (ϑ) defined by R (ϑ) := 0 if w (ϑ) = (0, 0) and by

R (ϑ) :=
w1 (ϑ)w2

ϑ (ϑ)− w2 (ϑ)w1
ϑ (ϑ)

|w (ϑ)|2
, if w (ϑ) 6= (0, 0) , (53)

is bounded in [0, 2π] by a constant depending only on the Lipschitz constant of w. Moreover, if

Aw (ϑ) =
∫ ϑ

0

w1 (t)w2
ϑ (t)− w2 (t)w1

ϑ (t)
|w (t)|2

dt

then, for every α, β ∈ [0, 2π] such that w (α) 6= (0, 0) and w (β) 6= (0, 0), there exists k ∈ Z such that

Aw (β)−Aw (α) = Arg w (β)−Arg w (α) + kπ . (54)

Proof. Step 1 (boundedness of R (ϑ)). Let L be the Lipschitz constant of w. If |w (ϑ)| ≥ 1
2 ,

then there exists a constant c such that

|R (ϑ)| ≤ cL . (55)

On the other hand, if |w (ϑ)| < 1
2 then, since

[
w1 (ϑ)

]2 +
[
w2 (ϑ)

]2 − 2w1 (ϑ) = 0, we deduce that

|w (ϑ)|2 = 2w1 (ϑ) and w1 (ϑ) = 1−
√

1− [w2 (ϑ)]2 . Taking the derivative of both sides we obtain

w1
ϑ (ϑ) =

w2 (ϑ)w2
ϑ (ϑ)√

1− [w2 (ϑ)]2
.

Therefore, if w (ϑ) 6= (0, 0), for almost every ϑ we also have

R (ϑ) =
w1 (ϑ)w2

ϑ (ϑ)− w2 (ϑ)w1
ϑ (ϑ)

|w (ϑ)|2
=

w2
ϑ (ϑ)
2

−
w2 (ϑ)w1

ϑ (ϑ)
2w1 (ϑ)

=
w2

ϑ (ϑ)
2

1−
[
w2 (ϑ)

]2(
1−

√
1− [w2 (ϑ)]2

)
·
√

1− [w2 (ϑ)]2

 .

The derivative of the real function g (t) = 1 −
√

1− t satisfies the condition g′ (t) ≥ 1/2 for every
t ∈ [0, 1); thus we have

1−
√

1− [w2 (ϑ)]2 ≥ 1
2
[
w2 (ϑ)

]2
.
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We deduce that

|R (ϑ)| ≤ 1
2

∣∣w2
ϑ (ϑ)

∣∣1 +
2√

1− [w2 (ϑ)]2

 ,

and again (55) holds for an appropriate constant c since
∣∣w2 (ϑ)

∣∣ < 1
2 . This proves the first assertion

of the lemma.

Step 2 (proof of (54) under special assumptions). To prove assertion (54) we first make the
further assumption that there exist N disjoint open intervals (αi, βi) such that

0 = α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αN < βN = 2π ,

and w (ϑ) = (0, 0) if and only if ϑ ∈ [0, 2π] \ ∪N
i=1 (αi, βi). Fix α, β ∈ (0, 2π) such that w (α) 6= (0, 0)

and w (β) 6= (0, 0). If α, β ∈ (αi, βi) for some i ∈ {1, 2, . . . , N}, then, using an argument similar to
that of the first part of Lemma 19, we have

Aw (β)−Aw (α) = Arg w (β)−Arg w (α) . (56)

Otherwise, if there exists i ∈ {1, 2, . . . , N} such that

αi < α < βi ≤ αi+1 < β < βi+1 , (57)

then we apply (56) to the interval (α, βi − ε) to obtain

Aw (βi − ε)−Aw (α) = Arg w (βi − ε)−Arg w (α) .

In the limit as ε→ 0+, since when w (ϑ) ∈ γ+\ {(0, 0)} then Arg w (ϑ) ∈
(
−π

2 ,
π
2

)
, we obtain

Aw (βi)−Aw (α) = ±π
2
−Arg w (α) , (58)

where the sign + holds if w2 (ϑ) > 0 as ϑ→ β−i , and the sign − holds otherwise. Similarly, we have

Aw (β)−Aw (αi+1) = Arg w (β)−
(
±π

2

)
(59)

and, adding side by side (58) and (59), yields

Aw (β)−Aw (α) = Arg w (β)−Arg w (α) + kπ,

where k ∈ {−1, 0, 1}. The general case, when (57) is not necessarily satisfied, follows from the previous
case by iteration.

Step 3 (proof of (54)). Let w : [0, 2π] → γ+ be a Lipschitz-continuous map. Let {Ij}j∈N be a
sequence of disjoint open intervals (possibly empty) such that w (ϑ) 6= (0, 0) if and only if ϑ ∈ ∪j∈NIj .
For every h ∈ N we define

wh (ϑ) :=
{
w (ϑ) if ϑ ∈ ∪h

j=1Ij ,

(0, 0) if ϑ /∈ ∪h
j=1Ij .

Then the sequence of Lipschitz constants Lh of wh is bounded. Moreover wh converges uniformly
to w in [0, 2π], as h → +∞, and the corresponding sequence {Rh (ϑ)}h∈N converge to R (ϑ) almost
everywhere in [0, 2π]. Therefore, integrating (53), we deduce that {Awh

(ϑ)}h∈N converges to Aw (ϑ)
uniformly in [0, 2π].
Let α, β ∈ [0, 2π] be such that w (α) 6= (0, 0) and w (β) 6= (0, 0). For h large enough we also have
wh (α) = w (α) 6= (0, 0) and wh (β) = w (β) 6= (0, 0) and, by the previous step,

Awh
(β)−Awh

(α) = Arg w (β)−Arg w (α) + khπ .

Since the sequence {kh} is bounded, we can pass to the limit in a subsequence and we arrive at the
conclusion (54).
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Lemma 28 Under the same assumptions of the previous Lemma 27, for every ϑ ∈ [0, 2π] we have

w (ϑ) = 2 cosAw (ϑ) (cosAw (ϑ) , sinAw (ϑ)) . (60)

Proof. Recall that w (0) = (2, 0) and so Arg w (ϑ) = 0. By Lemma 27, if w (ϑ) 6= (0, 0), then
there exists kϑ ∈ Z such that Arg w (ϑ) = Aw (ϑ) + kϑπ. By (52) we deduce the conclusion{

w1 (ϑ) = 2 cos2 Arg w (ϑ) = 2 cos2Aw (ϑ)
w2 (ϑ) = sin 2 Arg w (ϑ) = sin 2Aw (ϑ) = 2 sinAw (ϑ) · cosAw (ϑ)

.

If w (ϑ0) = (0, 0) and there exists a sequence ϑi → ϑ0 such that w (ϑi) 6= (0, 0) for every i ∈ N, then
(60) holds for ϑ = ϑi. Since Aw (ϑ) is a continuous function, (60) holds for ϑ = ϑ0 as well.

If w (ϑ0) = (0, 0) and a sequence ϑi → ϑ0 such that w (ϑi) 6= (0, 0) for every i ∈ N does not exist,
then there exists an interval (ϑ0 − δ, ϑ0 + δ), with δ > 0, such that w (ϑ) is identically equal to (0, 0)
in (ϑ0 − δ, ϑ0 + δ). In this case let us denote by (α, β) the largest interval containing ϑ0 with this
property; since R (ϑ) = 0 in (α, β) we have Aw (α) = Aw (ϑ0). On the other hand (60) holds for ϑ = α
since (α, β) is an extremal interval; hence

w (ϑ0) = (0, 0) = w (α) = 2 cosAw (α) (cosAw (α) , sinAw (α))

= 2 cosAw (ϑ0) (cosAw (ϑ0) , sinAw (ϑ0)) .

The next lemma is similar to the “umbrella” Lemma 22, with the main difference that here the
starting point of the “umbrella-stick” is placed at a boundary point of the circle γ+.

Lemma 29 (The “umbrella” lemma for the “eight” curve) Let w : [0, 2π] → γ+ be a Lips-
chitz continuous curve. Assume that there exist α, β ∈ [0, 2π], α < β, such that Aw (α) = Aw (β).
Then, for every ε > 0, there exists a Lipschitz-continuous map w̃ : S (α, β) → R2 satisfying the
boundary conditions 

w̃ (1, ϑ) = w (ϑ) ∀ϑ ∈ [α, β] ,
w̃ (%, α) = %w (α) ∀ % ∈ [0, 1] ,
w̃ (%, β) = %w (β) ∀ % ∈ [0, 1] ,

(note that w (α) = w (β)) and such that∫
S(α,β)

|detDw̃ (x)| dx < ε .

Proof. For fixed h ∈ N we set

w̃h (%, ϑ) := 2% cosϕh (%, ϑ) (cosϕh (%, ϑ) , sinϕh (%, ϑ)) ,

where
ϕh (%, ϑ) := %hAw (ϑ) +

(
1− %h

)
Aw (α) .

Let us test the boundary conditions of w̃ (%, ϑ). By Lemma 28, for every ϑ ∈ [α, β] we have

w̃h (1, ϑ) = 2 cosAw (ϑ) (cosAw (ϑ) , sinAw (ϑ)) =
(
w1

h (ϑ) , w2
h (ϑ)

)
= w (ϑ) ,

and, for every % ∈ [0, 1],

w̃h (%, α) = 2% cosAw (α) (cosAw (α) , sinAw (α)) = %
(
w1

h ((α)) , w2
h ((α))

)
= %w (α) .
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Similarly w̃h (%, β) = %w (β) for every % ∈ [0, 1]. Using an argument similar to the one used in Lemma
22, we can see that (we do not denote in the matrix the dependence on h)

detDw̃h (x) =
1
%

∣∣∣∣ w̃1
% (%, ϑ) w̃1

ϑ (%, ϑ)
w̃2

% (%, ϑ) w̃2
ϑ (%, ϑ)

∣∣∣∣ = 4%h cos2 ϕh (%, ϑ)A′w (ϑ) .

By Lemma 27 the function

A′w (ϑ) =
w1 (ϑ)w2

ϑ (ϑ)− w2 (ϑ)w1
ϑ (ϑ)

|w (ϑ)|2

is bounded; thus there exists a constant c such that∫
S(α,β)

|detDw̃h (x)| dx ≤ c

∫ 1

0
%h+1 d% =

c

h+ 2
,

and this concludes the proof of our lemma.

Lemma 30 Let w : [0, 2π] → γ+ be a Lipschitz-continuous map. If α, β ∈ [0, 2π], α < β, are such
that Aw (α) = Aw (β), and if the function Aw (ϑ) is piecewise strictly monotone in [α, β] (with a finite
number of monotonicity intervals), then∫ β

α

{
w1 (ϑ)w2

ϑ (ϑ)− w2 (ϑ)w1
ϑ (ϑ)

}
dϑ = 0 .

Proof. This result can be proved just as in Lemma 24.

The lemma below was established in [24].

Lemma 31 Let u : [0, 2π] → γ = γ+ ∪ γ− be a Lipschitz-continuous map. Assume that there exist
N disjoint open intervals Ij ⊂ [0, 2π] such that u (Ij) is contained either in γ+ or in γ− for every
j = 1, 2, . . . , N , and u (ϑ) = (0, 0) when ϑ /∈ ∪N

j=1Ij. Assume, in addition, that the function

ϑ −→ u1 (ϑ)u2
ϑ (ϑ)− u2 (ϑ)u1

ϑ (ϑ)

has piecewise constant sign in [0, 2π]. Then, for every ε > 0, there exists a Lipschitz-continuous map
w̃ : B1 → R2 satisfying the boundary condition w̃ (1, ϑ) = u (ϑ) for every ϑ ∈ [0, 2π], and such that∫

B1

|detDw̃ (x)| dx < ε+
1
2

N∑
j=1

∣∣∣∣∣
∫

Ij

{
u1 (ϑ)u2

ϑ (ϑ)− u2 (ϑ)u1
ϑ (ϑ)

}
dϑ

∣∣∣∣∣ .

7 The n−dimensional case

In this section we prove Theorem 9. We first recall a lower bound and an upper bound estimates
for TV (u,Ω) that have been obtained in [24].We note that Lemma 32 is a variant of Lemma 5.1 (see
also Lemma 2.3) by Marcellini [48], who considered the general quasiconvex case with the exponent p
below the critical growth exponent n, precisely n2/ (n+ 1) < p < n.

Lemma 32 (Lower bound - first estimate) Let u ∈ L∞ (Ω; Rn)∩W 1,p (Ω; Rn)∩W 1,∞
loc (Ω\ {0} ; Rn)

for some p ∈ (n− 1, n). The following estimate holds

TV (u,Ω) ≥
∣∣∣∣∫

Ω
detDũ (x) dx

∣∣∣∣ ,
whenever ũ : Ω → Rn is a Lipschitz-continuous map which agrees with u on the boundary of Ω, i.e.,
ũ (x) = u (x) on ∂Ω.
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Lemma 33 (Lower bound - second estimate) Let u ∈ L∞ (Ω; Rn)∩W 1,p (Ω; Rn)∩W 1,∞
loc (Ω\ {0} ; Rn)

for some p ∈ (n− 1, n). For every r > 0 such that Br ⊂ Ω the following estimate holds

TV (u,Ω) ≥
∫

Ω\Br

|detDu (x)| dx +
∣∣∣∣∫

Br

detDũ (x) dx
∣∣∣∣ , (61)

where ũ : Br → Rn is any Lipschitz-continuous map which coincides with u on the boundary of Br,
i.e., ũ (x) = u (x) on ∂Br.

Lemma 34 Let u ∈W 1,p (B1; Rn) ∩W 1,∞
loc (B1\ {0} ; Rn) for some p ∈ [1, n). If

1
%n−p

∫
B%

|Dτu|p dx ≤M0

for every % ∈ (0, 1) and for some positive constant M0, then there exists a constant c (n, p) and a
sequence %j → 0 such that

1

%n−p−1
j

∫
∂B%j

|Dτu|p dHn−1 ≤ c (n, p)M0 .

Proof. For every j ≥ 2 we have∫ 1/j

1/(2j)
d%

∫
∂B%

|Dτu|p dHn−1 ≤
∫

B1/j

|Dτu|p dx ≤
M0

jn−p
. (62)

Therefore there exist %j ∈
(

1
2j ,

1
j

)
such that∫

∂B%j

|Dτu|p dHn−1 ≤ 3M0

jn−p−1
; (63)

in fact, if (63) does not hold, then for every % ∈
(

1
2j ,

1
j

)
we should have∫

∂B%

|Dτu|p dHn−1 ≥ 3M0

jn−p−1

and thus ∫ 1/j

1/(2j)
d%

∫
∂B%

|Dτu|p dHn−1 ≥ 3M0

jn−p−1
· 1

2j
>

M0

jn−p
,

which is in contradiction with (62). Since 1
2j < %j <

1
j , we deduce that %j → 0, and that

(
1
j

)n−p−1
≤

%n−p−1
j if p ≥ n− 1, while

(
1
j

)n−p−1
≤ (2%j)

n−p−1 if p < n− 1. From (63) we finally have∫
∂B%j

|Dτu|p dHn−1 ≤ 3M0

jn−p−1
≤ c (n, p)M0 %

n−p−1
j ,

where c (n, p) = 3 if p ∈ [n− 1, n), c (n, p) = 3 · 2n−p−1 if p ∈ [1, n− 1).

We denote a generic element of the surface of the unit ball ∂B1 = Sn−1 by ω. Let ω0 ∈ Sn−1 be
fixed. For every j ∈ {1, 2, . . . , n− 1} let τj : Sn−1 − {ω0} → Sn−1 by a vector field of class C1 such
that, for every x ∈ Sn−1 − {ω0}, the set of vectors {τ1 (ω) , τ2 (ω) , . . . , τn−1 (ω)} is an orthonormal
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basis for the tangent plane to the surface Sn−1 at the point ω. Without loss of generality (up to a
change of sign to one of the vectors) we can assume that τ1 (ω) , τ2 (ω) , . . . , τn−1 (ω) have the property
that, if we denote by ν (ω) the exterior normal unit vector to Sn−1 at ω, then the system of vectors
{ν (ω) , τ1 (ω) , . . . , τn−1 (ω)} is a positively oriented basis of Rn. I.e.,

ν (ω) ∧ τ1 (ω) ∧ . . . ∧ τn−1 (ω) = e1 ∧ e2 ∧ . . . ∧ en

or, equivalently, that the determinant of the matrix whose column vectors are the components of
ν (ω) , τ1 (ω) , . . . , τn−1 (ω) with respect to e1, e2, . . . , en, is equal to 1.

If v : Sn−1 → Rn, v ∈ W 1,∞ (Sn−1; Rn
)
, v =

(
v1, v2, . . . , vn

)
, is a Lipschitz-continuous map, we

denote by Dτv the vector of Rn−1 whose components are Dτ1v,Dτ2v, . . . , Dτn−1v.

Lemma 35 Let v ∈ W 1,∞ (Sn−1; Rn
)
, η ∈ C1 ([0, 1]), with η (0) = 0 and let w (x) = η (|x|) v

(
x
|x|

)
.

For almost every x ∈ B1 we have

|Dw (x)|2 =
∣∣∣∣η′ (|x|) v( x

|x|

)∣∣∣∣2 +
η2 (|x|)
|x|2

∣∣∣∣Dτv

(
x

|x|

)∣∣∣∣2 ; (64)

detDw (x) =
η′ (|x|) ηn−1 (|x|)

|x|n−1

n∑
i=1

(−1)i−1 vi

(
x

|x|

)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(
x

|x|

)
. (65)

Moreover, if η (t) = t for every t ∈ [0, 1], then∫
B1

detDw (x) dx =
1
n

∫
∂B1

n∑
i=1

(−1)i−1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1 . (66)

Proof. Since v : Sn−1 → Rn is a Lipschitz-continuous map, then Dτv (ω) exists (in the classical
sense) Hn−1 almost everywhere on Sn−1 and the map x → v (x/ |x|) is classically differentiable for
almost every x ∈ B1. Let x 6= 0 be a point of B1 where v (x/ |x|) is differentiable; since the vectors

ν = ν

(
x

|x|

)
, τ1 = τ1

(
x

|x|

)
, . . . , τn−1 = τn−1

(
x

|x|

)
,

form a basis of Rn, for every i = 1, 2, . . . , n we have

Dwi (x) =
∂wi (x)
∂ν

ν +
n−1∑
j=1

∂wi (x)
∂τj

τj = η′ (|x|) vi

(
x

|x|

)
ν +

η (|x|)
|x|

n−1∑
j=1

∂vi (x/ |x|)
∂τj

τj ,

and thus we obtain (64). Moreover, Dw (x) is equal to the matrix
{
Dw1 (x) , Dw2 (x) , . . . , Dwn (x)

}
.

If we express each column of Dw (x) as linear combination of the elements of the basis {ν, τ1, . . . , τn−1},
since w (x) = η (|x|) v

(
x
|x|

)
, we obtain the matrix

Dw (x) =


η′ (|x|) v1

(
x
|x|

)
η′ (|x|) v2

(
x
|x|

)
. . . η′ (|x|) vn

(
x
|x|

)
η(|x|)
|x|

∂v1

∂τ1

(
x
|x|

)
η(|x|)
|x|

∂v2

∂τ1

(
x
|x|

)
. . . η(|x|)

|x|
∂vn

∂τ1

(
x
|x|

)
. . . . . . . . . . . .

η(|x|)
|x|

∂v1

∂τn−1

(
x
|x|

)
η(|x|)
|x|

∂v2

∂τn−1

(
x
|x|

)
. . . η(|x|)

|x|
∂vn

∂τn−1

(
x
|x|

)

 .
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Thus the determinant of the matrix Dw (x), computed by developing the first row, is given by (65).
By integrating over B1 both sides of (65), with η (t) = t for every t ∈ [0, 1], since η′(|x|)ηn−1(|x|)

|x|n−1 = 1,
we obtain∫

B1

detDw (x) dx =
∫

B1

n∑
i=1

(−1)i−1 vi

(
x

|x|

)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(
x

|x|

)
dx

=
∫ 1

0
d%

∫
∂B%

n∑
i=1

(−1)i−1 vi

(
x

|x|

)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(
x

|x|

)
dHn−1

=
∫ 1

0
%n−1d%

∫
∂B1

n∑
i=1

(−1)i−1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1

=
1
n

∫
∂B1

n∑
i=1

(−1)i−1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1 .

Lemma 36 Let Ω be an open set containing the origin. Assume that, for some p ∈ (n− 1, n),
u ∈W 1,p (Ω; Rn) ∩W 1,∞

loc (Ω\ {0} ; Rn) satisfies

sup
%>0

1
%n−p

∫
B%

|Dτu|p dx ≤M0

for a positive constant M0. Let v ∈W 1,∞ (Sn−1; Rn
)

be such that

lim
%→0+

max {|u (%ω)− v (ω)| : ω ∈ ∂B1} = 0 .

Then there exists a sequence %j → 0 such that

lim
j→+∞

∫
B1

detDwj (x) dx =
∫

B1

detDw (x) dx , (67)

where wj (x) := |x| u
(
%j

x
|x|

)
and w (x) := |x| v

(
x
|x|

)
.

Proof. Let %j be the real sequence converging to zero of Lemma 34. By assumption wj (x) :=

|x| u
(
%j

x
|x|

)
converges to w (x) := |x| v

(
x
|x|

)
uniformly in B1. Let us prove that wj weakly converge

in W 1,p (B1; Rn) to w. In fact, by (64) of Lemma 35 we have

|Dwj (x)|2 =
∣∣∣∣u(%j

x

|x|

)∣∣∣∣2 + %2
j

∣∣∣∣Dτu

(
%j

x

|x|

)∣∣∣∣2
and thus the Lp norm of Dwj remains bounded. In fact, by Lemma 34,∫

B1

|Dwj (x)|p dx ≤ c1 + c2%
p
j

∫
B1

∣∣∣∣Dτu

(
%j

x

|x|

)∣∣∣∣p dx
= c1 + c2%

p
j

∫ 1

0
dr

∫
∂Br

∣∣∣∣Dτu

(
%j

x

|x|

)∣∣∣∣p dHn−1

= c1 + c2%
p
j

∫ 1

0

rn−1

%n−1
j

dr

∫
∂B%j

|Dτu (y)|p dHn−1
y

= c1 +
c2

n%n−p−1
j

∫
∂B%j

|Dτu (y)|p dHn−1
y = c1 +

c2
n
c (n, p)M0 .
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By (65) we also have, with α = p/ (n− 1),∫
B1

|detDwj (x)|α dx ≤ c3%
α(n−1)
j

∫
B1

∣∣∣∣u(%j
x

|x|

)∣∣∣∣α ∣∣∣∣Dτu

(
%j

x

|x|

)∣∣∣∣α(n−1)

dx (68)

≤ c4%
α(n−1)
j %1−n

j

∫
∂B%j

|Dτu (y)|p dHn−1
y = c4

1
%n−1−p

j

∫
∂B%j

|Dτu (y)|p dHn−1
y ,

which is bounded, again by Lemma 34. Therefore, since α > 1, to obtain the conclusion (67) it is
sufficient to prove that

lim
j→+∞

∫
B1

ϕdetDwj (x) dx =
∫

B1

ϕ detDw (x) dx , ∀ϕ ∈ C1
0 (B1) . (69)

Since p > n−1, we apply Reshetnyak’s [59] weak continuity result on the matrix adjn−1Dwj of minors
(n− 1) × (n− 1) of Dwj , which weakly converge in L

p
n−1 to the corresponding matrix adjn−1Dw of

minors of Dw (see )(36)). By the uniform convergence of wj to w, for every ϕ ∈ C1
0 (B1) we get the

conclusion

lim
j→+∞

∫
B1

ϕdetDwj dx = lim
j→+∞

−
∫

B1

w1
j

∂
(
ϕ,w2

j , . . . , w
n
j

)
∂ (x1, x2, . . . , xn)

dx

= −
∫

B1

w1 ∂
(
ϕ,w2, . . . , wn

)
∂ (x1, x2, . . . , xn)

dx =
∫

B1

ϕ detDwdx .

Proof of Theorem 6. Let u ∈ L∞loc

(
Ω; R2

)
∩W 1,p (Ω; Rn) ∩W 1,∞

loc (Ω\ {0} ; Rn) for some p ∈
(n− 1, n). Let {εh}h∈N be a sequence converging to zero and consider the convolution uh := u ∗
ηεh

of u with a smooth mollifier ηεh
. For every h ∈ N, uh ∈ C1 (Ωh; Rn), where we set Ωh :=

{x ∈ Ω : dist (x, ∂Ω) > εh}. Moreover, for every Ω′ ⊂⊂ Ω\ {0}, uh → u uniformly in Ω′, Duh (x) →
Du (x) for every x ∈ Ω\E, where E is a Borel set of zero measure, and the sequence {uh}h∈N is
Lipschitz-continuos in Ω′, with a Lipschitz constant independent of h. Denote by N0 the set of real
numbers given by

N0 :=
{
% > 0 : Hn−1 (∂B% ∩ E) > 0

}
.

If Br ⊂⊂ Ω then we have

0 = |E ∩Br| =
∫ r

0
Hn−1 (∂B% ∩ E) d% ,

and thus the one-dimensional Lebesgue measure of N0 is equal to zero. We can repeat the proof of
Lemma 36 to reach the same conclusion for a sequence {%j}j∈N ⊂ (0, r), {%j}j∈N ∩N0 = ∅, %j → 0.
Since uh → u uniformly on B%j , Dτuh (x) → Dτu (x) Hn−1−almost everywhere on B%j , and the
sequence {uh}h∈N is Lipschitz-continuos on B%j with a Lipschitz constant independent of h, then
Dτuh → Dτu in Lq

(
∂B%j

)
for every q ≥ 1. Fixed ϕ ∈ C1

0 (Ω) and denoting by ν = ν (x) =
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(
ν1, ν2, . . . , νn

)
the exterior normal unit vector to ∂B%j , we have∫

Ω\B%j

u1 ∂
(
ϕ, u2, . . . , un

)
∂ (x1, x2, . . . , xn)

dx = lim
h→+∞

∫
Ω\B%j

u1
h

∂
(
ϕ, u2

h, . . . , u
n
h

)
∂ (x1, x2, . . . , xn)

dx

= − lim
h→+∞

{∫
Ω\B%j

ϕ
∂
(
u1

h, u
2
h, . . . , u

n
h

)
∂ (x1, x2, . . . , xn)

dx

+
∫

∂B%j

u1
h

n∑
i=1

(−1)i−1 ϕ
∂
(
u2

h, u
3
h, . . . , u

n
h

)
νi

∂ (x1, . . . , xi−1, xi+1, . . . , xn)
dHn−1

}

= −
∫

Ω\B%j

ϕ detDudx

−
∫

∂B%j

u1
n∑

i=1

(−1)i−1 ϕ
∂
(
u2, u3, . . . , un

)
νi

∂ (x1, . . . , xi−1, xi+1, . . . , xn)
dHn−1 .

By the analytic expression (78) of ν, together with (iii) of Lemma 37, with the notation wj (x) :=

|x| u
(
%j

x
|x|

)
, we obtain

∫
Ω\B%j

u1 ∂
(
ϕ, u2, . . . , un

)
∂ (x1, x2, . . . , xn)

dx = −
∫

Ω\B%j

ϕdetDudx−
∫

∂B%j

u1ϕ
∂
(
u2, u3, . . . , un

)
∂ (τ1, τ2, . . . , , τn−1)

dHn−1

= −
∫

Ω\B%j

ϕ detDudx−
∫

∂B1

w1
jϕ (%jω)

∂
(
w2

j , w
3
j , . . . , w

n
j

)
∂ (τ1, τ2, . . . , , τn−1)

dHn−1

= −
∫

Ω\B%j

ϕ detDudx−
∫

∂B1

w1
jϕ (%jω)

n∑
i=1

(−1)i−1
∂
(
w2

j , w
3
j , . . . , w

n
j

)
νi

∂ (x1, . . . , xi−1, xi+1, . . . , xn)
dHn−1

= −
∫

Ω\B%j

ϕ detDudx−
∫

B1

∂
(
w1

jϕ
(
%j

x
|x|

)
, w2

j , . . . , w
n
j

)
∂ (x1, x2, . . . , xn)

dx

= −
∫

Ω\B%j

ϕ detDudx−
∫

B1

ϕ

(
%j

x

|x|

)
detDwj dx−

∫
B1

w1
j

∂
(
ϕ
(
%j

x
|x|

)
, w2

j , . . . , w
n
j

)
∂ (x1, x2, . . . , xn)

dx . (70)

As j → +∞ the quantity ϕ
(
%j

x
|x|

)
converges to ϕ (0) uniformly in B1. Then, by the bound (68) and

by (69), we obtain

lim
j→+∞

∫
B1

ϕ

(
%j

x

|x|

)
detDwj (x) dx =

∫
B1

ϕ (0) detDw (x) dx .

Moreover, as in the proof of Lemma 36, the sequence {|Dwj |}j∈N is bounded in Lp (B1) and∣∣∣∣∣∣
∫

B1

w1
j

∂
(
ϕ
(
%j

x
|x|

)
, w2

j , . . . , w
n
j

)
∂ (x1, x2, . . . , xn)

dx

∣∣∣∣∣∣ ≤ c1%j

∫
B1

|wj | |Dwj |n−1

|x|
dx ≤ c2%j ,

which converges to zero as j → +∞. Therefore, since detDu ∈ L1 (Ω), letting j → +∞ in (70) we
obtain ∫

Ω
u1 ∂

(
ϕ, u2, . . . , un

)
∂ (x1, x2, . . . , xn)

dx = −
∫

Ω
ϕ detDudx− ϕ (0)

∫
B1

detDwdx ,
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with w (x) := |x| v
(

x
|x|

)
; i.e.,

DetDu = detDu+m0δ0 , where m0 =
∫

B1

detDwdx .

Then, the total variation |DetDu| (Ω) of DetDu is equal to

|DetDu| (Ω) =
∫

Ω
|detDu| dx+ |m0| ,

which agrees with the conclusion (16).

Proof of Theorem 9. Step 1 (lower bound). We first notice that, by virtue of (13), there
exists r > 0 such that u ∈ L∞ (Br; Rn). Let p ∈ (n− 1, n). Let %j → 0 be the sequence of the Lemma
34, and consider j ∈ N sufficiently large so that B%j ⊂ Br ⊂ Ω. By the estimate (61) of Lemma 33 we
have

TV (u,Ω) ≥
∫

Ω\B%j

|detDu (x)| dx +

∣∣∣∣∣
∫

B%j

detDũ (x) dx

∣∣∣∣∣ , (71)

where ũ : B%j → Rn is any Lipschitz-continuous map which assumes the boundary value ũ (x) = u (x)

on ∂B%j . In particular, we consider the extension ũ = w̃j given by w̃j (x) := |x|
%j
u
(
%j

x
|x|

)
, and, using

a change of variables, we have∫
B%j

detDw̃j (x) dx =
∫

B1

detDwj (x) dx ,

where wj (x) := |x| u
(
%j

x
|x|

)
. Letting j → +∞ in (71), by Lemma 36 we get

TV (u,Ω) ≥ lim inf
j→+∞

∫
Ω\B%j

|detDu (x)| dx + lim
j→+∞

∣∣∣∣∣
∫

B%j

detDw̃j (x) dx

∣∣∣∣∣
=
∫

Ω
|detDu (x)| dx + lim

j→+∞

∣∣∣∣∫
B1

detDwj (x) dx
∣∣∣∣ =

∫
Ω
|detDu (x)| dx +

∣∣∣∣∫
B1

detDw (x) dx
∣∣∣∣ ,

where w (x) := |x| v
(

x
|x|

)
. We represent detDw (x) using (66) of Lemma 35, and we obtain the lower

bound

TV (u,Ω) ≥
∫

Ω
|detDu (x)| dx +

∣∣∣∣∫
B1

detDw (x) dx
∣∣∣∣ =

∫
Ω
|detDu (x)| dx

+
1
n

∣∣∣∣∣
∫

∂B1

n∑
i=1

(−1)i−1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1

∣∣∣∣∣ .
Step 2 (upper bound in the radially symmetric case). Here we assume that u (x) :=

v (x/ |x|). Let %h be a sequence of positive numbers converging to zero as h→ +∞ and let h ∈ N be
sufficiently large so that B%h

⊂ Ω. As before, we use the notation w (x) := |x| v (x/ |x|), and we define

uh (x) :=


|x|
%h
v
(

x
|x|

)
= 1

%h
w (x) = w

(
x
%h

)
if x ∈ B%h

,

u (x) = v
(

x
|x|

)
if x ∈ Ω\B%h

.
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Then {uh}h∈N converges to u in in the strong norm topology of W 1,p (Ω; Rn). Therefore we can use
the definition (22) of TV s (u,Ω) and, since detDu (x) = 0 in Ω\B%h

we have

TV s (u,Ω) ≤ lim inf
h→+∞

∫
B%h

∣∣∣∣ 1
%n

h

detDw
(
x

%h

)∣∣∣∣ dx =
∫

B1

|detDw (x)| dx =
∣∣∣∣∫

B1

detDw (x) dx
∣∣∣∣ ,
(72)

where the last equality follows from the fact that, by assumption, detDw (x) has constant sign in B1.
In fact, by (65) of Lemma 35, with η (|x|) = |x|, we have

detDw (x) =
n∑

i=1

(−1)i−1 vi

(
x

|x|

)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(
x

|x|

)
,

and thus, by the sign condition (18), the left hand side has constant sign as well as the right hand
side. Therefore, from Step 1 and from (72), when u (x) := v (x/ |x|) we get

TV (u,Ω) = TV s (u,Ω) = TV (v,B1)

=
1
n

∣∣∣∣∣
∫

∂B1

n∑
i=1

(−1)i+1 vi (ω)
∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

(ω) dHn−1

∣∣∣∣∣ .
We explicitly observe that, as a consequence of what we have shown in Steps 1 and 2, we have achieved
the proof of Theorem 11 in the radially symmetric case; moreover, the representation formula for
TV (v,Ω) is independent of the open set Ω containing the origin.

Step 3 (upper bound in the general case). By Lemma 34 there exists a sequence (%h)h∈N,
converging to zero as h→ +∞, and such that

1

%n−p−1
h

∫
∂B%h

|Dτu|p dHn−1 ≤ c (n, p)M0 . (73)

For every h ∈ N, we denote by σh a real sequence in (0, 1) to be chosen later (see (76)). For every
h = 1, 2, . . ., let ηh (%) be a cut-off function such that ηh (%) = 1 if 0 ≤ % ≤ %h (1− σh), ηh (%) = 0
if %h ≤ % ≤ 1, ηh (%) is linear in the interval [%h (1− σh) , %h]. Fix ε > 0. From Step 2 there exists a
Lipschitz-continuous map w : B1 → Rn such that w (x) := v

(
x
|x|

)
on a neighborhood of ∂B1 and∫

B1

|detDw (x)| dx < TV (v,B1) + ε . (74)

Then, with the notation ω := x/ |x|, we define

uh (x) :=


w
(

x
%h(1−σh)

)
if 0 ≤ |x| ≤ %h (1− σh) ,

ηh (|x|) v (ω) + [1− ηh (|x|)] u (%hω) if %h (1− σh) < |x| < %h,
u (x) if x ∈ Ω\B%h

. (75)

We first prove that {uh}h∈N converges to u in the strong topology of W 1,p (Ω; Rn). In fact∫
Ω
|uh − u|p dx =

∫
B%h

|uh − u|p dx ≤ c

∫
B%h(1−σh)

∣∣∣∣w( x

%h (1− σh)

)∣∣∣∣p dx
+ c

∫
B%h

\B%h(1−σh)

{∣∣∣∣v( x

|x|

)∣∣∣∣p +
∣∣∣∣u(%h

x

|x|

)∣∣∣∣p} dx+ c

∫
B%h

|u (x)|p dx

≤ c%n
h

{
‖w‖p

L∞(B1) + ‖v‖p
L∞(∂B1) + ‖u (%hω)− v (ω)‖p

L∞(∂B1)

}
+ c

∫
B%h

|u (x)|p dx,

34



which goes to zero as h → +∞, since %h → 0 and ‖u (%hω)− v (ω)‖p
L∞(∂B1) → 0. Moreover, by (64)

of Lemma 35, we have∫
Ω
|Duh −Du|p dx ≤ c1

∫
B%h(1−σh)

∣∣∣∣Dw( x

%h (1− σh)

)∣∣∣∣p dx+ c1

∫
B%h

\B%h(1−σh)

|Dτv|p

|x|p
dx

+ c1

∫
B%h

\B%h(1−σh)

∣∣∣∣Dτu

(
%h

x

|x|

)∣∣∣∣p dx+
c1
%p

hσ
p
h

∫
B%h

\B%h(1−σh)

∣∣∣∣u(%h
x

|x|

)
−v
(
x

|x|

)∣∣∣∣p dx
+ c1

∫
B%h

|Du|p dx

≤ c2%
n−p
h (1− σh)n−p

∫
B1

|Dw (x)|p dx+ c2

∫
B%h

\B%h(1−σh)

1
|x|p

dx

+ c2

∫ %h

%h(1−σh)
dr

∫
∂Br

∣∣∣∣Dτu

(
%h

x

|x|

)∣∣∣∣p dHn−1 + c2
%n−p

h

σp−1
h

‖u (%hω)− v (ω)‖p
L∞(∂B1)

+ c1

∫
B%h

|Du|p dx

≤ c3%
n−p
h +

c3

%n−1
h

%n
hσh

∫
∂B%h

|Dτu (y)|p dHn−1
y + c3

%n−p
h

σp−1
h

‖u (%hω)− v (ω)‖p
L∞(∂B1)

+ c1

∫
B%h

|Du|p dx .

By the bound (73) we obtain∫
Ω
|Duh −Du|p dx ≤ c (w, v,M0) %n−p

h + c
%n−p

h

σp−1
h

‖u (%hω)− v (ω)‖p
L∞(∂B1) + c1

∫
B%h

|Du|p dx

and this quantity goes to zero as h→ +∞ if we assume that

σh := %
n−p
p−1

h (76)

(we use here the fact that p < n). Therefore, as h → +∞, uh converges to u in the strong norm
topology of W 1,p (Ω; Rn). Thus, by (74) and by the lower semicontinuity of TV s (u,Ω) with respect
to the strong convergence in W 1,p (Ω; Rn), we have

TV (u,Ω) ≤ TV s (u,Ω) ≤ lim inf
h→+∞

∫
Ω
|detDuh (x)| dx

≤
∫

B1

|detDw (x)| dx+
∫

Ω
|detDu (x)| dx+ lim inf

h→+∞

∫
B%h

\B%h(1−σh)

|detDuh (x)| dx

≤ TV (v,B1) + ε+
∫

Ω
|detDu (x)| dx+ lim inf

h→+∞

∫
B%h

\B%h(1−σh)

|detDuh (x)| dx .

If we prove that

lim
h→+∞

∫
B%h

\B%h(1−σh)

|detDuh (x)| dx = 0 , (77)

then, letting ε→ 0+ we reach the upper bound

TV (u,Ω) ≤ TV s (u,Ω) ≤ TV (v,B1) +
∫

Ω
|detDu (x)| dx
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which, together to the lower bound in Step 1, yields the conclusion

TV (u,Ω) = TV s (u,Ω) = TV (v,B1) +
∫

Ω
|detDu (x)| dx .

Therefore it remains to prove (77). To this aim, arguing as in the proof of (65), we can evaluate
detDuh (x) by taking first the derivative of uh with respect to the radial direction, and then the
tangential derivatives. We get∫

B%h
\B%h(1−σh)

|detDuh (x)| dx ≤ c1
%hσh

∫
B%h

\B%h(1−σh)

{∣∣∣∣u(%h
x

|x|

)
− v

(
x

|x|

)∣∣∣∣ ·
·

[∣∣∣∣Dτv

(
x

|x|

)∣∣∣∣n−1

+
∣∣∣∣Dτu

(
%h

x

|x|

)∣∣∣∣n−1
]}

dx

≤ c1
%hσh

‖u (%hω)− v (ω)‖L∞(∂B1) ·

{
c2

∫
B%h

\B%h(1−σh)

1
|x|n−1 dx+

%n
hσh

%n−1
h

∫
∂B%h

|Dτu|n−1 dHn−1

}

≤ c3 ‖u (%hω)− v (ω)‖L∞(∂B1)

{
c2 +

∫
∂B%h

|Dτu|n−1 dHn−1

}
.

Finally, since by (73) we also have

∫
∂B%h

|Dτu|n−1 dHn−1 ≤ c4

{
1

%n−p−1
h

∫
∂B%h

|Dτu|p dHn−1

}n−1
p

≤ c5 ,

then, from the above inequality, we deduce that∫
B%h

\B%h(1−σh)

|detDuh (x)| dx ≤ c6 ‖u (%hω)− v (ω)‖L∞(∂B1) ,

which converges to zero as h→ +∞. Thus (77) is proved.

We conclude this section with some algebraic results used in the paper. We introduce some
notations. Denote Mm×n by the family of m × n matrices. If A is an n × n matrix (A ∈ Mn×n),
Xi,j (A) is the matrix obtained from A by deleting the i−th row and the j−th column of A. If S is
an (n− 1)× n matrix (S ∈M (n−1)×n), X,j (S) stands for the matrix obtained from S by deleting the
j−th column of S. If T is an n× (n− 1) matrix (T ∈Mn×(n−1)), then Xi, (T ) is the matrix obtained
from T by deleting the i−th row of T .

The properties stated in the next two lemmas are known and we do not give their proofs. We refer
the reader for instance to the book by Cartan [14].

Lemma 37 (Algebraic lemma) The following properties hold:

(i) Let ξ, η ∈ Rn and let B ∈Mn×n. If Aij = ξiηj and A = (Aij) ∈Mn×n, then

det (A+B) =
n∑

i,j=1

(−1)i+j ξiηj det (Xi,j (B)) + det (B) .

(ii) Let T ∈ Mn×(n−1) be a matrix whose column vectors {τ1, τ2, . . . , τn−1} form an orthonormal
basis of Rn. Then

n∑
i=1

[det (Xi, (T ))]2 = 1 .
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(iii) Let S ∈M (n−1)×n and T ∈Mn×(n−1). Then

det (S · T ) =
n∑

i=1

det (X,i (S)) · det (Xi, (T )) .

As in Section 2, fixed ω0 ∈ ∂B1, for every j ∈ {1, 2, . . . , n− 1} we consider a vector field τj :
∂B1\ {ω0} → Rn of class C1 such that the set of vectors {τ1 (x) , τ2 (x) , . . . , τn−1 (x)} is an orthonormal
basis for the tangent plane to the surface ∂B1 at the point x, for every x ∈ ∂B1\ {ω0}. For every
x ∈ ∂B1\ {ω0} we denote by T (x) the n × (n− 1) matrix whose columns are given by the vectors
{τ1 (x) , τ2 (x) , . . . , τn−1 (x)}. Consider the vector

ν (x) :=
n∑

i=1

(−1)i+1 det (Xi, (T (x))) ei . (78)

Up to a change of sign to one of the vectors τ1 (x) , τ2 (x) , . . . , τn−1 (x), we can assume that, at every
x ∈ ∂B1\ {ω0}, ν (x) represent the exterior normal unit vector to ∂B1. That ν (x) is a normal unit
vector to the surface ∂B1 follows from the following result.

Lemma 38 (On the normal unit vector) For every x ∈ ∂B1\ {ω0} the vector ν (x) has norm
equal to 1 and it is orthogonal to the vectors τ1 (x) , τ2 (x) , . . . , τn−1 (x); i.e.,{

|ν (x)| = 1 ∀ x ∈ ∂B1\ {ω0} ,
〈ν (x) , τi (x)〉 = 0 ∀ x ∈ ∂B1\ {ω0} , ∀ i = 1, 2, . . . , n− 1.

8 Relaxation in the general polyconvex case

As mentioned in Section 4, the characterization of TV (u,Ω) may be viewed within a broader context,
namely as part of a program to search for the description and identification of the defect measure
obtained through relaxation of energies when there is a gap between the space of coercivity and the
space guaranteeing apriori continuity. Indeed, TV (u,Ω) is a particular case of a functional of the type
Fp,q(u,Ω) in (33).

Here formally we may consider

F (u,Ω) := inf
{

lim inf
h→+∞

∫
Ω
g (M (Duh (x))) dx : (79)

uh ⇀ u weakly in W 1,p (Ω; Rn) , uh ∈W 1,n (Ω; Rn)
}
.

Then F (u,Ω) is the relaxed functional of the integral functional

F (u,Ω) :=
∫

Ω
g (M (Du)) dx ,

where u : Ω → Rn. The vector-valued map M (Du) of minors of Du is given by

M (Du) :=
(
Du, adj2Du, . . . , adjn−1Du,detDu

)
∈ RN ,

where, for j = 2, . . . , n− 1, adjjDu denotes the matrix of all minors j × j of Du and N =
∑n

j=1

(
n
j

)2
(in particular N = 5 if n = 2). Finally g : RN → [0,+∞) is a convex function satisfying the growth
conditions

g∞ |det ξ| ≤ g (M (ξ)) ≤ L (1 + |ξ|p) + g∞ |det ξ| , (80)

37



for some constants L ≥ 0, g∞ > 0, for all matrices ξ ∈ Rn×n and for some exponent p ∈ [1, n).
A particularly important case of F (u,Ω) is the area integral

A (u,Ω) :=
∫

Ω

√
1 + |M (Du)|2 dx ,

which in the 2− d setting reduces to

A (u,Ω) =
∫

Ω

√
1 + |Du (x)|2 + |detDu (x)|2 dx .

Theorem 39 below has been proved by Marcellini [47], [48] for p > n2/ (n+ 1) and by Dacorogna
and Marcellini [20] for p > n − 1 (p ≥ 1 if n = 2). A limiting case, with p = n − 1, has been
considered under different assumptions by Acerbi and Dal Maso [2], Celada and Dal Maso [15], Dal
Maso and Sbordone [22] and by Fusco and Hutchinson [30]. The relaxation in this context has been
first considered by Fonseca and Marcellini [29].

Theorem 39 (Lower semicontinuity below the critical exponent) Let Ω be an open set of Rn.
Let g : RN → R be a nonnegative convex function. Then

lim inf
h→+∞

∫
Ω
g (M (Duh)) dx ≥

∫
Ω
g (M (Du)) dx ,

for every sequence uh which converge to u in the weak topology of W 1,p (Ω; Rn) for some p > n − 1,
with u, uh ∈W 1,n

loc (Ω; Rn) for every h ∈ N.

It has been shown in [9] that, if p > n − 1, then F (u, ·) is a Radon measure and, for every open
set A ⊂ Ω,

F (u,A) = g (M (Du))LnbA+ µs (A) ,

where µs is a finite Radon measure, singular with respect to the Lebesgue measure Ln. A longtime
question has been to identify the singular measure µs. In Theorem 40 we achieve this for the class of
maps u ∈W 1,∞

loc (Ω\ {0} ; Rn) considered in Section 2. Precisely, using Theorem 1 in 2−d and Theorem
9 for the general n−d case, we can prove the following relaxation result.

Theorem 40 (Relaxation in n−d) Let Ω be an open set of Rn, n ≥ 2, containing the origin. Let
u ∈W 1,p (Ω; Rn) ∩W 1,∞

loc (Ω\ {0} ; Rn) for some p ∈ (n− 1, n), such that, for a positive constant M0,

sup
%>0

1
%n−p

∫
B%

|Du|p dx ≤M0 .

Let v : ∂B1 = Sn−1 → Rn, v ∈W 1,∞ (Sn−1; Rn
)
, be a Lipschitz-continuous map such that

lim
%→0+

max
{∣∣∣∣u(% x|x|

)
− v

(
x

|x|

)∣∣∣∣ : x ∈ B1\ {0}
}

= 0 .

Moreover, if n = 2 we assume that the map v has values in the set Γ defined in (5); while, if n ≥ 3,
then we assume that the quantity

n∑
i=1

(−1)i+1 vi∂
(
v1, . . . , vi−1, vi+1, . . . , vn

)
∂ (τ1, τ2, . . . , τn−1)

has constant sign Hn−1−almost everywhere on ∂B1. Then the relaxed functional F (u,Ω), defined in
(79) with g : RN → [0,+∞) satisfying (80), is given by

F (u,Ω) =
∫

Ω
g (M (Du (x))) dx + g∞TV (v,B1) ,

where the total variation TV (v,B1) of v is given in (20).
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Proof. Step 1 (lower bound). Consider a sequence {uh}h∈N of class W 1,n (Ω; Rn) converging
to u in the weak topology of W 1,p (Ω; Rn), as h → +∞. Let % ∈ (0, 1) be fixed. By Theorem 39, on
the lower semicontinuity below the critical exponent, using the bound on the left hand side of (80),
we have

lim inf
h→+∞

F (uh,Ω) ≥ lim inf
h→+∞

∫
Ω\B%

g (M (Duh (x))) dx+ lim inf
h→+∞

g∞

∫
B%

|detDuh (x)| dx

≥
∫

Ω\B%

g (M (Du (x))) dx+ g∞TV (v,B1) .

Letting %→ 0 we deduce the lower bound

F (u,Ω) ≥
∫

Ω
g (M (Du (x))) dx+ g∞TV (v,B1) .

Step 2 (upper bound). For every ε > 0 there exists a Lipschitz-continuous map w : B1 → Rn

satisfying ∫
B1

|detDw (x)| dx < ε + TV (v,B1) (81)

and such that w = v on ∂B1. Indeed, if n = 2 we use (??), while if n ≥ 3 we use (74). By Lemma 34
there exists a sequence (%h)h∈N, converging to zero as h→ +∞, and such that

1

%n−p−1
h

∫
∂B%h

|Dτu|p dHn−1 ≤ c (n, p)M0 .

For every h ∈ N we set σh := %
n−p
p−1

h , and we define uh (x) as in (75). As in Step 3 of the proof of
Theorem 9, we can show that

lim
h→+∞

∫
B%h

\B%h(1−σh)

|Duh|p dx = lim
h→+∞

∫
B%h

\B%h(1−σh)

|detDuh (x)| dx = 0 (82)

and, by also using the inequality on the right hand side of (80), we can prove the upper bound

F (u,Ω) ≤ lim inf
h→+∞

F (uh,Ω) ≤
∫

Ω
g (M (Du (x))) dx

+ lim inf
h→+∞

∫
B%h

\B%h(1−σh)

{L (1 + |Duh|p) + g∞ |detDuh|} dx

+ g∞

∫
B1

|detDw (x)| dx .

By (81) and (82), letting ε go to zero, we conclude that

F (u,Ω) ≤
∫

Ω
g (M (Du (x))) dx+ g∞TV (v,B1) .
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9 A relevant n−dimensional class of maps

The singular map u : Rn\ {0} → Rn, defined for x 6= 0 by

u (x) =
x

|x|
, (83)

belongs to the class W 1,p (B1; Rn) ∩W 1,∞
loc (Ω\ {0} ; Rn) for every p ∈ [1, n), but u /∈ W 1,n (B1; Rn).

In this case a formula for the total variation TV (u,Ω) was already known. Indeed, (84) below has
been first given in 1986 by Marcellini [48] (see also Fonseca and Marcellini [29]). In this section we
generalize the formula to more general maps.

To deduce (84) using the tools developed in this work, write u (x) = v (x/ |x|), where the map v :
∂B1 → Rn is the identity on ∂B1 = Sn−1. The map ṽ (x) = |x| · v (x/ |x|) = x is the smooth extension
of u according with Corollary 12. Clearly Dṽ (x) = Id is the identity matrix and detDṽ (x) = 1.
Therefore, if Ω is any open set of Rn containing the origin, Corollary 12 gives

TV

(
x

|x|
,Ω
)

=
∣∣∣∣∫

B1

detDṽ (x) dx
∣∣∣∣ =

∫
B1

dx = |B1| = ωn . (84)

Next we generalize the structure (83) and we consider a class of maps recently studied by Jerrard
and Soner [43]. Consider a function w ∈ C1 (Ω; Rn) (or, more generally, a locally Lipschitz-continuous
map w : Ω → Rn classically differentiable at x = 0) such that detDw (0) 6= 0. Let Ω be an open set
containing the origin and define u : Ω\ {0} → Rn by

u (x) :=
w (x)− w (0)
|w (x)− w (0)|

. (85)

Note that the condition detDw (0) 6= 0 ensures the existence of r > 0 such that w (x) 6= w (0) for
every x ∈ Br\ {0}, and in the sequel we limit ourselves to open sets Ω ⊂ Br containing the origin.

First we show that, without loss of generality, we may assume that Dw (0) = Id is the identity
matrix. Indeed, by assumption, the gradient Dw (0) of w at x = 0 is a nonsingular matrix n× n; let
us denote by A := Dw (0) this matrix, and by A−1 its inverse matrix. Define on Ω\ {0}

z (x) := u
(
A−1x

)
=

w
(
A−1x

)
− w (0)

|w (A−1x)− w (0)|
, ∀ x ∈ Ω\ {0} .

Let {uh}h∈N be a sequence in W 1,n (Ω; Rn) which converges, as h→ +∞, to u weakly in W 1,p (Ω; Rn).
Then zh (x) := uh

(
A−1x

)
converges weakly in W 1,p (Ω; Rn) to z (x) = u

(
A−1x

)
. Since∫

A(Ω)
|detDzh (x)| dx =

∫
A(Ω)

∣∣detDuh(A−1x)
∣∣ · ∣∣detA−1

∣∣ dx =
∫

Ω
|detDuh (x)| dx ,

we deduce that TV (z,A (Ω)) = TV (u,Ω). We also have
[
Dw

(
A−1x

)]
x=0

= Dw (0)·A−1 = Id , where
Id is the identity matrix. Therefore, the above computations show that, without loss of generality, to
evaluate the total variation TV (u,Ω) of the Jacobian determinant we may assume that

A = Dw (0) = Id . (86)

Under (86), with u given in (85), we define v : ∂B1 → Rn by v (y) := y, for every y ∈ ∂B1. We
have

lim
%→0

max {|u (%y)− v (y)| : x ∈ B1\ {0}} = 0 . (87)
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Indeed, since w is differentiable at x = 0, we obtain

u (%y)− v (y) =
w (%y)− w (0)
|w (%y)− w (0)|

− y =
%y + o (%)
|%y + o (%)|

− y =
y + o(%)

%∣∣∣y + o(%)
%

∣∣∣ − y ,

which converges to zero as %→ 0. Thus assertion (87) is proved.
Moreover, for every x ∈ B%\ {0} with B% compactly contained in Ω, if we denote by L the Lipschitz

constant of w in B%, we have

|Du (x)| ≤ c1
|Dw (x)|

|w (x)− w (0)|
≤ c1

L

|w (x)− w (0)|
,

for a constant c1. Since A = Dw (0) = Id, then

|w (x)− w (0)| = |Dw (0) · x+ o (|x|)| = |x+ o (|x|)| ≥ 1
2
|x|

for every x ∈ B%0 with %0 sufficiently small; thus

|Du (x)| ≤ c1
L

|w (x)− w (0)|
≤ 2c1L

|x|
.

Also, for every p < n, we have

sup
0<%≤%0

1
%n−p

∫
B%

|Du|p dx ≤ sup
0<%≤%0

c2
%n−p

∫
B%

1
|x|p

dx

≤ sup
0<%≤%0

c2 · ωn

%n−p

∫ %

0
rn−1−p dr =

c2 · ωn

n− p
.

Therefore the assumptions (13), (14) are satisfied, and we can apply Theorem 9, when v : Sn−1 → Sn−1

is the identity map. Since |u (x)| = 1 for every x ∈ Ω\ {0}, then detDu (x) = 0 in Ω\ {0}, and hence,
by (84) we finally get

TV (u,Ω) = TV

(
x

|x|
,Ω
)

= ωn , with u (x) :=
w (x)− w (0)
|w (x)− w (0)|

.

10 Some 2− and 3−dimensional examples

We start with a simple application of the general 2−d result of Theorem 1.

Example 41 Let u (x) := v (x/ |x|), where v : [0, 2π] → S1 is the map v (ϑ) = (cos g (ϑ) , sin g (ϑ)),
with g : [0, 2π] → R Lipschitz-continuous function such that g (2π) = g (0) + 2kπ, for some k ∈ Z.
Since v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ) = g′ (ϑ) , by Theorem 1 we obtain

TV (u,B1) =
1
2

∣∣∣∣∫ 2π

0
g′ (ϑ) dϑ

∣∣∣∣ = |k|π .

Note that here g is not necessarily a monotone function and that TV (u,B1) = 1
2

∣∣∣∫ 2π
0 g′ (ϑ) dϑ

∣∣∣, with
the absolute value sign outside the integral sign, and not inside as could have been expected. On the
other hand, if w (x) = |x|u (x) is the radially linear Lipschitz-continuous extension of v, we have
instead TV (w,B1) = 1

2

∫ 2π
0 |g′ (ϑ)| dϑ.

41



Consider a Lipschitz-continuous closed curve v : [0, 2π] → γ, with parametric representation
v (ϑ) =

(
v1 (ϑ) , v2 (ϑ)

)
and with v (0) = v (2π). As in Section 2, we denote by

{
I+
j

}
j

and by
{
I−k
}

k

sequences of disjoint open intervals of [0, 2π] such that v (Ij) ⊂ γ+ and v (Ik) ⊂ γ− (and v (ϑ) = (0, 0)

when ϑ /∈
(
∪jI

+
j

)
∪
(
∪kI

−
k

)
). With u (x) := v (x/ |x|), we stated in Theorem 4 the following upper

and lower estimates

TV (u,B1) ≤ 1
2

∑
j∈N

∣∣∣∣∣
∫

Ij

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣∣ ; (88)

TV (u,B1) ≥ 1
2


∣∣∣∣∣∣
∑
j∈N

∫
I+
j

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣∣+

∣∣∣∣∣∑
k∈N

∫
I−k

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣
 . (89)

We notice that, if the curve v : [0, 2π] → γ = γ+ ∪ γ− admits only two intervals I+
1 and I−2 where

v
(
I+
1

)
⊂ γ+, v

(
I−2
)
⊂ γ− respectively, then the above estimates for TV (u,B1) are in fact equalities,

and

TV (u,B1) =
1
2

{∣∣∣∣∣
∫

I+
1

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣+

∣∣∣∣∣
∫

I−2

{
v1v2

ϑ − v2v1
ϑ

}
dϑ

∣∣∣∣∣
}
. (90)

Moreover, the total variation of the distributional determinant |DetDu| (B1) is given by

|DetDu| (B1) =
1
2

∣∣∣∣∫ 2π

0

{
v1 (ϑ) v2

ϑ (ϑ)− v2 (ϑ) v1
ϑ (ϑ)

}
dϑ

∣∣∣∣ .
In [24] we presented 2-dimensional examples illustrating situations where TV (u,Ω) > |DetDu|(Ω)

and where there is a gap between (88) and (89).
Finally we consider a 3−dimensional example.

Example 42 Let us consider the map v : S2 → S2 ⊂ R3 defined, in spherical coordinates, by

v (ϑ, ψ) :=


v1 = cos g (ϑ) sinψ
v2 = sin g (ϑ) sinψ
v3 = cosψ

,

for ϑ ∈ [0, 2π], ψ ∈ [0, π], where g : [0, 2π] → [0, 2π] is a Lipschitz-continuous function such that
g (2π)− g (0) = 2kπ for some k ∈ Z. By formula (65) we can see that, if ω is a generic point of S2,
represented in the form ω = (cosϑ sinψ, sinϑ sinψ, cosψ), then we have

v1 (ω)
∂
(
v2, v3

)
∂ (τ1, τ2)

(ω)− v2 (ω)
∂
(
v1, v3

)
∂ (τ1, τ2)

(ω) + v3 (ω)
∂
(
v2, v1

)
∂ (τ1, τ2)

(ω) = g′ (ϑ) .

Thus, if the function g is monotone, then the sign assumption (18) is satisfied and, by Theorem 9, we
obtain

TV (v,B1) =
2
3
|g (2π)− g (0)| =

4
3
π |k| , (91)

which, as expected, is equal to the absolute value |k| of the topological degree of the map times the
volume ω3 = 4

3π of the unit ball in R3.
However, formula (91) also holds if the function g is not monotone, i.e., if the sign assumption

(18) is not satisfied. To assert this fact (that we do not want to prove in all details), we can follow the
argument used in Section 5 to prove Theorem 1. In particular, if for some α, β, with 0 ≤ α < β ≤ 2π,
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we have g (α) = g (β), then for every ε > 0 we can construct a Lipschitz-continuous map w : Sα,β → R3

such that w (x) := |x| v
(

x
|x|

)
if x ∈ ∂Sα,β and∫

Sα,β

|detDw (x)| dx < ε ,

where Sα,β is the subset of B1 of points x = (% cosϑ sinψ, % sinϑ sinψ, % cosψ), with 0 ≤ % ≤ 1,
α ≤ ϑ ≤ β, 0 ≤ ψ ≤ π. The map w can be defined similarly to the one used in the proof of
the “umbrella” Lemma 22, setting w (%, ϑ, ψ) := % (cosϕ (%, ϑ) sinψ, sinϕ (%, ϑ) sinψ, cosψ), where
ϕ (%, ϑ) := %hg (ϑ) +

(
1− %h

)
g (α), with h sufficiently large.
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[9] Bouchitté G., Fonseca I. and Malý J., The effective bulk energy of the relaxed energy of multiple
integrals below the growth exponent, Proc. Royal Soc. Edinburgh Sect. A 128 (1998), 463–479.

[10] Brezis H., Coron J.M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys. 107 (1986),
649–705.

[11] Brezis, H., Fusco N. and Sbordone C., Integrability for the Jacobian of orientation preserving
mappings, J. Funct. Anal 115 (1993), 425–431.

43



[12] Brezis H. and Nirenberg L., Degree theory and BMO: I, Sel. Math 2 (1995), 197–263.

[13] Brezis H. and Nirenberg L., Degree theory and BMO: II, Sel. Math 3 (1996), 309–368.
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[34] Giaquinta M., Modica G. and Souček J., Cartesian currents, weak dipheomorphisms and exis-
tence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 106 (1989), 97–159. Erratum and
addendum: Arch. Rat. Mech. Anal. 109 (1990), 385–592.
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