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Definitions
Introduction Examples
Statements of the problems

Assumptions

Heat equation
We consider the heat equation:

ur = Au in Q x (0,00).
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Definitions
Introduction Examples
Statements of the problems

Assumptions

Heat equation
We consider the heat equation:

ur = Au in Q x (0,00).

-

Assumptions on .

o Q c RV is a domain

@ 0% is connected (to avoid certain ambiguities)

@ 00 is of class C? (this assumption can be weakened in various
ways, depending on circumstances).

A\
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Definitions
Introduction Examples
Statements of the problems

Stationary isothermic surfaces

Isothermic surface (1S)

A surface ' C Q of codimension 1 such that u(x, t) = constant for some
t > 0andevery xerl.
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Definitions
Introduction Examples
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Stationary isothermic surfaces

Isothermic surface (1S)

A surface ' C Q of codimension 1 such that u(x, t) = constant for some
t > 0andevery xerl.

In general, isothermic surfaces evolve with time. We want to study the
occurrence of invariant surfaces.
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Definitions
Introduction Examples
Statements of the problems

Stationary isothermic surfaces

Isothermic surface (1S)

A surface ' C Q of codimension 1 such that u(x, t) = constant for some
t > 0andevery xerl.

A\

In general, isothermic surfaces evolve with time. We want to study the
occurrence of invariant surfaces.

Stationary isothermic surface (SIS)
A surface I' C Q such that

| A\

u(x,t) = c(t) forevery x el and t > 0,

where ¢(t) is some function of t.

A\
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Introduction Examples
Statements of the problems

Examples

Eigenmodes

Let U = Ux(x) be such that AU + AU = 0 in Q for some A > 0. Then
u(x) = U(x) e~ solves the heat equation and all its IS are SIS.
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Definitions
Introduction Examples
Statements of the problems

Examples

Eigenmodes

Let U = Ux(x) be such that AU + AU = 0 in Q for some A > 0. Then
u(x) = U(x) e~ solves the heat equation and all its IS are SIS.

Symmetric domains

Let Q be a ball, an infinite solid spherical cylinder or a halfspace.
Then the solution of the initial-boundary value problem

up = Au in Qx(0,00),
u=1on Qx{0}, u=0 in 9Q x (0,), (1)

i_s such that all its IS are SIS.
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Statements of the problems

Statements of the problems

In this talk e will consider the occurrence of SIS for the solutions of two
relevant problems:

Initial-boundary value problem |

up = Au in Q x(0,00),
u=¢ on 2x {0}, w=0 in 9Q x (0,c0), (2)

where ¢ is a given L2(Q) function. Clearly, in problem (1) we have ¢ = 1.

v
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Definitions
Introduction Examples
Statements of the problems

Statements of the problems

Initial-boundary value problem
up = Au in Q x(0,00),
u=¢ on 2x {0}, w=0 in 9Q x (0,c0), (2)
where ¢ is a given L2(Q) function. Clearly, in problem (1) we have ¢ = 1.
>

Initial value problem

uy=Au in RN x(0,00), (3)
u=Xo on RVx{0},

where Xg is the characteristic function of a given domain Q c RV.

-
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Problem’s history

Only one SIS
Matzoh ball soup (MBS) SI:IeZchnof the proof

Unbounded domains

Problem’s history

Klamkin's question (1964)

Consider problem (1). If all IS are SIS and Q is bounded, is Q a ball?
What happens when Q is unbounded?
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Problem’s history

Klamkin's question (1964)

Consider problem (1). If all IS are SIS and Q is bounded, is Q a ball?
What happens when Q is unbounded?

L. Zalcman (1987) included this question in a list of problems about the
ball and named it Matzoh Ball Soup. J
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Problem’s history

Klamkin's question (1964)

Consider problem (1). If all IS are SIS and Q is bounded, is Q a ball?
What happens when Q is unbounded?

L. Zalcman (1987) included this question in a list of problems about the
ball and named it Matzoh Ball Soup. J

G. Alessandrini (1990)

Let Q be bounded and let every point of 99 be regular for the Dirichlet
problem. Let u be the solution of (1).

If all IS of u are SIS then Q must be a ball.
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Problem’s history
Only one SIS
Matzoh ball soup (MBS) SI:IeZch"of the proof
Unbounded domains

Problem’s history cont'd

Alessandrini’s proof is based on Serrin’s celebrated symmetry result:

Av = f(v) in Q,
v = on 01, = Q is a ball.
v _

5. = constant on 09,
14
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Problem’s history

Only one SIS
Matzoh ball soup (MBS) SI:eZch'of the proof

Unbounded domains

Problem’s history cont'd

Serrin’s result

Alessandrini’s proof is based on Serrin’s celebrated symmetry result:

Av = f(v) in Q,
v=20 on 01, = Q is a ball.
v _

5, = constant on 0,

Alessandrini (1991)

Let u be the solution of problem (2) (initial value = ¢).

If all IS of u are SIS, then either u(x,t) = Ux(x)e™ > for some
A>0orQis a ball.

| ‘
A\

A\
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Problem’s history

Only one SIS
Matzoh ball soup (MBS) SI:IeZchnof the proof

Unbounded domains

Problem’s history cont'd

S. Sakaguchi, (1999)

Let u be the solution of the problem:

u; =Au in Q x(0,00),
u=¢p on Qx {0}, %:0 in 9Q x (0, 00),

where Q is a Lipschitz domain, ¢ € [3(Q2) and [, ¢dx = 0.

If all IS of u are SIS, then either ¢ is a Neumann eigenfunction or,
modulo a rotation of coordinates, u depends on either

O(Xl,t),
O (VX2 +- -+ xt)with2 <k < N-1,

o or (|x],t).
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Problem’s history
Only one SIS
Matzoh ball soup (MBS) SI:IeZchnof the proof

Unbounded domains

Problem’s history cont'd

Isoparametric functions

Such a theorem is based on the classification theorem for isoparametric
functions in RN (which satisfy both equations Af = a(f) and

|V£|2 = B(f) and turn out to have planar, cylindrical or spherical
symmetry) due to B. Segre and T. Levi-Civita.
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Only one SIS
Matzoh ball soup (MBS) Sl:IeZch"of e (el

Unbounded domains

Problem’s history cont'd

Isoparametric functions

Such a theorem is based on the classification theorem for isoparametric
functions in RN (which satisfy both equations Af = a(f) and

|V£|2 = B(f) and turn out to have planar, cylindrical or spherical
symmetry) due to B. Segre and T. Levi-Civita.

The same method can also be adapted to the Dirichlet setting, to the
porous medium equation and to the manifilds SV and HV.
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Only one stationary isothermic surface

R.M.-S. Sakaguchi, 2002

Let Q (or RV \ Q) be a r
bounded domain with
boundary 09 that satisfies the

exterior sphere condition.

Let I = 9D with D C Q and
D satisfying the interior cone
condition.

Let u be the solution of (1).

If T is a SIS for u, then Q
02 must be a sphere.
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Problem’s history
Matzoh ball soup (MBS) gl:::’cz"sfst:use el

Unbounded domains

Sketch of the proof

Balance law
If vv = Avin G x (0,00) and xo € G then v(xo,t) = 0 for every t > 0 if

and only if
/ v(y,t) dy =0,
B(xo,r)

for every 0 < r < dist(xg,dG) and t > 0.
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Sketch of the proof

Balance law
If vi = Avin G x (0,00) and xo € G then v(xo, t) = 0 for every t > 0 if

and only if
/ v(y,t) dy =0,
B(Xg,r)

for every 0 < r < dist(xg,dG) and t > 0.

Remark

| A\

| stress the fact that this property does not depend on any boundary
condition. It is obtained by proving that the spherical means of v satisfy
a a parabolic PDE in (0, +00) X (0, 4+00) and certain overdetermined
boundary conditions.

A\
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Problem’s history

Matzoh ball soup (MBS) gl:::’cz"sfst:use el

Unbounded domains

Consequences of balance law

15t consequence

We apply the balance law with xp = 0 and
v(x,t) = u(p + x,t) — u(q + x, t), where p,q € I' and obtain that if I is
a SIS then

/ uly, t)dy = C(r, 1),
B(x,r)

for every 0 < r < dist(xg,09), t > 0, and x € I".
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Consequences of balance law

15t consequence

We apply the balance law with xp = 0 and
v(x,t) = u(p + x,t) — u(q + x, t), where p,q € I' and obtain that if I is
a SIS then

/ uly, )dy = C(r, 1),
B(x,r)

for every 0 < r < dist(xg,09), t > 0, and x € I".

|
|
\

2 consequence

09 must be analytic, since u is analytic and Vu # 0 on I for some t.
(We argue by contradiction: if Vu(xg,t) 76 0 for some xy € I' and every
t, by the balance law, it must be fB (0, r) — xo)u(y, t)dy = 0 for every r
and t; we get a contradiction by using the exterior sphere condition for
and the interior cone condition for D.)
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Problem’s history
Matzoh ball soup (MBS) gl:::’cz"sfst:use el

Unbounded domains

Short-time behavior

Short-time behavior
If u is a solution of (1) and d(x) = dist(x, 9), then

2 & 2
1—ux,t:—/ e % dox{1+0(1)} as t— 0. 4
(x,1) T {1+0(1)} (4)
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Unbounded domains

Short-time behavior

Short-time behavior
If u is a solution of (1) and d(x) = dist(x, 9), then

2 & 2
1—ux,t:—/ e % dox{1+0(1)} as t— 0. 4
(x,1) T {1+0(1)} (4)

15t consequence

I must be parallel to 99; in
fact

—4tlog[l — u(x, t)] = d(x)?

as t — 0t.
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Short-time behavior

Short-time behavior
If u is a solution of (1) and d(x) = dist(x, 9), then

2 & 2
1—ux,t:—/ e % dox{1+0(1)} as t— 0. 4
(x,1) T {1+0(1)} (4)

15t consequence 279 consequence
[ must be parallel to 92; in Formula (4) gives a quantitative
fact estimate of the boundary layer
) occurring for t — 0T, that we exploit to
—4tlog[l — u(x, t)] = d(x) get information about the heat content

as t — 0+, qf balls tangent to 09.
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Problem’s history

Matzoh ball soup (MBS) g;:zcz":fst:‘se el

Unbounded domains

Asymptotic formula for heat content

Barriers

In fact, we construct upper and lower barriers of the form
Fi(d(x)/+/4t) for u as t — 0. This helps us to prove the following
crucial formula:
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Unbounded domains

Asymptotic formula for heat content

Barriers

In fact, we construct upper and lower barriers of the form
Fi(d(x)/+/4t) for u as t — 0. This helps us to prove the following
crucial formula:

\

Asymptotic formula for heat content

—-1/2
N—1 /

—(N+1)/4 / u(z,t) dz = Cy § [T11/R - K(»)] 5)

B(x,R) =

ast — 0t.

A\
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Matzoh ball soup (MBS)

Here R = dist(x,0Q) = dist(I", 0R) and &;(y) is the j-th principal
curvature of 09 evaluated at the unique point y such that
|x — y| = dist(x, 0Q).

y

o
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Unbounded domains

Conclusion

Consequence
The asymptotic formula (5) for heat content and the 1% consequence of
the balance law (i.e. constant heat content on I') imply that

N—-1

H [1/R — kj] = constant on 909. (6)

=1
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Conclusion

Consequence

The asymptotic formula (5) for heat content and the 1% consequence of
the balance law (i.e. constant heat content on I') imply that

N-1
H [1/R — kj] = constant on 909. (6)

=1

Conclusion

| A\

(6) is a Monge-Ampére equation; by the moving planes technique, V.I.
Aleksandrov (in the Soap Bubble Theorem's version for Wirtinger
surfaces) showed a result that implies that, if 99 is bounded and satisfies
(6), then it must be a sphere. Therefore: if I' is a SIS for u, then 9Q
must be a sphere.

v
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Remarks

The asymptotic formula (5) can be extended (with a constant different
from Cp) to solutions of the porous medium equation or of the
evolution p-Laplace equation.
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Remarks

The asymptotic formula (5) can be extended (with a constant different
from Cp) to solutions of the porous medium equation or of the
evolution p-Laplace equation.

If 9Q is unbounded and admits N — 1 distinct SIS, I'y,...,[y_1, then

N—1

we find the system [] [1/R; —kj]=c¢, i=1,...,N—1, ondqQ,
j=1

which implies that all principal curvatures ki, ..., ky_1 are constant on

09, and hence 9N is either a spherical cylinder or a hyperplane, thus

giving a definitive answer to Klamkin's original question.
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Remarks

The asymptotic formula (5) can be extended (with a constant different
from Cp) to solutions of the porous medium equation or of the
evolution p-Laplace equation.

If 9Q is unbounded and admits N — 1 distinct SIS, I'y,...,[y_1, then

N—1

we find the system [] [1/R; —kj]=c¢, i=1,...,N—1, ondqQ,
j=1

which implies that all principal curvatures ki, ..., ky_1 are constant on

09, and hence 9N is either a spherical cylinder or a hyperplane, thus

giving a definitive answer to Klamkin's original question.

The previous item may set the difference between Alessandrini’'s and our
assumptions and results: while only isoparametric surfaces are possible if
all IS are SIS, it may be possible to find “isolated SIS” under the latter
assumptions.
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Using global assumptions

When 909 is unbounded, one way to get information about the symmetry
of 99 is to couple our formula (6) with some a priori information on Q. J
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Unbounded domains

Using global assumptions

When 909 is unbounded, one way to get information about the symmetry
of 99 is to couple our formula (6) with some a priori information on Q. J

Adapting a technique of Caffarelli, Nirenberg and Spruck

Let

Q={(x,xn) ERV"I xR:xy > p(x'),x € RV-1},

where ¢ : RN=1 — R is Lipschitz continuous and |V (x')| = o(+/]x']) as
|x'| = 0. If Q contains a SIS, then 99 is a hyperplane.
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Using global assumptions

When 909 is unbounded, one way to get information about the symmetry
of 99 is to couple our formula (6) with some a priori information on Q. J

Adapting a technique of Caffarelli, Nirenberg and Spruck

Let
Q={(x,xn) ERV"I xR:xy > p(x'),x € RV-1},

where ¢ : RN=1 — R is Lipschitz continuous and |V (x')| = o(+/]x']) as
|x'| = 0. If Q contains a SIS, then 99 is a hyperplane.

i

From an idea of Berestycki, Caffarelli and Nirenberg

Let Q be as in the previous item with ¢ : RN~ — R Lipschitz
continuous and such that ¢(x’' + h) — p(x') = 0 as |x'| = oo uniformly
in h. If Q contains a SIS, then 0 is a hyperplane.

o
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Following Chavel and Karp
SIS and UD domains
The case [ = 9Q

Uniformly dense domains

A different setting

We have not been able to obtain further symmetry results for the Matzoh
Ball Soup problem with only one SIS. In what follows | will present results
and remarks that can help us to have a better insight into the problem.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

A different setting

We have not been able to obtain further symmetry results for the Matzoh
Ball Soup problem with only one SIS. In what follows | will present results
and remarks that can help us to have a better insight into the problem.

v

We now consider the Cauchy problem (3):
u=Au in RV x (0,00), u=Xq on RV x {0}.

and suppose as usual that I ¢ RV is a SIS for u.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case ' = ¢

Uniformly dense domains

A different setting

We have not been able to obtain further symmetry results for the Matzoh
Ball Soup problem with only one SIS. In what follows | will present results
and remarks that can help us to have a better insight into the problem.

We now consider the Cauchy problem (3):
u=Au in RV x (0,00), u=Xq on RV x {0}.

and suppose as usual that I ¢ RV is a SIS for u.

This setting is more favourable than the initial-boundary value problem,
since we can write the solution u explicitly:

u(x, t) = (4mt)~N/? / Xaly) e~ 4tqy.
RN

o
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

An improvement of a result by Chavel and Karp

We can rewrite u(x,t) as a p = 1/4t Lebesgue norm:

— —|x—-]2
u(x, t) = (4rt)~N2|Q] [le=] ||ﬁ/4r(9,dy/|gz|)-
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

An improvement of a result by Chavel and Karp

We can rewrite u(x,t) as a p = 1/4t Lebesgue norm:

— —|x—-]2
u(x, t) = (4rt)~N2|Q] [le=] ||ﬁ/4r(9,dy/|gz|)-

If [ is a SIS, then
||e_‘x_.|2||L1/42(Q,dy/‘Q|) = C(t) for x €T,

and hence, when t = oo we have:

—x—y|? dy
[x—y| =7 _
exp{/log[e ]}|Q| Cyo, x€T,

and, when t — 0+ we obtain: e Mfrealxy” = ¢, xeT.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

An improvement of a result by Chavel and Karp

Conclusion

In conclusion, if Q has a finite moment of inertia [, |y|°dy/|Q|, then

x—— [ ydy| = ydy —— [ lyI"dy — C, x€T,
BPA |n| o Jo !

that is I" is a sphere, and dist(x,Q) = /—Tlog Gy, x € T, that is 90 is a
sphere.

~
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The initial value problem

. . Following Chavel and Karp
Uniformly dense domains SIS and UD domains
The case [ = 9Q

An improvement of a result by Chavel and Karp

Conclusion

In conclusion, if Q has a finite moment of inertia [, |y|°dy/|Q|, then

x—— [ ydy| = y dy ——/ydy—Coo,xer,
BPA |n| o Jo !

that is I" is a sphere, and dist(x,Q) = /—Tlog Gy, x € T, that is 90 is a
sphere.

v

This result seems to suggest that the necessary global information to
infer the symmetry of Q should be looked for at t = 0o

However, we will show that in some case the behaviour at t = 0 still
gives some useful information.
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The ir value problem

. - Following Chavel and Karp
Uniformly dense domains SIS and UD domains

The case I = 9Q

Uniformly dense domains

Necessary and sufficient condition

The same representation formula implies
that " is a SIS if and only if for fixed
r>0

QN B(x,r)| = c*(r) forevery x€T.
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The initial value problem
. - Following Chavel and Karp
Uniformly dense domains SIS and UD domains

The case I = 9Q

Uniformly dense domains

Uniformly dense domains

Necessary and sufficient condition

The same representation formula implies We name the domains with
that " is a SIS if and only if for fixed such a property uniformly
r>0 dense in I and define the

density of Q at x by
QN B(x,r)| = c*(r) forevery x€T.
. p(x, 1) = 2N B(x, r)|
’ |B(x,r)|
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The initial value problem

. - Following Chavel and Karp
Uniformly dense domains SIS and UD domains

The case I = 9Q

Uniformly dense domains

Uniformly dense domains

Necessary and sufficient condition

The same representation formula implies We name the domains with
that " is a SIS if and only if for fixed such a property uniformly
r>0 dense in I and define the

density of Q at x by
QN B(x,r)| = c*(r) forevery x€T.
. QN B(x,r)|

P 1) = Bk, 1)

Short times means small r

u(x,t) = cN\/f/ p(x, sv/at) sNe="ds.
0
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The initial value problem
. - Following Chavel and Karp
Uniformly dense domains SIS and UD domains

The case I = 9Q

Uniformly dense domains

Proof for ' = 092

If N =2 and I is uniformly dense, then Q
a straightforward geometrical argument
tells us that the curvature of 9Q must
be constant.
)
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The initial value problem
. - Following Chavel and Karp
Uniformly dense domains SIS andOUD s

The case I = 9Q

Uniformly dense domains

Proof for ' = 092

If N =2 and I is uniformly dense, then
a straightforward geometrical argument
tells us that the curvature of 9Q must

be constant.
K(x)>k(y)

Asymptotic formula for r — R™ (here R = dist(x,99Q) = |x — y|)

N-1 _py (N=1)/2
pxin) = O [TU/R =) (25 ) o),

Jj=1
N—1
Hence, if Q is UD in T, then [] [1/R — &;] is constant on 0.
j=1

»
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

The case [ = 022

Something more, if [ = 09

If Q is uniformly dense in 9, then for r — 0T
1
p(x,r) = stakirt [GGK? + cd KT Kz + ¢ Ks] r* + O(r°)

at x, where K; = 3 K; ---k; is the j—th symmetric invariant of 0Q
h<-<ij
(e.g. K1 = (N —1)H and Ky_; = K).
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The initial value problem

. - Following Chavel and Karp
Uniformly dense domains SIS and UD domains

The case I = 92

The case [ = 022

Something more, if [ = 09

If Q is uniformly dense in 9, then for r — 0T

1
p(x,r) = stakirt [GGK? + cd KT Kz + ¢ Ks] r* + O(r°)

at x, where K; = 3 K; ---k; is the j—th symmetric invariant of 0Q
h<-<ij
(e.g. K1 = (N —1)H and Ky_; = K).

15t consequence

If 9Q is a SIS, then it has
constant mean curvature and
¢ K2K, + cl'K3 is constant on
o9Q.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

The case [ = 022
Something more, if [ = 09

If Q is uniformly dense in 9, then for r — 0T

1
p(x,r) = stakirt [GGK? + cd KT Kz + ¢ Ks] r* + O(r°)

at x, where K; = 3 K; ---k; is the j—th symmetric invariant of 0Q
h<-<ij
(e.g. K1 = (N —1)H and Ky_; = K).

15t consequence 279 consequence

If 9Q is a SIS, then it has If N =3, K3 = 0 and hence either
constant mean curvature and H = 0 or both H and K are constant.

¢ K2K, + cl'K3 is constant on Therefore, 9 is either a sphere, a

oQ. spherical cylinder, or a minimal surface.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

An example

A right helicoid is a minimal
surface that is the boundary of a
uniformly dense domain Q and
hence a SIS.
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The ir value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

An example

A right helicoid is a minimal
surface that is the boundary of a
uniformly dense domain Q and
hence a SIS.

In fact,

|QNB(x, r)| = [(RN\Q)NB(x, r)|
for every x € 9%2; in other words
p = 1/2. (09 is symmetric with
respect to any straight line
contained in it.)
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The ir value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

An example

A right helicoid is a minimal
surface that is the boundary of a
uniformly dense domain Q and
hence a SIS.

In fact,

|QNB(x, r)| = [(RN\Q)NB(x, r)|
for every x € 9%2; in other words
p = 1/2. (09 is symmetric with
respect to any straight line
contained in it.) Are there other minimal surfaces
' with this property?
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The | value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

Nitsche, 1995; on a question raised by G. Cimmino in 1932)

The only non-planar minimal surface I such that p(x, r) = 1/2 for every
x € [ is the right helicoid.
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

Nitsche, 1995; on a question raised by G. Cimmino in 1932)

The only non-planar minimal surface I such that p(x, r) = 1/2 for every
x € [ is the right helicoid.

R.M-J. Prajapat-S. Sakaguchi, 2004

If Q is uniformly dense in ' = 9Q and T is a complete minimal surface
with finite total curvature fr K dS, then I must be a plane. (The total
curvature of a helicoid is infinite, because of its periodicity.)
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The initial value problem
Following Chavel and Karp
SIS and UD domains

The case [ = 9Q

Uniformly dense domains

About minimal surfaces

Nitsche, 1995; on a question raised by G. Cimmino in 1932)

The only non-planar minimal surface I such that p(x, r) = 1/2 for every
x € [ is the right helicoid.

R.M-J. Prajapat-S. Sakaguchi, 2004

If Q is uniformly dense in ' = 9Q and T is a complete minimal surface
with finite total curvature fr K dS, then I must be a plane. (The total
curvature of a helicoid is infinite, because of its periodicity.)

~

Remark

The helicoid is an example of “isolated” SIS, in the sense that a
sufficiently small neighborhood of it does not contain any other SIS
(differently from the case of the isoparametric surfaces).

~
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Are isolated SIS possible for the initial-boundary value problem (the
Matzoh Ball Soup setting)?
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Are isolated SIS possible for the initial-boundary value problem (the
Matzoh Ball Soup setting)?

~
A possible stategy for Q1

The function u solves (1) iff W(x,s) =s2—s2 [[* u(x, t) e=Stdt
solves the problem:

AW -s2W=0in Q, W=1 on 99.

By the ansatz (here, d(x) = dist(x, 9R))

o0
W(x,s) = e {3 A (x) s“} , we compute:
n=0

A\
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Aolx) = A_II:I:[I AR, x—y] = d(x), y € 8%,

d(x n—1(x
An(x) = Ao(x) J5'¢) 2Lzt gy,

x'(t) = Vd(x(t)), x(0)=y, x(d(x))=x.
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Aolx) = N_lj:u AR, x—y] = d(x), y € 8%,
An(x) = AO(X) od(X) Ax—a((?)()t)) dt,
(t) = Vd(x(), x(0) =y, x(d(x)=x.

Remark

If T is a SIS for u, then W(x,s) = C(s) on I for every s > 0 and hence
all the coefficients A, must be constant on Of2.

| A\

In particular, for n = 0 we obtain in a different fashion our
Monge-Ampére equation (6).
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Compute A; in terms of geometric quantities of the surface 9f2.
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On isolated SIS

Compute A; in terms of geometric quantities of the surface 9f2.

The use of the ansatz dispenses us from using the balance law (except
for the regularity issue).

This opens up the way to the extension of our results presented to quite
general Riemannian surfaces. (The balance law can only be extended
to manifolds such as SV or HV.)
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On problem (2)

What about the case of a general L>(Q) initial data ¢ (problem (2),
solved by Alessandrini in the case of infinitely many SIS)?
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On problem (2)

What about the case of a general L>(Q) initial data ¢ (problem (2),
solved by Alessandrini in the case of infinitely many SIS)?

Remark

| A\

Write the sol. of (2) by the spectral formula: u = Y @, u,(x) e k.
neN
Suppose that ¢, # 0 for every n € N. If " is a SIS for u, then every u,
must be constant on I and hence T is also a SIS for the solution of (1):
3 1, ta(x) et
neN
This implies that Q must be a ball (if bounded).

A\
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On problem (2)

What about the case of a general L>(Q) initial data ¢ (problem (2),
solved by Alessandrini in the case of infinitely many SIS)?

Write the sol. of (2) by the spectral formula: u = Y @, u,(x) e k.
neEN
Suppose that ¢, # 0 for every n € N. If " is a SIS for u, then every u,

must be constant on I and hence T is also a SIS for the solution of (1):

3 1, ta(x) et
neN
This implies that Q must be a ball (if bounded).

Suppose that ¢, # 0 for infinitely many n € N and that I" is a SIS for u.
Does this imply that Q is a ball?

\
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On Matzoh Ball Soup
Five questions On generalized MBS
On uniformly dense domains

On uniformly dense domains

Compute the O(r®) term of the expansion for p(x,r) to get further
information about the SIS I = 9.
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