Outline References Introduction

Critical points of solutions of elliptic and parabolic PDE's

Rolando Magnanini

Dipartimento di Matematica "Ulisse Dini" Università di Firenze

March 2, 2007

イロト イポト イヨト イヨト

Outline References Introduction

Outline

Introduction

- **2** Elliptic equations in \mathbb{R}^2
 - Capacity potentials
 - Boundary values and critical points of harmonic functions
 - Critical points of eigenfunctions

- Examples and extensions to \mathbb{R}^N
- e Hot spots
 - Basic results
 - Open problems
 - On the location of hot spots
 - Stationary hot spots

イロト イポト イヨト イヨト

Outline References Introduction

References

- G. Alessandrini-R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sc. 19 (4) (1992), 567-589.
- G. Alessandrini-R. Magnanini, *Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,* SIAM J. Math. Anal. 25 (1994), 1259-1268.
- R. Magnanini-S. Sakaguchi, On heat conductors with a stationary hot spot, Annali Matematica Pura ed Applicata 183, no. 1 (2004), 1-23.
- R. Magnanini-S. Sakaguchi, *Polygonal heat conductors with a stationary hot spot*, submitted (2006).

イロト イポト イヨト イヨト

Outline References Introduction

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let *u* be the first Dirichlet eigenfunction for the Laplace operator:

$$\begin{split} \Delta u + \lambda_1 \ u = 0, \ u > 0 \ \text{ in } \ \Omega, \\ u = 0 \ \text{ on } \ \partial \Omega, \end{split}$$

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , u = 0 on $\partial \Omega$.

Ω convex

If Ω is convex, every level set $\{x \in \Omega : u(x) > t\}$ is strictly convex and hence u has only one critical point — a maximum point.

Question

If Ω is not convex, how the topology and geometry of Ω determine the number and (maybe) the position of the critical points of *u*?

More in general

Given an elliptic equation

$$\mathcal{L}u = -f$$
 in Ω ,

how do the topology and geometry of Ω , the boundary values of u, and/or the coefficients of \mathcal{L} influence the formation of the critical points of u?

Outline References Introduction

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let *u* be the first Dirichlet eigenfunction for the Laplace operator:

$$\begin{split} \Delta u + \lambda_1 \ u = 0, \ u > 0 \ \text{ in } \ \Omega, \\ u = 0 \ \text{ on } \ \partial \Omega, \end{split}$$

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , u = 0 on $\partial \Omega$.

Ω convex

If Ω is **convex**, every level set $\{x \in \Omega : u(x) > t\}$ is strictly convex and hence u has only one critical point — a maximum point.

Question

If Ω is not convex, how the topology and geometry of Ω determine the number and (maybe) the position of the critical points of *u*?

More in general

Given an elliptic equation

$$\mathcal{L}u = -f$$
 in Ω ,

how do the topology and geometry of Ω , the boundary values of u, and/or the coefficients of \mathcal{L} influence the formation of the critical points of u?

Outline References Introduction

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let *u* be the first Dirichlet eigenfunction for the Laplace operator:

$$\begin{split} \Delta u + \lambda_1 \ u = 0, \ u > 0 \ \text{ in } \ \Omega, \\ u = 0 \ \text{ on } \ \partial \Omega, \end{split}$$

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , u = 0 on $\partial \Omega$.

Ω convex

If Ω is **convex**, every level set $\{x \in \Omega : u(x) > t\}$ is strictly convex and hence u has only one critical point — a maximum point.

Question

If Ω is not convex, how the topology and geometry of Ω determine the number and (maybe) the position of the critical points of *u*?

More in general

Given an elliptic equation

$$\mathcal{L}u = -f$$
 in Ω ,

how do the topology and geometry of Ω , the boundary values of u, and/or the coefficients of \mathcal{L} influence the formation of the critical points of u?

Capacity potentials

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Capacity potential

Index $m(z_k)$ of ∇u at z_k

If z_k is an isolated critical point of u and $\omega = \arg \nabla u$,

$$m(z_k) := \frac{1}{2\pi} \Delta_{+\gamma}(\omega);$$

 $+\gamma = \partial B(z_k, \varepsilon)$ counterclockwise.

Capacity potential

$$\Delta u = 0$$
 in Ω
 $u = a_j$ on $\Gamma_j, j = 1, \dots, n$,

where the a_j 's are constants, not all equal (n-1 =number of holes).

Perfect counting

The critical points z_k of u are isolated and

$$\sum_{z_k\in\Omega} m(z_k) + \frac{1}{2}\sum_{z_k\in\partial\Omega} m(z_k) = n-2.$$

N.B.: If Ω is doubly connected (n = 2), $\nabla u \neq 0$

Capacity potentials

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Capacity potential

Capacity potential

$$\Delta u = 0$$
 in Ω
 $u = a_j$ on $\Gamma_j, j = 1, \dots, n$,

where the a_j 's are constants, not all equal (n - 1 =number of holes).

Index $m(z_k)$ of ∇u at z_k

If z_k is an isolated critical point of u and $\omega = \arg \nabla u$,

$$m(z_k) := rac{1}{2\pi} \Delta_{+\gamma}(\omega);$$

$$+\gamma = \partial B(z_k, \varepsilon)$$
 counterclockwise.

Perfect counting

The critical points z_k of u are isolated and

$$\sum_{z_k\in\Omega}m(z_k)+\frac{1}{2}\sum_{z_k\in\partial\Omega}m(z_k)=n-2.$$

N.B.: If Ω is doubly connected (n = 2), $\nabla u \neq 0$.

Capacity potentials

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Argument principle
If $\Delta u = 0$, then
$f = u_x - iu_y = \nabla u e^{-i\omega}, \omega = \arg \nabla u,$
is holomorphic and hence, if $\nabla u \neq 0$ on $\partial \Omega$,
$\sharp \{ \text{zeroes of } f \} - \sharp \{ \text{poles of } f \} = \frac{1}{2\pi} \Delta_{\partial\Omega} \arg f.$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

If $\{z_k \in \partial \Omega\} = \emptyset$

() f is holomorphic in $\Omega \; \Rightarrow \;$ no poles in $\Omega;$

2)
$$m(z_k) = \frac{1}{2\pi} \Delta_{\partial B(z_k,\epsilon)} \omega \implies \sharp \{ \text{zeroes of } f \} = -\sum_{z_k \in \Omega} m(z_k);$$

 $\boxed{3} \quad \frac{1}{2\pi} \Delta_{\partial\Omega} \arg f = \frac{1}{2\pi} \Delta_{\partial\Omega} \arg(\text{exterior normal}) = 2 - n \quad \Rightarrow \quad \mathsf{QED}$

Capacity potentials

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Argument principle
If
$$\Delta u = 0$$
, then
 $f = u_x - iu_y = |\nabla u| e^{-i\omega}, \quad \omega = \arg \nabla u,$
is **holomorphic** and hence, if $\nabla u \neq 0$ on $\partial \Omega$,
 $\sharp \{\text{zeroes of } f\} - \sharp \{\text{poles of } f\} = \frac{1}{2\pi} \Delta_{\partial\Omega} \arg f.$

If $\{z_k \in \partial \Omega\} = \emptyset$

(a)
$$f$$
 is holomorphic in $\Omega \Rightarrow$ no poles in Ω ;
(a) $m(z_k) = \frac{1}{2\pi} \Delta_{\partial B(z_k,\varepsilon)} \omega \Rightarrow \sharp \{\text{zeroes of } f\} = -\sum_{z_k \in \Omega} m(z_k);$
(b) $\frac{1}{2\pi} \Delta_{\partial \Omega} \arg f = \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\text{exterior normal}) = 2 - n \Rightarrow \text{QED}.$

Capacity potentials

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

How do we treat the case $z_k \in \partial \Omega$?

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

A more general result (Alessandrini-M., 1992)

- (1) $\vec{\alpha} : \partial \Omega \to \mathbb{S}^1$ unitary vector field, $\vec{\alpha} \in C^1(\partial \Omega);$
- 2 $D := \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\vec{\alpha}) = \text{ index of } \vec{\alpha} \text{ on } \partial\Omega;$
- $\bigcirc \Delta u = 0$ in Ω ;
- $\bigcirc \quad \nabla u \neq 0 \text{ on } \partial \Omega.$
- M is the minimum number of connected components of the set

$$\mathcal{J}^+ = \{ z \in \partial \Omega : \nabla u(z) \cdot \vec{\alpha}(z) \ge 0 \}$$

which are a **proper** subset of $\partial \Omega$.

l hen

3 U 7 3 DF7 3 E 7 3 E 7

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

A more general result (Alessandrini-M., 1992)

- (1) $\vec{\alpha} : \partial \Omega \to \mathbb{S}^1$ unitary vector field, $\vec{\alpha} \in C^1(\partial \Omega);$
- 2 $D := \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\vec{\alpha}) = \text{ index of } \vec{\alpha} \text{ on } \partial\Omega;$
- $\bigcirc \Delta u = 0$ in Ω ;
- $\bigcirc \quad \nabla u \neq 0 \text{ on } \partial \Omega.$
- M is the minimum number of connected components of the set

$$\mathcal{J}^+ = \{ z \in \partial \Omega : \nabla u(z) \cdot \vec{\alpha}(z) \ge 0 \}$$

which are a **proper** subset of $\partial \Omega$.

Then

$$\sum_{z_k\in\Omega}m(z_k)\leq M-D.$$

Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Key remark

$$\frac{\nabla u}{|\nabla u|} \cdot \alpha = \cos(\omega - \theta)$$

where $\theta = \arg \vec{\alpha}$; hence

$$ert \omega - heta ert \leq rac{\pi}{2} \; \; ext{on} \; \; \mathcal{J}^+,$$
 $ert \omega + heta ert \leq rac{\pi}{2} \; \; ext{on} \; \; \mathcal{J}^-.$

$$\left|\frac{1}{2\pi}\Delta_{A\cup B}\;\omega-\frac{1}{2\pi}\Delta_{A\cup B}\;\theta\right|\leq 1\;\Rightarrow\;-\frac{1}{2\pi}\Delta_{A\cup B}\;\omega\leq-\frac{1}{2\pi}\Delta_{A\cup B}\;\theta+1$$

・ロン ・回と ・ヨン ・ヨン

$$\frac{1}{2\pi}\Delta_{\Gamma}\ \omega = \frac{1}{2\pi}\Delta_{\Gamma}\ \theta.$$

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Key remark

$$\frac{\nabla u}{|\nabla u|} \cdot \alpha = \cos(\omega - \theta)$$

where $\theta = \arg \vec{\alpha}$; hence

$$ert \omega - heta ert \leq rac{\pi}{2} \ \ ext{on} \ \ \mathcal{J}^+,$$
 $ert \omega + heta ert \leq rac{\pi}{2} \ \ \ ext{on} \ \ \mathcal{J}^-.$

First consequence

On every component Γ of $\partial \Omega$ with $\Gamma \subseteq \mathcal{J}^+$ we have:

$$\left|\frac{1}{2\pi}\Delta_{\Gamma} \omega - \frac{1}{2\pi}\Delta_{\Gamma} \theta\right| \leq \frac{1}{2}$$

hence

$$\frac{1}{2\pi}\Delta_{\Gamma}\ \omega = \frac{1}{2\pi}\Delta_{\Gamma}\ \theta.$$

Second consequence

$$\left|\frac{1}{2\pi}\Delta_{A\cup B}\ \omega - \frac{1}{2\pi}\Delta_{A\cup B}\ \theta\right| \le 1 \ \Rightarrow \ -\frac{1}{2\pi}\Delta_{A\cup B}\ \omega \le -\frac{1}{2\pi}\Delta_{A\cup B}\ \theta + 1.$$

・ロト ・同ト ・ヨト ・ヨト 三星

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Key remark

$$\frac{\nabla u}{|\nabla u|} \cdot \alpha = \cos(\omega - \theta)$$

where $\theta = \arg \vec{\alpha}$; hence

$$ert \omega - heta ert \leq rac{\pi}{2} \ \ ext{on} \ \ \mathcal{J}^+,$$
 $ert \omega + heta ert \leq rac{\pi}{2} \ \ \ ext{on} \ \ \mathcal{J}^-.$

First consequence

On every component Γ of $\partial \Omega$ with $\Gamma \subseteq \mathcal{J}^+$ we have:

$$\left|\frac{1}{2\pi}\Delta_{\Gamma} \ \omega - \frac{1}{2\pi}\Delta_{\Gamma} \ \theta\right| \leq \frac{1}{2}$$

hence

$$\frac{1}{2\pi}\Delta_{\Gamma}\ \omega = \frac{1}{2\pi}\Delta_{\Gamma}\ \theta.$$

Second consequence

$$\left| \frac{1}{2\pi} \Delta_{A \cup B} \; \omega - \frac{1}{2\pi} \Delta_{A \cup B} \; \theta \right| \leq 1 \; \Rightarrow \; - \frac{1}{2\pi} \Delta_{A \cup B} \; \omega \leq - \frac{1}{2\pi} \Delta_{A \cup B} \; \theta + 1.$$

・ロト ・同ト ・ヨト ・ヨト

∃ <\0<</p>

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Conclusion

Summing up these contributions gives

$$\sum_{z_k\in\Omega}m(z_k)=-rac{1}{2\pi}\Delta_{\partial\Omega}\,\,\omega\leq-rac{1}{2\pi}\Delta_{\partial\Omega}\,\, heta+M=M-D.$$

Extension

These results can be extended to elliptic equations of the form

$$\mathcal{L}\mathbf{u} = \operatorname{div}\{\mathbf{A}(\mathbf{x}) \ \nabla \mathbf{u}\} + \mathbf{b}(\mathbf{x}) \cdot \nabla \mathbf{u} = \mathbf{0},$$

where $A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) \\ a_{12}(x) & a_{22}(x) \end{bmatrix}, \quad a_{ij} \in \operatorname{Lip}(\Omega),$
and $b(x) = \begin{bmatrix} b_1(x) \\ b_2(x) \end{bmatrix}, \quad b_i \in L^{\infty}(\Omega).$

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Sketch of the proof

Conclusion

Summing up these contributions gives

$$\sum_{z_k\in\Omega}m(z_k)=-\frac{1}{2\pi}\Delta_{\partial\Omega}\,\,\omega\leq-\frac{1}{2\pi}\Delta_{\partial\Omega}\,\,\theta+M=M-D.$$

Extension

These results can be extended to elliptic equations of the form

$$\mathcal{L}\mathbf{u} = \operatorname{div}\{\mathbf{A}(\mathbf{x}) \ \nabla \mathbf{u}\} + \mathbf{b}(\mathbf{x}) \cdot \nabla \mathbf{u} = \mathbf{0},$$

where $A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) \\ a_{12}(x) & a_{22}(x) \end{bmatrix}, \quad a_{ij} \in \operatorname{Lip}(\Omega),$
and $b(x) = \begin{bmatrix} b_1(x) \\ b_2(x) \end{bmatrix}, \quad b_i \in L^{\infty}(\Omega).$

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

The two ingredients of the proof

Uniformization principle

For every solution of $\mathcal{L}u = 0$ in Ω , there is a **quasi-conformal mapping** $\zeta, \zeta = \xi + i\eta$, such that the function U such that $u = U \circ \zeta$ satisfies

$$\Delta U + P U_{\xi} + Q U_{\eta}$$
 in $\zeta(\Omega)$,

with $P, Q \in L^{\infty}(\zeta(\Omega))$.

Similarity principle

There exist a **holomorphic** function $G(\zeta)$ and a function $s(\zeta)$, Hölder continuous on \mathbb{C} , such that

$$2\partial_{\zeta}U = U_{\xi} - iU_{\eta} = e^{s(\zeta)}G(\zeta)$$
 in $\zeta(\Omega)$.

 $(s(\zeta)$ can be chosen real-valued on $\partial\Omega.)$

イロト イロト イヨト イヨト

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

The two ingredients of the proof

Uniformization principle

For every solution of $\mathcal{L}u = 0$ in Ω , there is a **quasi-conformal mapping** $\zeta, \zeta = \xi + i\eta$, such that the function U such that $u = U \circ \zeta$ satisfies

$$\Delta U + P U_{\xi} + Q U_{\eta}$$
 in $\zeta(\Omega)$,

with $P, Q \in L^{\infty}(\zeta(\Omega))$.

Similarity principle

There exist a **holomorphic** function $G(\zeta)$ and a function $s(\zeta)$, Hölder continuous on \mathbb{C} , such that

$$2\partial_{\zeta}U = U_{\xi} - iU_{\eta} = e^{s(\zeta)}G(\zeta)$$
 in $\zeta(\Omega)$.

 $(s(\zeta) \text{ can be chosen real-valued on } \partial \Omega.)$

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$\operatorname{div}\{A(x) \ \nabla u\} = 0.$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

For every non-constant solution $u \in W^{1,2}(\Omega)$, we can write

 $u(z) = h(\chi(z)), \ z \in \Omega.$

where $\chi: \Omega \to B(0,1)$ is a **quasi-conformal** mapping and *h* is **harmonic**.

"Geometric" critical point

- - 2 multiplicity of $z_0 = \frac{1}{2\pi} \Delta_{\partial B(\chi(z_0),\varepsilon)} \arg(\nabla h).$

Application: inverse problem

div $(\sigma \nabla u) = 0$ in $\Omega \subset \mathbb{R}^2$, $0 < \sigma_0 \le \sigma =$ unknown

The equation is a 1st order PDE for σ . The previous theorems help to establish whether $\nabla u \neq 0$ by examining, for instance, the sign of $\frac{\partial u}{\partial \nu}$ on $\partial \Omega$. This can be done even if σ is **discontinuous**.

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$\operatorname{div}\{A(x) \ \nabla u\} = 0$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

For every non-constant solution $u \in W^{1,2}(\Omega)$, we can write

 $u(z) = h(\chi(z)), z \in \Omega.$

where $\chi : \Omega \rightarrow B(0, 1)$ is a quasi-conformal mapping and h is harmonic.

"Geometric" critical point

- 2 multiplicity of $z_0 = \frac{1}{2\pi} \Delta_{\partial B(\chi(z_0),\varepsilon)} \arg(\nabla h).$

Application: inverse problem

div $(\sigma \nabla u) = 0$ in $\Omega \subset \mathbb{R}^2$, $0 < \sigma_0 \le \sigma =$ unknown

The equation is a 1st order PDE for σ . The previous theorems help to establish whether $\nabla u \neq 0$ by examining, for instance, the sign of $\frac{\partial u}{\partial \nu}$ on $\partial \Omega$. This can be done even if σ is **discontinuous**.

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$\operatorname{div}\{A(x) \ \nabla u\} = 0.$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

For every non-constant solution $u \in W^{1,2}(\Omega)$, we can write

 $u(z) = h(\chi(z)), z \in \Omega.$

where $\chi : \Omega \rightarrow B(0, 1)$ is a quasi-conformal mapping and h is harmonic.

"Geometric" critical point

- **1** $z_0 \in \Omega$ is a critical point of u if $\nabla h(\chi(z_0));$
- 2 multiplicity of $z_0 = \frac{1}{2\pi} \Delta_{\partial B(\chi(z_0),\varepsilon)} \arg(\nabla h).$

Application: inverse problem

 $\operatorname{div}(\sigma \nabla u) = 0 \quad \text{in} \quad \Omega \subset \mathbb{R}^2,$

 $0 < \sigma_0 \leq \sigma = \text{ unknown}$

The equation is a 1st order PDE for σ . The previous theorems help to establish whether $\nabla u \neq 0$ by examining, for instance, the sign of $\frac{\partial u}{\partial \nu}$ on $\partial \Omega$. This can be done even if σ is **discontinuous**.

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

First eigenfunction

Assumptions

$$\begin{split} \Delta u + \lambda_1 u &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \\ \partial \Omega &= \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}. \end{split}$$

Alessandrini-M., 1992

If the critical points of *u* are isolated, then

Extension 1

The theorem holds also for

$$-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega.$$

```
with f \in C^1, f(t) > 0 for t > 0.
```

・ロン ・回と ・ヨン・

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

First eigenfunction

Assumptions

$$\begin{split} \Delta u + \lambda_1 u &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \\ \partial \Omega &= \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}. \end{split}$$

Alessandrini-M., 1992

If the critical points of u are isolated, then

$$\sharp$$
{saddle pts} - \sharp {maximum pts} = $n - 2$.

Extension 1

The theorem holds also for

$$-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega$$

```
with f \in C^1, f(t) > 0 for t > 0.
```

◆□> ◆□> ◆三> ◆三> ●三 のへの

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

First eigenfunction

Assumptions

$$\begin{split} \Delta u + \lambda_1 u &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \\ \partial \Omega &= \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}. \end{split}$$

Alessandrini-M., 1992

If the critical points of u are isolated, then

$$\sharp$$
{saddle pts} - \sharp {maximum pts} = $n - 2$.

Extension 1

The theorem holds also for

$$-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega$$

with $f \in C^1$, f(t) > 0 for t > 0.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Capacity potentials Boundary values and critical points of harmonic functions Critical points of eigenfunctions in \mathbb{R}^2

First eigenfunction

Assumptions

$$\begin{split} \Delta u + \lambda_1 u &= 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \\ \partial \Omega &= \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}. \end{split}$$

Alessandrini-M., 1992

If the critical points of u are isolated, then

$$\sharp$$
{saddle pts} - \sharp {maximum pts} = $n - 2$.

Extension 1

The theorem holds also for

$$-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega$$

with
$$f \in C^1$$
, $f(t) > 0$ for $t > 0$.

Extension 2: removing assumption u > 0

If
$$f(0) = 0$$
 and $f(t)/t > 0$ for $t \neq 0$,

$$\begin{aligned} & \sharp \{ \text{saddle pts} \} - \sharp \{ \text{extremum pts} \} + \\ & \sum_{z_k \in \Omega} m(z_k) + \frac{1}{2} \sum_{z_k \in \partial \Omega} m(z_k) = n - 2, \end{aligned}$$

where the z_k 's are the **nodal** points of u. (Below $0 - 4 + 2 + \frac{1}{2} \cdot 2 = 1 - 2$.)

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Critical points: extension to \mathbb{R}^N , $N \ge 3$

Difficulties

- Lack of complex variables.
- Critical points are in general not isolated.
- **3** The "number" of critical points does not only depend on the topology (and the values of u on $\partial\Omega$): curvature (and/or something else) should also be taken into account.

・ロン ・回と ・ヨン ・ヨン

3

Critical points: extension to \mathbb{R}^N , $N \ge 3$

Difficulties

- Lack of complex variables.
- Critical points are in general not isolated.
- 3 The "number" of critical points does not only depend on the topology (and the values of u on $\partial\Omega$): curvature (and/or something else) should also be taken into account.

Example 1

The function

$$\begin{split} u(x,y,z) &= J_0(\sqrt{x^2 + y^2}) \ ch(z), \\ J_0(r) \ \text{Bessel function:} \\ J_0'' + \frac{1}{r} \ J_0' + J_0 &= 0, \end{split}$$

is harmonic in \mathbb{R}^3 and

$$\{\nabla u=0\}=\{z=0\}\cap \bigcup_{n=0}^{\infty}\partial B(0,\kappa_{1,n}),$$

where $0 = \kappa_{1,0} < \kappa_{1,1} < \kappa_{1,2} < \dots$ are the zeroes of the Bessel function $J_1 = -J_0$.

Critical points of solutions of elliptic and parabolic PDE's

Rolando Magnanini

Critical points: extension to \mathbb{R}^N , $N \ge 3$

Example 2

- The function u is harmonic in the region Ω between the sphere and the toroidal surface.
- The toroidal surface is placed in such a way that is symmetric with respect to 2 coordinate planes, say the xy and xz plane.
- **3** With this choice, $u_y(x, 0, 0) = u_z(x, 0, 0) = 0$ for all $(x, 0, 0) \in \Omega$.
- The value u(0, 0, 0) is bounded by a constant c < 1 independent on the position of the two ends of the torus.
- **3** The values of *u* between the two ends of the torus are close to 1 if the two ends are close to one another.
- **(**) Hence, $x \mapsto u(x, 0, 0)$ must have a relative maximum and a relative minimum, i.e. u has 2 critical points in Ω .

Critical points: extension to \mathbb{R}^N , $N \ge 3$

Star-shaped condensers

 D_0 and D_1 star-shaped w.r.t. 0, then

 $\bigcirc \nabla u \text{ never vanishes in } \Omega \text{ and,}$

2 for every $t \in (0, 1)$,

$$\{x \in \Omega : u(x) = t\} = \partial D_t,$$

where D_t is star-shaped w.r.t. 0.

Extensions (Longinetti, 1985; Francini, 1998)

Instead of Laplace equation one can consider general nonlinear equations

$$F(\nabla^2 u, \nabla u, u, x) = 0$$

with suitable assumptions on F.

Critical points: extension to \mathbb{R}^N , $N \ge 3$

Star-shaped condensers

 D_0 and D_1 star-shaped w.r.t. 0, then

 $\bigcirc \nabla u \text{ never vanishes in } \Omega \text{ and,}$

2 for every $t \in (0, 1)$,

$$\{x \in \Omega : u(x) = t\} = \partial D_t,$$

where D_t is star-shaped w.r.t. 0.

Extensions (Longinetti, 1985; Francini, 1998)

Instead of Laplace equation one can consider general nonlinear equations

$$F(\nabla^2 u, \nabla u, u, x) = 0$$

with suitable assumptions on F.

Basic results

Open problems On the location of hot spots Stationary hot spots

Hot spots

Problem for heat equation

Consider the problem:

 $\begin{array}{l} \partial_t u = \Delta u \quad \text{in} \quad \Omega \times (0,\infty), \\ u = \varphi \quad \text{on} \quad \Omega \times \{0\}, \\ u = 0 \quad \text{on} \quad \partial\Omega \times (0,\infty). \end{array}$

The set of hot spots

$$M(t) := \{x \in \Omega : u(x,t) = \max_{y \in \Omega} u(y,t)\}$$

Spectral formula

$$u(x,t) = \sum_{n=1}^{\infty} \widehat{\varphi}_n u_n(x) e^{-\lambda_n t}$$

Notations

- **1** u_n and λ_n Dirichlet eigenfunctions and eigenvalues of $-\Delta$ in Ω ;
- 2 $\operatorname{span}\{u_n\} = L^2(\Omega);$
- $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots ;$
- $\widehat{\varphi}_n = (\varphi, u_n).$

Behavior for large t's

If $\widehat{\varphi}_1 \neq 0$, then as $t \to \infty$

$$e^{\lambda_1 t} u(x,t) \to \widehat{\varphi}_1 u_1(x)$$

uniformly in $\overline{\Omega}$ and with all derivatives up to the second order on compact subsets of Ω .

<ロ> (四) (四) (三) (三) (三)

Basic results Open problems

On the location of hot spots Stationary hot spots

Hot spots

Problem for heat equation Consider the problem: $\partial_t u = \Delta u \text{ in } \Omega \times (0, \infty),$ $u = \varphi \text{ on } \Omega \times \{0\},$ $u = 0 \text{ on } \partial\Omega \times (0, \infty).$

The set of hot spots

$$M(t) := \{x \in \Omega : u(x,t) = \max_{y \in \Omega} u(y,t)\}$$

Spectral formula

$$u(x,t) = \sum_{n=1}^{\infty} \widehat{\varphi}_n u_n(x) e^{-\lambda_n t}$$

Notations

1 u_n and λ_n Dirichlet eigenfunctions and eigenvalues of $-\Delta$ in Ω ;

$$2 \overline{\operatorname{span}\{u_n\}} = L^2(\Omega);$$

$$0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots ;$$

$$\widehat{\varphi}_n = (\varphi, u_n).$$

Behavior for large t's

If
$$\widehat{\varphi}_1 \neq 0$$
, then as $t \to \infty$

$$e^{\lambda_1 t} u(x,t) \to \widehat{\varphi}_1 u_1(x)$$

uniformly in $\overline{\Omega}$ and with all derivatives up to the second order on compact subsets of Ω .

・ロト ・同ト ・ヨト ・ヨト 三星

Basic results Open problems On the location of hot spots Stationary hot spots

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is **convex**, log u_1 is strictly concave ; hence u_1 has a **unique** maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exixts a T > 0 such that the set M(t) contains exactly one point x(t) for t > T and $x(t) \to x_{\infty}$ as $t \to \infty$.

If log arphi is concave (e.g. $arphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each t > 0; thus M(t) is made of only one point $\mathbf{x}(t)$ and $x(t) \to x_{\infty}$ as $t \to \infty$.

Varadahn (1967)

If
$$\varphi \equiv 1$$
, then as $t \to 0^+$:

$$-4t \log\{1-u(x,t)\} \to \operatorname{dist}(x,\partial\Omega)^2.$$

Behaviour of hot spots for small times

$$\begin{aligned} \operatorname{dist}(x(t), M_d) &\to 0 \quad \text{as} \quad t \to 0^+, \\ & \text{where} \\ M_d &= \{ x \in \Omega : d(x) = \max_{\overline{\Omega}} d \}, \\ d(x) &= \operatorname{dist}(x, \partial \Omega). \end{aligned}$$

For instance

If Ω is strictly convex, then $M_d = \{x_0\}$ for some $x_0 \in \Omega$.

Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is **convex**, log u_1 is strictly concave ; hence u_1 has a **unique** maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exists a T > 0 such that the set M(t) contains exactly one point x(t) for t > T and $x(t) \to x_{\infty}$ as $t \to \infty$.

If $\log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each t > 0; thus M(t) is made of only one point $\mathbf{x}(t)$ and $x(t) \to x_{\infty}$ as $t \to \infty$.

Varadahn (1967)

If
$$\varphi \equiv 1$$
, then as $t \to 0^+$:

$$-4t \ \log\{1-u(x,t)\} \to \operatorname{dist}(x,\partial\Omega)^2.$$

Behaviour of hot spots for small times

$$\begin{aligned} \operatorname{dist}(x(t), M_d) &\to 0 \quad \text{as} \quad t \to 0^+, \\ \text{where} \\ M_d &= \{ x \in \Omega : d(x) = \max_{\overline{\Omega}} d \}, \\ d(x) &= \operatorname{dist}(x, \partial \Omega). \end{aligned}$$

For instance

If Ω is strictly convex, then $M_d = \{x_0\}$ for some $x_0 \in \Omega$.
Basic results Open problems On the location of hot spots Stationary hot spots

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is **convex**, log u_1 is strictly concave ; hence u_1 has a **unique** maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exists a T > 0 such that the set M(t) contains exactly one point x(t) for t > T and $x(t) \to x_{\infty}$ as $t \to \infty$.

If $\log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each t > 0; thus M(t) is made of only one point $\mathbf{x}(t)$ and $x(t) \to x_{\infty}$ as $t \to \infty$.

Varadahn (1967)

If
$$\varphi \equiv 1$$
, then as $t \to 0^+$:

$$-4t \log\{1-u(x,t)\} \rightarrow \operatorname{dist}(x,\partial\Omega)^2$$

Behaviour of hot spots for small times

$$\begin{split} \operatorname{dist}(x(t), M_d) &\to 0 \quad \text{as} \quad t \to 0^+, \\ & \text{where} \\ M_d &= \{ x \in \Omega : d(x) = \max_{\overline{\Omega}} d \}, \\ & d(x) = \operatorname{dist}(x, \partial \Omega). \end{split}$$

For instance

If Ω is strictly convex, then $M_d = \{x_0\}$ for some $x_0 \in \Omega$.

Basic results Open problems On the location of hot spots Stationary hot spots

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is **convex**, log u_1 is strictly concave ; hence u_1 has a **unique** maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exists a T > 0 such that the set M(t) contains exactly one point x(t) for t > T and $x(t) \to x_{\infty}$ as $t \to \infty$.

If $\log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each t > 0; thus M(t) is made of only one point $\mathbf{x}(t)$ and $x(t) \to x_{\infty}$ as $t \to \infty$.

Varadahn (1967)

If
$$\varphi \equiv 1$$
, then as $t \to 0^+$:

$$-4t \log\{1-u(x,t)\} \rightarrow \operatorname{dist}(x,\partial\Omega)^2.$$

Behaviour of hot spots for small times

$$\begin{split} \operatorname{dist}(x(t), M_d) &\to 0 \quad \text{as} \quad t \to 0^+, \\ & \text{where} \\ M_d &= \{ x \in \Omega : d(x) = \max_{\overline{\Omega}} d \}, \\ & d(x) = \operatorname{dist}(x, \partial \Omega). \end{split}$$

For instance

If Ω is strictly convex, then $M_d = \{x_0\}$ for some $x_0 \in \Omega$.

Elliptic equations in R² Examples and extensions to R^N Hot spots Basic results Open problems On the location of hot spots Stationary hot spots

Numerical proof of Varadahn's result

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

イロト イヨト イヨト

Basic results

Open problems On the location of hot spots Stationary hot spots

Pictures

Numerical proof of Varadahn's result

A possible bifurcation

The next picture shows that M(t) may initially contain **two points** and, later, collapse to **one single** point.

イロト イポト イヨト イヨト

Basic results

Open problems On the location of hot spots Stationary hot spots

Pictures

A possible bifurcation

The next picture shows that M(t) may initially contain **two points** and, later, collapse to **one single** point.

In fact

- Initially, the level curves of u(x, t) look like those of d(x).
- If our domain is a slight perturbation of a convex one, we expect that u₁(x) has only one maximum point.

Numerical proof of Varadahn's result

Basic results Open problems On the location of hot spots Stationary hot spots

Problems

Problem 1

If M_d is made of one single point is it so for M(t)?

Basic results Open problems On the location of hot spots Stationary hot spots

Problems

Problem 1

If M_d is made of one single point is it so for M(t)?

Ma

Problem 2

If
$$M(t) = \{x(t)\}$$
 for every $t > 0$, is M_d contractible?

< □ > < □ > < □ > < Ξ > < Ξ > ...

Basic results Open problems On the location of hot spots Stationary hot spots

Problems

Problem 3: global version

Let M_d be contractible; find extra assumptions on d such that M(t) is made of only one point x(t) for every t > 0.

Problem 3: local version

Let M_d be contractible; find extra assumptions on d such that there exists T > 0 for which M(t) is made of only one point x(t) for every $t \in (0, T]$.

Hint

A non-smooth version of Dini's implicit functions theorem could be useful.

Basic results Open problems On the location of hot spots Stationary hot spots

More problems

The sets of local maximum points

Let $\mathcal{M}(t)$ and \mathcal{M}_d be the sets of local maximum points of u(x, t) and d(x), respectively.

Problem 4: global version

If \mathcal{M}_d has *n* contractible components is it true that the number of points of $\mathcal{M}(t)$ does not exceeds *n*?

In particular, the number of local maximum points of u_1 does not exceeds that of contractible components of \mathcal{M}_d .

Problem 4: local version

If \mathcal{M}_d has *n* contractible connected components find extra assumptions on *d* such that there exists T > 0 for which $\mathcal{M}(t)$ is made of *n* points for every $t \in (0, T]$.

・ロン ・回と ・ヨン・

Basic results Open problems On the location of hot spots Stationary hot spots

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

Notations

$$\begin{split} &\omega \in \mathbb{S}^{N-1}, \; x^{\lambda,\omega} = x - 2(x \cdot \omega - \lambda)\omega, \\ &\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\}, \\ &v^{\lambda}(x,t) = u(x,t) - u(x^{\lambda},t). \end{split}$$

Conditions on *v*

$$\begin{split} v_t^\lambda &= \Delta v^\lambda \quad \text{in} \quad \Omega_{\lambda,\omega} \times (0,\infty), \\ v^\lambda &= 0 \quad \text{on} \quad \Omega_{\lambda,\omega} \times \{0\}, \\ v^\lambda &\geq 0 \quad \text{on} \quad \partial \Omega_{\lambda,\omega} \times (0,\infty). \end{split}$$

Hopf's lemma

 $\partial_{\omega} u < 0$ su $\pi_{\lambda,\omega} \times (0,\infty)$.

・ロト ・回ト ・ヨト ・ヨト 三日

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

Notations

$$\begin{split} &\omega \in \mathbb{S}^{N-1}, \ x^{\lambda,\omega} = x - 2(x \cdot \omega - \lambda)\omega, \\ &\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\}, \\ &v^{\lambda}(x,t) = u(x,t) - u(x^{\lambda},t). \end{split}$$

Conditions on v^{λ}

$$\begin{split} & v_t^{\lambda} = \Delta v^{\lambda} \quad \text{in} \quad \Omega_{\lambda,\omega} \times (0,\infty), \\ & v^{\lambda} = 0 \quad \text{on} \quad \Omega_{\lambda,\omega} \times \{0\}, \\ & v^{\lambda} \geq 0 \quad \text{on} \quad \partial \Omega_{\lambda,\omega} \times (0,\infty). \end{split}$$

<ロ> (四) (四) (三) (三) (三)

Hopf's lemma

$$\partial_{\omega} u < 0$$
 su $\pi_{\lambda,\omega} \times (0,\infty)$.

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

Notations

$$\begin{split} &\omega \in \mathbb{S}^{N-1}, \ x^{\lambda,\omega} = x - 2(x \cdot \omega - \lambda)\omega, \\ &\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\}, \\ &v^{\lambda}(x,t) = u(x,t) - u(x^{\lambda},t). \end{split}$$

Conditions on v^{λ}

$$\begin{split} v_t^{\lambda} &= \Delta v^{\lambda} \quad \text{in} \quad \Omega_{\lambda,\omega} \times (0,\infty), \\ v^{\lambda} &= 0 \quad \text{on} \quad \Omega_{\lambda,\omega} \times \{0\}, \\ v^{\lambda} &\geq 0 \quad \text{on} \quad \partial \Omega_{\lambda,\omega} \times (0,\infty). \end{split}$$

Hopf's lemma

$$\partial_{\omega} u < 0 \text{ su } \pi_{\lambda,\omega} imes (0,\infty).$$

4

Basic results Open problems On the location of hot spots Stationary hot spots

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$\begin{split} \mathcal{C}(t) &:= \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega}, \end{split}$$
 where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

n particular, if Ω is convex

- If Ω is symmetric w.r.t. a hyperplane, then C(t) is contained in that hyperplane.
- If Ω has N indipendent hyperplanes of symmetry through a point 0,

x(t) = 0 for any t > 0.

Ω bounded and convex

Let $M_d = \{0\}$ and, for any $\omega \in \mathbb{S}^{N-1}$, let us define:

 $\lambda(\omega) = \inf\{\lambda : \Omega_{\mu,\omega} \subset \Omega, \mu > \lambda\}.$

We observed that

 $x(t) \in \bigcap_{\omega \in \mathbb{S}^{N-1}} \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda(\omega) \}.$

・ロト ・同ト ・ヨト ・ヨト

Problem 6

Compute or estimate $\lambda(\omega)$.

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$\begin{split} \mathcal{C}(t) &:= \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega}, \end{split}$$
 where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

In particular, if Ω is convex

- If Ω is symmetric w.r.t. a hyperplane, then C(t) is contained in that hyperplane.
- If Ω has N indipendent hyperplanes of symmetry through a point 0,

$$x(t) = 0$$
 for any $t > 0$.

Ω bounded and convex

Let $M_d = \{0\}$ and, for any $\omega \in \mathbb{S}^{N-1}$, let us define:

 $\lambda(\omega) = \inf\{\lambda : \Omega_{\mu,\omega} \subset \Omega, \mu > \lambda\}.$

We observed that

 $x(t) \in \bigcap_{\omega \in \mathbb{S}^{N-1}} \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda(\omega) \}.$

Problem 6

Compute or estimate $\lambda(\omega)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ○

Basic results Open problems On the location of hot spots Stationary hot spots

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$\begin{split} \mathcal{C}(t) &:= \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega}, \end{split}$$
 where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

In particular, if Ω is convex

- If Ω is symmetric w.r.t. a hyperplane, then C(t) is contained in that hyperplane.
- If Ω has N indipendent hyperplanes of symmetry through a point 0,

$$x(t) = 0$$
 for any $t > 0$.

Rolando Magnanini

$\boldsymbol{\Omega}$ bounded and convex

Let $M_d = \{0\}$ and, for any $\omega \in \mathbb{S}^{N-1}$, let us define:

$$\lambda(\omega) = \inf\{\lambda : \Omega_{\mu,\omega} \subset \Omega, \mu > \lambda\}.$$

We observed that

$$x(t) \in igcap_{\omega \in \mathbb{S}^{N-1}} \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda(\omega) \}.$$

Problem 6

Compute or estimate $\lambda(\omega)$.

Critical points of solutions of elliptic and parabolic PDE's

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ○

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every t > 0u(-x, t) = u(x, t) and hence

$$-\nabla u(-x,t)=\nabla u(x,t),$$

that implies:

$$\nabla u(0,t)=0.$$

 Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every t > 0.

Chamberland-Siegel (1997)

Let Ω be convex and *G*-invariant, where is an **essential** subgroup of O(N). Then $C(t) = M(t) = \{0\}$ for every t > 0.

Definition

 $G \subset O(N)$ essential if, for every $x \in \Omega$, $x \neq 0$, there is a $g \in G$ such that $gx \neq x$.

Proof

 $g(\Omega) = \Omega \implies u(gx, t) = u(x, t)$ $\Rightarrow g \nabla u(gx, t) = \nabla u(x, t) \Rightarrow$ $g \nabla u(0, t) = \nabla u(0, t) \text{ for every } g \in G;$ $G \text{ essential} \Rightarrow \nabla u(0, t) = 0.$

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every t > 0u(-x, t) = u(x, t) and hence

$$-\nabla u(-x,t)=\nabla u(x,t),$$

that implies:

$$\nabla u(0,t)=0.$$

 Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every t > 0.

Chamberland-Siegel (1997)

Let Ω be convex and *G*-invariant, where is an **essential** subgroup of O(N). Then $C(t) = M(t) = \{0\}$ for every t > 0.

Definition

 $G \subset O(N)$ essential if, for every $x \in \Omega$, $x \neq 0$, there is a $g \in G$ such that $gx \neq x$.

Proof

 $g(\Omega) = \Omega \Rightarrow u(gx, t) = u(x, t)$ $\Rightarrow g \nabla u(gx, t) = \nabla u(x, t) \Rightarrow$ $g \nabla u(0, t) = \nabla u(0, t) \text{ for every } g \in G;$ $G \text{ essential} \Rightarrow \nabla u(0, t) = 0.$

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every t > 0u(-x, t) = u(x, t) and hence

$$-\nabla u(-x,t)=\nabla u(x,t),$$

that implies:

$$\nabla u(0,t)=0.$$

 Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every t > 0.

Chamberland-Siegel (1997)

Let Ω be convex and *G*-invariant, where is an **essential** subgroup of O(N). Then $C(t) = M(t) = \{0\}$ for every t > 0.

Definition

 $G \subset O(N)$ essential if, for every $x \in \Omega$, $x \neq 0$, there is a $g \in G$ such that $gx \neq x$.

Proof

$$g(\Omega) = \Omega \implies u(gx, t) = u(x, t)$$

$$\Rightarrow g \nabla u(gx, t) = \nabla u(x, t) \Rightarrow$$

$$g \nabla u(0, t) = \nabla u(0, t) \text{ for every } g \in G;$$

$$G \text{ essential} \Rightarrow \nabla u(0, t) = 0.$$

・ロン ・回 と ・ ヨン ・ ヨン

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let x(t) = 0 for every t > 0. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

- $\begin{array}{c} \textcircled{1} \quad \Omega \text{ bounded (not necessarily convex),} \\ 0 \in \Omega; \end{array}$
- 2 ∂Ω Lipschitz continuous;
- 8 R=d(0);

Then

$$\int_{\partial\Omega\cap\partial B(0,R)} x \ dS_x = 0.$$

If $\mathcal{H}^{N-1}(\partial\Omega\cap\partial B(0,R))=0$.

- **1** $\partial \Omega$ piecewise of class C^2 ;
- **2** $\partial \Omega \cap \partial B(0, R) = \bigcup_{k=1}^{K} M_k^{m_k}$, where $M_k^{m_k}$ are pairwise disjoint m_k -submanifolds with $0 \leq m \leq M 2$ and $\partial M^{m_k} = 0$.

3
$$m = \max\{m_k : \mathcal{H}^{m_k}(M_k^{m_k}) > 0\};$$

$$\mathbf{O} \ \mathcal{K}_m(x) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(x) \right] \right\}^{-\frac{1}{2}}.$$

Then

$$\sum_{m_k=m} \int_{M_{\nu}^{\mu}} x \ \mathcal{K}_m(x) \ d\mathcal{H}^m = 0.$$

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let x(t) = 0 for every t > 0. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

- 2 ∂Ω Lipschitz continuous;
- 8 R=d(0);
- **4** x(t) = 0 for every t > 0.

Then

$$\int_{\partial\Omega\cap\partial B(0,R)} x \ dS_x = 0.$$

f $\mathcal{H}^{N-1}(\partial\Omega\cap\partial B(0,R))=0$

- (1) $\partial \Omega$ piecewise of class C^2 ;
- **2** $\partial \Omega \cap \partial B(0, R) = \bigcup_{k=1}^{K} M_k^{m_k}$, where $M_k^{m_k}$ are pairwise disjoint m_k -submanifolds with $\Omega = 0$ and $\partial M^{m_k} = 0$.

$$m = \max\{m_k : \mathcal{H}^{m_k}(M_k^{m_k}) > 0\};$$

$$\mathbf{I} \quad \mathcal{K}_m(x) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(x) \right] \right\}^{-\frac{1}{2}}.$$

Then

$$\sum_{m_k=m_{M_i^{\mu}}} \int x \, \mathcal{K}_m(x) \, d\mathcal{H}^m = 0.$$

Basic results Open problems On the location of hot spots Stationary hot spots

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let x(t) = 0 for every t > 0. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

- **2** $\partial \Omega$ Lipschitz continuous;
- 8 R=d(0);
- x(t) = 0 for every t > 0.

Then

$$\int_{\partial\Omega\cap\partial B(0,R)} x \ dS_x = 0.$$

If $\mathcal{H}^{N-1}(\partial\Omega\cap\partial B(0,R))=0$

- **1** $\partial \Omega$ piecewise of class C^2 ;
- $\partial \Omega \cap \partial B(0, R) = \bigcup_{k=1}^{K} M_k^{m_k}, \text{ where } M_k^{m_k} \text{ are pairwise disjoint }$
 - m_k -submanifolds with $0 \le m_k \le N - 2$ and $\partial M_k^{m_k} = \emptyset;$

$$m = \max\{m_k : \mathcal{H}^{m_k}(M_k^{m_k}) > 0\};$$

$$\mathbf{\mathfrak{K}}_m(\mathbf{x}) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(\mathbf{x}) \right] \right\}^{-\frac{1}{2}}.$$

Then

$$\sum_{m_k=m_{M_k^{\mu}}}\int_{M_k^{\mu}}\times \mathcal{K}_m(x) \ d\mathcal{H}^m=0.$$

Basic results Open problems On the location of hot spots Stationary hot spots

Corollary

▲□▶ ▲圖▶ ▲理▶ ▲理▶ -

æ

Basic results Open problems On the location of hot spots Stationary hot spots

Corollary

Ω convex polyhedron

$$\partial \Omega \cap \partial B(0, R) = \{p_i\}_{i=1,...,m}$$
 and hence
 $\sum_{i=1}^{m} p_i = 0.$

Critical points of solutions of elliptic and parabolic PDE's

ma Cr

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and v(0, t) = c for every t > 0, then

$$\frac{1}{|B(0,r)|} \int_{B(0,r)} v(x,t) \ dx = c = v(0,t),$$

for every $r < \operatorname{dist}(0, \partial D)$ and t > 0.

Corollary

Since every $\partial_{x_i} v$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every t > 0, we have:

$$\int_{B(0,r)} x v(x,t) dx = 0,$$

for every $r < dist(0, \partial D)$ and t > 0.

Boundary layer

Let us choose

- (1) v(x,t) = u(x,t) (i.e. u = 1 on $\Omega \times \{0\}; u = 0$ on $\partial \Omega \times (0,\infty)$);
- 2 r = R = d(0), so that B(p, R)touches $\partial \Omega$;

and let us use the "boundary layer" produced by u(x,t) as $t \rightarrow 0^+$.

Barriers for small t; $\varepsilon > 0$ is a parameter

The Varadhan's formula

 $\lim_{t \to 0^+} (-4t) \log\{1 - u(x, t)\} = d(x)^2,$

suggests the construction of two barriers:

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and v(0, t) = c for every t > 0, then

$$\frac{1}{|B(0,r)|} \int_{B(0,r)} v(x,t) \ dx = c = v(0,t),$$

for every $r < \operatorname{dist}(0, \partial D)$ and t > 0.

Corollary

Since every $\partial_{x_i} v$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every t > 0, we have:

$$\int_{B(0,r)} x v(x,t) dx = 0,$$

for every $r < dist(0, \partial D)$ and t > 0.

Boundary layer

Let us choose

- (1) v(x,t) = u(x,t) (i.e. u = 1 on $\Omega \times \{0\}; u = 0$ on $\partial \Omega \times (0,\infty)$);
- 2 r = R = d(0), so that B(p, R)touches $\partial \Omega$;

and let us use the "boundary layer" produced by u(x,t) as $t \rightarrow 0^+$.

Barriers for small t; $\varepsilon > 0$ is a parameter

The Varadhan's formula

$$\lim_{t\to 0^+} (-4t) \log\{1 - u(x,t)\} = d(x)^2,$$

suggests the construction of two barriers:

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and v(0, t) = c for every t > 0, then

$$\frac{1}{|B(0,r)|} \int_{B(0,r)} v(x,t) \ dx = c = v(0,t),$$

for every $r < \operatorname{dist}(0, \partial D)$ and t > 0.

Corollary

Since every $\partial_{x_i} v$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every t > 0, we have:

$$\int_{B(0,r)} x v(x,t) dx = 0,$$

for every $r < dist(0, \partial D)$ and t > 0.

Boundary layer

Let us choose

•
$$v(x, t) = u(x, t)$$
 (i.e. $u = 1$ on
 $\Omega \times \{0\}; u = 0$ on $\partial \Omega \times (0, \infty)$);

2 r = R = d(0), so that B(p, R)touches $\partial \Omega$;

and let us use the "boundary layer" produced by u(x, t) as $t \rightarrow 0^+$.

Barriers for small t; $\varepsilon > 0$ is a parameter

The Varadhan's formula

$$\lim_{t \to 0^+} (-4t) \log\{1 - u(x, t)\} = d(x)^2,$$

suggests the construction of two barriers:

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and v(0, t) = c for every t > 0, then

$$\frac{1}{|B(0,r)|} \int_{B(0,r)} v(x,t) \ dx = c = v(0,t),$$

for every $r < \operatorname{dist}(0, \partial D)$ and t > 0.

Corollary

Since every $\partial_{x_i} v$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every t > 0, we have:

$$\int_{B(0,r)} x v(x,t) dx = 0,$$

for every $r < dist(0, \partial D)$ and t > 0.

Boundary layer

Let us choose

•
$$v(x, t) = u(x, t)$$
 (i.e. $u = 1$ on
 $\Omega \times \{0\}; u = 0$ on $\partial \Omega \times (0, \infty)$);

2 r = R = d(0), so that B(p, R)touches $\partial \Omega$;

and let us use the "boundary layer" produced by u(x, t) as $t \rightarrow 0^+$.

Barriers for small t; $\varepsilon > 0$ is a parameter

The Varadhan's formula

$$\lim_{t\to 0^+} (-4t) \log\{1 - u(x,t)\} = d(x)^2,$$

suggests the construction of two barriers:

 $F_{-}^{\varepsilon}\left(\frac{d(x)}{\sqrt{t}}\right) \leq u(x,t) \leq F_{+}^{\varepsilon}\left(\frac{d(x)}{\sqrt{t}}\right)$

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in C_0^0(\mathbb{R}^N)$, then

$$\int_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) =$$

$$\int_{0}^{2R/\sqrt{t}} F'(\sigma) \ \nu(\{x \in B(p, R) : d(x) > \sigma\sqrt{t}\}) d\sigma$$

Crucial lemma

$$\lim_{s \to 0^+} s^{-\frac{N+1-\mu}{2}} \nu(\{x \in B(p, R) : d(x) < s\}) =$$

$$C(N,\mu)\sum_{m_k=m}^{K_m}\int_{M_{\nu}^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}$$

Therefore $t^{-\frac{N+1-m}{4}} \int_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow \frac{N+1-m}{2} A_{\Omega,R}^{m,N} \int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F(\sigma) \ d\sigma$

Conclusion

Choose $\varphi(x) = (x_i - p_i)^{\pm}, F = F_{\pm}^{\varepsilon}$, and use the fact that, as $\varepsilon \to 0^+$,

$$\int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F_{\pm}^{\varepsilon}(\sigma) \ d\sigma \to c(N,m),$$

where c(N,m) is indipendent on \pm

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in C_0^0(\mathbb{R}^N)$, then

$$\int_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) =$$

$$\int_{0}^{2N/\sqrt{t}} F'(\sigma) \ \nu(\{x \in B(p, R) : d(x) > \sigma\sqrt{t}\}) d\sigma$$

Crucial lemma

2P/ /-

$$\lim_{s \to 0^+} s^{-\frac{N+1-\mu}{2}} \nu(\{x \in B(p, R) : d(x) < s\}) =$$

$$C(N,\mu)\sum_{m_k=m}^{K_m}\int_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}$$

I heretore

$$t^{-\frac{N+1-m}{4}} \int_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow \frac{N+1-m}{2} A_{\Omega,R}^{m,N} \int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F(\sigma) \ d\sigma$$

Conclusion

Choose $\varphi(x) = (x_i - p_i)^{\pm}, F = F_{\pm}^{\varepsilon}$, and use the fact that, as $\varepsilon \to 0^+$,

$$\int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F_{\pm}^{\varepsilon}(\sigma) \ d\sigma \to c(N,m),$$

where c(N, m) is indipendent on \pm .

Rolando Magnanini

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in C_0^0(\mathbb{R}^N)$, then

$$\int\limits_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) =$$

$$\int_{0}^{2R/\sqrt{t}} F'(\sigma) \ \nu(\{x \in B(p, R) : d(x) > \sigma\sqrt{t}\}) d\sigma$$

Crucial lemma

$$\lim_{s \to 0^+} s^{-\frac{N+1-\mu}{2}} \nu(\{x \in B(p, R) : d(x) < s\}) =$$

$$C(N,\mu)\sum_{m_k=m}^{K_m}\int_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}$$

Therefore

$$t^{-rac{N+1-m}{4}}\int\limits_{B(p,R)}F\left(rac{d(x)}{\sqrt{t}}
ight)
u(dx)
ightarrow
onumber \ rac{N+1-m}{2}A^{m,N}_{\Omega,R}\int\limits_{0}^{\infty}\sigma^{rac{N-1-m}{2}}F(\sigma)\ d\sigma$$

Conclusion

Choose $\varphi(x) = (x_i - p_i)^{\pm}, F = F_{\pm}^{\varepsilon}$, and use the fact that, as $\varepsilon \to 0^+$,

$$\int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F_{\pm}^{\varepsilon}(\sigma) \, d\sigma \to c(N,m),$$

where c(N, m) is indipendent on ± 1

Rolando Magnanini

Basic results Open problems On the location of hot spots Stationary hot spots

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in C_0^0(\mathbb{R}^N)$, then

$$\int\limits_{B(p,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) =$$

$$\int_{0}^{2R/\sqrt{t}} F'(\sigma) \ \nu(\{x \in B(p,R) : d(x) > \sigma\sqrt{t}\}) d\sigma$$

Crucial lemma

$$\lim_{s \to 0^+} s^{-\frac{N+1-\mu}{2}} \nu(\{x \in B(p, R) : d(x) < s\}) =$$

$$C(N,\mu)\sum_{m_k=m}^{K_m}\int_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}$$

Therefore

$$t^{-\frac{N+1-m}{4}} \int_{B(\rho,R)} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow \frac{N+1-m}{2} A_{\Omega,R}^{m,N} \int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F(\sigma) \ d\sigma$$

Conclusion

Choose $\varphi(x) = (x_i - p_i)^{\pm}$, $F = F_{\pm}^{\varepsilon}$, and use the fact that, as $\varepsilon \to 0^+$,

$$\int_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F_{\pm}^{\varepsilon}(\sigma) \, d\sigma \to c(N,m),$$

where c(N, m) is indipendent on \pm .

Rolando Magnanini

Basic results Open problems On the location of hot spots Stationary hot spots

Symmetry: triangles and quadrangles

Polygons

In this case, our theorem implies that

$$\sum_{i=1}^{n} p_i = 0.$$

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE's

Basic results Open problems On the location of hot spots Stationary hot spots

Symmetry: triangles and quadrangles

Symmetry

Let x(t) = 0 for every t > 0. Then

1 if Ω is a triangle $\Rightarrow \Omega$ is equilateral;

2) if Ω is a quadrangle $\Rightarrow \Omega$ is a parallelogram.

In particular, a non convex quadrangle does not admit a stationary hot spot.

The most diffucult case to treat concerns the picture here below.

Polygons

In this case, our theorem implies that

$$\sum_{i=1}^n p_i = 0.$$

Basic results Open problems On the location of hot spots Stationary hot spots

Polygons: another condition

Ω polygon

By applying the Schwarz reflection principle w.r.t. each side, we can extend u to a solution u^* of $u^*_t = \Delta u^*$, in a larger domain (the white domain Ω^*) Since still $u^*(0, t) = 0$ for every t > 0, we again find:

$$\int_{\mathsf{B}(0,r)} x \ u^*(x,t) \ dx = 0;$$

this time for $r \leq R^*$, where

 R^* is the distance of 0 from the closest vertices of Ω .

Choose $r = R^*$; then

$$\int_{\mathsf{B}(0,R^*)} x \ u^*(x,t) \ dx = 0 \quad \text{per ogni} \quad t > 0,$$

but it is not convenient to work with this integral.

<ロ> (四) (四) (三) (三) (三)

Basic results Open problems On the location of hot spots Stationary hot spots

Polygons: another condition

Ω polygon

By applying the **Schwarz reflection principle** w.r.t. **each side**, we can extend *u* to a solution u^* of $u_t^* = \Delta u^*$, in a larger domain (the **white domain** Ω^*) Since still $u^*(0, t) = 0$ for every t > 0, we again find:

$$\int_{B(0,r)} x \ u^*(x,t) \ dx = 0;$$

this time for $r \leq R^*$, where

 R^* is the distance of 0 from the closest vertices of Ω .

Choose $r = R^*$; then

$$\int\limits_{B(0,R^*)} x \ u^*(x,t) \ dx = 0 \ \text{ per ogni} \ t > 0,$$

but it is not convenient to work with this integral.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○へ○
Elliptic equations in \mathbb{R}^2 Examples and extensions to \mathbb{R}^N Hot spots

Basic results Open problems On the location of hot spots Stationary hot spots

It is instead convenient to fold back into Ω the parts of $B(0, R^*)$ that are outside Ω .

It turns out that

$$\int_{B(0,r)} x \ u^*(x,t) \ dx = 0$$

if and only if

$$\int_{-\infty}^{\infty} x u(x, t) dx + \sum_{i} \int_{D_{i}}^{\infty} (x - x_{i}^{*}) u(x, t) dx = 0,$$

where E is the pink set, D_i the green ones and x_i^* is the reflection of x w.r.t. the side of Ω contained in D_i .

In this way we can again work with u in place of u^* .

<ロ> (日) (日) (日) (日) (日)

Elliptic equations in \mathbb{R}^2 Examples and extensions to \mathbb{R}^N Hot spots Hot spots Examples and extensions to \mathbb{R}^N Hot spots Extension of hot spots Stationary hot spots

It is instead convenient to fold back into Ω the parts of $B(0, R^*)$ that are outside Ω .

It turns out that

$$\int_{B(0,r)} x \ u^*(x,t) \ dx = 0$$

if and only if

$$\int_{\Xi} x u(x,t) dx + \sum_{i} \int_{D_{i}} (x-x_{i}^{*}) u(x,t) dx = 0,$$

where *E* is the **pink** set, D_i the **green** ones and x_i^* is the reflection of *x* w.r.t. the side of Ω contained in D_i .

In this way we can again work with u in place of u^* .

イロト イポト イヨト イヨト

Elliptic equations in \mathbb{R}^2 Examples and extensions to \mathbb{R}^N Hot spots Hot spots Examples and extensions to \mathbb{R}^N Hot spots Extension of hot spots Stationary hot spots

It is instead convenient to fold back into Ω the parts of $B(0, R^*)$ that are outside Ω .

It turns out that

$$\int_{B(0,r)} x \ u^*(x,t) \ dx = 0$$

if and only if

$$\int_{\Xi} x u(x,t) dx + \sum_{i} \int_{D_{i}} (x-x_{i}^{*}) u(x,t) dx = 0,$$

where *E* is the **pink** set, D_i the **green** ones and x_i^* is the reflection of *x* w.r.t. the side of Ω contained in D_i .

In this way we can again work with u in place of u^* .

イロト イポト イヨト イヨト

2

Elliptic equations in \mathbb{R}^2 Examples and extensions to \mathbb{R}^N Hot spots Basic results Open problems On the location of hot spots Stationary hot spots

Symmetry: pentagons ed exagons

If all sides of Ω touch $\partial B(0, R^*)$

By an asymptotic analysis similar to (but more complicated than) that already seen, by sending t to 0, we show that

$$\sum_{i=1}^m p_i = 0$$
 and

$$\sum_{j=1}^{\kappa} q_j = 0,$$

where the q_j 's are the vertices of Ω that are closest to 0.

イロト イポト イヨト イヨト

Elliptic equations in \mathbb{R}^2 Examples and extensions to \mathbb{R}^N Hot spots Basic results Open problems On the location of hot spots Stationary hot spots

Simmetria: pentagoni ed esagoni

If all sides of Ω touch $\partial B(0, R^*)$

By an asymptotic analysis similar to (but more complicated than) that already seen, by sending t to 0[,] we show that

$$\sum_{i=1}^m p_i = 0$$
 and

$$\sum_{j=1}^{k} q_j = 0,$$

where the q_j 's are the vertices of Ω that are closest to 0.

Symmetry

- If $\boldsymbol{\Omega}$ is as specified, then
 - **(1)** if Ω is a pentagon, Ω is regular;
 - **2** if Ω is an exagon, Ω is invariant w.r.t. rotations by the angles $\frac{\pi}{3}, \frac{2\pi}{3} \in \pi$.

・ロン ・回と ・ヨン・