[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-3-0)

Critical points of solutions of elliptic and parabolic PDE's

Rolando Magnanini

Dipartimento di Matematica "Ulisse Dini" Universit`a di Firenze

March 2, 2007

イロメ イ御 メイモメ イモメ

[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-3-0)

Outline

- **1** Introduction
- ² Elliptic equations in R 2
	- Capacity potentials
	- Boundary values and critical points of harmonic functions
	- Critical points of eigenfunctions
- **1** Examples and extensions to \mathbb{R}^N
- 2 Hot spots
	- **Basic results**
	- Open problems
	- On the location of hot spots
	- Stationary hot spots

イロメ イ御 メイモメ イモメ

[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-3-0)

References

- G. Alessandrini-R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sc. 19 (4) (1992), 567-589.
- G. Alessandrini-R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal. 25 (1994), 1259-1268.
- R. Magnanini-S. Sakaguchi, On heat conductors with a stationary hot spot, Annali Matematica Pura ed Applicata 183, no. 1 (2004), 1-23.
- R. Magnanini-S. Sakaguchi, Polygonal heat conductors with a stationary hot spot, submitted (2006).

イロメ マ桐 レマ ろんマ ライ

 Ω

[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-5-0)

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let u be the first Dirichlet eigenfunction for the Laplace operator:

> $\Delta u + \lambda_1 u = 0, u > 0$ in Ω , $u = 0$ on $\partial \Omega$,

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , $u = 0$ on $\partial \Omega$.

$$
\mathcal{L}u = -f
$$
 in Ω ,

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》

[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-5-0)

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let u be the first Dirichlet eigenfunction for the Laplace operator:

$$
\Delta u + \lambda_1 u = 0, u > 0 \text{ in } \Omega,
$$

$$
u = 0 \text{ on } \partial\Omega,
$$

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , $u = 0$ on $\partial \Omega$.

Ω convex

If Ω is convex, every level set $\{x \in \Omega : u(x) > t\}$ is strictly convex and hence u has only one critical point $-$ a maximum point.

$$
\mathcal{L}u = -f
$$
 in Ω ,

イロン イ母ン イミン イヨン・(ヨ)

[Outline](#page-1-0) [References](#page-2-0) [Introduction](#page-3-0)

Problem (G. Alessandrini, 1988?)

First eigenfunction and sectional torsion

Let u be the first Dirichlet eigenfunction for the Laplace operator:

> $\Delta u + \lambda_1 u = 0$, $u > 0$ in Ω , $u = 0$ on $\partial \Omega$.

or the solution for the torsion problem:

 $\Delta u = -1$, in Ω , $u = 0$ on $\partial \Omega$.

Ω convex

If Ω is convex, every level set ${x \in \Omega : u(x) > t}$ is strictly convex and hence u has only one critical point $-$ a maximum point.

Question

If Ω is not convex, how the topology and geometry of $Ω$ determine the number and (maybe) the position of the critical points $of II²$

More in general

Given an elliptic equation

$$
\mathcal{L}u=-f \text{ in } \Omega,
$$

how do the topology and geometry of $Ω$. the boundary values of u , and/or the $coefficients$ of ℓ influence the formation of the critical points of u ?

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ - 글 - K 9 Q Q

[Capacity potentials](#page-7-0)

[Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Capacity potential

$$
m(z_k) := \frac{1}{2\pi} \Delta_{+\gamma}(\omega);
$$

Capacity potential

$$
\Delta u = 0 \text{ in } \Omega
$$

$$
u = a_j \text{ on } \Gamma_j, j = 1,...,n,
$$

where the a_j 's are constants, not all equal $(n - 1)$ = number of holes).

$$
\sum_{z_k \in \Omega} m(z_k) + \frac{1}{2} \sum_{z_k \in \partial \Omega} m(z_k) = n - 2.
$$

 40

[Capacity potentials](#page-6-0)

[Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Capacity potential

Index $m(z_k)$ of ∇u at z_k

If z_k is an isolated critical point of u and $\omega = \arg \nabla u$,

$$
m(z_k):=\frac{1}{2\pi}\Delta_{+\gamma}(\omega);
$$

$$
+\gamma = \partial B(z_k, \varepsilon)
$$
 counterclockwise.

Capacity potential

$$
\Delta u = 0 \text{ in } \Omega
$$

$$
u = a_j \text{ on } \Gamma_j, j = 1, ..., n,
$$

where the a_j 's are constants, not all equal $(n - 1)$ = number of holes).

Perfect counting

The critical points z_k of u are isolated and

$$
\sum_{z_k \in \Omega} m(z_k) + \frac{1}{2} \sum_{z_k \in \partial \Omega} m(z_k) = n - 2.
$$

N.B.: If Ω is doubly connected $(n = 2)$, $\nabla u \neq 0$.

[Capacity potentials](#page-6-0)

[Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

$$
\text{2} \ \ m(z_k) = \tfrac{1}{2\pi} \Delta_{\partial B(z_k,\varepsilon)} \omega \ \ \Rightarrow \ \ \sharp \ \{\text{zeros of } f\} = - \sum_{z_k \in \Omega} m(z_k);
$$

3) $\frac{1}{2\pi}$ $\Delta_{\partial\Omega}$ arg $f = \frac{1}{2\pi}$ $\Delta_{\partial\Omega}$ arg (exterior normal) = 2 − n \Rightarrow QED.

イロメ イ御メ イヨメ イヨメー

唐

[Capacity potentials](#page-6-0)

[Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

If $\{z_k \in \partial \Omega\} = \emptyset$

\n- **①** *f* is holomorphic in
$$
\Omega \Rightarrow
$$
 no poles in Ω ;
\n- **②** $m(z_k) = \frac{1}{2\pi} \Delta_{\partial B(z_k, \varepsilon)} \omega \Rightarrow$ \sharp {zeros of f } = $-\sum_{z_k \in \Omega} m(z_k)$;
\n- **③** $\frac{1}{2\pi} \Delta_{\partial \Omega} \arg f = \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\text{exterior normal}) = 2 - n \Rightarrow \text{ QED}.$
\n

[Capacity potentials](#page-6-0)

[Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

How do we treat the case $z_k \in \partial\Omega$?

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-12-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

A more general result (Alessandrini-M., 1992)

- $\mathbf{D} \ \vec{\alpha} : \partial \Omega \rightarrow \mathbb{S}^1$ unitary vector field, $\vec{\alpha} \in C^1(\partial\Omega);$
- 2 $D := \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\vec{\alpha}) = \text{index of } \vec{\alpha}$ on ∂ Ω;
- $\Delta u = 0$ in Ω :
- \bigcirc $\nabla u \neq 0$ on $\partial \Omega$.
- \bigodot *M* is the minimum number of connected components of the set

$$
\mathcal{J}^+ = \{ z \in \partial \Omega : \nabla u(z) \cdot \vec{\alpha}(z) \geq 0 \}
$$

 $+$ $+$ \vee \heartsuit

which are a **proper** subset of $\partial \Omega$.

THE THEFT REPORT

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

A more general result (Alessandrini-M., 1992)

- $\mathbf{D} \ \vec{\alpha} : \partial \Omega \rightarrow \mathbb{S}^1$ unitary vector field, $\vec{\alpha} \in C^1(\partial\Omega);$
- 2 $D := \frac{1}{2\pi} \Delta_{\partial \Omega} \arg(\vec{\alpha}) = \text{index of } \vec{\alpha}$ on ∂ Ω;
- $\Delta u = 0$ in Ω :
- \bigcirc $\nabla u \neq 0$ on $\partial \Omega$.
- \bigodot *M* is the minimum number of connected components of the set

$$
\mathcal{J}^+ = \{ z \in \partial \Omega : \nabla u(z) \cdot \vec{\alpha}(z) \geq 0 \}
$$

which are a **proper** subset of $\partial \Omega$.

Then

$$
\sum_{z_k\in\Omega}m(z_k)\leq M-D.
$$

STEP Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

Key remark

$$
\frac{\nabla u}{|\nabla u|}\cdot \alpha = \cos(\omega - \theta)
$$

where $\theta = \arg \vec{\alpha}$; hence

$$
|\omega - \theta| \le \frac{\pi}{2} \text{ on } \mathcal{J}^+,
$$

$$
|\omega + \theta| \le \frac{\pi}{2} \text{ on } \mathcal{J}^-.
$$

$$
\left|\frac{1}{2\pi} \Delta_{A \cup B} \ \omega - \frac{1}{2\pi} \Delta_{A \cup B} \ \theta \right| \leq 1 \ \Rightarrow \ -\frac{1}{2\pi} \Delta_{A \cup B} \ \omega \leq -\frac{1}{2\pi} \Delta_{A \cup B} \ \theta + 1
$$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

イロト イ団 トメ ミト メ ミト

 \Rightarrow

 299

$$
\frac{1}{2\pi}\Delta_{\Gamma}\omega - \frac{1}{2\pi}\Delta_{\Gamma}\theta\bigg| \leq \frac{1}{2};
$$

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

Key remark

$$
\frac{\nabla u}{|\nabla u|}\cdot \alpha = \cos(\omega - \theta)
$$

where $\theta = \arg \vec{\alpha}$; hence

$$
|\omega - \theta| \le \frac{\pi}{2} \text{ on } \mathcal{J}^+,
$$

$$
|\omega + \theta| \le \frac{\pi}{2} \text{ on } \mathcal{J}^-.
$$

First consequence

On every component Γ of $\partial\Omega$ with $\Gamma \subset \mathcal{J}^+$ we have:

$$
\left|\frac{1}{2\pi}\Delta_{\Gamma}\omega-\frac{1}{2\pi}\Delta_{\Gamma}\theta\right|\leq\frac{1}{2};
$$

hence

$$
\frac{1}{2\pi}\Delta_\Gamma\ \omega=\frac{1}{2\pi}\Delta_\Gamma\ \theta.
$$

$$
\frac{1}{2\pi} \Delta_{A\cup B} \ \omega - \frac{1}{2\pi} \Delta_{A\cup B} \ \theta \bigg| \leq 1 \ \Rightarrow \ -\frac{1}{2\pi} \Delta_{A\cup B} \ \omega \leq -\frac{1}{2\pi} \Delta_{A\cup B} \ \theta + 1.
$$

イロト イ団 トメ ミト メ ミト

 \Rightarrow

 299

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

Key remark

$$
\frac{\nabla u}{|\nabla u|}\cdot \alpha = \cos(\omega - \theta)
$$

where $\theta = \arg \vec{\alpha}$; hence

$$
|\omega - \theta| \leq \frac{\pi}{2} \text{ on } \mathcal{J}^+,
$$

$$
|\omega + \theta| \leq \frac{\pi}{2} \text{ on } \mathcal{J}^-.
$$

First consequence

On every component Γ of $\partial\Omega$ with $\Gamma \subset \mathcal{J}^+$ we have:

$$
\left|\frac{1}{2\pi}\Delta_{\Gamma}\omega-\frac{1}{2\pi}\Delta_{\Gamma}\theta\right|\leq\frac{1}{2};
$$

hence

$$
\frac{1}{2\pi}\Delta_\Gamma\ \omega=\frac{1}{2\pi}\Delta_\Gamma\ \theta.
$$

Second consequence

$$
\left|\frac{1}{2\pi}\Delta_{A\cup B}\;\omega-\frac{1}{2\pi}\Delta_{A\cup B}\;\theta\right|\leq 1\;\Rightarrow\;-\frac{1}{2\pi}\Delta_{A\cup B}\;\omega\leq -\frac{1}{2\pi}\Delta_{A\cup B}\;\theta+1.
$$

イロト イ押 トイモ トイモト

(B) 299

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

Conclusion

Summing up these contributions gives

$$
\sum_{z_k \in \Omega} m(z_k) = -\frac{1}{2\pi} \Delta_{\partial \Omega} \; \omega \leq -\frac{1}{2\pi} \Delta_{\partial \Omega} \; \theta + M = M - D.
$$

$$
\mathcal{L}\mathbf{u} = \text{div}\{\mathbf{A}(\mathbf{x}) \ \nabla \mathbf{u}\} + \mathbf{b}(\mathbf{x}) \cdot \nabla \mathbf{u} = \mathbf{0},
$$
\nwhere $A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) \\ a_{12}(x) & a_{22}(x) \end{bmatrix}$, $a_{ij} \in \text{Lip}(\Omega)$,
\nand $b(x) = \begin{bmatrix} b_1(x) \\ b_2(x) \end{bmatrix}$, $b_i \in L^{\infty}(\Omega)$.

THE REAL PROPERTY AND P

 000

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Sketch of the proof

Conclusion

Summing up these contributions gives

$$
\sum_{z_k \in \Omega} m(z_k) = -\frac{1}{2\pi} \Delta_{\partial \Omega} \omega \leq -\frac{1}{2\pi} \Delta_{\partial \Omega} \theta + M = M - D.
$$

Extension

These results can be extended to elliptic equations of the form

$$
\mathcal{L}\mathbf{u} = \text{div}\{\mathbf{A}(\mathbf{x}) \nabla \mathbf{u}\} + \mathbf{b}(\mathbf{x}) \cdot \nabla \mathbf{u} = \mathbf{0},
$$

where $A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) \\ a_{12}(x) & a_{22}(x) \end{bmatrix}$, $a_{ij} \in \text{Lip}(\Omega)$,
and $b(x) = \begin{bmatrix} b_1(x) \\ b_2(x) \end{bmatrix}$, $b_i \in L^{\infty}(\Omega)$.

 290

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

The two ingredients of the proof

Uniformization principle

For every solution of $\mathcal{L}u = 0$ in Ω , there is a **quasi-conformal mapping** ζ , $\zeta = \xi + i\eta$, such that the function U such that $u = U \circ \zeta$ satisfies

$$
\Delta U + P U_{\xi} + Q U_{\eta} \text{ in } \zeta(\Omega),
$$

with $P, Q \in L^{\infty}(\zeta(\Omega)).$

$$
2\partial_{\zeta} U = U_{\xi} - iU_{\eta} = e^{s(\zeta)} G(\zeta) \text{ in } \zeta(\Omega).
$$

KD > KDP > K E > K E >

 Ω

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

The two ingredients of the proof

Uniformization principle

For every solution of $\mathcal{L}u = 0$ in Ω , there is a **quasi-conformal mapping** ζ , $\zeta = \xi + i\eta$, such that the function U such that $u = U \circ \zeta$ satisfies

$$
\Delta U + P U_{\xi} + Q U_{\eta} \text{ in } \zeta(\Omega),
$$

with $P, Q \in L^{\infty}(\zeta(\Omega)).$

Similarity principle

There exist a **holomorphic** function $G(\zeta)$ and a function $s(\zeta)$, Hölder continuous on C, such that

$$
2\partial_{\zeta} U = U_{\xi} - iU_{\eta} = e^{s(\zeta)} G(\zeta) \text{ in } \zeta(\Omega).
$$

 $(s(\zeta))$ can be chosen real-valued on $\partial\Omega$.)

K ロ ト K (型)

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$
\operatorname{div}\{A(x)\ \nabla u\}=0.
$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

- -

イロン イ団ン イヨン イヨン 一島

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$
\operatorname{div}\{A(x)\ \nabla u\}=0.
$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

For every non-constant solution $u \in W^{1,2}(\Omega)$, we can write

 $u(z) = h(\chi(z))$, $z \in \Omega$.

where $\chi : \Omega \to B(0, 1)$ is a quasi-conformal mapping and h is harmonic.

"Geometric" critical point

- 2 $z_0 \in \Omega$ is a critical point of u if $\nabla h(\chi(z_0))$;
- **2** multiplicity of $z_0 = \frac{1}{2\pi} \Delta_{\partial B(\chi(z_0),\varepsilon)} \arg(\nabla h).$

$$
\operatorname{div}(\sigma \nabla u) = 0 \quad \text{in} \quad \Omega \subset \mathbb{R}^2,
$$

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ - 글 - K 9 Q Q

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

Extensions

Further extension

We can even extend to the case

$$
\operatorname{div}\{A(x)\ \nabla u\}=0.
$$

with $A \in L^{\infty}(\Omega)$.

Lack of regularity

In this case, since u is in general only Hölder continuous, we must change the definition of critical point and its multiplicity.

For every non-constant solution $u \in W^{1,2}(\Omega)$, we can write

 $u(z) = h(\chi(z))$, $z \in \Omega$.

where $\chi : \Omega \to B(0, 1)$ is a quasi-conformal mapping and h is harmonic.

"Geometric" critical point

- 2 $z_0 \in \Omega$ is a critical point of u if $\nabla h(\chi(z_0))$;
- **2** multiplicity of $z_0 = \frac{1}{2\pi} \Delta_{\partial B(\chi(z_0),\varepsilon)} \arg(\nabla h).$

Application: inverse problem

 $\mathrm{div}(\sigma\nabla u)=0$ in $\Omega\subset\mathbb{R}^2$,

$$
0<\sigma_0\leq \sigma=\text{ unknown}
$$

The equation is a 1^{st} order PDE for σ . The previous theorems help to establish whether $\nabla u \neq 0$ by examining, for instance, the sign of $\frac{\partial u}{\partial \nu}$ on $\partial \Omega$. This can be done even if σ is **discontinuous**.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ - 글 - K 9 Q Q

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0)
Cr<mark>itical points of eigenfunctions in</mark> \mathbb{R}^2

First eigenfunction

Assumptions

$$
\Delta u + \lambda_1 u = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega
$$

$$
\partial \Omega = \bigcup_{j=1}^n \Gamma_j, \ \Gamma_j \in C^{1,\alpha}.
$$

$$
\sharp \{saddle pts\} - \sharp \{maximum pts\} = n-2.
$$

$$
-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega.
$$

 4 ロ) 4 何) 4 ミ) 4 (=)

唐

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-25-0) \mathbb{R}^2

First eigenfunction

Assumptions

$$
\Delta u + \lambda_1 u = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega
$$

$$
\partial \Omega = \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}.
$$

Alessandrini-M., 1992

If the critical points of u are isolated, then

$$
\sharp{\text{saddle pts}} - \sharp{\text{maximum pts}} = n - 2.
$$

$$
-\Delta u = f(u), u > 0
$$
 in Ω

イロト イ押 トイモ トイモト

唐

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

First eigenfunction

Assumptions

$$
\Delta u + \lambda_1 u = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega
$$

$$
\partial \Omega = \bigcup_{j=1}^n \Gamma_j, \quad \Gamma_j \in C^{1,\alpha}.
$$

Alessandrini-M., 1992

If the critical points of u are isolated, then

$$
\sharp{\text{saddle pts}} - \sharp{\text{maximum pts}} = n - 2.
$$

Extension 1

The theorem holds also for

$$
-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega,
$$

with
$$
f \in C^1
$$
, $f(t) > 0$ for $t > 0$.

イロメ イ押メ イヨメ イヨメー

(重) - $2Q$

[Capacity potentials](#page-6-0) [Boundary values and critical points of harmonic functions](#page-11-0) [Critical points of eigenfunctions in](#page-23-0) \mathbb{R}^2

First eigenfunction

Assumptions

$$
\Delta u + \lambda_1 u = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega
$$

$$
\partial \Omega = \bigcup_{i=1}^{n} \Gamma_i, \ \Gamma_j \in C^{1,\alpha}.
$$

Alessandrini-M., 1992

 $i=1$

If the critical points of u are isolated, then

$$
\sharp{\text{saddle pts}} - \sharp{\text{maximum pts}} = n - 2.
$$

Extension 1

The theorem holds also for

$$
-\Delta u = f(u), \quad u > 0 \quad \text{in} \quad \Omega,
$$

with
$$
f \in C^1
$$
, $f(t) > 0$ for $t > 0$.

Extension 2: removing assumption $u > 0$

If
$$
f(0) = 0
$$
 and $f(t)/t > 0$ for $t \neq 0$,

$$
\sharp \{\text{saddle pts}\} - \sharp \{\text{extremum pts}\} + \sum_{z_k \in \Omega} m(z_k) + \frac{1}{2} \sum_{z_k \in \partial \Omega} m(z_k) = n - 2,
$$

where the z_k 's are the **nodal** points of u. $\left(\text{Below } 0-4+2+\frac{1}{2}\cdot 2=1-2.\right)$

 Ω

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

Critical points: extension to $\mathbb{R}^N, \ N\geq 3$

Difficulties

- **1** Lack of complex variables.
- 2 Critical points are in general not isolated.
- **3** The "number" of critical points does not only depend on the topology (and the values of *u* on $\partial\Omega$): curvature (and/or something else) should also be taken into account.

イロメ イ御 メ イヨメ イヨメ

Critical points: extension to $\mathbb{R}^N, \ N\geq 3$

Difficulties

- **1** Lack of complex variables.
- 2 Critical points are in general not isolated.
- **3** The "number" of critical points does not only depend on the topology (and the values of *u* on $\partial Ω$): curvature (and/or something else) should also be taken into account.

Example 1

The function

$$
u(x, y, z) = J_0(\sqrt{x^2 + y^2}) ch(z),
$$

\n
$$
J_0(r)
$$
 Bessel function:
\n
$$
J_0'' + \frac{1}{r} J_0' + J_0 = 0,
$$

is harmonic in \mathbb{R}^3 and

$$
\{\nabla u=0\}=\{z=0\}\cap\bigcup_{n=0}^{\infty}\partial B(0,\kappa_{1,n}),
$$

where $0 = \kappa_{1,0} < \kappa_{1,1} < \kappa_{1,2} < ...$ are the zeroes of the Bessel function $J_1 = -J_0$.

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

Critical points: extension to $\mathbb{R}^N, \ N\geq 3$

Example 2

- **1** The function u is harmonic in the region Ω between the sphere and the toroidal surface.
- 2 The toroidal surface is placed in such a way that is symmetric with respect to 2 coordinate planes, say the xy and xz plane.
- \bullet With this choice, $u_y(x, 0, 0) = u_z(x, 0, 0) = 0$ for all $(x, 0, 0) \in \Omega$.
- \bullet The value $u(0, 0, 0)$ is bounded by a constant $c < 1$ independent on the position of the two ends of the torus.
- \bigodot The values of u between the two ends of the torus are close to 1 if the two ends are close to one another.
- **6** Hence, $x \mapsto u(x, 0, 0)$ must have a relative maximum and a relative minimum, i.e. u has 2 critical points in Ω.

Critical points: extension to $\mathbb{R}^N, \ N\geq 3$

Star-shaped condensers

 D_0 and D_1 star-shaped w.r.t. 0, then

 \bigcirc ∇u never vanishes in Ω and,

2 for every $t \in (0, 1)$,

$$
\{x\in\Omega: u(x)=t\}=\partial D_t,
$$

where D_t is star-shaped w.r.t. 0.

 α

Critical points: extension to $\mathbb{R}^N, \ N\geq 3$

Star-shaped condensers

 D_0 and D_1 star-shaped w.r.t. 0, then

 \bigcirc ∇u never vanishes in Ω and,

2 for every $t \in (0,1)$,

$$
\{x\in\Omega: u(x)=t\}=\partial D_t,
$$

where D_t is star-shaped w.r.t. 0.

Extensions (Longinetti, 1985; Francini, 1998)

Instead of Laplace equation one can consider general nonlinear equations

$$
F(\nabla^2 u, \nabla u, u, x) = 0
$$

with suitable as[sum](#page-30-0)[pt](#page-32-0)[io](#page-29-0)[n](#page-30-0)[s](#page-31-0) [o](#page-32-0)[n](#page-26-0) [F](#page-27-0)[.](#page-31-0)

[Basic results](#page-33-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Hot spots

Problem for heat equation

Consider the problem:

 $\partial_t u = \Delta u$ in $\Omega \times (0, \infty)$, $u = \varphi$ on $\Omega \times \{0\},\$ $u = 0$ on $\partial \Omega \times (0, \infty)$.

The set of hot spots

$$
M(t):=\{x\in\Omega: u(x,t)=\max_{y\in\Omega}u(y,t)\}
$$

$$
u(x,t)=\sum_{n=1}^{\infty}\widehat{\varphi}_{n}u_{n}(x)e^{-\lambda_{n}t}
$$

-
-
-
-

$$
e^{\lambda_1 t} u(x, t) \rightarrow \widehat{\varphi}_1 u_1(x)
$$

イロメ イ御メ イヨメ イヨメー

唐

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Hot spots

Problem for heat equation

Consider the problem:

 $\partial_t u = \Delta u$ in $\Omega \times (0, \infty)$, $u = \varphi$ on $\Omega \times \{0\},\$ $u = 0$ on $\partial \Omega \times (0, \infty)$.

Notations

 $\mathbf{1}_{\mathbf{n}}$ and λ_n Dirichlet eigenfunctions and eigenvalues of $-\Delta$ in Ω ;

$$
3 \overline{\operatorname{span}\{u_n\}}=L^2(\Omega);
$$

$$
0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots ;
$$

$$
\bullet \ \widehat{\varphi}_n=(\varphi, u_n).
$$

The set of hot spots

$$
M(t):=\{x\in\Omega: u(x,t)=\max_{y\in\Omega}u(y,t)\}
$$

Spectral formula

$$
u(x,t)=\sum_{n=1}^{\infty}\widehat{\varphi}_{n}u_{n}(x)e^{-\lambda_{n}t}
$$

Behavior for large t's

If
$$
\hat{\varphi}_1 \neq 0
$$
, then as $t \to \infty$

$$
e^{\lambda_1 t} u(x,t) \to \widehat{\varphi}_1 u_1(x)
$$

uniformly in $\overline{\Omega}$ and with all derivatives up to the second order on compact subsets of $Ω$.

イロト イ押 トイモ トイモト

唐

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is convex, log u_1 is strictly concave ; hence u_1 has a unique maximum point x_{∞} in Ω .

If
$$
\varphi \equiv 1
$$
, then as $t \to 0^+$:

$$
-4t \log\{1-u(x,t)\}\to \mathrm{dist}(x,\partial\Omega)^2.
$$

$$
dist(x(t), M_d) \to 0 \text{ as } t \to 0^+,
$$

where

$$
M_d = \{x \in \Omega : d(x) = \max_{\overline{\Omega}} d\},
$$

$$
d(x) = dist(x, \partial \Omega).
$$

 -190

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is convex, log u_1 is strictly concave ; hence u_1 has a unique maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exixts a $T > 0$ such that the set $M(t)$ contains exactly one point $x(t)$ for $t > T$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

If $log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each $t > 0$; thus $M(t)$ is made of only one point $x(t)$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

If
$$
\varphi \equiv 1
$$
, then as $t \to 0^+$:

$$
-4t \log\{1-u(x,t)\}\to \mathrm{dist}(x,\partial\Omega)^2.
$$

$$
dist(x(t), M_d) \to 0 \text{ as } t \to 0^+,
$$

where

$$
M_d = \{x \in \Omega : d(x) = \max_{\overline{\Omega}} d\},
$$

$$
d(x) = dist(x, \partial\Omega).
$$

 -190
[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is convex, log u_1 is strictly concave ; hence u_1 has a unique maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exixts a $T > 0$ such that the set $M(t)$ contains exactly one point $x(t)$ for $t > T$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

If $log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each $t > 0$; thus $M(t)$ is made of only one point $x(t)$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

Varadahn (1967)

If
$$
\varphi \equiv 1
$$
, then as $t \to 0^+$:

$$
-4t \log\{1-u(x,t)\}\to \mathrm{dist}(x,\partial\Omega)^2.
$$

$$
dist(x(t), M_d) \to 0 \text{ as } t \to 0^+,
$$

where

$$
M_d = \{x \in \Omega : d(x) = \max_{\overline{\Omega}} d\},
$$

$$
d(x) = dist(x, \partial\Omega).
$$

 -190

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Behaviour for large and small times

Brascamp-Lieb (1975)

If Ω is convex, log u_1 is strictly concave; hence u_1 has a **unique** maximum point x_{∞} in Ω .

Behaviour of hot spots for large times

Therefore, there exixts a $T > 0$ such that the set $M(t)$ contains exactly one point $x(t)$ for $t > T$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

If $log \varphi$ is concave (e.g. $\varphi \equiv 1$)

The function $x \mapsto \log u(x, t)$ is concave for each $t > 0$; thus $M(t)$ is made of only one point $x(t)$ and $x(t) \rightarrow x_{\infty}$ as $t \rightarrow \infty$.

Varadahn (1967)

If
$$
\varphi \equiv 1
$$
, then as $t \to 0^+$:

$$
-4t \log\{1-u(x,t)\}\to \mathrm{dist}(x,\partial\Omega)^2.
$$

Behaviour of hot spots for small times $dist(x(t), M_d) \rightarrow 0$ as $t \rightarrow 0^+,$ where $M_d = \{x \in \Omega : d(x) = \max_{\overline{\Omega}} d\},\$

 $d(x) = \text{dist}(x, \partial \Omega).$

For instance

If Ω is strictly convex, then $M_d = \{x_0\}$ for some $x_0 \in \Omega$.

[Basic results](#page-32-0)

[Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Pictures

 4 ロ) 4 何) 4 ミ) 4 \pm)

哇

 299

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Pictures

Numerical proof of Varadahn's result

A possible bifurcation

The next picture shows that $M(t)$ may initially contain two points and, later, collapse to one single point.

K ロ ト K 倒 ト K ミ ト

扂

→ 重→

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Pictures

A possible bifurcation

The next picture shows that $M(t)$ may initially contain two points and, later, collapse to one single point.

In fact

- **1** Initially, the level curves of $u(x, t)$ look like those of $d(x)$.
- 2 If our domain is a slight perturbation of a convex one, we expect that $u_1(x)$ has only one maximum point.

K ロ) (K @) (K 점) (K 점)

 $2Q$

哇

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

Numerical proof of Varadahn's result

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Problems

Problem 1

If M_d is made of one single point is it so for $M(t)$?

メロメ メ都 メメ きょくきょ

唐

 299

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Problems

Problem 1

If M_d is made of one single point is it so for $M(t)$?

M_d

Problem 2

If
$$
M(t) = \{x(t)\}\
$$
 for every $t > 0$, is M_d
contractible?

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

唐

 299

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Problems

Problem 3: global version

Let M_d be contractible; find extra assumptions on d such that $M(t)$ is made of only one point $x(t)$ for every $t > 0$.

Problem 3: local version

Let M_d be contractible; find extra assumptions on d such that there exists $T > 0$ for which $M(t)$ is made of only one point $x(t)$ for every $t \in (0, T]$.

Hint

A non-smooth version of Dini's implicit functions theorem could be useful.

イロメ イ母メ イヨメ イヨメ

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

More problems

The sets of local maximum points

Let $M(t)$ and M_d be the sets of local maximum points of $u(x, t)$ and $d(x)$, respectively.

Problem 4: global version

If \mathcal{M}_d has n contractible components is it true that the number of points of $M(t)$ does not exceeds n?

In particular, the number of local maximum points of u_1 does not exceeds that of contractible components of \mathcal{M}_d .

Problem 4: local version

If \mathcal{M}_d has n contractible connected components find extra assumptions on d such that there exists $T > 0$ for which $\mathcal{M}(t)$ is made of *n* points for every $t \in (0, T]$.

イロト イ押 トイモト イモト

唐

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-47-0) [Stationary hot spots](#page-51-0)

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

$$
\omega \in \mathbb{S}^{N-1}, \ x^{\lambda, \omega} = x - 2(x \cdot \omega - \lambda)\omega,
$$

\n
$$
\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\},
$$

\n
$$
v^{\lambda}(x, t) = u(x, t) - u(x^{\lambda}, t).
$$

$$
v_t^{\lambda} = \Delta v^{\lambda} \text{ in } \Omega_{\lambda,\omega} \times (0,\infty),
$$

\n
$$
v^{\lambda} = 0 \text{ on } \Omega_{\lambda,\omega} \times \{0\},
$$

\n
$$
v^{\lambda} \ge 0 \text{ on } \partial\Omega_{\lambda,\omega} \times (0,\infty).
$$

イロト イ押 トイモ トイモト

重

 $2Q$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-47-0) [Stationary hot spots](#page-51-0)

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

Notations

$$
\omega \in \mathbb{S}^{N-1}, \ x^{\lambda,\omega} = x - 2(x \cdot \omega - \lambda)\omega,
$$

\n
$$
\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\},
$$

\n
$$
\mathsf{v}^{\lambda}(x, t) = u(x, t) - u(x^{\lambda}, t).
$$

Conditions on v^{λ}

$$
v_t^{\lambda} = \Delta v^{\lambda} \text{ in } \Omega_{\lambda,\omega} \times (0,\infty),
$$

\n
$$
v^{\lambda} = 0 \text{ on } \Omega_{\lambda,\omega} \times \{0\},
$$

\n
$$
v^{\lambda} \ge 0 \text{ on } \partial\Omega_{\lambda,\omega} \times (0,\infty).
$$

$$
\partial_{\omega} u < 0
$$
 su $\pi_{\lambda,\omega} \times (0,\infty)$.

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

 \equiv

 299

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

The location of hot spots

Problem 5

Another interesting problem is that of locating the hot spot (when it is unique).

Notations

$$
\omega \in \mathbb{S}^{N-1}, \ x^{\lambda,\omega} = x - 2(x \cdot \omega - \lambda)\omega,
$$

\n
$$
\pi_{\lambda} = \{x \in \mathbb{R}^{N} : x \cdot \omega = \lambda\},
$$

\n
$$
\mathsf{v}^{\lambda}(x, t) = u(x, t) - u(x^{\lambda}, t).
$$

Conditions on v^{λ}

$$
v_t^{\lambda} = \Delta v^{\lambda} \text{ in } \Omega_{\lambda,\omega} \times (0,\infty),
$$

\n
$$
v^{\lambda} = 0 \text{ on } \Omega_{\lambda,\omega} \times \{0\},
$$

\n
$$
v^{\lambda} \ge 0 \text{ on } \partial\Omega_{\lambda,\omega} \times (0,\infty).
$$

Hopf's lemma

$$
\partial_{\omega} u < 0 \text{ su } \pi_{\lambda,\omega} \times (0,\infty).
$$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

K ロ > K 個 > K 差 > K 差 > 1

唐

 290

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$
C(t) := \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega},
$$

where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

-
-

イロト イ押 トイモ トイモト

重

 QQ

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$
C(t) := \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega},
$$

where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

In particular, if Ω is convex

- **1** If Ω is symmetric w.r.t. a hyperplane, then $C(t)$ is contained in that hyperplane.
- 2 If Ω has N indipendent hyperplanes of symmetry through a point 0,

$$
x(t) = 0 \text{ for any } t > 0.
$$

イロメ イ部メ イヨメ イヨメー

(重) QQ

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

The function $\lambda(\omega)$

Conclusion

Therefore, as long as $\Omega_{\lambda,\omega}$ stays in Ω , $\pi_{\lambda,\omega}$ cannot contain critical points of u and hence,

$$
C(t) := \{ \nabla u(\cdot, t) = 0 \} \subseteq \bigcap_{\substack{\Omega_{\lambda, \omega} \subset \Omega \\ \omega \in \mathbb{S}^{N-1}}} H^{\lambda, \omega},
$$

where $H^{\lambda, \omega} = \{ x \in \mathbb{R}^N : x \cdot \omega < \lambda \}.$

In particular, if Ω is convex

- **1** If Ω is symmetric w.r.t. a hyperplane, then $C(t)$ is contained in that hyperplane.
- 2 If Ω has N indipendent hyperplanes of symmetry through a point 0,

$$
x(t) = 0 \text{ for any } t > 0.
$$

Ω bounded and convex

Let $M_d = \{0\}$ and, for any $\omega \in \mathbb{S}^{N-1}$, let us define:

$$
\lambda(\omega)=\inf\{\lambda:\Omega_{\mu,\omega}\subset\Omega,\mu>\lambda\}.
$$

We observed that

$$
x(t) \in \bigcap_{\omega \in \mathbb{S}^{N-1}} \{x \in \mathbb{R}^N : x \cdot \omega < \lambda(\omega)\}.
$$

Problem 6

Compute or estimate $\lambda(\omega)$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

重

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-53-0)

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every $t > 0$ $u(-x, t) = u(x, t)$ and hence

$$
-\nabla u(-x,t)=\nabla u(x,t),
$$

that implies:

$$
\nabla u(0,t)=0.
$$

Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every $t > 0$.

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-53-0)

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every $t > 0$ $u(-x, t) = u(x, t)$ and hence

$$
-\nabla u(-x,t)=\nabla u(x,t),
$$

that implies:

$$
\nabla u(0,t)=0.
$$

Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every $t > 0$.

Chamberland-Siegel (1997)

Let Ω be convex and G-invariant, where is an essential subgroup of $O(N)$. Then $C(t) = M(t) = \{0\}$ for every $t > 0$.

Definition

 $G \subset O(N)$ essential if, for every $x \in \Omega$, $x \neq 0$, there is a $g \in G$ such that $gx \neq x$.

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Stationary hot spot: sufficient conditions

Klamkin (1994)

If Ω is centrally symmetric w.r.t. a point $0 \in \Omega$, then for every $t > 0$ $u(-x, t) = u(x, t)$ and hence

$$
-\nabla u(-x,t)=\nabla u(x,t),
$$

that implies:

$$
\nabla u(0,t)=0.
$$

Ω convex and centrally symmetric

 $C(t) = M(t) = \{0\}$ for every $t > 0$.

Chamberland-Siegel (1997)

Let Ω be convex and G-invariant, where is an essential subgroup of $O(N)$. Then $C(t) = M(t) = \{0\}$ for every $t > 0$.

Definition

 $G \subset O(N)$ essential if, for every $x \in \Omega$, $x \neq 0$, there is a $g \in G$ such that $gx \neq x$.

Proof

$$
g(\Omega) = \Omega \Rightarrow u(gx, t) = u(x, t)
$$

\n
$$
\Rightarrow g \nabla u(gx, t) = \nabla u(x, t) \Rightarrow
$$

\n
$$
g \nabla u(0, t) = \nabla u(0, t) \text{ for every } g \in G;
$$

\n
$$
G \text{ essential } \Rightarrow \nabla u(0, t) = 0.
$$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

 4 ロ) 4 何) 4 ミ) 4 (=)

唐

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let $x(t) = 0$ for every $t > 0$. Does Ω have any kind of symmetry?

-
-
-
-

$$
\int\limits_{\Omega\cap \partial B(0,R)}x\,\,dS_x=0.
$$

-
-

$$
\mathbf{0} \ \ m=\max\{m_k:\mathcal{H}^{m_k}(M_k^{m_k})>0\};
$$

$$
\mathcal{K}_m(x) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(x) \right] \right\}^{-\frac{1}{2}}.
$$

$$
\sum_{m_k=m} \int\limits_{M_L^{\mu}} x \mathcal{K}_m(x) d\mathcal{H}^m=0.
$$

stated by the participants and the contract of

 -40

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let $x(t) = 0$ for every $t > 0$. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

- Ω bounded (not necessarily convex), $0 \in \Omega$:
- 2 ∂Ω Lipschitz continuous;
- \bullet R=d(0);
- $\bullet x(t) = 0$ for every $t > 0$.

Then

$$
\int\limits_{\partial \Omega \cap \partial B(0,R)} x\ dS_x = 0.
$$

-
-

$$
\mathfrak{D} \ \ m=\max\{m_k:\mathcal{H}^{m_k}(M_k^{m_k})>0\};
$$

$$
\mathcal{K}_m(x) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(x) \right] \right\}^{-\frac{1}{2}}.
$$

$$
\sum_{m_k=m} \int_{M_L^{\mu}} x \mathcal{K}_m(x) d\mathcal{H}^m=0.
$$

states and provide a series and

 -40

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Stationary hot spot: a general necessary condition

Klamkin (1994)

Let Ω be convex and let $x(t) = 0$ for every $t > 0$. Does Ω have any kind of symmetry?

R.M. - Sakaguchi (2004)

- Ω bounded (not necessarily convex), $0 \in \Omega$:
- 2 ∂Ω Lipschitz continuous;
- \bullet R=d(0);
- \bullet $x(t) = 0$ for every $t > 0$.

Then

$$
\int\limits_{\partial \Omega \cap \partial B(0,R)} x\ dS_x = 0.
$$

If $\mathcal{H}^{N-1}(\partial\Omega\cap\partial B(0,R))=0$

- $\partial \Omega$ piecewise of class C^2 ;
- 2 ∂Ω∩∂B $(0, R) = \bigcup_{k=1}^{K} M_k^{m_k}$, where $M_k^{m_k}$ are pairwise disjoint m_k are pairwise disj.
 m_k -submanifolds with $0 \leq m_k \leq N-2$ and $\partial M_k^{m_k} = \emptyset;$

3
$$
m = max{m_k : H^{m_k}(M_k^{m_k}) > 0};
$$

$$
\bullet \mathcal{K}_m(x) = \left\{ \prod_{j=m+1}^{N-1} \left[\frac{1}{R} - \kappa_j(x) \right] \right\}^{-\frac{1}{2}}.
$$

Then

$$
\sum_{m_k=m} \int\limits_{M_k^{\mu}} x \; \mathcal{K}_m(x) \; d\mathcal{H}^m=0.
$$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Corollary

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

唐.

 299

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Corollary

Ω convex polyhedron

COL

$$
\partial\Omega \cap \partial B(0, R) = \{p_i\}_{i=1,\dots,m} \text{ and hence}
$$

$$
\sum_{i=1}^{m} p_i = 0.
$$

CDP Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

 \mathcal{L}

Ξ

Ξ

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and $v(0, t) = c$ for every $t > 0$, then

$$
\frac{1}{|B(0,r)|}\int\limits_{B(0,r)}v(x,t)\ dx = c = v(0,t),
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

$$
\int_{B(0,r)} x \, v(x,t) \, dx = 0,
$$

-
-

 \sim

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and $v(0, t) = c$ for every $t > 0$, then

$$
\frac{1}{|B(0,r)|}\int\limits_{B(0,r)}v(x,t)\ dx = c = v(0,t),
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

Corollary

Since every $\partial_{\mathsf{x}_{i}}\mathsf{v}$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every $t > 0$, we have:

$$
\int\limits_{B(0,r)}x\ v(x,t)\ dx=0,
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

-
-

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

 α

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and $v(0, t) = c$ for every $t > 0$, then

$$
\frac{1}{|B(0,r)|}\int\limits_{B(0,r)}v(x,t)\ dx = c = v(0,t),
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

Corollary

Since every $\partial_{\mathsf{x}_{i}}\mathsf{v}$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every $t > 0$, we have:

$$
\int\limits_{B(0,r)}x\ v(x,t)\ dx=0,
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

Boundary layer

Let us choose

$$
\begin{array}{ll}\n\bullet \quad v(x,t) = u(x,t) \text{ (i.e. } u = 1 \text{ on }\\ \n\Omega \times \{0\}; u = 0 \text{ on } \partial \Omega \times (0,\infty));\n\end{array}
$$

 $2 r = R = d(0)$, so that $B(p, R)$ touches ∂Ω;

and let us use the "boundary layer" produced by $u(x, t)$ as $t \to 0^+$.

 α

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: first part

Mean value property (for stationary points)

If $v_t = \Delta v$ in $D \times (0, \infty)$ and $v(0, t) = c$ for every $t > 0$, then

$$
\frac{1}{|B(0,r)|}\int\limits_{B(0,r)}v(x,t)\ dx=c=v(0,t),
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

Corollary

Since every $\partial_{\mathsf{x}_{i}}\mathsf{v}$ also satisfies the heat equation, if $\nabla v(p, t) = 0$ for every $t > 0$, we have:

$$
\int\limits_{B(0,r)}x\ v(x,t)\ dx=0,
$$

for every $r < \text{dist}(0, \partial D)$ and $t > 0$.

Boundary layer

Let us choose

$$
\begin{array}{ll}\n\bullet \quad v(x,t) = u(x,t) \text{ (i.e. } u = 1 \text{ on }\\ \n\Omega \times \{0\}; u = 0 \text{ on } \partial \Omega \times (0,\infty));\n\end{array}
$$

 $2 r = R = d(0)$, so that $B(p, R)$ touches ∂Ω;

and let us use the "boundary layer" produced by $u(x, t)$ as $t \to 0^+$.

Barriers for small $t; \varepsilon > 0$ is a parameter

The Varadhan's formula

$$
\lim_{t\to 0^+}(-4t)\log\{1-u(x,t)\}=d(x)^2,
$$

suggests the construction of two barriers:

 $F_{-}^{\varepsilon}\Big(\frac{d(x)}{\sqrt{t}}\Big)$ $F_{-}^{\varepsilon}\Big(\frac{d(x)}{\sqrt{t}}\Big)$ $F_{-}^{\varepsilon}\Big(\frac{d(x)}{\sqrt{t}}\Big)$ $\Big) \leq u(x,t) \leq F_+^{\varepsilon} \Big(\frac{d(x)}{\sqrt{t}} \Big)$ $\Big) \leq u(x,t) \leq F_+^{\varepsilon} \Big(\frac{d(x)}{\sqrt{t}} \Big)$ $\Big) \leq u(x,t) \leq F_+^{\varepsilon} \Big(\frac{d(x)}{\sqrt{t}} \Big)$ "

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in \mathcal{C}^0_0(\mathbb{R}^N),$ then

$$
\int\limits_{B(p,R)}F\left(\frac{d(x)}{\sqrt{t}}\right)\,\nu(dx)=
$$

$$
\int_{0}^{2R/\sqrt{t}} F'(\sigma) \nu({x \in B(p, R) : d(x) > \sigma \sqrt{t}}) d\sigma
$$

$$
\lim_{s\to 0^+} s^{-\frac{N+1-\mu}{2}}\nu(\lbrace x\in B(p,R): d(x)
$$

$$
C(N,\mu)\sum_{m_k=m}^{K_m}\int_{M_{\mu}^{m_k}}\varphi(x)K_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}
$$

$t^{-\frac{N+1-m}{4}}$ $\int_{B(p,R)}^{\infty} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow$

$$
\int\limits_{-\infty}^{\infty}\sigma^{\frac{N-1-m}{2}}F_{\pm}^{\varepsilon}(\sigma)\,d\sigma\to c(N,m),
$$

K ロ ▶ K @ ▶ K 분 ▶ K 분 ▶ (분

 4190

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in \mathcal{C}^0_0(\mathbb{R}^N),$ then

$$
\int\limits_{B(p,R)}F\left(\frac{d(x)}{\sqrt{t}}\right)\,\nu(dx)=
$$

$$
\int_{0}^{2R/\sqrt{t}} F'(\sigma) \nu({x \in B(p, R) : d(x) > \sigma \sqrt{t}}) d\sigma
$$

Crucial lemma

$$
\lim_{s\to 0^+} s^{-\frac{N+1-\mu}{2}}\nu(\lbrace x\in B(p,R): d(x)< s\rbrace)=
$$

$$
C(N,\mu)\sum_{m_k=m}^{K_m}\int\limits_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}
$$

$t^{-\frac{N+1-m}{4}}$ $\int_{B(p,R)}^{\infty} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow$

$$
\int\limits_{0}^{\infty} \sigma^{\frac{N-1-m}{2}} F_{\pm}^{\varepsilon}(\sigma) d\sigma \to c(N,m),
$$

K ロ > K @ > K 분 > K 분 > H 분

 4190

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in \mathcal{C}^0_0(\mathbb{R}^N),$ then

$$
\int\limits_{B(p,R)}F\left(\frac{d(x)}{\sqrt{t}}\right)\,\nu(dx)=
$$

$$
\int_{0}^{2R/\sqrt{t}} F'(\sigma) \nu({x \in B(p, R) : d(x) > \sigma \sqrt{t}}) d\sigma
$$

Crucial lemma

$$
\lim_{s\to 0^+} s^{-\frac{N+1-\mu}{2}}\nu(\lbrace x\in B(p,R): d(x)< s\rbrace)=
$$

$$
C(N,\mu)\sum_{m_k=m}^{K_m}\int\limits_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}
$$

Therefore $t^{-\frac{N+1-m}{4}}$ $\int_{B(p,R)}^{\infty} F\left(\frac{d(x)}{\sqrt{t}}\right) \nu(dx) \rightarrow$ $\frac{N+1-m}{2}A_{\Omega,R}^{m,N}\int\limits_{0}^{\infty}\sigma^{\frac{N-1-m}{2}}F(\sigma)\ d\sigma$ 0

$$
\int\limits_{0}^{\infty}\sigma^{\frac{N-1-m}{2}}F_{\pm}^{\varepsilon}(\sigma)\ d\sigma\to c(N,m),
$$

K ロ ▶ K @ ▶ K 분 ▶ K 분 ▶ ... 분 ... * * 9 Q @

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Proof: second part

Fubini's theorem implies

If F is BV and $d\nu(dx) = \varphi(x) dx$ with $\varphi \in \mathcal{C}^0_0(\mathbb{R}^N),$ then

$$
\int\limits_{B(p,R)}F\left(\frac{d(x)}{\sqrt{t}}\right)\,\nu(dx)=
$$

$$
\int_{0}^{2R/\sqrt{t}} F'(\sigma) \nu({x \in B(p, R) : d(x) > \sigma \sqrt{t}}) d\sigma
$$

Crucial lemma

$$
\lim_{s\to 0^+} s^{-\frac{N+1-\mu}{2}}\nu(\lbrace x\in B(p,R): d(x)< s\rbrace)=
$$

$$
C(N,\mu)\sum_{m_k=m}^{K_m}\int\limits_{M_k^{m_k}}\varphi(x)\mathcal{K}_m(x)d\mathcal{H}^m:=A_{\Omega,R}^{m,N}
$$

Therefore $t^{-\frac{N+1-m}{4}} \int R(\frac{d(x)}{\sqrt{t}}) \nu(dx) \rightarrow$ $B(p,R)$

$$
\frac{N+1-m}{2}A_{\Omega,R}^{m,N}\int\limits_{0}^{\infty}\sigma\frac{N-1-m}{2}F(\sigma)\ d\sigma
$$

Conclusion

Choose $\varphi(x) = (x_i - p_i)^{\pm}, F = F_{\pm}^{\varepsilon},$ and use the fact that, as $\varepsilon \to 0^+,$

$$
\int\limits_0^\infty \sigma^{\frac{N-1-m}{2}} F_\pm^\varepsilon(\sigma) \; d\sigma \to c(N,m),
$$

where $c(N, m)$ is indipendent on \pm . イロン イ押ン イミン イミン

 4190

唐

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Symmetry: triangles and quadrangles

Polygons

In this case, our theorem implies that

$$
\sum_{i=1}^n p_i=0.
$$

Rolando Magnanini [Critical points of solutions of elliptic and parabolic PDE's](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

唐

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Symmetry: triangles and quadrangles

Polygons

In this case, our theorem implies that

$$
\sum_{i=1}^n p_i = 0.
$$

Symmetry

Let $x(t) = 0$ for every $t > 0$. Then

1 if Ω is a triangle $\Rightarrow \Omega$ is equilateral;

2 if Ω is a quadrangle $\Rightarrow \Omega$ is a parallelogram.

In particular, a non convex quadrangle does not admit a stationary hot spot.

The most diffucult case to treat concerns the picture here below.

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Polygons: another condition

Ω polygon

By applying the Schwarz reflection principle w.r.t. each side, we can extend *u* to a solution u^* of $u_t^* = \Delta u^*$, in a larger domain (the **white domain** Ω^*)

$$
\int_{B(0,r)} x u^*(x,t) dx = 0;
$$

$$
\int_{\delta(0,R^*)} x u^*(x,t) dx = 0 \text{ per ogni } t > 0,
$$

イロト イ部 トイヨ トイヨ トー

唐

 $2Q$

[Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Polygons: another condition

Ω polygon

By applying the Schwarz reflection principle w.r.t. each side, we can extend *u* to a solution u^* of $u_t^* = \Delta u^*$, in a larger domain (the **white domain** Ω^*)

Since still $u^*(0, t) = 0$ for every $t > 0$, we again find:

$$
\int_{B(0,r)} x u^*(x,t) dx = 0;
$$

 $B(0,r)$
this time for $r \leq R^*$, where

 R^* is the distance of 0 from the **closest** vertices of $Ω$.

Choose $r = R^*$; then

$$
\int_{B(0,R^*)} x u^*(x,t) dx = 0 \text{ per ogni } t > 0,
$$

but it is not convenient to work with this integral.

イロメ イ部メ イヨメ イヨメー

(重) $2Q$
[Elliptic equations in](#page-6-0) \mathbb{R}^2 [Examples and extensions to](#page-27-0) \mathbb{R}^N [Hot spots](#page-32-0) [Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

It is instead convenient to fold back into Ω the parts of $B(0,R^*)$ that are outside Ω.

$$
\int\limits_{\beta(0,r)} x u^*(x,t) dx = 0
$$

$$
\int x u(x, t) dx + \sum_i \int_{D_i} (x - x_i^*) u(x, t) dx = 0,
$$

イロメ イ押メ イヨメ イヨメ

扂

[Elliptic equations in](#page-6-0) \mathbb{R}^2 [Examples and extensions to](#page-27-0) \mathbb{R}^N [Hot spots](#page-32-0) [Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

It is instead convenient to fold back into Ω the parts of $B(0,R^*)$ that are outside Ω.

It turns out that

$$
\int\limits_{B(0,r)}x u^*(x,t) dx = 0
$$

if and only if

$$
\int\limits_E x u(x,t) dx + \sum\limits_i \int\limits_{D_i} (x-x_i^*) u(x,t) dx = 0,
$$

where E is the pink set, D_i the green ones and x_i^* is the reflection of x w.r.t. the side of Ω contained in D_i .

イロメ イ押メ イヨメ イヨメ

 299

哇

[Elliptic equations in](#page-6-0) R [Examples and extensions to](#page-27-0) R N [Hot spots](#page-32-0) [Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

It is instead convenient to fold back into Ω the parts of $B(0,R^*)$ that are outside Ω.

It turns out that

$$
\int\limits_{B(0,r)}x u^*(x,t) dx = 0
$$

if and only if

$$
\int\limits_E x u(x,t) dx + \sum\limits_i \int\limits_{D_i} (x-x_i^*) u(x,t) dx = 0,
$$

where E is the pink set, D_i the green ones and x_i^* is the reflection of x w.r.t. the side of Ω contained in D_i .

In this way we can again work with u in place of u^* .

イロメ イ御 メイモメ イモメ

[Elliptic equations in](#page-6-0) \mathbb{R}^2 [Examples and extensions to](#page-27-0) R N [Hot spots](#page-32-0) [Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Symmetry: pentagons ed exagons

If all sides of Ω touch $\partial B(0,R^*)$

By an asymptotic analysis similar to (but more complicated than) that already seen, by sending t to 0, we show that

$$
\sum_{i=1}^{m} p_i = 0 \text{ and}
$$

$$
\sum_{j=1}^{k} q_j = 0,
$$

where the q_j 's are the vertices of Ω that are closest to 0.

 4 ロ) 4 何) 4 ミ) 4 (=)

[Elliptic equations in](#page-6-0) \mathbb{R}^2 [Examples and extensions to](#page-27-0) R N [Hot spots](#page-32-0) [Basic results](#page-32-0) [Open problems](#page-41-0) [On the location of hot spots](#page-45-0) [Stationary hot spots](#page-51-0)

Simmetria: pentagoni ed esagoni

If all sides of Ω touch $\partial B(0,R^*)$

By an asymptotic analysis similar to (but more complicated than) that already seen, by sending t to 0 we show that

$$
\sum_{i=1}^{m} p_i = 0 \text{ and}
$$

$$
\sum_{j=1}^{k} q_j = 0,
$$

where the q_j 's are the vertices of Ω that are closest to 0.

Symmetry

If Ω is as specified, then

- **1** if Ω is a pentagon, Ω is regular;
- 2 if $Ω$ is an exagon, $Ω$ is invariant w.r.t. rotations by the angles $\frac{\pi}{3}, \frac{2\pi}{3}$ e π .

イロメ イ御 メ イヨメ イヨメ