
Elliptic equations in R
2

Examples and extensions to R
N

Hot spots

Outline
References
Introduction

Critical points of solutions
of elliptic and parabolic PDE’s

Rolando Magnanini

Dipartimento di Matematica “Ulisse Dini”
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Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let u be the first Dirichlet eigenfunction

for the Laplace operator:

∆u + λ1 u = 0, u > 0 in Ω,

u = 0 on ∂Ω,

or the solution for the torsion problem:

∆u = −1, in Ω, u = 0 on ∂Ω.

Ω convex

If Ω is convex, every level set
{x ∈ Ω : u(x) > t} is strictly convex and
hence u has only one critical point — a
maximum point.

Question

If Ω is not convex, how the topology and
geometry of Ω determine the number and
(maybe) the position of the critical points
of u?

More in general

Given an elliptic equation

Lu = −f in Ω,

how do the topology and geometry of Ω,
the boundary values of u, and/or the
coefficients of L influence the formation of
the critical points of u?
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Capacity potential

Γ1Γ2

Γ3

Γn

Ω

Capacity potential

∆u = 0 in Ω

u = aj on Γj , j = 1, . . . , n,

where the aj ’s are constants, not all
equal (n − 1 = number of holes).

Index m(zk) of ∇u at zk

If zk is an isolated critical point of
u and ω = arg∇u,

m(zk) :=
1

2π
∆+γ(ω);

+γ = ∂B(zk , ε) counterclockwise.

Perfect counting

The critical points zk of u are isolated and

X

zk∈Ω

m(zk ) +
1

2

X

zk∈∂Ω

m(zk) = n − 2.

N.B.: If Ω is doubly connected (n = 2), ∇u 6= 0.
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Sketch of the proof

ω

ω=−arg f

u=1

u=1

u=1

u=0

Argument principle

If ∆u = 0, then

f = ux − iuy = |∇u| e−iω, ω = arg∇u,

is holomorphic and hence, if ∇u 6= 0 on ∂Ω,

♯ {zeroes of f }− ♯ {poles of f } =
1

2π
∆∂Ω arg f .

If {zk ∈ ∂Ω} = ∅
1 f is holomorphic in Ω ⇒ no poles in Ω;

2 m(zk) = 1
2π

∆∂B(zk ,ε)ω ⇒ ♯ {zeroes of f } = − P
zk∈Ω

m(zk);

3 1
2π

∆∂Ω arg f = 1
2π

∆∂Ω arg(exterior normal) = 2 − n ⇒ QED.
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How do we treat the case zk ∈ ∂Ω?

zk

Ω

u=a

(z  ) kχ

+

−

−

+

−

+

+

−

+

−

−

+

χ
conformal mapping

Schwarz
reflection

Calcolo di m(zk )

2m(zk) = number of components of the set {z : u(z) > a} − 1
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A more general result (Alessandrini-M., 1992)

positive
negative
zero

α=ν

M=3+1+1=5

D=1−3=−2

A

B

Γ

M−D=7

1 ~α : ∂Ω → S
1 unitary vector field,

~α ∈ C1(∂Ω);

2 D := 1
2π

∆∂Ω arg(~α) = index of ~α on
∂Ω;

3 ∆u = 0 in Ω;

4 ∇u 6= 0 on ∂Ω.

5 M is the minimum number of
connected components of the set

J+ = {z ∈ ∂Ω : ∇u(z) · ~α(z) ≥ 0}

which are a proper subset of ∂Ω.

Then X

zk∈Ω

m(zk) ≤ M − D.

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE’s



Elliptic equations in R
2

Examples and extensions to R
N

Hot spots

Capacity potentials
Boundary values and critical points of harmonic functions
Critical points of eigenfunctions in R

2

A more general result (Alessandrini-M., 1992)

positive
negative
zero

α=ν

M=3+1+1=5

D=1−3=−2

A

B

Γ

M−D=7

1 ~α : ∂Ω → S
1 unitary vector field,

~α ∈ C1(∂Ω);

2 D := 1
2π

∆∂Ω arg(~α) = index of ~α on
∂Ω;

3 ∆u = 0 in Ω;

4 ∇u 6= 0 on ∂Ω.

5 M is the minimum number of
connected components of the set

J+ = {z ∈ ∂Ω : ∇u(z) · ~α(z) ≥ 0}

which are a proper subset of ∂Ω.

Then X

zk∈Ω

m(zk) ≤ M − D.

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE’s



Elliptic equations in R
2

Examples and extensions to R
N

Hot spots

Capacity potentials
Boundary values and critical points of harmonic functions
Critical points of eigenfunctions in R

2

Sketch of the proof

Key remark

∇u

|∇u| · α = cos(ω − θ)

where θ = arg ~α; hence

|ω − θ| ≤ π

2
on J+,

|ω + θ| ≤ π

2
on J−.

First consequence

On every component Γ of ∂Ω with Γ ⊆ J+ we have:

˛̨
˛̨ 1

2π
∆Γ ω − 1

2π
∆Γ θ

˛̨
˛̨ ≤ 1

2
;

hence
1

2π
∆Γ ω =

1

2π
∆Γ θ.

Second consequence
˛̨
˛̨ 1

2π
∆A∪B ω − 1

2π
∆A∪B θ

˛̨
˛̨ ≤ 1 ⇒ − 1

2π
∆A∪B ω ≤ − 1

2π
∆A∪B θ + 1.
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Sketch of the proof

Conclusion

Summing up these contributions gives

∑

zk∈Ω

m(zk ) = −
1

2π
∆∂Ω ω ≤ −

1

2π
∆∂Ω θ + M = M − D.

Extension

These results can be extended to elliptic equations of the form

Lu = div{A(x) ∇u} + b(x) · ∇u = 0,

where A(x) =

[

a11(x) a12(x)
a12(x) a22(x)

]

, aij ∈ Lip(Ω),

and b(x) =

[

b1(x)
b2(x)

]

, bi ∈ L∞(Ω).
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The two ingredients of the proof

Uniformization principle

For every solution of Lu = 0 in Ω, there is a quasi-conformal mapping

ζ, ζ = ξ + iη, such that the function U such that u = U ◦ ζ satisfies

∆U + P Uξ + Q Uη in ζ(Ω),

with P , Q ∈ L∞(ζ(Ω)).

Similarity principle

There exist a holomorphic function G(ζ) and a function s(ζ), Hölder
continuous on C, such that

2∂ζU = Uξ − iUη = es(ζ)G(ζ) in ζ(Ω).

(s(ζ) can be chosen real-valued on ∂Ω.)
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Extensions

Further extension

We can even extend to the case

div{A(x) ∇u} = 0.

with A ∈ L∞(Ω).

Lack of regularity

In this case, since u is in general only Hölder
continuous, we must change the definition of
critical point and its multiplicity.

For every non-constant solution u ∈ W 1,2(Ω),
we can write

u(z) = h(χ(z)), z ∈ Ω.

where χ : Ω → B(0, 1) is a quasi-conformal

mapping and h is harmonic.

“Geometric” critical point

1 z0 ∈ Ω is a critical point of u if
∇h(χ(z0));

2 multiplicity of
z0 = 1

2π
∆∂B(χ(z0),ε) arg(∇h).

Application: inverse problem

div(σ∇u) = 0 in Ω ⊂ R
2,

0 < σ0 ≤ σ = unknown

The equation is a 1st order PDE for σ.
The previous theorems help to establish
whether ∇u 6= 0 by examining, for
instance, the sign of ∂u

∂ν
on ∂Ω. This can

be done even if σ is discontinuous.
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First eigenfunction

Assumptions

∆u + λ1u = 0 in Ω, u = 0 on ∂Ω

∂Ω =
nS

j=1
Γj , Γj ∈ C1,α.

Alessandrini-M., 1992

If the critical points of u are isolated,
then

♯{saddle pts}− ♯{maximum pts} = n−2.

Extension 1

The theorem holds also for

−∆u = f (u), u > 0 in Ω,

with f ∈ C1, f (t) > 0 for t > 0.
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Extension 2: removing assumption u > 0

If f (0) = 0 and f (t)/t > 0 for t 6= 0,

♯{saddle pts} − ♯{extremum pts} +
P

zk∈Ω
m(zk ) + 1

2

P
zk∈∂Ω

m(zk ) = n − 2,

where the zk ’s are the nodal points of u.
(Below 0 − 4 + 2 + 1

2
· 2 = 1 − 2.)

M

z1

z2

z3

z4

M Mm m
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Critical points: extension to R
N , N ≥ 3

Difficulties

1 Lack of complex variables.

2 Critical points are in general not

isolated.

3 The “number” of critical points does
not only depend on the topology (and
the values of u on ∂Ω): curvature
(and/or something else) should also
be taken into account.
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isolated.

3 The “number” of critical points does
not only depend on the topology (and
the values of u on ∂Ω): curvature
(and/or something else) should also
be taken into account.

Example 1

The function

u(x , y , z) = J0(
p

x2 + y2) ch(z),

J0(r) Bessel function:

J′′
0 + 1

r
J′
0 + J0 = 0,

is harmonic in R
3 and

{∇u = 0} = {z = 0} ∩
∞[

n=0

∂B(0, κ1,n),

where 0 = κ1,0 < κ1,1 < κ1,2 < . . . are the
zeroes of the Bessel function J1 = −J0.

+

+

+
−

−
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u=1

u=0

Example 2

1 The function u is harmonic in the region Ω
between the sphere and the toroidal surface.

2 The toroidal surface is placed in such a way
that is symmetric with respect to 2
coordinate planes, say the xy and xz plane.

3 With this choice, uy (x , 0, 0) = uz (x , 0, 0) = 0
for all (x , 0, 0) ∈ Ω.

4 The value u(0, 0, 0) is bounded by a constant
c < 1 independent on the position of the two
ends of the torus.

5 The values of u between the two ends of the
torus are close to 1 if the two ends are close
to one another.

6 Hence, x 7→ u(x , 0, 0) must have a relative
maximum and a relative minimum, i.e. u has
2 critical points in Ω.
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D

u=1

Ω

0

u=0

D1
0

∆

u=0

Star-shaped condensers

D0 and D1 star-shaped w.r.t. 0, then

1 ∇u never vanishes in Ω and,

2 for every t ∈ (0, 1),

{x ∈ Ω : u(x) = t} = ∂Dt ,

where Dt is star-shaped w.r.t. 0.

Extensions (Longinetti, 1985; Francini, 1998)

Instead of Laplace equation one can consider
general nonlinear equations

F (∇2u,∇u, u, x) = 0

with suitable assumptions on F .
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Hot spots

Problem for heat equation

Consider the problem:

∂tu = ∆u in Ω × (0,∞),

u = ϕ on Ω × {0},
u = 0 on ∂Ω × (0,∞).

The set of hot spots

M(t) := {x ∈ Ω : u(x , t) = max
y∈Ω

u(y , t)}

Spectral formula

u(x , t) =
∞X

n=1

bϕnun(x)e−λnt

Notations

1 un and λn Dirichlet eigenfunctions and
eigenvalues of −∆ in Ω;

2 span{un} = L2(Ω);

3 0 < λ1 < λ2 ≤ λ3 ≤ · · · ;

4 bϕn = (ϕ, un).

Behavior for large t’s

If bϕ1 6= 0, then as t → ∞

eλ1t u(x , t) → bϕ1 u1(x)

uniformly in Ω and with all derivatives up to
the second order on compact subsets of Ω.
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Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is convex, log u1 is strictly concave ;
hence u1 has a unique maximum point
x∞ in Ω.

Behaviour of hot spots for large times

Therefore, there exixts a T > 0 such that
the set M(t) contains exactly one point
x(t) for t > T and x(t) → x∞ as
t → ∞.

If log ϕ is concave (e.g. ϕ ≡ 1)

The function x 7→ log u(x , t) is concave
for each t > 0; thus M(t) is made of only
one point x(t) and x(t) → x∞ as t → ∞.

Varadahn (1967)

If ϕ ≡ 1, then as t → 0+ :

−4t log{1 − u(x , t)} → dist(x , ∂Ω)2.

Behaviour of hot spots for small times

dist(x(t), Md ) → 0 as t → 0+,

where

Md = {x ∈ Ω : d(x) = maxΩ d},
d(x) = dist(x , ∂Ω).

For instance

If Ω is strictly convex, then Md = {x0}
for some x0 ∈ Ω.
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Numerical proof of Varadahn’s result
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Numerical proof of Varadahn’s result

A possible bifurcation

The next picture shows that M(t) may initially
contain two points and, later, collapse to one

single point.
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Pictures

Numerical proof of Varadahn’s result

A possible bifurcation

The next picture shows that M(t) may initially
contain two points and, later, collapse to one

single point.

In fact

1 Initially, the level curves of
u(x , t) look like those of d(x).

2 If our domain is a slight
perturbation of a convex one,
we expect that u1(x) has only
one maximum point.
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Problems

Problem 1

If Md is made of one single point is it so for
M(t)?

?
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Problems

Problem 1

If Md is made of one single point is it so for
M(t)?

?

Problem 2

If M(t) = {x(t)} for every t > 0, is Md

contractible?

Md
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Problems

Md

Problem 3: global version

Let Md be contractible; find extra assumptions on
d such that M(t) is made of only one point x(t) for
every t > 0.

Problem 3: local version

Let Md be contractible; find extra assumptions on
d such that there exists T > 0 for which M(t) is
made of only one point x(t) for every t ∈ (0, T ].

Hint

A non-smooth version of Dini’s implicit functions
theorem could be useful.
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More problems

d
M

d
M

d
M

The sets of local maximum points

Let M(t) and Md be the sets of local maximum points
of u(x , t) and d(x), respectively.

Problem 4: global version

If Md has n contractible components is it true that the
number of points of M(t) does not exceeds n?

In particular, the number of local maximum points of
u1 does not exceeds that of contractible components of
Md .

Problem 4: local version

If Md has n contractible connected components find
extra assumptions on d such that there exists T > 0 for
which M(t) is made of n points for every t ∈ (0, T ].
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The location of hot spots

MdΩλ,ω M(t)

Problem 5

Another interesting problem is that of
locating the hot spot (when it is unique).

Notations

ω ∈ S
N−1, xλ,ω = x − 2(x · ω − λ)ω,

πλ = {x ∈ R
N : x · ω = λ},

vλ(x , t) = u(x , t) − u(xλ, t).

Conditions on vλ

vλ
t = ∆vλ in Ωλ,ω × (0,∞),

vλ = 0 on Ωλ,ω × {0},
vλ ≥ 0 on ∂Ωλ,ω × (0,∞).

Hopf’s lemma

∂ωu < 0 su πλ,ω × (0,∞).
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The function λ(ω)

Conclusion

Therefore, as long as Ωλ,ω stays in Ω, πλ,ω

cannot contain critical points of u and hence,

C(t) := {∇u(·, t) = 0} ⊆
\

Ωλ,ω ⊂ Ω
ω ∈ S

N−1

Hλ,ω,

where Hλ,ω = {x ∈ R
N : x · ω < λ}.

In particular, if Ω is convex

1 If Ω is symmetric w.r.t. a hyperplane, then
C(t) is contained in that hyperplane.

2 If Ω has N indipendent hyperplanes of
symmetry through a point 0,

x(t) = 0 for any t > 0.

Ω bounded and convex

Let Md = {0} and, for any ω ∈ S
N−1,

let us define:

λ(ω) = inf{λ : Ωµ,ω ⊂ Ω, µ > λ}.

We observed that

x(t) ∈
\

ω∈SN−1

{x ∈ R
N : x · ω < λ(ω)}.

Problem 6

Compute or estimate λ(ω).
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Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a
point 0 ∈ Ω, then for every t > 0
u(−x , t) = u(x , t) and hence

−∇u(−x , t) = ∇u(x , t),

that implies:

∇u(0, t) = 0.

Ω convex and centrally symmetric

C(t) = M(t) = {0} for every t > 0.

Chamberland-Siegel (1997)

Let Ω be convex and G -invariant, where is
an essential subgroup of O(N). Then
C(t) = M(t) = {0} for every t > 0.

Definition

G ⊂ O(N) essential if, for every x ∈ Ω,
x 6= 0, there is a g ∈ G such that gx 6= x .

Proof

g(Ω) = Ω ⇒ u(gx , t) = u(x , t)

⇒ g∇u(gx , t) = ∇u(x , t) ⇒
g∇u(0, t) = ∇u(0, t) for every g ∈ G ;

G essential ⇒ ∇u(0, t) = 0.
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Examples

Non centrally symmetric
G = {e2πik/3}k=0,1,2

Centrally symmetric, G = {1,−1}

Non centrally symmetric
G = {e2πik/5}k=0,1,2,3,4
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Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let x(t) = 0 for every
t > 0. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

1 Ω bounded (not necessarily convex),
0 ∈ Ω;

2 ∂Ω Lipschitz continuous;

3 R=d(0);

4 x(t) = 0 for every t > 0.

Then Z

∂Ω∩∂B(0,R)

x dSx = 0.

If HN−1(∂Ω ∩ ∂B(0, R)) = 0

1 ∂Ω piecewise of class C2;

2 ∂Ω ∩ ∂B(0, R) =
KS

k=1

M
mk
k

, where

M
mk
k

are pairwise disjoint
mk -submanifolds with
0 ≤ mk ≤ N − 2 and ∂M

mk
k

= ∅;
3 m = max{mk : Hmk (M

mk
k

) > 0};

4 Km(x) =

(
N−1Q

j=m+1

ˆ
1
R
− κj(x)

˜
)− 1

2

.

Then

X

mk=m

Z

M
µ

k

x Km(x) dHm = 0.

Rolando Magnanini Critical points of solutions of elliptic and parabolic PDE’s



Elliptic equations in R
2

Examples and extensions to R
N

Hot spots

Basic results
Open problems
On the location of hot spots
Stationary hot spots

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let x(t) = 0 for every
t > 0. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

1 Ω bounded (not necessarily convex),
0 ∈ Ω;

2 ∂Ω Lipschitz continuous;

3 R=d(0);
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∂Ω∩∂B(0,R)
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2 ∂Ω ∩ ∂B(0, R) =
KS

k=1

M
mk
k

, where

M
mk
k

are pairwise disjoint
mk -submanifolds with
0 ≤ mk ≤ N − 2 and ∂M

mk
k

= ∅;
3 m = max{mk : Hmk (M

mk
k

) > 0};

4 Km(x) =

(
N−1Q

j=m+1

ˆ
1
R
− κj(x)

˜
)− 1

2

.

Then

X

mk=m

Z

M
µ

k

x Km(x) dHm = 0.
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M 0

R0

p1 p3

p2

0

Ω convex polyhedron

∂Ω ∩ ∂B(0, R) = {pi}i=1,...,m and hence
mP

i=1
pi = 0.
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Proof: first part

Mean value property (for stationary points)

If vt = ∆v in D × (0,∞) and v(0, t) = c

for every t > 0, then

1

|B(0, r)|

Z

B(0,r)

v(x , t) dx = c = v(0, t),

for every r < dist(0, ∂D) and t > 0.

Corollary

Since every ∂xi v also satisfies the heat
equation, if ∇v(p, t) = 0 for every t > 0,
we have: R

B(0,r)

x v(x , t) dx = 0,

for every r < dist(0, ∂D) and t > 0.

Boundary layer

Let us choose

1 v(x , t) = u(x , t) (i.e. u = 1 on
Ω × {0}; u = 0 on ∂Ω × (0,∞));

2 r = R = d(0), so that B(p, R)
touches ∂Ω;

and let us use the “boundary layer”
produced by u(x , t) as t → 0+.

Barriers for small t; ε > 0 is a parameter

The Varadhan’s formula

lim
t→0+

(−4t) log{1 − u(x , t)} = d(x)2,

suggests the construction of two barriers:

Fε
−

“d(x)√
t

”
≤ u(x , t) ≤ Fε

+

“d(x)√
t

”
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Proof: second part

Fubini’s theorem implies

If F is BV and dν(dx) = ϕ(x) dx with
ϕ ∈ C0

0 (RN ), then

R
B(p,R)

F
“

d(x)√
t

”
ν(dx) =

2R/
√

tR
0

F ′(σ) ν({x ∈ B(p, R) : d(x) > σ
√

t})dσ

Crucial lemma

lim
s→0+

s−
N+1−µ

2 ν({x ∈ B(p, R) : d(x) < s}) =

C(N, µ)
KmP

mk =m

R

M
mk
k

ϕ(x)Km(x)dHm := A
m,N
Ω,R

Therefore

t−
N+1−m

4
R

B(p,R)

F
“

d(x)√
t

”
ν(dx) →

N+1−m
2

A
m,N
Ω,R

∞R
0

σ
N−1−m

2 F (σ) dσ

Conclusion

Choose ϕ(x) = (xi − pi )
±, F = Fε

±,

and use the fact that, as ε → 0+,

∞Z

0

σ
N−1−m

2 Fε
±(σ) dσ → c(N, m),

where c(N, m) is indipendent on ±.
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Symmetry: triangles and quadrangles

p1 p3

p2

0

Polygons

In this case, our theorem implies that

nX

i=1

pi = 0.
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Symmetry: triangles and quadrangles

p1 p3

p2

0

Polygons

In this case, our theorem implies that

nX

i=1

pi = 0.

Symmetry

Let x(t) = 0 for every t > 0. Then

1 if Ω is a triangle ⇒ Ω is equilateral;

2 if Ω is a quadrangle ⇒ Ω is a
parallelogram.

In particular, a non convex quadrangle does not
admit a stationary hot spot.

The most diffucult case to treat concerns the
picture here below.

p 1

p2
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Polygons: another condition

Ω ∗

Ω ∗

Ω ∗

Ω ∗

Ω ∗

Ω ∗

Ω Ω ∗

Ω polygon

By applying the Schwarz reflection

principle w.r.t. each side, we can extend
u to a solution u∗ of u∗

t = ∆u∗, in a
larger domain (the white domain Ω∗)

Since still u∗(0, t) = 0 for every t > 0, we
again find: R

B(0,r)

x u∗(x , t) dx = 0;

this time for r ≤ R∗, where

R∗ is the distance of 0 from the closest

vertices of Ω.

Choose r = R∗; then

Z

B(0,R∗)

x u∗(x , t) dx = 0 per ogni t > 0,

but it is not convenient to work with this
integral.
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D i

pi

E

It is instead convenient to fold back into
Ω the parts of B(0, R∗) that are outside
Ω.

It turns out that

Z

B(0,r)

x u∗(x , t) dx = 0

if and only if

Z

E

x u(x , t) dx +
X

i

Z

Di

(x−x∗
i ) u(x , t) dx = 0,

where E is the pink set, Di the green ones
and x∗

i
is the reflection of x w.r.t. the side of

Ω contained in Di .

In this way we can again work with u in place
of u∗.
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Symmetry: pentagons ed exagons

If all sides of Ω touch ∂B(0, R∗)

By an asymptotic analysis similar to
(but more complicated than) that
already seen, by sending t to 0, we
show that

mX

i=1

pi = 0 and

kX

j=1

qj = 0,

where the qj ’s are the vertices of Ω
that are closest to 0.
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Simmetria: pentagoni ed esagoni

If all sides of Ω touch ∂B(0, R∗)

By an asymptotic analysis similar to
(but more complicated than) that
already seen, by sending t to 0, we
show that

mX

i=1

pi = 0 and

kX

j=1

qj = 0,

where the qj ’s are the vertices of Ω
that are closest to 0.

Symmetry

If Ω is as specified, then

1 if Ω is a pentagon, Ω is regular;

2 if Ω is an exagon, Ω is invariant w.r.t.
rotations by the angles π

3
, 2π

3
e π.
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