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Abstract

A rigid map u : Ω ⊂ Rn → Rm is a Lipschitz-continuous map with
the property that at every x ∈ Ω where u is differentiable then its gra-
dient Du(x) is an orthogonal m × n matrix. If Ω is convex, then u is
globally a short map, in the sense that |u(x) − u(y)| ≤ |x − y| for every
x, y ∈ Ω; while locally, around any point of continuity of the gradient, u is
an isometry. Our motivation to introduce Lipschitz-continuous local iso-
metric immersions (versus maps of class C1) is based on the possibility of
solving Dirichlet problems; i.e., we can impose boundary conditions. We
also propose an approach to the analytical theory of origami, the ancient
Japanese art of paper folding. An origami is a piecewise C1 rigid map
u : Ω ⊂ R2 → R3 (plus a condition which exclude self intersections). If
u (Ω) ⊂ R2 we say that u is a flat origami. In this case (and in general
when m = n) we are able to describe the singular set Σu of the gradient
Du of a piecewise C1 rigid map: it turns out to be the boundary of the
union of convex disjoint polyhedra, and some facet and edge conditions
(Kawasaki condition) are satisfied. We show that these necessary condi-
tions are also sufficient to recover a given singular set; i.e., we prove that
every polyhedral singular set Σ which satisfies the Kawasaki condition is
in fact the singular set Σu of a map u, which is uniquely determined once
we fix the value u(x0) ∈ Rn and the gradient Du(x0) ∈ O(n) at a single
point x0 ∈ Ω\Σ. We use this characterization to solve a class of Dirichlet
problems associated to some partial differential systems of implicit type.

1 Introduction

J. Nash [23] in 1954 introduced the study of isometric imbeddings of class C1;
his result was improved by N. H. Kuiper [20]. They proved that every abstract
n-dimensional manifold can be imbedded in Rm for m ≥ n + 1. An important
reference is [15].

We briefly recall some well known and simple facts that we use below: (i) if
u : Rn → Rm is a C1-isometric immersion, then for every x ∈ Rn its gradient
Du(x) is an orthogonal m × n matrix, i.e., DutDu = I (here Dut denotes the
transpose matrix of Du, while I is the identity matrix ). For x ∈ Rn we write
Du(x) ∈ O(n, m) (O(n) if m = n). (ii) If m < n then DutDu = I is not possible
(there are not m+1 independent vectors in Rm). Therefore we consider isometric
maps u : Rn → Rm only when m ≥ n. (iii) If m = n, then any C1(Rn)-isometric
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map u is affine, i.e., it can be represented under the form u(x) = Ax + b for
some matrix A ∈ O(n) ⊂ Rn×n, b ∈ Rn and for every x ∈ Rn.

Although we also consider in Section 3 the strict immersion from Rn to Rm

with m > n, which is the most treated case in the mathematical literature,
we mainly study in this paper the limiting case m = n. However, because
of property (iii) above, we need the extension of the concept of C1-isometric
maps to Lipschitz-continuous isometric immersions. We explain here briefly the
reasons.

Let m = n. When associated with a boundary condition posed on the bound-
ary ∂Ω of a bounded open set Ω ⊂ Rn, then the request that u is a map of class
C1 is too strict. In fact, the Dirichlet problem{

find u : Ω ⊂ Rn → Rn, u isometric map,
such that u(x) = ϕ (x) for every x ∈ ∂Ω, (1)

lacks a solution in the class of maps u ∈ C1 (Ω; Rn), unless the boundary datum
ϕ itself is a solution to the problem. Just to fix an example, the Dirichlet
problem (1) lacks a solution in the class of C1−isometric immersions if ϕ = 0.

On the contrary, if we look for isometric immersions among Lipschitz-
continuous maps, then it is possible to get existence of solutions, for instance,
for the homogenous boundary condition ϕ = 0 too. A more convenient formu-
lation of the Dirichlet problem to be considered in this more general framework
is  find u : Ω ⊂ Rn → Rn Lipschitz-continuous

such that its gradient Du(x) is orthogonal for almost every x ∈ Ω
and u(x) = ϕ (x) for every x ∈ ∂Ω,

(2)

For the sake of illustration, the Dirichlet problem (2) for n = 1,when Ω = (−1, 1)
and ϕ = 0 has solution for instance given by u(x) = 1 − |x|. A generalization
of this simple example gives rise to the Eikonal equation |Du| = 1 for maps
u : Ω ⊂ Rn → R (i.e., m = 1) and the corresponding Dirichlet problem |Du| = 1
in Ω, u = ϕ on ∂Ω, can be solved (at least when the set Ω is convex and when the
boundary datum ϕ satisfies a proper compatibility condition) with the theory
of viscosity solutions (see for instance Crandall-Lions [9], Crandall-Ishii-Lions
[8]).

The study of the differential problem (2) is more recent. In fact, if n > 1
the viscosity method does not apply, essentially due to the lack of maximum
principle for systems of PDEs. For existence results in this vector-valued context
we refer to the article [11] and the monograph [12] by Dacorogna and Marcellini,
by mean of the Baire category method : finding almost everywhere solutions of
differential systems of implicit type. We also refer to convex integration by
Gromov [15] as in Müller and Sverak [22]. These methods are not constructive,
i.e., they give existence of solutions but they do not give a way to compute
them.

A differential problem of the type of (2) has been considered by Cellina and
Perrotta [5], who studied a 3× 3 system of PDEs of implicit type and proposed
an explicit solution for the associated Dirichlet problem. Recently Dacorogna,
Marcellini and Paolini gave a contribution in [13], which can be considered a
starting approach to the work presented here. See also [17].

In this paper we consider Lipschitz-continuous maps u : Ω ⊂ Rn → Rm

whose differential (gradient) is almost everywhere an orthogonal matrix. Then,
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fixed x ∈ Ω where the map u is differentiable, the gradient A = Du(x), being a
m×n orthogonal matrix, represents a linear isometric immersion A : Rn → Rm

for n ≤ m. In correspondence the map u is a Lipschitz-continuous isometric
immersion. We briefly call such maps rigid maps.

Therefore we say that a map u : Ω ⊂ Rn → Rm is rigid if u is Lipschitz-
continuous in Ω and its gradient Du is orthogonal at almost every x ∈ Ω; i.e.,
DutDu = I (Definition 2.1). Such maps preserve the inner product; hence they
preserve the length of curves and the geodesic distance. In particular they are
globally short, in the sense that |u(x) − u(y)| ≤ |x − y| for every x, y ∈ Ω, if Ω
is convex (Proposition 3.4).

Rigid maps are widely studied in plate theory, since such maps represent a
deformation of a thin material which has no elasticity but can be bended. A
very common example of such a material is a sheet of paper. It can be bended,
folded, or crumpled but cannot be compressed or stretched (see [6, 7, 19]).
In particular isometric immersions are a good model for origami, the ancient
Japanese art of paper folding. One of the aims of this paper is to propose a
mathematical framework to treat origami.

As a matter of fact we can define an origami to be an injective rigid map
u : R2 → R3 which has the sheet of paper as domain Ω ⊂ R2 and the 3-space as
co-domain. With this example in mind, the singular set Σu of the points where
the map u is not differentiable corresponds to the crease pattern in origami
terminology. If we unfold the origami we see the crease pattern impressed in
the sheet of paper.

Clearly the singular set Σu is uniquely determined by the map u. In the
case of strict immersions (i.e., m > n) many rigid maps u can have the same
singular set. For example the singular sets shown in Figure 1 and 2, correspond
to many different rigid maps.

u→

Figure 1: On the right: the crane is the most famous origami. On the left: the
corresponding singular set

On the contrary we will see that, if m = n, then there is a great deal of
rigidity in the reconstruction of u from Σu.

In fact, among others, a main result presented in this paper is the Recovery
Theorem (Theorem 4.8), where we show the possibility to uniquely (up to a rigid
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Figure 2: This sheet of paper is bended but not folded. The corresponding
singular set is empty.

motion) reconstruct a rigid map from a given set of singularities; i.e., from a
given singular set. A fundamental ingredient in this reconstruction is a necessary
and sufficient compatibility condition on the geometry of the singular set, which
we describe here in this introduction, just for the sake of exposition, in the two
dimensional case, but which holds, and we consider it below in this paper, in the
general n−dimensional case. Following the terminology that can be found in
the not numerous mathematical literature on origami (see for instance [3, 16]),
we call it Kawasaki condition.

Let n = m = 2 and let Σ ⊂ Ω be the union of a (locally) finite number
of arcs (called edges) which meet in a (locally) finite number of points (called
vertices). We will prove (Theorems 4.7 and 4.8) that Σ is the singular set of
a piecewise C1rigid map (cf. Section 2) if and only if its edges are straight
segments and the following Kawasaki condition holds at every vertex V of Σ:
let α1, . . . , αN be the amplitude of the consecutive angles determined by the N
edges of Σ meeting in the vertex V ; then N is even and

α1 + α3 + . . . + αN−1 = α2 + α4 + . . . + αN = π.

In the general n−dimensional case we prove that every polyhedral pattern Σ
which satisfies the Kawasaki condition is the singular set Σu of some rigid map
u; moreover the map u is uniquely determined once we fix the value u(x0) ∈ Rn

and the differential Du(x0) ∈ O(n) at a single point x0 ∈ Ω \ Σ.
Going back to the Dirichlet problems (1) and (2), in Section 5, 6 we will use

the Recovery Theorem 4.8 to find rigid maps with prescribed linear boundary
conditions, respectively in two and three dimensions. In particular for n = 2 we
consider any linear, contraction map ϕ; as an extension to the result presented
in [13], we will be able to find a rectangle Ω ⊂ R2 and a rigid map u : Ω̄ → R2

such that u = ϕ on ∂Ω.

2 Rigid maps, origami and flat origami

In this section we present the definition of rigid map which is considered
throughout the paper. As a byproduct we give a definition of origami and
flat origami to show how it is possible to give an analytical definition of such
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a geometrical object. Some references on the usual geometrical approach to
origami are [1, 2, 3, 16, 18, 21].

Definition 2.1 (rigid map). Let u : Ω ⊂ Rn → Rm. We say that u is a
rigid map if u is Lipschitz-continuous, and Du(x) ∈ O(n, m) (Du orthogonal,
i.e. DutDu = I) for a.e. x ∈ Ω. We call singular set of the rigid map u the set
of points Σu ⊂ Ω where u is not differentiable.

Definition 2.2 (piecewise C1 rigid map). We say that a rigid map u is piecewise
C1, if in addition the following conditions hold:

(i) Σu is closed in Ω;

(ii) u is C1 on every connected component of Ω \ Σu;

(iii) for every compact set K ⊂ Ω the number of connected components of
Ω \ Σu which intersect K is finite.

Rigid maps can be used to define what we will call origami. In Figure 1 is
represented one of the most known origami (the crane) together with its singular
set Σu. Figure 2 represents a non-trivial rigid map (with m = 2, n = 3) which
is C1 (hence the singular set is empty).

To get a realistic physical model of origami we need to exclude self inter-
sections. To be precise overlappings are allowed in the map but only if the
configuration is reachable by means of non interesecting (injective) maps. For
example the map u(x, y) = (|x|, y, 0) is not injective but can be obtained as
the limit as t → 0 of the injective maps ut(x, y) = (|x| cos t, y, x sin t) which
represent the actual folding process along time. On the other hand the rigid
map presented in Figure 3, cannot be approximated by injective maps (see [3]).

Figure 3: A singular set which correspond to a rigid map which is not an origami.
This gives rise to self-intersections when trying to actually fold with paper. This
is “mathematical origami” but not a physically realizable origami.

Definition 2.3 (origami). Let Ω ⊂ R2. We say that u : Ω → R3 is an origami if
u is a piecewise C1 rigid map and there exists a sequence of maps uk : Ω → R3

which are Lipschitz continuous and injective and such that uk → u in the
uniform convergence.
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Definition 2.4 (flat origami). We say that u : Ω → R3 is a flat origami if it is
an origami and u(Ω) is contained in a plane. That is, up to an isometry, u can
be represented as a map Ω → R2.

If u is a (flat) origami, it is possible to discriminate between mountain folds
and valley folds in its singular set. The singular set, equipped with the infor-
mation about mountain/valley folds is usually called crease pattern.

To some degree the crease pattern can be used to reconstruct a flat origami.
However there is no simple condition on the singular set to guarantee the exis-
tence of a corresponding flat origami.

We will see, in the sequel, that the correspondance between singular sets
and piecewise-C1 rigid maps is instead very tight.

As we said before, the interpenetration problem arising in the definition of
origami is only marginally described in this paper. Our approach is to consider a
rigid map as a “mathematical origami”. For instance we solve the Dirichlet dif-
ferential problem (6) by means of rigid maps. However the solutions represented
in Figure 7 are, in fact, “true” origami (we are able to fold the corresponding
paper).

To our knowledge origami are mainly studied in two areas: algebraic and
combinatorial.

In the algebraic setting the paper folding is used to construct algebraic num-
bers. Some elementary origami rules (Huzita-Hatori axioms, see [1]) are iden-
tified and used to construct a crease pattern which, in this case, is the union
of straight lines. With this respect it is found that origami constructions are
more powerful than constructions with rule and compass. In this setting there
is no distinction between origami and rigid maps, since only the properties of
the singular set are studied, without requiring the actual origami to be folded.

In the geometrical setting the compenetration problem is taken into account.
It is shown that the Kawasaki condition is not enough to reconstruct an origami.
Also more involved conditions are considered, which take into account also the
mountain/valley distinction on the crease pattern. Anyway it is proved that
the problem of deciding if a singular set is the crease pattern of an origami
is hard (see [3]). Other mathematical papers study geometrical methods and
algorithms to develop more and more complex and realistic origami models, as
in [21].

3 Properties of rigid maps

It might be interesting to briefly inspect the definition of rigid maps in the
general case m ≥ n before restricting our study to the case m = n. In the case
m > n, the map is much less rigid, the gradient can vary smoothly. For example,
given the arc-length parameterisation γ : R → R2 of any curve in R2, the map
u(x, y) = (γ(x), y) ∈ R3 is a rigid map whose image is the cylinder projecting on
the curve γ. The corresponding singular set is empty (see Figure 2). In Figure 4
we have depicted another example.

However we have some rigidity also in this case. For example it is not possible
to obtain a spherical surface out of a sheet of paper: the Gauss curvature is
always zero because the surface maintains the flat nature of the domain Ω ⊂ Rn.
This is a consequence of the following result.
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Figure 4: A rigid map in the case m = 2, n = 3. The singular set is a curved
line, and the image of the map is the union of two pieces of cones.

Lemma 3.1. Let Ω be an open subset of Rn. Suppose u ∈ C1(Ω, Rm), is an
injective rigid map. Then u(Ω) ⊂ Rm endowed by the geodesic distance induced
by Rm is an n-dimensional Riemann surface and u : Ω → u(Ω) is an isometry.

Proof. Since Du(x0) is orthogonal we know that the rank of Du(x0) is n. Hence,
by the local invertibility theorem, the inverse map u−1 : u(Ω) → Ω is C1 and
hence u is a diffeomorphism. We also notice that Du being orthogonal we have

〈Du(x)v,Du(x)w〉 = 〈Du(x)tDu(x)v, w〉 = 〈v, w〉

i.e. u preserves the Riemann structure and hence is an isometry between Rie-
mann surfaces.

C1−rigid maps are isometric immersions. The Nash-Kuiper [20, 23]
C1−imbedding theorem asserts, in particular, that the map 0 can be uniformly
approximated by such maps. In the present work, however, we are mostly inter-
ested in the case m = n which is trivial for C1−maps. Also we are interested in
approximating a given map by means of a rigid map, but with precise Dirichlet
conditions.

We recall some classical results on (global) isometric maps.

Theorem 3.2 (Liouville). Let Ω be an open, connected set in Rn, u ∈
C1(Ω, Rn) and Du ∈ O(n). Then u is affine.

Theorem 3.3 (Cartan-Dieudonné). Let Ω ⊂ Rn be an open connected set and
u : Ω → Rm be an isometry, i.e.,

|u(x)− u(y)| = |x− y|, ∀x, y ∈ Ω.

Then m ≥ n, u is affine, Du ∈ O(m,n). Hence u is an affine rigid map. Also,
u can be written as the composition of at most n + 1 affine symmetries.

Proposition 3.4 (shortness). Let u be a rigid map defined on a convex set Ω.
Then u is short, that is, |u(x)− u(y)| ≤ |x− y| for every x, y ∈ Ω, being also
possible that u(x) = u(y) for some x 6= y.
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Proof. Since u is a rigid map then, Du is an orthogonal matrix; hence for every
x, y ∈ Ω,

|u(x)− u(y)| ≤
∫ 1

0

| d

dt
u(ty + (1− t)x)| dt

=
∫ 1

0

|Du(ty + (1− t)x)(x− y)| dt =
∫ 1

0

|x− y| dt = |x− y| .

4 Structure of the singular set in the case: m = n

We start with the study of the singular set Σ = Σu. We will see that there is a
lot of rigidity on this set, when m = n. In the following we consider a piecewise
C1 rigid map u : Ω ⊂ Rn → Rn and let Σ = Σu be its singular set.

We will use the notion of polyhedral set. To be precise we say that a set
is a k-dimensional simplex if it is the convex envelope of k + 1 points (called
vertices). A k-dimensional polyhedral set is the union of k-dimensional simplices
with disjoint interior.

Lemma 4.1 (facet rigidity). Let u : Ω ⊂ Rn → Rn be a piecewise C1−rigid
map. Then Du is constant (or equivalently u is affine) on every connected
component of Ω \ Σ.

Proof. By restricting the map to a connected component of Ω \ Σ we might
reduce ourselves to the case when Ω is connected and Σu is empty. The result
then follows at once by Theorem 3.2.

Lemma 4.2 (polyhedron condition). Suppose u is a piecewise C1−rigid map.
If Ω is convex then every connected component C of Ω \ Σ is a convex set and
∂C ∩ Ω is a (n− 1)-dimensional polyhedral set.

Proof. We first prove that every connected component is convex.
Consider a connected component A of Ω\Σ, where the map u can be written

as u(x) = Jx+q for some J ∈ O(n) and q ∈ Rn. Take any two points x1, x2 ∈ A
and t ∈ [0, 1]. Consider the point x = tx1+(1−t)x2. Then, since J is orthogonal
and since u is short,

|x1 − x2| = |u(x1)− u(x2)| ≤ |u(x1)− u(x)|+ |u(x)− u(x2)|
≤ |x− x1|+ |x− x2| = |x1 − x2|.

So all inequalities are equalities and also

|u(x)− u(x1)| = |x− x1|, |u(x)− u(x2)| = |x− x2|.

This means that u(x) = Jx + q. This is true for every x in the convex hull of A
and hence u is differentiable on every point of the convex hull of A. Hence we
conclude that A is convex because the singular set is outside its convex hull.

So Ω is the closure of a locally finite union of disjoint convex sets. The
internal boundary of each of these convex components, is locally the intersection
of finitely many of such convex sets. Hence it is polyhedral.
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Definition 4.3 (the integer nΣ). Let Σ be a closed set in Ω. Given a point
x ∈ Ω we define nΣ(x) as the number of connected components of Ω \ Σ which
include x in their closure.

By the definition of piecewise C1 we are assuming that nΣ(x) is always finite.
Clearly nΣ(x) is also positive.

Lemma 4.4 (facet condition). One has nΣ(x) = 1 if and only if x ∈ Ω \ Σ.

Proof. Clearly if x ∈ Ω \Σ then nΣ(x) = 1 because every connected component
of Ω \ Σ is open (recall that Σ is closed by hypothesis).

Consider now a point x with nΣ(x) = 1. This means that there exists
a neighbourhood U of x such that U \ Σ is contained in a single connected
component of Ω \ Σ. Hence, by Lemma 4.1, u is affine on U \ Σ. By definition
u is Lipschitz on U and hence U \ Σ is dense in U and being u continuous on
the whole U it turns out that u is affine on U . Hence u is differentiable on U
and Σ ∩ U = ∅.

In the next lemma we consider a point which lies in the intersection of exactly
two components. We prove that such intersection is indeed planar, without the
assumption on the convexity of Ω. We also notice that once the map u is
assigned on a connectex component of Ω \Σ, its value is consequently assigned
on the neighbouring components.

Lemma 4.5 (edge condition). If nΣ(x0) = 2 then there exists a connected
neighbourhood U of x0 such that the set Σ ∩ U = Π ∩ U where Π is an (n− 1)-
dimensional plane Π 3 x0. The map u is affine on the two components U1 and
U2 of U \ Π and if we let L1 and L2 be the two affine maps defining u in the
two regions we have

L1 = L2S, L2 = L1S

where S is the affine symmetry with respect to the plane Π. If Ji is the linear
part of Li (hence Ji is the gradient Du on the region Ui) we have

J1 = J2S
′, J2 = J1S

′

where S′ is the linear part of S. In particular, det J1 = −det J2. Notice also
that J2 − J1 = J2(I − S′) has rank one since I − S′ = 2v ⊗ v where v is an
orthonormal vector to Π.

Proof. Let U be a connected neigbourhood of x0 which meets only two com-
ponents of Ω \ Σ. Let U1 and U2 be the intersection of these two components
with U and let J1 and J2 be the (constant) value assumed by Du(x) on the
respective component. Notice that J1 6= J2 otherwise u (which is continuous)
would be differentiable everywhere in U .

We claim that Σ ∩ U ⊂ U1 ∩ U2. To prove the claim consider any point
x ∈ Σ∩U . By Rademacher Theorem we know that Σ has no interior, hence every
neighbourhood of x contains points of U1∪U2. If there were a neigbourhood U ′

of x such that U ′ \Σ ⊂ U1 then we would notice that in U ′ our map u is almost
everywhere equal to an affine map with gradient J1. Being also continuous,
we would find that u is differentiable everywhere in U ′ against the hypothesis
x ∈ Σ. Hence every neighbourhood of x contains points of both U1 and U2 and
the claim is proven.
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Since we know that u(x) = Li(x) = u(x0) + Ji(x − x0) on Ui for i = 1, 2,
by the previous claim and the continuity of u we conclude that the two affine
maps Li coincide on Σ ∩ U . Since J1 6= J2 we conclude that Σ is contained
in the (n − 1)-dimensional plane Π = x0 + V with V = Ker(J1 − J2) = {w ∈
Rn : (J1 − J2)w = 0}. Moreover Σ ∩ U = Π ∩ U because if a single point of
(x0 + V ) ∩ U were not in Σ, then U1 ∪ U2 would be connected.

Consider now the map S′ = J−1
2 J1. Since J1v = J2v on V , we know that

S′ = I on V . Moreover S′ is an orthogonal matrix too. So if we consider a
unit vector v which is orthogonal to V , the image S′v is again a normal vector
orthogonal to V . We have only two possibilities: either S′v = v or S′v = −v.
In the first case we have S′ = I and hence J1 = J2 which is not possible. So we
conclude that Sv = −v i.e. S′ = I− 2v ⊗ v, S′ is the symmetry with respect to
V (and S is the symmetry with respect to x0 + V ).

Now we know that Σ is a locally finite (n − 1)-dimensional polyhedral set.
This set is composed by (n − 1)-dimensional facets. These facets might meet
in (n− 2) or lower-dimensional facets. In the following we consider an (n− 2)-
dimensional facet P of the polyhedral set Σ. This facet will be the edge of a
certain number N of (n− 1)-dimensional facets of Σ.

E2

E1

E4

E5

E3

E6

α1

α2

α3

α5

α6

Figure 5: The Kawasaki condition in 3D.

Definition 4.6 (Kawasaki condition). Let P be (n − 2)-dimensional facet of
a polyhedral set Σ and let E1, . . . , EN be the (n − 1)-dimensional facets of Σ
which meet in P , ordered consecutively around P . Let α1, . . . , αn be the angles
determined by the facets Ei in P . We say that the Kawasaki condition holds in
P if N is even and

α1 + α3 + . . . + αN−1 = α2 + α4 + . . . + αN = π.

Now we prove that Σu satisfies the Kawasaki condition. This property is
known in the origami setting, for n = 2 ([18]).
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Theorem 4.7 (necessary condition). Let u be a piecewise C1 rigid map u : Ω ⊂
Rn → Rn. Let P be an (n−2)-dimensional facet of the corresponding polyhedral
set Σ = Σu. Then the Kawasaki condition holds in P .

Proof. Around the facet P we find a finite number of connected components of
Ω\Σ. We enumerate them A1, . . . , AN so that Ai+1 is next to Ai. Let L1, . . . , LN

be respectively the affine maps defined by u in the corresponding regions. Then
by Lemma 4.5 we know that Li+1 = LiSi where Si is the symmetry with respect
to the plane containing Ai ∩Ai+1. By making a complete loop around the facet
P we find the compatibility condition:

L1 = L1S1S2 · · ·SN−1SN

Since every isometry Si has negative determinant while S1 · · ·SN = I has posi-
tive determinant, we conclude that N is even. Notice also that the composition
of the two symmetries Si and Si+1 is a rotation Ri of an angle 2αi around the
facet P , where αi is the angle determined by the planes of symmetry of Si and
Si+1. Hence we have

I = S1S2S3S4 · · ·SN−1SN = R1R3 · · ·RN−1

which means that 2α1+2α3+. . .+2αN−1 = 2π and hence α1+α3+. . .+αN−1 =
π. Since the sum α1+α2+. . .+αN = 2π we also have α2+α4+. . .+αN = π.

Theorem 4.8 (recovery theorem). Let Ω be a simply connected open subset of
Rn. Let Σ ⊂ Ω be a locally finite polyhedral set satisfying the Kawasaki condition
on every (n − 2)-dimensional facet. Then there exists a rigid map u such that
Σ = Σu is the singular set of u. Moreover u is uniquely determined once we fix
the value y0 = u(x0) and the Jacobian J0 = Du(x0) in a point x0 ∈ Ω \ Σ.

x0

t11

t10

t7

t6

t5
t4

t3t2

t9

t13

t8

t14

t1

t12

Figure 6: The retraction of a closed path.

Proof. We consider the class Γ of all continuous curves γ : [0, 1] → Ω with the
following properties:
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1. nΣ(γ(t)) ≤ 2 for every t ∈ [0, 1];

2. {t : nΣ(γ(t)) = 2} is finite and nΣ(γ(0)) = 1, nΣ(γ(1)) = 1;

3. if nΣ(γ(t0)) = 2 for some t0 ∈ [0, 1], then γ(t) lies in different connected
components of Ω \ Σ for t < t0 and t > t0 in a neighbourhood of t0 (γ(t)
crosses the edge).

Given such a curve γ ∈ Γ let 0 < t1 < t2 < . . . < tN < 1 be the points
where nΣ(γ(t)) = 2 i.e. where the curve passes through an (n− 1)-dimensional
facet Fj 3 γ(tj) of the polyhedral set Σ. We then define Sj for j = 1, . . . , N
to be the symmetry with respect to the plane containing Fj . Then we define
Aγ = S1S2 · · ·SN−1SN the composition of all these isometries.

Notice that if a rigid map u exists with singular set Σ and if u coincides
with the affine map L0 in the component containing γ(0), then necessarily (by
Lemma 4.5) one has u(γ(1)) = L0Aγγ(1). We want to use this property to
reconstruct u. To achieve this we want to prove that Aγ does depend only on the
endpoints γ(0) and γ(1) but not on the path through these point. Equivalently
it is enough to prove that Aγ = I whenever γ is closed: γ(1) = γ(0).

Clearly, if γ ≡ x0 is constant then Aγ = I. In general, since Ω is simply
connected, every closed curve γ(t) can be retracted to the constant curve γ0(t) ≡
x0 by means of a continuous homotopy ϕ : [0, 1] × [0, 1] such that ϕ(0, t) = x0,
ϕ(1, t) = γ(t), ϕ(s, t) ∈ Ω for all s, t ∈ [0, 1] × [0, 1]. While we retract our
curve γ, if the (n − 1)-dimensional facets of Σ crossed by γ remain the same,
by definition we have that Aγ does not vary. On the other hand, when the
retraction makes γ cross an (n−2)-dimensional facet P of Σ, we notice that Aγ

is multiplied by SP
1 SP

2 · · ·SP
N where the SP

k are the symmetries with respect to
the (n− 1)-dimensional planes joining in the (n− 2)-dimensional facet P . But
the Kawasaki condition assures that this product is, actually, the identity map.

The rectraction could, in principle, also cross an (n−3)-dimensional or lower
dimensional facets of Σ. In this case, however, we can tilt the retraction so that
such a lower dimensional facet is missed.

So we have proved that the isometry Aγ depends only on γ(0) and γ(1) and
hence given x ∈ Ω \ Σ we can define u(x) = L0Aγx where γ is any admissible
curve with end-points x0 and x, L0 is defined by L0x = y0 + J0x where y0 and
J0 are given. We notice that u(x) can be extended by continuity to the whole
Ω. In fact on every (n− 1)-dimensional facet of Σ the affine functions defining
A differ by a symmetry which leaves fixed the (n− 1)-dimensional plane. This
is also true on the lower dimensional facets of Σ which all live in the intersection
of (n− 1)-dimensional planes.

Hence u(x) : Ω → Rn is a rigid map which has Σ as singular set and satisfies
Du(x0) = J0, u(x0) = y0. Moreover, by construction, u is the unique rigid map
with these properties.

5 The Dirichlet problem

A Dirichlet problem associated to a given Lipschitz continuous boundary datum
ϕ : Ω ⊂ Rn → Rm and to a subset E ⊂ Rm×n of m × n matrices can be
formulated as follows: find a Lipschitz continuous map u : Ω ⊂ Rn → Rm such
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that {
Du ∈ E a.e. in Ω,

u = ϕ on ∂Ω.
(3)

The boundary datum ϕ must satisfy a natural compatibility condition. In the
simplest case − the scalar case m = 1 − the compatibility condition on ϕ (see
Theorem 2.10 in [12]; the existence result in this form is due to Dacorogna and
Marcellini [10], [11]; c.f. also Bressan-Flores [4] and De Blasi-Pianigiani [14])
requires that

Dϕ (x) ∈ E ∪ int coE, a.e. in Ω,

where int co E is the interior of the convex hull of the set E.
In the vector-valued case m > 1 we limit ourselves here to state the compat-

ibility condition on ϕ only in the context of this paper. To this aim we consider
the case m = n ≥ 2 and ϕ affine map and we denote by λ1 (A) , λ2 (A) , ..., λn (A),
with 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn, the singular values of a matrix A ∈ Rn×n. We
consider the Dirichlet problem (3) when the set E is given by

E =
{
A ∈ Rn×n : λi (A) = 1, i = 1, ..., n

}
= O(n)

and we require the compatibility condition on the boundary value ϕ:

λn (Dϕ) < 1. (4)

Then there exists a Lipschitz continuous map u : Ω ⊂ Rn → Rn, i.e., u ∈
W 1,∞ (Ω; Rn), such that{

Du ∈ E = O(n) a.e. in Ω,

u = ϕ on ∂Ω.
(5)

The result proved in [12] (see in particular Theorem 7.28 and Remark 7.29)
guarantees existence but does not give a rule to build a solution. In [13] we
recently proposed a method to compute a solution following some ideas (as
described in the introduction) considered in a similar context by Cellina and
Perrotta [5].

In this section we aim to extend the results of [13] by finding an explicit
solution u : Ω ⊂ R2 → R2 to the system of implicit partial differential equations{

Du ∈ O(2) a.e. in Ω,

u = ϕ on ∂Ω,
(6)

where ϕ is an affine map and Ω is a well choosen rectangle (depending on ϕ).
We emphasize that, as a by-product, we obtain existence of solutions in the class
of piecewise−C1 rigid maps (more precisely in the class of origami) and not only
in the wider class of generic Lipschitz continuous maps. We also observe that
problem (6) cannot be solved by a piecewise−C1 map with finitely many pieces
(unless ϕ is itself a solution).

Therefore, we consider the Dirichlet problem (6) where ϕ is an affine map
with linear part A = Dϕ ∈ R2×2.

We can consider, without loss of generality, L to be diagonal with entries
α, β ≥ 0

A = diag(α, β) =
(

α 0
0 β

)
.
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The case of a general affine contraction ϕ(x) = Ax + b, follows by the de-
composition A = RDQ with R,Q ∈ O(2) and D = diag(α, β) with α = λ1(A)
and β = λ2(A) the singular values of A (i.e. the square root of the eigenvalues
of AtA).

Notice that if both α = 1 and β = 1, then A ∈ O(2) and hence ϕ is itself
a solution to (6). If α > 1 or β > 1, then ϕ the system (6) has no solutions,
because every solution has to be short while ϕ is not (this is also stated in (4)).
On the other hand if α < 1 or β = 1, the system does not have any solution as
shown in Example 5.1.

Example 5.1. Consider the square domain Ω = (−1, 1)× (−1, 1) ⊂ R2 and the
map ϕ : Ω → R2,

ϕ(x, y) = (αx, y)

with α ∈ [0, 1). The only 1−Lipschitz continuous map u : Ω → R2 which
satisfies the boundary condition u = ϕ on ∂Ω is ϕ itself. As a consequence,
since Dϕ is not orthogonal, there is no map u with boundary condition ϕ which
has orthogonal gradient.

Indeed let u be a 1-Lipschitz continuous map with boundary condition ϕ.
Fix x ∈ (−1, 1). Notice that |u(x,−1) − u(x, 1)| = |(αx,−1) − (αx, 1)| = 2 is
the maximum possible difference for a 1-Lipschitz map. Hence u(x, ·) is linear,
and hence u(x, y) = ϕ(x, y).

We now define a rigid map which will be the base module to construct the
solution of the Dirichlet problem.

Lemma 5.2 (base module). Let ϕ be the diagonal linear map ϕ(x, y) = (αx, βy)
with α, β ∈ (0, 1). Let a, b > 0 satisfy the relation

b2

a2
=

1− α2

1− β2
(7)

and consider the domain R = [0, a] × [0, b] ⊂ R2. Define a′ = a(1 + α)/4,
a′′ = a(1 − α)/2, b′ = b(1 + β)/4, b′′ = b(1 − β)/2 so that a = 2a′ + a′′,
b = 2b′ + b′′. Then the two singular sets depicted in Figure 7 satisfy Kawasaki
condition. Also, up to an isometry, the corresponding maps u0 and u1 agree
with ϕ on the four vertices of the rectangle R.

Proof. We consider the first singular set in Figure 7. We claim that the triangles
ABC and CDE are similar. In fact we have

CD

DE
/
AB

BC
=

b′

a′
/
a′′

b′′
=

b(1 + β)
a(1 + α)

/
a(1− α)
b(1− β)

=
b2(1− β2)
a2(1− α2)

= 1

by condition (7). As a consequence angles ECD and ACB are complementary
and hence the angle ECA is right. Since the triangles ABC and EGF are con-
gruent, also the angle FEC is right and the quadrilateral ACEF is a rectangle.
So it is easy to check that Kawasaki condition holds in the internal vertices A,
B and C and by Theorem 4.7 we know that there exists a (unique) rigid map
u0 : R → R2 which has the singular set represented in Figure 7 and also satisfies
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Figure 7: The singular set of the base module used in Lemma 5.2.

the conditions u0(0, 0) = (0, 0) and Du0(0, 0) = −I. In particular we easily
check that the map has the following values

u0(0, 0) = (0, 0), u0(a′′, 0) = (−a′′, 0),
u0(a, 0) = (2a′ − a′′, 0) = (αa, 0) u0(a, b′) = (αa, b′),
u0(a, b′ + b′′) = (αa, b′ − b′′), u0(a, b) = (αa, 2b′ − b′′) = (αa, βb)
u0(0, b′′) = (0,−b′′), u0(0, b) = (0, 2b′ − b′′) = (0, βb)
u0(a′, b) = (a′, βb), u0(a′ + a′′, b) = (a′ − a′′, b).

We define u1 following the second singular set in Figure 7. The resulting
map has the following values:

u1(0, 0) = (0, 0), u1(a′, 0) = (a′, 0),
u1(a′ + a′′, 0) = (a′ − a′′, 0), u1(a, 0) = (2a′ − a′′, 0) = (αa, 0),
u1(0, b′) = (0, b′), u1(0, b′ + b′′) = (0, b′ − b′′),
u1(0, b) = (0, 2b′ − b′′) = (βb, 0).

The verification of the claims are then straightforward.

Theorem 5.3 (Dirichlet problem). Let ϕ(x, y) = (αx, βy) be a diagonal linear
map with α, β ∈ (0, 1), let a, b > 0 satisfy relation (7) and Ω = (−a, a)× (−b, b).
Then there exists a piecewise C1 rigid map u : Ω̄ → R2 with singular set Σu as
in Figure 8, such that u = ϕ on ∂Ω.

Proof. We divide Ω into infinitely many rectangles homothetic to Ω as in Fig-
ure 8. Then we put the base pattern u1 (see Lemma 5.2) on the rectangles in the
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Figure 8: Top. The fractal net of rectangles used to reproduce the singular set of
Theorem 5.3. The colored rectangles will host the second module of Figure 7 and
the white rectangles will host the first module. Bottom. The resulting singular
set Σu of the map u constructed in Theorem 5.3. The colored rectangles are the
regions where det Du = −1. Each vertex of the singular set is shared by two
rectangles, hence the Kawasaki condition holds.
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diagonal and the base pattern u0 on the other rectangles to compose a singular
set Σ. The base patterns have to be rescaled, translated and mirrored to fit the
net, as shown in figure. As was proved in Lemma 5.2, in every vertex of the
singular set two right angles meet. Hence it is clear that the Kawasaki condition
holds on the resulting singular set Σ. We conclude that there exists a rigid map
u : Ω → R2 which has the assigned singular set Σ. By the construction of the
base modules u0 and u1 it is easily checked that this map is equal to the linear
datum ϕ on every vertex of the pattern. Since the boundary ∂Ω is contained in
the closure of the set of vertices and u is continuous, then u ≡ ϕ on ∂Ω.

6 A 3-dimensional flat origami

In Section 2 we proposed definitions of origami as applications either from R2 →
R3 or from R2 → R2 (flat case). Of course, mathematically, these definitions
make sense in the more general framework of n ≥ 2, m ≥ 2. Here we give an
example of a piecewise-C1 rigid map from R3 → R3 which, as a natural extension
of the previous definitions, could be considered a 3-dimensional mathematical
flat origami, being a rigid application from R3 → R3.

Our aim is to construct a solution to the Dirichlet problem (5) in the case
n = 3, ϕ = 0, Ω = (0, 1)3. An explicit solution to this problem was given in [5];
here we present an alternative construction based on the recovery Theorem 4.8.

Theorem 6.1 (3D Dirichlet problem). There exists a piecewise C1 rigid map
u : [0, 1]3 → R3 such that u = 0 on the boundary. The base module of the
singular set Σu is represented in Figure 9

Proof. Step one. We consider the cube Q1 = [0, 1]3 = Ω̄ ⊂ R3. We will use the
coordinates (x, y, z) ∈ R3. First we find a rigid map u1 : Q1 → Q1 such that the
six sides of ∂Q1 all go into the side {x = 0} in ∂Q1. To achieve this it is enough
to fold Q1 along the four planes y = x, y = 1−x, z = x, z = 1−x. In other words
we consider the singular set Σ1 = {y = x}∪{y = 1−x}∪{z = x}∪{z = 1−x}.
This set satisfies the Kawasaki condition (every union of hyper-planes has this
property) and hence there exists a unique map u1 : Q1 → R3 which has Σ1 as
singular set and which is equal to the identity on the facet Q1 ∩ {x = 0}. The
resulting map u1 folds the whole cube Q1 over the pyramid Q1 ∩ {x < y, x <
1− y, x < z, x < 1− z}. So we can consider u1 as a map u1 : Q1 → Q1 and we
notice that u1(∂Q1) ⊂ {x = 0} as claimed.

Step two. We consider the long parallelepiped Q2 = [0, 4] × [0, 1] × [0, 1].
Our aim is now to find a rigid map u2 : Q2 → R3 such that u2(0, y, z) = (0, 0, 0)
for every y, z ∈ [0, 1]. Since Q1 ⊂ Q2, and u1(∂Q1) ⊂ {x = 0}, the composition
u = u2 ◦ u1 will be a map u : Q1 → R3 and will satisfy the Dirichlet condition
u(x, y, z) = (0, 0, 0) for every (x, y, z) ∈ ∂Q1.

To define u2 we are going to consider a fractal singular set Σ ⊂ Q2. We
start with the polyhedral set Σ2 represented in Figure 9. This set is composed
by the union of the two planes {x = y + 2}, {x = z + 3} and four half planes
{y = 1/2, x ≤ 5/2}, {x = 5/2, y ≤ 1/2}, {z = 1/2, x < 7/2}, {x = 7/2, z ≤
1/2}. These planes meet in seven segments contained in five different lines. In
these segments the Kawasaki condition is satisfied since the angles are either
π/2 + π/2 + π/2 + π/2 or π/4 + π/4 + 3π/4 + 3π/4. We are going to compose
this set Σ2 with mirrored and rescaled copies of itself. We consider the four
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Figure 9: The singular set Σ2 which is the base module of the construction of a
3-dimensional solution to the Dirichlet problem.

contractions Ti : Q2 → Q2 defined by

T1(x, y, z) = (x, y, z)/2, T2(x, y, z) = (x, 2− y, z)/2,

T3(x, y, z) = (x, y, 2− z)/2, T4(x, y, z) = (x, 2− y, 2− z)/2.

Given any set X we construct a replicated set T (X) with the four rescaled and
mirrored copies of X

T (X) = T1(X) ∪ T2(X) ∪ T3(X) ∪ T4(X).

Notice that T (Q2) = [0, 2]× [0, 1]× [0, 1] and T (Q2 \∂Q2)∩Σ2 = ∅. This means
that the rescaled copies of Σ2 can only meet on the boundaries.

Finally we define the fractal set Σ by

Σ =
∞⋃

k=0

T k(Σ2) = Σ2 ∪ T (Σ2) ∪ T (T (Σ2)) ∪ . . .

The resulting set Σ ⊂ Q2 is a locally finite polyhedral set which satisfies the
Kawasaki condition. In fact the Kawasaki condition is satisfied on the internal
edges of every rescaled polyhedral set. If we take an edge on the boundary of
these rescaled sets, we notice that on such an edge there meet half planes from
2 rescaled sets which are one the mirror of the other, and the mirror plane itself
belongs to a bigger polyhedral rescalation of Σ2. Hence the angles of the half
planes on the given edge, repeat twice mirrored, and the Kawasaki condition
holds automatically. Hence, by the recovery Theorem, a map u2 : Q2 → R3

exists which has Σ as singular set and such that u2(0, 0, 0) = (0, 0, 0).
Step three. To conclude the statement, we are going to prove that

u2(0, y, z) = (0, 0, 0) for every y, z ∈ [0, 1]. To achieve this we claim that for each
integer k = 0, 1, . . . the image u2(Xk) of the square Xk = Q2 ∩ {x = 2/2k} has
a diameter at most

√
2/2k+1. As a consequence the map u2(0, y, z) is constant

(recall the u2 is continuous) and hence has value (0, 0, 0).
Since the set Σ2 contains the two planes of symmetry y = 1/2 and z = 1/2

for x ≤ 2, and since Σ coincides with Σ2 for x > 2, the resulting map u2 has
the property u2(2, y, z) = u2(2, 1 − y, z) = u2(2, y, 1 − z) = u2(2, 1 − y, 1 − z)
if y, z ∈ [0, 1/2]. Hence the image of any point (2, y, z) for y, z ∈ [0, 1] is
also the image of a point with y, z ∈ [0, 1/2]. In general we notice that the
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image of a point (2/2k, y, z) for y, z ∈ [0, 1] is also the image of a point with
y, z ∈ [0, 1/2k+1] because the map u2 for x ∈ [1/2k+1, 1/2k] is obtained joining
together four rescaled copies of the same map u2 in the interval [1/2k, 1/2k−1]
with scaling factor 1/2 and an appropriate rotation, mirroring and translation.

Hence the image of the points (2/2k, y, z) is contained in the image of a
square of side 1/2k+1. Since the map u2 is short, the diameter of such an image
is not greater than the diameter of the square, which is

√
2/2k+1, as claimed.
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